(完整word版)小学数学行程问题练习题.pdf

合集下载

小学数学《行程问题》练习题

小学数学《行程问题》练习题

《行程问题》练习题1.甲乙两人同时分别从两地骑车相向而行。

甲每小时行20千米,乙每小时行18千米。

两人相遇时距全程中点3千米。

求全程长多少米?2.甲乙两个码头相距3500米,1号渡轮平均每分钟行180米,2号渡轮平均每分钟行170米,这两艘渡轮同时分别从甲、乙两码头相向而行,靠码头乘客上船需停留3分钟。

它们第一次相遇后又经过多少分钟第二次相遇?3.一辆汽车和一辆摩托车同时从相距860千米的两地出发,汽车每小时行45千米,摩托车每小时行70千米。

6小时后两车相距多少千米?4.甲乙两队学生从相隔18千米的两地同时出发,相向而行。

一个同学骑自行车以每小时14千米的速度在两队之间不停地往返联络。

甲队每小时行5千米,乙队每小时行4千米,两队相遇时,骑自行车的同学共行多少千米?5.两地之间的路程是760千米,有两列火车同时从两地相向开来,第一列火车每小时行72千米,第二列火车每小时行54千米。

一只鸽子以每小时80千米的速度和第二列火车一起出发向第一列火车飞去。

当鸽子与第一列火车相遇时,第二列火车距离目的地还有多少千米?6.甲、乙两车同时同地背向而行,甲车每小时行50千米,乙车每小时行42千米,当甲车比乙车多行32千米时,甲、乙两车相距多少千米?7.甲、乙两车同时从东西两地相向开出。

甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇。

问东西两地相距多少千米?8.快车和慢车同时从东西两地相对开出。

已知快车每小时行40千米,经过3小时后,快车已驶过中点25千米,这时与慢车还相距7千米。

慢车每小时行多少千米?9.一辆汽车由甲城开往乙城。

3小时后因事故停了半小时之后,司机每小时加速6千米,再经过4小时准时到达了乙地。

甲、乙两城相距多少千米?10.敌车在我车前方45千米的地方逃窜,速度为每小时60千米。

我军紧紧追击,速度为每小时80千米。

需要几小时可以追上?11.两人从甲、乙两地同时同方向出发,在前面的人步行,每小时行4千米,后面的人骑马,每小时行12千米。

小学数学《 行程问题(一)》练习题(含答案)

小学数学《 行程问题(一)》练习题(含答案)

小学数学《 行程问题(一)》练习题(含答案)路程、速度、时间的关系【例1】 汽车以每小时72千米的速度从甲地到乙地,到达后立即以每小时48千米的速度返回甲地.求该车的平均速度.【分析】(法1)设甲乙两地的距离是S 千米,平均速度=228857248s s s=+(千米/小时). (法2)特殊值法.设甲乙两地的距离是144千米(72和48的最小公倍数),144228814414457248⨯=+(千米/小时).【例2】 汽车往返于A 、B 两地,去时时速为40千米,要想来回的平均时速为48千米,回来时的时速应为多少?【分析】设甲乙两地的距离是S 千米,回来时的时速为x 千米/小时,24840s s s x=+,解得x=60(千米/小时).【例3】 有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等.某人骑自行车过桥时,上坡、走平路和下坡的速度分别为每秒4米、6米和8米,求他过桥的平均速度.【分析】(法1)设上坡、平路及下坡的路程均为S 千米,平均速度=37213468s s s s =++(千米/小时).(法2)特殊值法. 设上坡、平路及下坡的路程均为24千米,平均速度=2437224242413468⨯=++(千米/小时).相遇问题【例4】 两地相距400千米,两辆汽车同时从两地相对开出,甲车每小时行40千米,乙车每小时比甲车多行5千米,4小时后两车相遇了吗?【分析】乙的速度为40 +5 = 45(千米),(40 + 45)×4 = 340(千米),340千米 < 400千米 ,因为两车4小时共行340千米,所以4小时后两车没有相遇.[巩固] 甲、乙两地相距480千米.一辆汽车从甲地开往乙地,每小时行52千米, 行驶312千米后遇到从乙地开来的另一辆汽车.如果乙地开来的汽车每小时行42千米,算一算这两辆车是不是同时开出的?【分析】312÷52 = 6(小时),(480—312)÷42 = 4(小时),从甲地开出的汽车行驶6小时,从乙地开出的汽车行驶4小时,所以说,这两辆车不是同时开出的.【例5】 南辕与北辙两位先生对于自己的目的地S 城的方向各执一词,于是两人都按照自己的想法驾车分别往南和往北驶去,南辕先生出发2小时后北辙先生才出发,二人的速度分别为50千米/时,60千米/时,那么北辙先生出发5小时他们相距多少千米?【分析】为让学生深刻理会t v S 和和 ,教师可先讲解下题.[前铺1] 大头儿子的家距离学校3000米,小头爸爸从家去学校,大头儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?【分析】大头儿子和小头爸爸的速度和:3000÷50=60(米/分钟),小头爸爸的速度:(60+24)÷2=42(米/分钟),大头儿子的速度:60—42=18(米/分钟).[前铺2] 孙悟空在花果山,猪八戒在高老庄,花果山和高老庄之间有条流沙河,一天,他们约好在流沙河见面,孙悟空的速度是200千米/小时.猪八戒的速度是150千米/小时,他们同时出发2小时后还相距500千米,则花果山和高老庄之间的距离是多少千米?【分析】 建议教师画线段图.我们可以先求出2小时孙悟空和猪八戒走的路程:(200+150)×2=700(千米),又因为还差500米,所以花果山和高老庄之间的距离:700+500=1200(千米).教师在讲解此题之前可以先将条件稍稍改变成两人同时出发,那么两人虽然不是相对而行,但是仍合力完成了路程,这样学生就容易得到本题答案,50×2+(50+60)×5=650(千米).【例6】 夏夏和冬冬同时从两地相向而行,夏夏每分钟行50米,冬冬每分钟行60米,两人在距两地中点50米处相遇,求两地的距离是多少米?【分析】根据题意,我们可以画线段图如右图,从图中可以看出(可让学生先判断相遇点在中点哪一侧,为什么?):夏夏所行路程=全程一半 – 50米 ; 冬冬所行路程=全程一半 + 50米 ;所以两人相遇时,冬冬比夏夏多走了50×2=100(米),冬冬比夏夏每分钟多走10米,所以两人从出发到相遇共走了10分钟,两地的距离:(60+50)×10=1100(米).【例7】 甲乙两列火车同时从东西两镇之间的A 地出发向东西两镇反向而行,它们分别到达东西两镇后,再以同样的速度返回,已知甲每小时行60千米,乙每小时行70千米,相遇时甲比乙少行120千米,东西两镇之间的路程是多少千米?【分析】教师注意帮助学生画图分析.从出发到甲、乙两列火车相遇,两列火车共同行驶了2个全程.已知甲比乙少行120千米,甲每小时比乙少行(70—60 =)10(千米),120÷10 = 12(小时),说明相遇时,两辆车共同行驶了12小时.那么两辆车共同行驶1个全程需要6小时,东西两镇之间的路程是(60 + 70)×6 = 780(千米)追及问题【例8】 小伟和小华从学校到电影院看电影,小伟以每分60米的速度向影院走去,5分后小华以每分80米的速度向影院走去,结果两人同时到达影院.学校到影院的路程是多少米?【分析】小伟先走的路程是:60×5=300(米),小华追上小伟所用的时间(也就是小华从学校到影院所用的时间)是:300÷(80-60)=15(分),学校到影院的路程(也就是小华所走的路程)是:80×15=1200(米).【例9】 小张从家到公园,原打算每分种走50米.为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远?【分析】可以作为“追及问题”处理.假设另有一人,比小张早10分钟出发.考虑小张以75米/分钟速度去追赶,追上所需时间是:50×10÷(75-50)=20(分钟),因此,小张走的距离是:75×20=1500(米).【例10】 小新和正南在操场上比赛跑步,小新每分钟跑250米,正南每分钟跑210米,一圈跑道长800米,他们同时从起跑点出发,那么小新第一次超过正南需要多少分钟?第三次超过正南需要多少分钟?【分析】小新第一次超过正南是比正南多跑了一圈,根据t v S 差差 ,可知小新第一次超过正南需要:800÷(250-210)=20(分钟),第三次超过正南是比正南多跑了三圈,需要800×3÷(250-210)=60分钟.【例11】 两名运动员在湖的周围环形道上练习长跑.甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙;如果两人同时同地反向出发,经过多少分钟两人相遇?【分析】在封闭的环形道上同向运动属追及问题,反向运动属相遇问题.同地出发,其实追及路程或相隔距离就是环形道一周的长.这道题的解题关键就是先求出环形道一周的长度.环形道一周的长度:(250-200)×45=2250(米).反向出发的相遇时间:2250÷(250+200)=5(分钟).【例12】龟兔赛跑同时出发,全程7000米,乌龟以每分30米的速度爬行,兔子每分钟跑330米.兔子跑了10分钟就停下来睡了200分钟,醒来后立即以原速往前跑.当兔子追上乌龟时,离终点的距离是多少千米?【分析】兔子追乌龟的追及路程差为:30×(10+200)-330×10=3000(米),兔子追上乌龟的追及时间为:3000÷(330-30)=10(分),离终点的距离为:7000-330×(10+10)=400(米).小朋友,你知道谁先到达终点么?【附1】 一辆汽车往返于甲、乙两地,去时用了4小时,回来时速度提高了1/7.问:回来时用了多少时间? 【分析】设甲乙两地的距离是S ,去时的速度为4s,回来的速度为12(1)477s s ⨯+=,所以回来用时为7227s s =(小时).【附2】 甲乙两车早上6时分别从A 、B 两地相向出发,到9时两车相距126千米,继续行进到中午12时,两车还相距126千米,问A 、B 两地路程是多少千米?【分析】两车的速度和为:126×2÷(9-6)=84(千米) ,A 、B 两地的总路程为:84×3+126=378(千米) .【附3】 小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟.他们同时出发,几分钟后两人相遇? 【分析】走同样长的距离,小张花费的时间是小王花费时间的 36÷12=3(倍),因此自行车的速度是步行速度的3倍,也可以说,在同一时间内,小王骑车走的距离是小张步行走的距离的3倍.如果把甲地乙地之间的距离分成相等的4段,小王走了3段,小张走了1段,小张花费的时间是36÷(3+1)=9(分钟). 【附4】 上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?【分析】如右图可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4(千米),而爸爸骑的距离是 4+8=12(千米),这就知道,爸爸骑摩托车的速度是小明骑自行车速度的 12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸爸少用了8分钟,骑行了4+12=16(千米),少骑行24-16=8(千米),摩托车的速度是1千米/分,爸爸骑行16千米需要16分钟,8+8+16=32,这时是8点32分.【附5】某段路程,以每分钟80米的速度前进,可以提早15分钟到达;如果以每分钟60米的速度前进,就要迟到5分钟.预定几分钟到达?这段路程长多少米?【分析】可以设想,以速度80米/分按预定时间前进,就比这段路多行(80×15)米,即1200米;以速度60米/分,按预定时间前进,就比这段路少行(60×5)米,即300米.以两种不同的速度按预定时间前进,其距离差为(1200+300)米,即1500米,速度差为(80-60)米/分,预定时间可视为追及时间.这样,就可以把问题转化成追及问题来解.(1200+300)÷(80-60)=75分,80×(75-15)=4800米,预定75分钟到达,这段路程长4800米.1.汽车往返于A、B两地,去时时速为60千米,要想来回的平均时速为70千米,回来时的时速应为多少?【分析】设甲乙两地的距离是S千米,回来时的时速为x千米/小时,27060ss sx=+,解得x=84(千米/小时).2.甲乙两车分别从相距300千米的A、B两城同时出发,相向而行,已知甲车到达B城需5小时,乙车到达A城需6小时,问:两车出发后多长时间相遇?【分析】300÷(300÷5+300÷6)=30/11(小时).3.两座大楼相距300米,甲乙二人各从一座大楼门口向相反方向走去,7分钟后两人相距860米.甲每分钟走37米,乙每分走多少米?【分析】(860—300)÷7—37 = 43(米).4.小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点3千米的地方相遇,求甲、乙两地间的距离.【分析】小张比小王每小时多走(5-4)千米,从出发到相遇所用的时间是:6÷(5-4)=6(小时),因此甲、乙两地的距离是:(5+4)×6=54(千米).5.甲乙二人从AB两地同时出发相向而行,相遇时距A地48千米,相遇后二人继续前进,分别到达A、B两地后立即返回,在距A地94千米处第二次相遇,A、B两地相距多少千米?【分析】画图帮助学生分析.甲、乙第二次相遇时共同走完了3个全程,那么甲就走了3个48千米,即144千米,加上94千米,就是两个全程.(48×3 + 94)÷2 = 119(千米).。

(word完整版)六年级奥数--行程问题

(word完整版)六年级奥数--行程问题

六年级奥数——行程问题(一)一、知识要点行程问题的三个基本量是距离、速度和时间。

其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。

行程问题的主要数量关系是:距离=速度×时间。

它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差×时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

二、精讲精练【例题1】两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。

甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。

甲车行完全程用了多少小时?解答本题的关键是正确理解“已知甲车比乙车早刀8分钟,当甲车到达时,乙车还距工地24千米”。

这句话的实质就是:“乙48分钟行了24千米”。

可以先求乙的速度,然后根据路程求时间。

也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。

解法一:乙车速度:24÷48×60=30(千米/小时)甲行完全程的时间:165÷30—4860=4.7(小时)解法二:48×(165÷24)—48=282(分钟)=4.7(小时)答:甲车行完全程用了4.7小时。

练习1:1、甲、乙两地之间的距离是420千米。

两辆汽车同时从甲地开往乙地。

第一辆每小时行42千米,第二辆汽车每小时行28千米。

第一辆汽车到乙地立即返回。

两辆汽车从开出到相遇共用多少小时?2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。

两车同时从两地开出,相遇时甲车距B地还有多少千米?3、甲、乙两辆汽车早上8点钟分别从A、B两城同时相向而行。

行程问题及答案

行程问题及答案

行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。

基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和相遇问题:(直线):甲的路程+乙的路程=总路程相遇问题:(环形):甲的路程 +乙的路程=环形周长追及问题:追及时间=路程差÷速度差速度差=路程差÷追及时间追及时间×速度差=路程差追及问题:(直线):距离差=追者路程-被追者路程=速度差 X 追击时间追及问题:(环形):快的路程-慢的路程=曲线的周长流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速:(顺水速度-逆水速度)÷2 流水速度+流水速度÷2 水速:流水速度-流水速度÷2 关键是确定物体所运动的速度,参照以上公式。

列车过桥问题:关键是确定物体所运动的路程,参照以上公式。

我们由浅入深看一些题目:小学数学关于相遇问题的应用题1、一列客车从甲地开往乙地,同时一列货车从甲地开往乙地,当货车行了 180 千米时,客车行了全程的七分之四;当客车到达乙地时,货车行了全程的八分之七。

甲乙两地相距多少千米?2、甲、乙两车同时从 A、B 两地相对开出,2 小时相遇。

相遇后两车继续前行,当甲车到达 B 地时,乙车离 A 地还有 60 千米,一直两车速度比是3:2。

求甲乙两车的速度。

3、甲、乙两车分别同时从 A、B 两成相对开出,甲车从 A 城开往 B 城,每小时行全程的 10%,乙车从 B 城开往 A 城,每小时行 8 千米,当甲车距 A 城 260 千米时,乙车距 B 地 320 千米。

(完整word版)五年级利用方程解决行程问题

(完整word版)五年级利用方程解决行程问题

五年级利用方程解决行程问题1、解行程问题的应用题要用到路程、速度、时间之间的关系,如果用s、v、t分别表示路程、速度、时间,那么s、v、t三个量的关系为s= vt 或v= s÷t 或t= s÷v 。

2、相遇问题1.相向而行同时出发到相遇时甲、乙两人所用的时间相等。

2。

基本公式:速度和×相遇时间=相遇路程3、追击问题1.同向而行同时出发到相遇(即追击)时,甲、乙两人所用的时间相等。

2.基本公式:速度差×追击时间=追击路程例1. A、B两地相距960千米,甲、乙两辆汽车分别从两地同时出发,相向开出,6小时后两车相遇;已知甲车的速度是乙车的1。

5倍。

求甲、乙两车的速度各是多少?960千米6小时相遇A B例2. A、B两地相距230千米,甲队从A地出发两小时后,乙队从B地出发与甲相向而行,乙队出发20小时后与甲队相遇,已知乙的速度比甲的速度每小时快1千米,求甲、乙的速度各是多少?230千米甲队队乙例3。

甲、乙两车自西向东行驶,甲车的速度是每小时48千米,乙车的速度是每小时72千米,甲车开出2小时后乙车开出,问几小时后乙车追上甲车?分析:设x小时后乙车追上甲车。

练习:解方程(画出线段图)1。

两辆汽车同时从相距560千米的两个车站相对开出。

4小时后在途中相遇,已知一辆汽车每小时行68千米,另一辆汽车每小时行多少千米?2. 两辆汽车同时从相距380千米的甲乙两地相对开出,甲车每小时行45千米,乙车每小时行50千米。

两车开出几小时后还相距95千米?3。

A、B两地相距580千米,甲车从A地出发1小时后,乙车从B地出发相向开出,6小时后两车相遇;已知乙车的速度是甲车的1。

5倍。

求甲、乙两车的速度各是多少?4。

甲、乙两人自A地出发同向而行,甲以hkm7的速度追5的速度先出发,半小时后乙以hkm赶甲.几小时后乙能追上甲?5.张宁与张宇两兄妹早上以60米/分钟的速度同时从家出发去学校,6分钟后,张宇发现忘带铅笔盒,遂叫妹妹继续前行,他以90米/分钟的速度跑步返回。

四年级下册数学试题 行程问题 练习 苏教版-word文档

四年级下册数学试题  行程问题  练习   苏教版-word文档

行程问题相遇问题速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间=速度和速度和:两人或两车速度的和;相遇时间:两人或两车同时开出到相遇所用的时间。

追击问题速度差×时间=路程差路程差÷速度差=时间路程差÷时间=速度差例1、两列火车同时从两地相对开出,甲列火车每小时行86千米,乙列火车每小时行102千米,经过5小时两车在途中相遇,求两地相距多少千米?甲乙两列火车分别从A、B两地同时出发相向而行,甲车每小时行驶75千米,乙车每小时行驶69千米,经过18小时两车途中相遇,两地间的铁路长多少千米?例2、甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,经过2小时后两人相遇,问乙每小时行多少千米?甲乙两列火车同时从相距700千米的两地开出,甲车每小时行75千米,经过5小时相遇,乙车每小时行多少千米?例3、小强和小丽在环形跑道上进行长跑比赛,小强的速度是150米/分,小丽的速度是140米/分。

小强10分钟到达终点,此时小丽距离终点还有多少米?一艘轮船,从甲港驶往乙港,每小时行驶20千米,10小时到达。

回来时,每小时行驶25千米,几小时可以回到甲港?例4、一列客车4小时行驶224千米,一列货车4小时行驶256千米。

客车比货车每小时少行驶多少千米?小丽和小红从400米长的环形跑道起点同时相背而行,小丽的速度是75米/分,小红的速度是65米/分。

3分钟后两人相距多少米?例5、一条环形跑道400米,甲每分钟跑270米,乙每分钟跑250米,两人同时同地同向出发,经过多长时间甲第一次追上乙?一条环形跑道200米,A、B两人同时从起跑线起跑,A每分钟280米,B每分钟260米,问:A第一次追上B两人个跑了多少米?随堂练习:王明和妹妹两人从相距2019米的两地相向而行,王明每分钟行110米,妹妹每分钟行90米,如果一只狗与王明同时同向而行,每分钟行500米,遇到妹妹后,立即回头向王明跑去,遇到王明再向妹妹跑去,这样不断来回,直到王明和妹妹相遇为止。

(完整word版)火车行程问题

(完整word版)火车行程问题

一:火车过桥、过隧道问题公式:路程=速度×时间基本数量关系是:火车长+桥长=火车速度×过桥时间火车速度=(火车长+桥长)÷过桥时间过桥时间=(火车长+桥长)÷火车速度一般的火车过桥所求的分为:求过桥时间;求桥长;求火车长;求火车的速度。

下面我们分别研究这些问题。

经典例题:例1:一列火车长180米,每秒行25米。

全车通过一条120米的大桥,需要多长时间?解:如图过桥时间=(火车长+桥长)÷火车速度(180+120)÷25=300÷25=12(秒)答:需要12秒。

课堂训练:(1)一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要多少秒?(2)一列火车长250米,每秒行驶50米,全车通过一座长2750米的隧道,一共需要多少时间?(3)一列火车长150米,每秒行驶16米,全车通过一座长330米的大桥。

一共需要多少时间?(4)一列火车长210米,每秒钟行驶25米,全车通过一个190米的山洞需要多少时间?例2:一列火车长160米,全车通过一座桥需要30秒钟,这列火车每秒行20米,求这座桥的长度.解:由公式:火车长+桥长=火车速度×过桥时间变形可得:桥长=火车速度×过桥时间-火车长20×30-160=600-160=440(米)答:这座桥长440米。

课堂训练:(5)一列350米长的火车以每秒25米的速度穿过一座桥花了20秒,问:大桥的长度是多少?(6)一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?(7)一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞到车尾离洞,一共用了40秒。

这条隧道长多少米?(8)一座大桥长590米,一列火车以每秒15米的速度通过大桥,从车头上桥到车尾离开桥共用时间50秒,求这列火车长多少米?(9)一座大桥长2100米.一列火车以每分钟800米的速度通过这座大桥,从车头上桥到车尾离开共用3。

已用小学数学行程问题练习题

已用小学数学行程问题练习题

小学数学行程问题练习题(1)甲乙两城相距425千米,一辆客车和一辆货车分别从甲乙两地同时相向而行,客车每小时行45千米,货车每小时40千米,当两辆相遇时,客车行了多少千米?(2)甲乙两地相距520千米,货车从甲地开往乙地要8小时,客车从乙地开往甲地要10小时,两车同时从甲乙两地相向而行,经过几小时两车相距52千米?(3)甲乙两地相距441千米,客车每小时行50千米,比货车快2千米,两车同时从甲乙两地开出,经过多少小时两车相遇?(4)甲乙两村合挖一条长1390米的水渠,甲村从东往西挖。

每天挖75千米,挖了2天,乙村开始从西往东挖,这样又合挖了8天才完成了任务。

乙村平均每天挖了多少米?(5)小张骑摩托车从甲地到乙地,如果每小时行56千米,4小时可到达。

如果要提前半小时到达,那么每小时要行多少千米?(6)李明和王勇两人分别从相距45.6千米的甲乙县城相对骑车而行,而王勇是在李明先骑出5.1千米后才出发的,已知李明每小时行12千米,王勇每小时行15千米,问王勇出发几小时后两人碰面?(7)一辆快车和一辆慢车同时从甲乙两地出发,相向而行,经过了5小时两车相遇,相遇后,快车又继续开出了3小时到达乙地,已知慢车每小时行48千米,甲乙两地的距离是多少千米?(8)两艘汽艇同时从东港开往相距324km的西港,当乙艇到达西港时,甲艘离西港还有52.8km,已知甲艇每小时行45.2km,求乙艇每小时行多少千米?(9)甲、乙两人加工零件,甲每分钟加工2个,乙每分钟加工3个,他们一共加工了400个。

如甲比乙少工作25分钟,每人各工作了多少分钟?(10)甲乙两辆汽车同时从东西两地相对开出,甲车每小时行55.6千米,乙车每小时行54.8千米,两车在离中点处5.2千米处相遇.两车用了几小时相遇?(11)买一套课桌椅共需32元,学校买了40张桌子和35把椅子,共需1220元,求桌子和椅子的单价.。

小学行程问题汇总(含典型例题和习题)精选全文

小学行程问题汇总(含典型例题和习题)精选全文

可编辑修改精选全文完整版小学行程问题汇总(含典型例题和习题)我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。

行程问题主要包括相遇问题、相背问题和追及问题。

这一周我们来学习一些常用的、基本的行程问题。

解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。

知道三个量中的两个量,就能求出第三个量。

它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差×时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

在行程问题中,与环行有关的行程问题的解决方法与一般的行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动时,甲追上乙时,甲比乙多行了一个全程。

结合分数、百分数知识相关的较为复杂抽象的行程问题。

要注意:出发的时间、地点和行驶方向、速度的变化等,常常需画线段图来帮助理解题意。

例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?分析与解答:这是一道相遇问题。

所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。

根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。

所以,求两人几小时相遇,就是求20千米里面有几个10千米。

因此,两人20÷(6+4)=2小时后相遇。

练习 11、甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。

(完整word版)小学四年级下册数学行程问题思维训练题及答案

(完整word版)小学四年级下册数学行程问题思维训练题及答案

小学四年级下册数学行程问题思维训练题及答案【1】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上小明。

然后,爸爸立即回家,到家后又立即回头去追小明,再追上小明的时候,离家恰好是8千米,问这时是几点几分?【2】自行车队出发24分钟后,通信员骑摩托车去追他们。

在距出发点9千米处追上自行车队。

通信员立即返回出发点,然后又返回去追自行车队,在追上时恰好离出发点18千米,求自行车队和摩托车的速度。

【3】某学校与某工厂之间有一条公路,该校下午2点钟派车到工厂接劳模作报告,往返需要1小时,这位劳模在下午1点钟便离厂步行去学校,途中遇到接他的车就立即上车驶往学校,于下午2点40分到达学校,汽车的速度是劳模步行速度的几倍?【4】家住郊外的工程师,每天在同一时候乘火车到达某站,这时工厂接工程师的汽车也同时到达,他乘车准时到达工厂。

有一天,工程师提前55分钟到某站,接他的汽车还未到,他就步行向工厂走去,在路上遇到接他的车,他再坐车,结果比平时提前10分钟到达工厂,问汽车的速度是工程师的几倍?【5】甲、乙两人在相距50米的A、B两端的水池里沿直线来回有用,甲的速度是1米/秒,乙的速度是2米/秒。

他们同时分别从水池的两端出发,来回游了10分钟,如果不计转向的时间,那么在这段时间内他们共相遇了多少次?【6】甲、乙两人在相距120米的直路上来回跑步,甲的速度为4米/秒,乙的速度为5米/秒。

如果他们同时分别从两个端点出发,且每人跑10分钟,问他们共相遇了多少次?【答案】【1】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上小明。

然后,爸爸立即回家,到家后又立即回头去追小明,再追上小明的时候,离家恰好是8千米,问这时是几点几分?先得出小明的速度是时是爸爸速度的3倍.爸爸从家到第一次追上小明,小明走了4千米,若爸爸与小明同时出发,则爸爸应走出12千米,但是由于爸爸晚出发8分钟,所以只走了4千米,所以爸爸8分钟应走8千米.由于爸爸从出发到第二次追上小明共走了16千米,所以爸爸用了16分钟,此时离小明出发共用了8+16=24分钟,所以爸爸第二次追上小明时是8点32分【2】自行车队出发24分钟后,通信员骑摩托车去追他们。

2022小学数学多人行程问题练习题(二)

2022小学数学多人行程问题练习题(二)

2022小学数学多人行程问题练习题(二)(学习版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的学习资料,如英语资料、语文资料、数学资料、物理资料、化学资料、生物资料、地理资料、历史资料、政治资料、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of learning materials for everyone, such as English materials, language materials, mathematics materials, physical materials, chemical materials, biological materials, geographic materials, historical materials, political materials, other materials, etc. Please pay attention to the data format and writing method!2022小学数学多人行程问题练习题(二)【习题】AB两地相距30千米,甲乙丙三人同时从A到B,而且要求同时到达。

(完整word版)六年级行程问题习题及答案

(完整word版)六年级行程问题习题及答案

行程问题一、填空。

1.相遇时间= 距离之和÷()。

2.距离之和= ()。

3.速度甲= 距离之和÷相遇时间- ();速度乙= ()。

4.甲、乙两人相对而行,相遇时甲行了18千米,乙行了13千米,他们原来相距()千米。

二、看图列式(不计算)。

1.2.3.三、解应用题。

1.一列客车和一列货车同时从两个车站相对开出,货车每小时行35千米,客车每小时行45千米,2.5小时相遇,两车站相距多少千米?2.两个县城相距52.5千米,甲、乙二人分别从两城同时相对而行,甲每小时行5千米,乙每小时比甲快0.5千米,几小时后相遇?3.甲、乙二人分别从相距110千米的两地相对而行。

5小时后相遇,甲每小时行12千米,问乙每小时行多少千米?4.甲、乙两站相距486千米,两列火车同时从两站相对开出,5小时相遇。

第一列火车比第二列火车每小时快1.7千米,两列火车每小时的速度各是多少?5.两列火车同时从相距650千米的两地相向而行,甲列火车每小时行50千米,乙列火车每小时行52千米,4小时后还差多少千米才能相遇?6.大陈庄和小王庄相距90千米。

小刚和小牛分别由两庄同时反向出发。

2小时24分后两人相距46.6千米,如果小刚每小时行9.9千米,小牛每小时行多少千米?7.学校距活动站670米,小明从学校前往活动站每分钟行80米,2分钟后,小丽从活动站往学校走,每分钟行90米,小明出发多少分钟后和小丽相遇?相遇时二人各行了多少米?8.甲、乙两队合挖一条水渠,甲队从东往西挖,每天挖65米,乙队从西往东挖,每天比甲多挖2.5米。

两队合挖8天后还差52米,这条水渠全长多少米?9.张、李两位叔叔计划共同生产一种零件300个,二人一起生产了5小时后还差40个没完成。

已知张叔叔每小时生产24个,李叔叔每小时生产多少个?10.甲、乙两队合修一条长2400米的路,甲队每小时修126米,乙队每小时比甲队多修48米,求完工时两队各修路多少米?11.东西两村相距64千米。

小学数学《行程问题》练习题(含答案)

小学数学《行程问题》练习题(含答案)

小学数学《行程问题》练习题(含答案)行程问题是一类常见的重要应用题,在历次数学竞赛中经常出现.行程问题包括:相遇问题、追及问题、流水行船问题、环形行程问题等等,思维灵活性大,辐射面广,但万变不离根本,就是距离、速度、时间三个基本量之间的关系,即:距离=速度×时间 .在这三个量中,已知两个,可求出第三个未知量.这一讲就是通过例题加深对这三个基本数量关系的理解.解决行程问题时,画图分析是一个非常有效的方法,我们一定要养成画图解决问题的好习惯!你还记得吗【复习1】甲、乙两辆汽车从东、西两地同时相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇.求东、西两地间的距离是多少千米?分析:画图分析.相遇时甲车比乙车多行:32×2=64(千米),甲车每小时比乙车多行:56-48=8(千米),甲、乙两车从同时出发到相遇要:64÷8=8(小时),东、西两地间的距离是:(56+48)×8=832(千米).【复习2】如右图,A,B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇。

已知C离A有80米,D离B有60米,求这个圆的周长.分析:从A点出发到第一次相遇,两人共走了0.5圈;从A点出发到第二次相遇,两人共走了1.5圈。

因为1.5÷0.5=3,所以第二相遇时甲走的路程是第一次相遇时的3倍,即弧ACD=AC×3=240(米),则弧AB=240—BD=180(米),圆周长为180×2=360(米)【复习3】两名运动员在湖的周围环形道上练习长跑. 甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙;如果两人同时同地反向出发,经过多少分钟两人相遇?分析:在封闭的环形道上同向运动属追及问题,反向运动属相遇问题.同地出发,其实追及路程或相隔距离就是环形道一周的长.这道题的解题关键就是先求出环形道一周的长度.环形道一周的长度:(250-200)×45=2250(米).反向出发的相遇时间:2250÷(250+200)=5(分钟).平均速度【例1】汽车往返于A,B两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的速度应为多少?分析:假设AB两地之间的距离为480÷2=240千米,那么总时间=480÷48=10(小时),回来时的速度=240÷(10-240÷40)=60(千米/时).【前铺】汽车上山以30千米/时的速度,到达山顶后立即以60千米/时的速度下山.求该车的平均速度.分析:注意平均速度=总路程÷总时间,我们可以把上山的路程看作“1”,那么就有:(1+1)÷(113060)=40(千米/时),在这里我们使用的是特殊值代入法,当然可以选择其他方便计算的数值,比如上山路程可以看作60千米,总时间=(60÷30)+(60÷60)=3,总路程=60×2=120,平均速度=120÷3=40(千米/时).【例2】一只蚂蚁沿等边三角形的三条边由A点开始爬行一周. 在三条边上它每分钟分别爬行50cm,20cm,40cm(如右图).它爬行一周平均每分钟爬行多少厘米?分析:假设每条边长为200厘米,则总时间=200÷50+200÷20+200÷40=4+10+5=19(分钟),爬行一周的平均速度=200×3÷19=113119(厘米/分钟).【例3】老王开汽车从A到B为平地(见右图),车速是30千米/时;从B到C为上山路,车速是22.5千米/时;从C到D为下山路,车速是36千米/时. 已知下山路是上山路的2倍,从A到D全程为72千米,老王开车从A到D共需要多少时间?分析:设上山路为x千米,下山路为2x千米,则上下山的平均速度是:(x+2x)÷(x÷22.5+2x ÷36)=30(千米/时),正好是平地的速度,所以行AD总路程的平均速度就是30千米/时,与平地路程的长短无关.因此共需要72÷30=2.4(时).沿途数车【例4】小明放学后,沿某路公共汽车路线以不变速度步行回家,该路公共汽车也以不变速度不停地运行. 每隔9分钟就有辆公共汽车从后面超过他,每隔7分钟就遇到迎面开来的一辆公共汽车. 问:该路公共汽车每隔多少分钟发一次车?公共汽车的速度是小明步行速度的几倍?分析:假设小明在路上向前行走了63(7、9的最小公倍数)分钟后,立即回头再走63分钟,回到原地.这时在前63分钟他迎面遇到63÷7=9(辆)车,后63分钟有63÷9=7(辆)车追上他,那么在两个63分钟里他共遇到朝同一方向开来的16辆车,所以发车的时间间隔为:63×2÷(9+7)=778(分).公共汽车的发车时间以及速度都是不变的,所以车与车之间的间隔也是固定不变的. 根据每隔9分钟就有辆公共汽车从后面超过他,我们可以得到:间隔=9×(车速-步速);每隔7分钟就遇到迎面开来的一辆公共汽车,我们可以得到:间隔=7×(车速+步速),所以9×(车速-步速)=7×(车速+步速),化简可得:车速=8倍的步速.【巩固】小红放学后沿着公共汽车的线路以4千米/时的速度往家走,一边走一边数来往的公共汽车. 到家时迎面来的公共汽车数了11辆,后面追过的公共汽车数了9辆. 如果公共汽车按相等的时间间隔发车,那么公共汽车的平均速度是多少?分析:我们可以假设小红放学走到家共用99分钟,那么条件就可以转化为:“每隔9分钟就有辆公共汽车迎面开来,每隔11分钟就有辆公共汽车从后面超过他”.根据汽车间隔一定,可得:间隔=11×(车速-步速)=9×(车速+步速),化简可得:车速=10倍的步速.所以车速为40千米/时.【例5】一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟. 有一个人从乙站出发沿电车线路骑车前往甲站. 他出发的时候,恰好有一辆电车到达乙站. 在路上他又遇到了10辆迎面开来的电车。

小学数学五年级《行程问题》练习题(含答案)

小学数学五年级《行程问题》练习题(含答案)

《行程问题》练习题(含答案)行程问题是一类常见的重要应用题,在历次数学竞赛中经常出现.行程问题包括:相遇问题、追及问题、流水行船问题、环形行程问题等等,思维灵活性大,辐射面广,但万变不离根本,就是距离、速度、时间三个基本量之间的关系,即:距离=速度×时间 .在这三个量中,已知两个,可求出第三个未知量.这一讲就是通过例题加深对这三个基本数量关系的理解.解决行程问题时,画图分析是一个非常有效的方法,我们一定要养成画图解决问题的好习惯!【复习1】甲、乙两辆汽车从东、西两地同时相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇.求东、西两地间的距离是多少千米?分析:画图分析.相遇时甲车比乙车多行:32×2=64(千米),甲车每小时比乙车多行:56-48=8(千米),甲、乙两车从同时出发到相遇要:64÷8=8(小时),东、西两地间的距离是:(56+48)×8=832(千米).【复习2】如右图,A,B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇。

已知C离A有80米,D离B有60米,求这个圆的周长.分析:从A点出发到第一次相遇,两人共走了0.5圈;从A点出发到第二次相遇,两人共走了1.5圈。

因为1.5÷0.5=3,所以第二相遇时甲走的路程是第一次相遇时的3倍,即弧ACD=AC×3=240(米),则弧AB=240—BD=180(米),圆周长为180×2=360(米)【复习3】两名运动员在湖的周围环形道上练习长跑. 甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙;如果两人同时同地反向出发,经过多少分钟两人相遇?分析:在封闭的环形道上同向运动属追及问题,反向运动属相遇问题.同地出发,其实追及路程或相隔距离就是环形道一周的长.这道题的解题关键就是先求出环形道一周的长度. 环形道一周的长度:(250-200)×45=2250(米).反向出发的相遇时间:2250÷(250+200)=5(分钟).【例1】汽车往返于A,B两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的速度应为多少?分析:假设AB两地之间的距离为480÷2=240千米,那么总时间=480÷48=10(小时),回来时的速度=240÷(10-240÷40)=60(千米/时).【前铺】汽车上山以30千米/时的速度,到达山顶后立即以60千米/时的速度下山.求该车的平均速度.分析:注意平均速度=总路程÷总时间,我们可以把上山的路程看作“1”,那么就有:(1+1)÷(113060)=40(千米/时),在这里我们使用的是特殊值代入法,当然可以选择其他方便计算的数值,比如上山路程可以看作60千米,总时间=(60÷30)+(60÷60)=3,总路程=60×2=120,平均速度=120÷3=40(千米/时).【例2】一只蚂蚁沿等边三角形的三条边由A点开始爬行一周. 在三条边上它每分钟分别爬行50cm,20cm,40cm(如右图).它爬行一周平均每分钟爬行多少厘米?分析:假设每条边长为200厘米,则总时间=200÷50+200÷20+200÷40=4+10+5=19(分钟),爬行一周的平均速度=200×3÷19=113119(厘米/分钟).【例3】老王开汽车从A到B为平地(见右图),车速是30千米/时;从B到C为上山路,车速是22.5千米/时;从C到D为下山路,车速是36千米/时. 已知下山路是上山路的2倍,从A到D全程为72千米,老王开车从A到D共需要多少时间?分析:设上山路为x千米,下山路为2x千米,则上下山的平均速度是:(x+2x)÷(x÷22.5+2x ÷36)=30(千米/时),正好是平地的速度,所以行AD总路程的平均速度就是30千米/时,与平地路程的长短无关.因此共需要72÷30=2.4(时).【例4】小明放学后,沿某路公共汽车路线以不变速度步行回家,该路公共汽车也以不变速度不停地运行. 每隔9分钟就有辆公共汽车从后面超过他,每隔7分钟就遇到迎面开来的一辆公共汽车. 问:该路公共汽车每隔多少分钟发一次车?公共汽车的速度是小明步行速度的几倍?分析:假设小明在路上向前行走了63(7、9的最小公倍数)分钟后,立即回头再走63分钟,回到原地.这时在前63分钟他迎面遇到63÷7=9(辆)车,后63分钟有63÷9=7(辆)车追上他,那么在两个63分钟里他共遇到朝同一方向开来的16辆车,所以发车的时间间隔为:63×2÷(9+7)=778(分).公共汽车的发车时间以及速度都是不变的,所以车与车之间的间隔也是固定不变的. 根据每隔9分钟就有辆公共汽车从后面超过他,我们可以得到:间隔=9×(车速-步速);每隔7分钟就遇到迎面开来的一辆公共汽车,我们可以得到:间隔=7×(车速+步速),所以9×(车速-步速)=7×(车速+步速),化简可得:车速=8倍的步速.【巩固】小红放学后沿着公共汽车的线路以4千米/时的速度往家走,一边走一边数来往的公共汽车. 到家时迎面来的公共汽车数了11辆,后面追过的公共汽车数了9辆. 如果公共汽车按相等的时间间隔发车,那么公共汽车的平均速度是多少?分析:我们可以假设小红放学走到家共用99分钟,那么条件就可以转化为:“每隔9分钟就有辆公共汽车迎面开来,每隔11分钟就有辆公共汽车从后面超过他”.根据汽车间隔一定,可得:间隔=11×(车速-步速)=9×(车速+步速),化简可得:车速=10倍的步速.所以车速为40千米/时.【例5】一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟. 有一个人从乙站出发沿电车线路骑车前往甲站. 他出发的时候,恰好有一辆电车到达乙站. 在路上他又遇到了10辆迎面开来的电车。

小学数学行程问题(含答案)

小学数学行程问题(含答案)

小学数学行程问题(含答案)一、单选题1.有甲、乙、丙三人同时同地出发,绕个花圃行走,乙、丙二人同方向行走,甲与乙相背而行,甲每分钟走40米,乙每分钟走38米,丙每分钟走35米,在途中,甲和乙相遇后3分钟和丙相遇。

问这个花圃的周长是多少米?()A.1000米B.1147米C.5850米D.10000米2.汽车从甲地开往乙地,行前一半时间的速度和行后一半时间的速度比是5:3,那么行前一半路程和后一半路程的时间比是()。

A.1:1B.3:5C.5:3D.2:3二、填空题3.甲乙相距300千米,一辆汽车从甲地到乙地,如果车速提高20%,可提前1小时到达,如果原速行驶a千米后,再将速度提高25%,也可提前1小时到达。

a=千米。

4.从电车总站每隔一定时间开出一辆电车,甲和乙两人在一条街上沿着同一方向步行,甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车,则电车总站每隔分钟开出一辆电车。

5.在风速为24km/h的条件下,一架飞机顾风从A机场飞到B 机场要用2.8h,它逆风飞行同样的航线要用3h,两机场之间的航程是km6.小方家离学校400 m,哥哥小强步行,弟弟小方骑自行车,分别以均匀速度同时从家出发。

当小强走到一半路程时,小方已经到达学校。

然后小方骑车返回与小强相向而行,遇到小强以后再骑向学校;到达学校以后再与小强相向而行,直到小强到达学校为止。

小方从家出发,一共骑了m。

7.一个半圆形的水库,甲从水库边的管理处出发,以每小时2.5千米的速度沿堤岸绕行巡逻,3小时后乙也从管理处出发,以每小时4千米的速度沿堤岸绕行巡逻,他们同时回到出发点。

如果π取近似值3,那么水库的面积是平方千米.8.一列火车长240 米,全车要通过一座长685 米的大桥,若该列火车每秒行驶25米,需要秒才能通过。

9.一座大桥长2400米。

一列火车通过大桥时每分钟行940米,从车头上桥到车尾离桥共需3分钟,这列火车长米。

小学数学行程问题练习题.doc

小学数学行程问题练习题.doc

小学数学行程问题练习题1.飞机从甲地飞往乙地,原计划每分钟飞行9公里,现把速度提高,比原计划快1/3,结果比原计划提早半小时到达,求甲乙之间的距离是多少公里?2.东西两村相距11公里,甲乙两人都由东村去西村, 甲每小时行公里,乙的速度是甲的3/4,乙走10分钟后甲才出发,甲追上乙时距西村还有几公里路?3.小华从家去学校,步行需50分钟,骑车需15分钟, 他先骑车,在离家9分钟时,自行车坏了,只好从那里步行去学校,他从家到学校一共用了多少时间?4.一通讯员骑摩托车追前面部队的汽车,汽车每小时行2 8公里,摩托车每小时行4 0公里,通讯员出发4小时后赶上了汽车,间汽车比通讯员早出发多少时间?5.在300米的环形跑道上,甲乙两人并行起跑,甲速是每秒5米,乙速是每秒米,以这样的平均速度计算,再次相遇时经过几秒钟?相遇地点在起跑线前面多少米?6.摩托车和自行车从相距204公里的甲乙两地同时同向出发,摩托车的速度是每小时48公里,自行车的速度是摩托车的1 /3,途中摩托车发生故障,修理一小时后继续前进,当摩托车追上自行车时,两车各行了多少公里?7 .甲乙两辆汽车同时从东西两地相向开出,已知快车每小时走40公里,经过3小时,快车已驶过中点25公里, 这时与慢车还相距7公里,求慢车的速度是多少?8.甲乙两车同时从A ,B两地出发,相向而行,4小时相遇,相遇后甲车继续行驶了 3小时到达B地,乙车每小时行24公里,问A,B两地相距多少公里?9.甲乙两站相距48 0公里,快车在上午5时从甲站开往乙站,慢车同时从乙站开往甲站,两车在上午11时相遇,下午3时快车到达乙站后,慢车还要行几小时才能到达甲站?1 0.甲和乙从东西两地同时出发,相对而行,甲每小时走公里,乙每小时走公里.甲带了一只狗同时出发,狗以每小时12公里的速度向乙奔去,遇到乙后,马上回头向甲奔去,遇甲后再回头向乙奔去,直到甲乙两人相距20公里时狗才停止,这时狗共奔了 96公里,问东西两地的距离是多少公里?11.甲乙两地相距3 60公里,客车货车同时从甲去乙, 货车速度是每小时60公里,客车速度是每小时40公里,货车到达乙地后停留半小时,又以原速度返回甲地,问从两车出发到相遇共经过多少小时?12.如果导火线的燃烧速度是每秒厘米,人跑的速度是每秒5米,先点燃第一根导火线往回跑20米,用1秒钟点燃第二根导火线,再继续跑到100米以外的安全地带后, 两个火药同时爆炸,问两根导火线至少各长多少米?13.两辆汽车上午8点分别从相距21 0公里的甲乙两地相向而行,第一辆汽车在途中修车停了 45分钟,第二辆车加油停了半小时,结果中午11点钟两车相遇。

(完整word版)行程问题(基础题)

(完整word版)行程问题(基础题)

解决问题(行程问题)路程=速度×时间速度=路程÷时间时间=路程÷速度1、一辆自行车每分钟行600米,12分钟行多少米?2、小明2小时走了14千米,他每时行多少千米?3、卡车从南方出发,沿高速公路开往杭州。

如果每小时行90千米,已经行了2小时,此时距终点还有20千米,南京到杭州的距离是多少千米呢?4、甲、乙两地相距150千米。

一辆汽车从甲地开往乙地,行了3小时后,离乙地还有15千米。

这辆汽车平均每小时行多少千米?5、小明的爸爸开车从秦皇岛到邯郸用12小时,平均每小时行驶72千米,如果只用8小时到达邯郸,请问每小时的速度是多少?6、王叔叔从县城开车去王庄送化肥.去的时候每小时行40千米,用了3小时,返回时只用了2小时。

返回时平均每小时行多少千米?7、一辆旅游车在平原和山区各行了2小时,最后到达山顶。

已知旅游车在平原每小时行50千米,山区每小时行30千米。

这段路程有多长?9、甲、乙两车同时从A地开往B地。

甲车每小时行78千米,乙车每小时行66千米,8小时两车相距多少千米?家庭作业一、竖式计算183÷3 395÷5 156÷6解决问题1、一辆从北京到青岛的长途客车。

早晨6:30从北京发车,11:30到达青岛,平均每小时行驶85千米,北京到青岛的路程是多少千米?2、甲、乙两地相距150千米.一辆汽车从甲地开往乙地,行了3小时后,离乙地还有15千米。

这辆汽车平均每小时行多少千米?3、甲、乙两地相距2760千米。

一列火车从甲地开往乙地,以每时120千米的速度行驶了20时,离乙地还有多远?1.重庆和成都相距420千米,一辆货车从重庆开往成都,每时行50千米,一辆客车从成都开往重庆,每时行60千米,两车同时出发后几小时相遇?2.5.两地相距930千米,甲乙两车分别从两地同时相对开出,6小时后相遇。

甲车每时行80千米,乙车每时行多少千米?3.一辆货车从甲地开往乙地,每时行70千米,3小时后,一辆客车从乙地出发开往甲地,每时行60千米,4小时后两车相遇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行程问题练习题
1、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

两地相距多少千米?
2、甲乙两车从两地同时出发相向而行,乙车每小时行60千米,乙车每小时行的是甲车每小时行的 1.5倍,经过3小时相遇。

两地相距多少千米?
3、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时比甲车多行20千米,经过3小时相遇。

两地相距多少千米?
4、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,4小时后还相距20千米”两地相距多少千米?
5、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

相遇时两车各行了多少千米?
6、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

相遇时哪辆车行的路程多?多多少?
7、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

乙车行完全程要多少小时?
8、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米。

已知乙船每小时行42千米,甲船每小时行多少千米?
9、一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇。

已知汽车每小时
比自行车多行31.5千米,求汽车、自行车的速度各是多少?
10、两地相距270千米,甲、乙两列火车同时从两地相对开出,经过4小时相遇。

已知甲车的速度是乙车的 1.5倍,求甲、乙两列火车每小时各行多少千米?
11、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。

乙车每小时行多少千米?
12、A、B两地相距3300米,甲、乙两人同时从两地相对而行,甲每分钟走82米,乙每分钟走83米,已经行了15分钟,还要行多少分钟才可以相遇?
13、姐妹俩同时从家里到少年宫,路程全长770米。

妹妹步行每分钟行60米,姐姐骑自行车以每分钟160米的速度到达少年宫后立即返回,途中与妹妹相遇。

这时妹妹走了几分钟?
14、甲、乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?
15、两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过 2.5小时两车相遇。

两个车站之间的铁路长多少千米?
16、甲、乙两列火车同时从相距988千米的两地相向而行,经过 5.2小时两车相遇。

甲列车每小时行93千米,乙列车每小时行多少千米?
17、甲地到乙地的公路长436千米。

两辆汽车从两地对开,甲车每小时行42千米,乙车每小时行46千米。

甲车开出2小时后,乙车才出发,再经过几小时两车相遇?
18、A、B两地相距300千米,两辆汽车同时从两地出发,相向而行。

各自达到目的地后又立即返回,经过8小时后它们第二此相遇。

已知甲车每小时行45去,千米,乙车每小时行多少千米?
19、一只船从甲码头到乙码头往返一次共用4小时,回来时顺水比去时每小时多行12千米。

后2小时比前2小时多行18千米,甲乙两个码头距离是几千米?
【解答】
解法一:逆水行18÷2=9千米的时间顺水要行12×2-9=15千米。

顺水速度是12÷(15-9)×15=30千米/时。

逆水速度是30-12=18千米/时。

两个码头相距18×2+9=45千米。

解法二:回来时顺水所用的时间18÷12=1.5小时,去时所用的时间4-1.5=2.5小时,去时的速度18÷(2.5-1.5)=18千米,路程18×2.5=45千米
甲汽车从A到B 乙汽车从B到A 甲每小时比乙多走2千米两人在上午8点同时出发到上午10点两人还相距36千米,到中午12点两人又相距36千米求A.B两地距离
设A.B两地距离是x千米
(x-36)/2=(36+36)/2
x-36=72
x=108
2\10点到12点两人共走了36+36=72千米,设乙的速度是X,甲的就是X+2,得到(X+(X+2))2=72,解得X=17,8点到10点间也同样是做了72千米,10点时相差36千米,所以两地相距72+36=108千米。

相关文档
最新文档