702模拟乘法器(一般了解)
模拟乘法器原理
模拟乘法器原理乘法器是一种电路设计,用于将两个输入数相乘,并输出它们的乘积。
乘法器常用于数字信号处理、计算机和通信系统中。
乘法器的原理基于布尔代数和逻辑门。
它通常由多个逻辑门和触发器组成,以实现乘法运算。
乘法器的设计要考虑精度和运算速度。
一种常见的乘法器设计是Booth乘法器,它使用偏置编码技术来减少部分乘积的计算。
另一种常见的设计是Wallace树乘法器,它通过级联多个片段乘法器来提高速度。
乘法器的操作原理是分别将两个输入数的每个位进行乘法运算,并将结果相加。
具体步骤如下:1. 将两个输入数分别展开为二进制形式,对应位分别相乘。
最低位乘积直接输入到第一级部分乘积的输入。
2. 对每一位乘积进行部分乘积运算。
部分乘积运算是将当前位乘积和之前的部分乘积相加,并将结果输出到下一级。
3. 重复步骤2,直到所有位的乘积都被计算出来。
4. 对所有部分乘积进行累加,得到最终的乘积结果。
乘法器还需要考虑进位和溢出的问题。
在每一位相乘时,会产生进位位和当前位的乘积。
如果乘积超过了位数的范围,就会产生溢出。
乘法器的性能可以通过速度和面积这两个指标来评估。
速度是指乘法器完成一次乘法运算所需的时间,面积是指乘法器所占据的芯片空间大小。
总结来说,乘法器是一种常见的电路设计,用于将两个输入数相乘。
乘法器的原理基于布尔代数和逻辑门,它的设计考虑了精度和运算速度。
乘法器的操作原理是对输入数的每一位进行乘法运算,并将结果累加得到最终的乘积。
乘法器还需要考虑进位和溢出的问题。
乘法器的性能可以通过速度和面积来评估。
模拟乘法器及其应用讲解
模拟乘法器及其应用摘要集成模拟乘法器是继集成运算放大器后最通用的模拟集成电路之一,是一种多用途的线性集成电路。
可用作宽带、抑制载波双边平衡调制器,不需要耦合变压器或调谐电路,还可以作为高性能的SSB乘法检波器,AM调制/解调器、FM解调器、混频器、倍频器、鉴相器等,它与放大器相结合还可以完成许多的数学运算,如乘法、除法、乘方、开方等。
The integrated analog multiplier is the second one of the analog integrated circuitoperational amplifier after the general linear integrated circuits, is a multi use. Can be usedas broadband, suppressed carrier double balanced modulator, does not require a coupling transformer or tuning circuit, also can be used as SSB multiplication detector of high performance, AM modulator / demodulator, FM demodulator, mixer, multiplier, the phasedetector, and it can also complete theamplifier combining mathematical operation many, such as multiplication division,involution, evolution, etc..一、实验目的1.了解模拟乘法器的工作原理2.掌握利用乘法器实现AM调制、DSB调制、同步检波、倍频等几种频率变换电路的原理3.学会综合地、系统地应用已学到模、数字电与高频电子线路技术的知识,通过MATLAB掌握对AM调制、DSB调制、同步检波、倍频电路的制作与仿真技术,提高独立设计高频单元电路和解决问题的能力。
高二物理竞赛课件模拟乘法器在运算电路中的基本应用
P 303思考题
含直流成分
2kUi2 2kUi2cos2 t
三次方运算
四次方运算
模拟乘法器的等效电路
入端等效为电阻,出端等效为电压源
差分放大电路及其差模传输特性
uY能改变I E1, I E2
可控恒流源差分放大电路
-----可变跨导乘法器
u
可正可负,但
x
u
y
0
属于二象
限乘法器
3) 除法运算
必须是负
从运放A看,uO与 uI必须异号
uI、 k 同号时,这个电路不能用
设 k > 0,uI须为负。 偶然, uI 变为正,电路成正反馈,输出阻塞
P 303思考题
把乘法器放在负反馈通路中,则整个电路实现乘法的 逆运算,如除法运算电路、开方运算电路。
uo k uo2
uo2
uI R1
R2
uo2
R3 R4
uo
模拟乘法器在运算电路中 的基本应用
模拟乘法器在运算电路中的基本应用
1)乘法运算
uO kuI1uI2
2)乘方运算
k常取 -1 或 --1 若k= -1,uI1= uI2=10V,有uO=10V
uO k uI2
对正弦电压的二 倍频变换
若uI 2U sin t 则uO 2kU 2 sin2 t 2kU 2 (1 cos2 t)
+
把乘法器放在负反馈通路中,则实现 除法运算
4)开方运算
取uI2 uo 则:uo k uO2
uI uo R1 R2
除法, uO
R2 R1
uI1 k uI2
uO
R2 uI R1 k
(1)
加 D 防阻塞
《模拟乘法器》课件
# 模拟乘法器 本课程将介绍模拟乘法器的原理及其应用。
模拟乘法器的定义
பைடு நூலகம்
作用
模拟乘法器用于实现模拟 信号的乘法运算,将不同 信号相乘得到新的信号。
原理
模拟乘法器基于电子元件 的特性,通过电压或电流 乘法进行运算。
分类
模拟乘法器可以根据不同 的实现方式和应用场景进 行分类。
模拟乘法器的应用
电子测量中的应用
模拟乘法器在测量仪器中用于信号放大和校正,提高测量精度。
通信系统中的应用
模拟乘法器在通信系统中用于信号调制、解调和频谱分析。
音频系统中的应用
模拟乘法器在音频系统中用于音频效果处理和音频信号放大。
模拟乘法器的实现
电路实现
模拟乘法器可以通过电路设计和集成电路制 造来实现。
软件实现
模拟乘法器也可以通过软件算法来实现,例 如在数字信号处理中。
2 应用前景
模拟乘法器在未来将继续发挥重要作用,随着科技的发展将有更广泛的应用。
参考文献
1. 2. 3.
Author 1. Title 1. Publisher 1. Author 2. Title 2. Publisher 2. Author 3. Title 3. Publisher 3.
模拟乘法器的应用案例
电子秤上的应用
模拟乘法器在电子秤中用于 测量物体的重量并进行计算。
无线电通信系统中 的应用
模拟乘法器在无线电通信系 统中用于信号调制和解调, 实现高质量的通信。
音频放大器中的应 用
模拟乘法器在音频放大器中 用于调节音量和音频效果的 处理。
总结
1 优点和不足
模拟乘法器的优点包括快速响应和高精度,但也存在精度损失和成本较高的不足。
《模电实验》模拟乘法器
模拟乘法器幅度调制实验姓名:学号:模拟乘法器幅度调制实验模拟乘法器是利用三极管的非线性特性,经过电路的巧妙设计,在输出中仅保留两路输入信号的乘积项,从而获得良好的乘积特性的集成器件。
模拟乘法器其可用于各种频率变化,如平衡调制、混频、同步检波、鉴波、检波、自动增益控制等电路。
本实验利用模拟乘法器MC1496实现幅度调制电路。
一、实验目的1、了解模拟乘法器的工作原理;2、学会利用模拟乘法器搭建振幅调制电路,掌握其工作原理及特点。
3、了解调制系数Ma的测量方法,了解Ma<1、Ma=1、Ma>1时调幅波的波形特点。
二、复习要求1、复习幅度调制器的有关知识;2、分析实验电路中用MC1496乘法器调制的工作原理,并分析计算各引脚的直流电压;3、了解调制系数M的意义及测量方法;4、分析全载波调幅信号的特点;5、了解实验电路各元件的作用。
三、实验电路原理实验电路如下图所示。
该电路可用来实现幅度调制,混频。
倍频,同步检波等功能。
图中R8和R9为负载电阻,R10为偏置电阻,R7为负载反馈电阻。
R1、R2和Rp组成平衡调节电路,调节Rp可以调节1、4两管脚的电位差。
当电位器为0时,电路满足平衡调幅。
当电位差不为零时,输入包含调制信号和直流分量两部分,则可实现普通调幅。
四、实验步骤1、按照电路图焊接电路。
2、实现普通单音调幅:a、在Ux上加入振幅Vx=50mV、频率f=500KHz的正弦信号,在Uy上加入振幅Vy=200mV、频率f=10KHz的正弦信号,调节电位器Rp,使电路工作在不平衡状态,用示波器观察输出波形。
b、保持Ux不变,改变Uy的幅值,当Uy的幅度为50mV、100mV、150mV、200mV、250mV时,用示波器观察输出信号的变化,并作出Ma—Uy曲线。
c、保持Ux不变,fx由小变大,观察输出波形的变化。
3、实现平衡调幅a、将Uy接地,在Ux上加入振幅Vx=50mV、频率fx=500KHz的正弦信号,调节电位器Rp使输出Uo=0.b、在Ux上加入振幅Vx=50mV、频率fx=500KHz的正弦信号,在Uy上加入振幅Vy=200mV、频率f=10KHz的正弦信号,微调调节电位器Rp,得到抑制波的双边带信号。
模拟乘法器电路原理
模拟乘法器电路原理
乘法器电路是一种用于计算两个输入数的乘积的电子电路。
它由多个逻辑门和电子元件组成,能够将输入信号相乘得到输出信号。
在一个乘法器电路中,通常会有两个输入端和一个输出端。
输入端通常被标记为A和B,分别表示待乘数和乘数。
输出端通常被标记为P,表示乘积。
乘法器电路的工作原理是根据乘法的性质,将每一位的乘积相加得到最后的结果。
具体的实现方式可以有多种,下面介绍一种常见的实现方式。
乘法器电路通常被分为多个级别,每个级别负责计算某一位的乘积。
第一个级别接收A和B的最低位,通过逻辑门或触发器计算出对应的乘积,并将其存储为P的最低位。
然后,每个级别的输出和前一级别输出的进位信号经过逻辑门或触发器进行运算,得到当前级别的乘积和进位信号。
这个过程会一直进行,直到计算完所有位的乘积。
最后,所有级别的乘积和进位信号会被加和,得到最终的输出结果P,即A和B的乘积。
乘法器电路的实现可以使用多种逻辑门和元件,如AND门、OR门、XOR门、D触发器等。
具体的电路设计取决于要求的精度和速度。
需要注意的是,乘法器电路的设计和实现是一项复杂的任务,需要考虑多种因素,如延迟、功耗和精度等。
因此,在实际应用中,通常会使用专门的乘法器芯片,而不是自己设计和制造乘法器电路。
模拟乘法器及应用
+
- u BE2
+
- + -
Re
图 6-1 变跨导型模拟乘法器基本电路
第六章 集成模拟乘法器及其应用
变跨导型模拟乘法器原理电路如图 6-1 所示,它是一个具 有恒流源的差动放大器,只是I0受输入电压uy控制,uy控制V3 管的集电极电流I0,即
I 0 = Au y
式中,A为V3的跨导。
ux 1 + th ic1 = 2 2U T ux 1 + th ic 2 = 2 2U T
' x
第六章 集成模拟乘法器及其应用
i2 A
i2 B
uy ≈ I oy + Ry uy ≈ I oy − Ry
uz = [(i3 A + i4 B ) − (i3 A + i4 A )]Rc = 2 Rcu y Ry u th 2U T
' x
第六章 集成模拟乘法器及其应用
15 − 0.7 R3 + 0.5 = 1 R3 = 13.8kΩ
同理,可求得R13=13.8k ,取标称值R13=13k ,实际使用中, 一般由10 k 电阻与6.8 k 电位器相串联,以便调整Iox,控制相 乘增益A。
第六章 集成模拟乘法器及其应用
(2) 负反馈电阻Rx和Ry 式(6-12)和式(6-15)是在忽略了发射结 电阻条件下得出的,为此Rx, Ry不宜太小,因此要求
第六章 集成模拟乘法器及其应用
第6章 模拟乘法器及其应用 章
6.1 变跨导型模拟乘法器 6.2 单片模拟乘法器 6.3 乘法器应用
第六章 集成模拟乘法器及其应用
6.1 变跨导型模拟乘法器 6.1.1 原理电路
i c1 Rc uz Io Rc i c2 V2
模拟乘法器
模拟乘法器及其应用学院:信息工程专业班级:电信1206姓名:李嘉辛学号: 0121209310603摘要模拟乘法器是一种普遍应用的非线性模拟集成电路。
模拟乘法器能实现两个互不相关的模拟信号间的相乘功能。
它不仅应用于模拟运算方面,而且广泛地应用于无线电广播、电视、通信、测量仪表、医疗仪器以及控制系统,进行模拟信号的变换及处理。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。
Analog multiplier is a kind of widely used nonlinear analog integrated circuits.Analog multiplier can be achieved between two unrelated analog multiplication function.It is not only applied in the simulation operation aspect, and widely used in radio, television, communications, measuring instruments, medical equipment and control system, the analog signal conversion and processing.In the high frequency electronic circuit, amplitude modulation, synchronous detection, mixing, frequency doubling, frequency, modulation and demodulation process, the same as can be seen as two signal multiplication or contain multiplication process.The function is realized by using integrated analog multiplier than using discrete components such as diodes and transistors are much more simple, and superior performance.一、实验目的1.了解模拟乘法器的工作原理2.掌握利用乘法器实现AM调制、DSB调制、同步检波、倍频等几种频率变换电路的原理3.学会综合地、系统地应用已学到模、数字电与高频电子线路技术的知识,通过MATLAB掌握对AM调制、DSB调制、同步检波、倍频电路的制作与仿真技术,提高独立设计高频单元电路和解决问题的能力。
模拟乘法器的应用
[ 2 】 高伟涛 . P s p i c e 8 . 0 电路设 计实例精粹 [ M 】 .
北 京 :国 防工 业 出版 社 , 2 0 0 1 .
一
如 果使 模拟 乘法 器的 两个 输入 电压 分 别 与被测 电路 的电压 和电流成正 比,则乘法 器的 输 出电压与待测 电路 的功 率成正 比。
个以偏置 电流注入形式 出现 的附加控 制输入
端, 这使 O T A的特 性及应用更加灵活;另外, 这种器件的输 出不是常规运放 中输 出电阻趋于
2 . 6零 调 整
函 数发 生 电路的输 出电压和 输入 电压之
在 一个 或 两个 输人 端接 地情 况下将 输 出
电压调 到零值 的能力。
2 . 7增 益 系数 修 整
间具有 以方程式 、曲线或表 格形式给出的函数 关系 。函数发生 电路 是重 要的模拟运算 电路 , 也是 电子模拟计算机 中的重要部件 。
零的电压源,而是用具有极 高输 出电阻的 电流
源表示。
2乘法器 的基本 参数
参考文献
[ 1 】刘 建 清 主编 , 陈 培 军 ,李凤 伟 , 张 涛 编 著 . 从零开始 学模 拟电子技 术 [ M 】 . 北京:
国 防 工 业 出版 社 . 2 0 0 7 .
4 模拟乘法器的应用
电子技术 ・ E l e c t r o n i c T e c h n o l o g y
模拟乘法器的应 用
文/ 张 志敏
2 . 4 线 性 误 差
模 拟乘 法 器是 对 两个模 拟信 号 (电压 或 电流 )实现相 乘 功 能 的的有 源非 线性 器件 。主要 功 能 是 实现 两个 互不相 关信 号相 乘, 即输 出信 号与 两输 入信 号相 乘 积 成 正比。它有 两个输入 端 口,即 x 和 Y输入 端 口,作 为应 用 于模 拟 计 算机 中的一个部件发 展起 来的 自从 集成 模 拟乘 法 器 问世 , 由于 其技 术性 能 的逐 步 改进 ,使 它的 应 用早 已超 出模拟 计算机 的范 围。 它和运 算放 大 器一样 ,是 一种 通 用性 很 强 的 电子 器件 , 目前被 广 泛地应用 于信 号处理,测量设备 , 通信 工程 和 自动控 制 工程 等 科学 技 术领 域,并 起 着 日益增 长 的重 要 作 用 。所 以, 了解模 拟 乘 法器 及 其应 用应 成为 电子线路 课程 中 的 一个 基 本 内容。 为此 ,本 文拟 简明地 介绍 模拟 乘 法器 的基 本原
模拟乘法器
3.12模拟乘法器一.实验目的1.了解模拟乘法器的构成和工作原理。
2 .掌握模拟乘法器在运算电路中的应用。
二.实验原理集成模拟乘法器是实现两个模拟信号相乘的器件,它广泛用于乘法,除法,乘方和开方等模拟运算,同时广泛用于信息传输系统中作为调幅,解调,混频和自动增益控制电路,是一种通用性很强的非线性电子器件,目前已有许多单片的集成电路。
此外,模拟乘法器还是一些现代专用模拟集成系统中的重要单元。
1.模拟乘法器的基本特性模拟乘法器是一种完成两个模拟信号(连续变化的电压或电流)相乘作用的电子器件,通常具有两个输入端和一个输出端电路符号如图3-12-1所示。
若输入信号为VyVx,,则输出信号Vo为KVxVyVo=式中,K为乘法器的增益系数或标尺因子,单位为1-V。
根据两个输入电压的不同极性,乘积输出的极性有四种组合,可用图3-12-2所示的工作象限来说明。
若信号VyVx,均限定为某一极性的电压时才能正常工作,该乘法器称为单象限乘法器;若信号VyVx,中一个能适应正,负两种极性电压,而另一个只能是单极性电压,为二象限乘法器;若两个输入信号能适应四种极性组合,则称为四象限乘法器。
2.集成模拟乘法器集成模拟乘法器的常见产品有BG314,F1595,F1596,MC1495,MC1496,LM1595,LM1596等。
下面介绍BG314集成模拟乘法器。
BG314内部结构与典型应用电路分别如图3-12-3和图3-12-4所示。
输出电压与输入电压的关系为KVxVyVo=式中,IoxRxRyRcK2=为乘法器的增益系数。
图3-12-1 模拟乘法器的电路符号 图3-12-2 模拟乘法器的工作象限图3-12-3 BG314内部电路(1) 电路特点a. 当反馈电阻Rx 和Ry 足够大时,输出电压Vo 与输入电压Vy Vx ,的乘积成正比,具有接近于理想的相乘作用。
b. 输入电压Vy Vx ,均可取正或负极性,所以是四象限乘法器。
模拟电子技术4.4模拟乘法器
➢除法电路
uo
ui1 ui2
求对数,得:
ln uo
ln ui1 ui2
ln ui1 ln ui2
再求指数,得:
u eln ui1 ln ui2 o
电路方块图:
ui 1 ui 2
对数电路 ln ui1 对数电路 ln ui2
减法 ln ui1 ln ui2 指数电路 电路
(1)平方运算
K
ui
uo
平方运算电路
K
K
ui
4次方运算电路
uo Kui2
uo uo K 2ui4
(2)除法运算
K
uo1
uI 2
uo1 Kui2uo
R2 i2
ui1
R1
-
i1
A
+
R
因为 i1 = i2 ,所以:
uo
ui1 uo1
R1
R2
uo
R2 R1 K
ui1 ui 2
(3)平方根运算
K
4.4 模拟乘法器
由对数和指数电路组成的乘除电路
➢乘法电路
uo = ui1ui2
求对数,得: ln uo ln(ui1ui2 ) ln ui1 ln ui2
u e 再求指数,得: o
ln ui1 ln ui2
电路的方块图:
ui1 对数电路 ln ui1 求和 ln ui1 ln ui2 指数电路 uo ui1ui2
uo1
R2 i2
ui1
R1
-
i1
A
+
R
ui1 uo1
R1
R2
uo1
R2 R1
实验二:模拟乘法器应用实验PPT教学课件
图1.模拟乘法器应用电路:振幅调制、 混频等
2020/12/10
5
图2.MC1596内部电路及引脚功能图如下:
2020/12/10
6
基本命题 fx=500KHz , Ux=50mV , fy=10KHz , Uy=0.2V 的 信 号 时 调 电 位 器 RW 工 作 在 不 平 衡 状态时便可产生含载波的正弦调幅信号。
2020/12/10
2
实验仪器
高频信号发生器 QF1055A 一台;
超高频毫伏表 DA22A
一台;
频率特性测试仪 BT-3C 一台;
直流稳压电源 HY1711-2 一台;
数字示波器 TDS210
一台.
2020/12/10
3
实验任务与要求
基本实验的实验线路及说明
实验电路如图1所示。该电路可用来实现普通 调幅、平衡调制、混频、倍频、同步检波等功 能。图中RL为负载电阻,RB是偏置电阻,RE 是负载反馈电阻,RW和R1、R2组成平衡调节 电路,调节RW,可使1、4两脚的直流电位差 为零,从而满足平衡调幅的需要,若1、4脚直 流电位差不为零,则1、4输入包括调制信号和 20直20/12/流10 分量两部分,此时可实现普通调幅波。 4
*实验时可只用一个输入信号,然后将x和y通 道短接
2020/12/10
9
PPT精品课件
谢谢观看
Thank You For Watching
10
c.保持ux(t)不变,使Uy由小到大变化,观察uo(t)的变化, 记下变化结果,并测出最大不失真的uo(t)所对应的 Uy的大小。
2d02.0保/12/1持0 ux(t)不变,fy变化时uo(t)变化情况如何?
8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 信号的运算和处理
1. 模拟乘法器简介
uI1 uI2 uO
uo = KuI1uI2
模拟乘法器符号
图 7.3.1
输出电压正比于两个输入电压之积 如果比例系数 K 为正值——同相乘法器; 为正值 同相乘法器; 同相乘法器 为负值——反相乘法器。 反相乘法器。 如果比例2.理想模拟乘法器具备的条件 理想模拟乘法器具备的条件
1. ri1和ri2为无穷大; 为无穷大; 2. ro为零; 为零; 3. k值不随信号幅值而变化,且不 值不随信号幅值而变化, 值不随信号幅值而变化 随频率而变化; 随频率而变化; 4.当uX或uY为零时 o为零,电路没 当 为零时u 为零, 有失调电压、噪声。 有失调电压、噪声。
第七章 信号的运算和处理
7.2模拟乘法器及其在运算电路中的应用 模拟乘法器及其在运算电路中的应用 (一般了解 一般了解) 一般了解 • 什么是模拟乘法器?模拟乘法器可以用来 什么是模拟乘法器? 做什么? 做什么? • 画出模拟乘法器的符号及其等效电路。 画出模拟乘法器的符号及其等效电路。 • 理想模拟乘法器应具备哪些条件? 理想模拟乘法器应具备哪些条件? • 按照允许输入信号的极性不同,可以将模 按照允许输入信号的极性不同, 拟乘法器分为哪几种? 拟乘法器分为哪几种?
uI2 − uBE3 uI2 I= ≈ Re Re Rc uO ≈ − uI1uI2 = KuI1uI2 2 ReU T
须大于零。 须大于零。故图 7.3.4 为两象限模拟乘法器
uI1可正可负,但uI2必 可正可负,
两象限模拟乘法器 两象限模拟乘法器
第七章 信号的运算和处理
5.四象限变跨导型模拟乘法器 四象限变跨导型模拟乘法器
则:
R2 uI1 uO = − R1 K uI 2
除法运算电路
第七章 信号的运算和处理
三、开方运算电路
利用乘方运算电路作为集成运放的反馈通路, 利用乘方运算电路作为集成运放的反馈通路, 就可构成开方运算电路。 就可构成开方运算电路。
平方根运算电路
防止闭锁的平方根电路
电路可能会出现闭锁现象, 电路可能会出现闭锁现象,
公式推导过程略
IRC uo = (i01 − i02 )RC ≈ − 2 uX uY 4UT = kuX uY
双平衡四象限变跨导型模拟乘法器
问题: 问题:如何将双端输出转 换为单端输出? 换为单端输出?
第七章 信号的运算和处理
7.2.3 模拟乘法器在运算电路中的应用
一、乘方运算电路
uO = Ku I
结论: 的乘积。 结论:输出电压正比于输入电压 uI1 与恒流源电流 I 的乘积。
第七章 信号的运算和处理
二、可控恒流源差分放大电路的乘法特性
设想: 成正比, 设想:使恒流源电流 I 与另一个输入电压 uI2 成正比, 的乘积。 则 uO 正比于 uI1 与 uI2 的乘积。 当 uI2 >> uBE3 时,
模拟乘法器输入信号的象限
3. 根据允许输入信号的极性, 根据允许输入信号的极性, 模拟乘法器有单象限 两象限和四象限三种 单象限、 三种。 模拟乘法器有单象限、两象限和四象限三种。
第七章 信号的运算和处理
4.变跨导式模拟乘法器的原理: 变跨导式模拟乘法器的原理: 变跨导式模拟乘法器的原理
一、恒流源式差动放大电路 输出电压为: 输出电压为: uO = −
2
uI
uO
N次方运算电路 次方运算电路 u01 = k1 ln uI u02 = k1 k2 Nln uI
平方运算电路
u 0 = k 3u I
k1k 2 N
= k 3u I
kN
N次方运算电路 次方运算电路
取k=1,则N>1时,电路实现高次幂运算电路。 , 时 电路实现高次幂运算电路。
第七章 信号的运算和处理
第七章 信号的运算和处理
归纳总结
• 什么是模拟乘法器?模拟乘法器可以用 什么是模拟乘法器? 来做什么? 来做什么? • 画出模拟乘法器的符号及其等效电路。 画出模拟乘法器的符号及其等效电路。 • 理想模拟乘法器应具备哪些条件? 理想模拟乘法器应具备哪些条件? • 按照允许输入信号的极性不同,可以将 按照允许输入信号的极性不同, 模拟乘法器分为哪几种? 模拟乘法器分为哪几种?
二、除法运算电路
利用反函数型运算电路的基本原理, 利用反函数型运算电路的基本原理,将模拟乘法器 反函数型运算电路的基本原理 放在集成运放的反馈通路中,便可构成除法运算电路。 放在集成运放的反馈通路中,便可构成除法运算电路。
uO1 = KuI2 uO
所以: 因为 i1 = i2 ,所以:
uO1 uI1 K uI2 uO =− =− R1 R2 R2
βRc
rbe
uI1
UT rbe = rbb′ + (1 + β ) I EQ
较小、电路参数对称时, 当 IEQ 较小、电路参数对称时, I EQ UT 所以: 所以: rbe ≈ 2(1 + β ) I
1 = I 2
差动电路
Rc β Rc uO ≈ − u I1 I ≈ − u I1 I = − g m R c u I1 2 (1 + β )U T 2U T