沪科版七年级数学上册例题与讲解:第3章3.6综合与实践一次方程组与CT技术.docx
【最新沪科版精选】沪科初中数学七上《3.6 综合与实践 一次方程组与CT技术》word教案.doc
3.6 综合与实践一次方程组与CT技术教学目标【知识与技能】能用一次方程组解决简单的实际问题,掌握列方程组解决实际问题的一般步骤.【过程与方法】经历列一次方程组解决简单的实际问题的过程,体验到方程组解应用题所需的分析问题、解决问题的方法.【情感、态度与价值观】通过对实际问题的分析,感受方程作为刻画现实世界模型的意义.教学重难点【重点】用一次方程组解决日常生活中的实际问题.【难点】分析出问题中的数量关系,建立方程组.教学过程一、创设情境,引入新课CT是X射线计算机断层成像(X-ray computed tomography)的简称,亦指一种病情探测仪器.由于CT分辨力高,可使人体内组织或结构清楚地显影,能清楚地显示出器官是否有病变,因而对脑瘤、肺癌等疾病,CT检查作出的诊断都是比较可靠的.CT的工作程序是这样的:X射线射入人体,被人体吸收而衰减,应用灵敏度极高的探测器采集衰减后的X射线信号,获取数据(由于人体不同器官和病变部位对X射线的吸收程度不同,所以所得数据也不同),将这些数据输入电子计算机,进行处理后,就可摄下人体被检查部位的各断层的图像,从而发现体内任何部位的细小病变.所谓断层是指受检体的截面薄层,为了显示整个器官,需要多个连续的断层图像,图像的个数按断层的厚度(3~15mm)而定.各断层的CT图像是如何得来的?我们在受检体内欲成图像的断层表面上,按一定大小(长或宽为1~2mm)把断层划分成许多很小的部分(它的高就是断层的厚度),这些小块就称为体素,一般用吸收值来表示X射线束穿过一个体素后被吸收的程度,要得到该断层的图像,要发现受检体有无病变,就需要把它上面的各体素的吸收值都求出来.师:那么如何求一个断层上各体素的吸收值呢?这节课我们就来学习用最简单的由A、B、C三个体素组成的断层为例来进行说明.二、讲授新课设体素A、B、C的吸收值分别为x、y、z,则X射线束1穿过体素A和B后,由探测器测得的总吸收值为p1,则x+y=p1①同样,X射线束2穿过体素A和C后,测得总吸收值为p2,X射线束3穿过体素B和C后,测得总吸收值为p3,则x+z=p2,②y+z=p3,③将方程①②③联立起来,得到一个含有未知数x、y、z的三元一次方程组,解此方程组,可以求得体素A、B、C的各自吸收值.由于一般的断层至少也得划分成160×160=25 600个体素,X射线束从不同位置、不同方向穿过该断层,因而需要解由此而建立的25 600个元的一次方程组,才能求出各体素的吸收值.三、课堂小结通过这节课的学习,你有什么收获?还有什么疑问吗?。
【沪教版】七年级数学上册3.6《综合与实践》教案
3.6综合与实践
(一次方程组与CT技术)
【教学目标】
1.经历观察、操作、推理等实践活动,理解三元一次方程组与CT 技术的密切关系.
2.在探索问题的过程中,让学生经历收集信息、处理信息和得出结论的过程,感受数学的意义和价值.
【重点难点】
重点:以方程组为工具分析,解决含有多个未知数的实际问题.
难点:借助列表或示意图分析问题中所蕴涵的数量关系.
【教学过程设计】
【教学小结】
【板书设计】
3.6综合与实践
(一次方程组与CT技术)
阅读材料―→获取信息―→解决问题―→形成结论。
七年级数学上册3.6综合与实践一次方程组与CT技术习题课件(新版)沪科版
第十三页,共15页。
【综合运用】
11.(20分)为庆祝六一儿童节,某市中小学统一组织文艺(wényì)汇演.甲、乙两
所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买
再交换(jiāohuàn)两木块的位置,按图②方式放置.测量的数据如图,则桌子
的高度是( )
C
A.73 cm B.74 cm C.75 cm D.76 cm
第十一页,共15页。
8.某宾馆(bīnguǎn)有单人间和双人间两种房间,入住3个单人间和6个双 人间共需1 020元,入住1个单人间和5个双人间共需700元,则入住单人间
和双人间各5个共需________元.1100 9.如图,两根铁棒直立于桶底水平的木桶中,在桶中加满水后,一 根露出水面的长度是它的31,另一根露出水面的长度是它的15,两根 铁棒长度之和为 55 cm,此时木桶中水的深度是___20____cm.
第十二页,共15页。
10.(15分)去年秋季以来,某镇遭受百年一遇的特大干旱(gānhàn),为支 援该镇抗旱,上级下拨专项抗旱资金80万元用于打井.已知用这80万元 打灌溉用井和生活用井共58口,每口灌溉用井和生活用井分别需要资金4 万元和0.2万元,求这两种井各打了多少口?
时间
12:00
13:00
14:30
碑上 的数
是一个两位数,数 字之和是6
十位与个位数字与 12:00时所看颠倒
比12:00时看到的 两位数中间多了个
0
则12:00时看到的两位数是( D) A.24 B.42 C.51 D.15
七年级数学上册 第3章3.6 综合与实践 一次方程组与CT技术例题与讲解 (新版)沪科版
3.6 综合与实践 一次方程组与CT 技术1.三元一次方程组(1)由三个一次方程组成的含三个未知数的方程组,叫做三元一次方程组.如⎩⎪⎨⎪⎧x =3,y =1,z =-1,⎩⎪⎨⎪⎧4x +3y +2z =7,6x -4y -z =6,2x -y +z =1都是三元一次方程组.(2)判断一个方程组是不是三元一次方程组就看它是否满足以下两个条件:一是看整个方程组里含有的未知数是不是三个;二是看含有未知数的项的次数是不是1.【例1】 下列方程组不是三元一次方程组的是( ).A.⎩⎪⎨⎪⎧ x +y =1,2y +z =-2,3y =6B.⎩⎪⎨⎪⎧ x 2-4=0,y +1=x ,xy -z =-3C.⎩⎪⎨⎪⎧x =2,2y =-3,x -z =1D.⎩⎪⎨⎪⎧y -x =-1,x +z =3,2y -z =0解析:由题意知,含有三个未知数,每个方程中含未知数的项的次数都是1次,并且一共有三个方程,叫做三元一次方程组.A 中满足三元一次方程组的定义,故A 选项正确;B 中x 2-4=0,未知量x 的次数为2次, 所以不是三元一次方程,故B 选项错误;C 中满足三元一次方程组的定义,故C 选项正确;D 中满足三元一次方程组的定义,故D 选项正确. 答案:B2.三元一次方程组的解法(1)解三元一次方程组的基本思路:化三“元”为二“元”,再化二“元”为一“元”,即利用代入法和加减法消“元”逐步求解.(2)解三元一次方程组的基本步骤:①把三个方程分成两组,分别组成两个方程组.一般地,把系数最小的方程作为公共方程,分别与其余两个方程组成两个方程组.②分别消去两个方程组中的同一个未知数,得到两个二元一次方程.一般消去两个方程组中系数小的未知数,特别注意,两个方程组必须消去同一个未知数.③把两个二元一次方程联立组成二元一次方程组,并解方程组,求出二元一次方程组的解.④把二元一次方程组的解代入三元一次方程组中的某个方程,求出另一个未知数的值. ⑤写出三元一次方程组的解.【例2】 解方程组⎩⎪⎨⎪⎧ 3x +2y +z =13,x +y +2z =7,2x +3y -z =12.①②③分析:比较此三元一次方程组的三个方程都含三元,三个方程中未知数z 的系数最简单,考虑用加减法消z ,消z 的方案有以下几种:方案:①+③;②+③×2;①×2-②.这里选择最简单的两种方案①+③和②+③×2,消同一个未知数z ,就可以得到关于x ,y 的二元一次方程组.解:①+③,得5x +5y =25,④②+③×2,得5x +7y =31,⑤④与⑤组成⎩⎪⎨⎪⎧5x +5y =25,5x +7y =31, 解这个方程组,得⎩⎪⎨⎪⎧x =2,y =3.把⎩⎪⎨⎪⎧x =2,y =3代入①,得z =1.所以⎩⎪⎨⎪⎧x =2,y =3,z =1.3.列三元一次方程组解应用题的一般步骤(1)审:审题,分析题中已知什么,求什么,明确各数量之间的关系. (2)设:设未知数(一般求什么,就设什么为x ,y ,z ). (3)找:找出能够表示应用题全部意义的三个等量关系.(4)列:根据这三个等量关系列出需要的代数式,进而列出三个方程,组成方程组. (5)解:解所列方程组,得方程组的解.(6)验:检验所求未知数的值是否符合题意,是否符合实际. (7)答:写出答案(包括单位名称).谈重点 用三元一次方程组解应用题的步骤(1)“审”和“找”两步在草稿上进行,书面格式中主要写“设”、“列”、“解”和“答”四个步骤.(2)解应用题时,切勿漏写“答”,“设”和“答”要写清单位名称.【例3】 某企业为了激励员工参与技术革新,设计了技术革新奖,这个奖项分设一、二、三等,按获奖等级颁发一定数额的奖金,每年评选一次,下表是近三年技术革新获奖人 获一等奖人数(名) 获二等奖人数(名) 获三等奖人数(名)奖金总额(万元)2009年 10 20 30 41 2010年 12 20 28 42 2011年 14 25 40 54分析: 解:设一、二、三等奖的奖金额分别为x 万元、y 万元和z 万元,可得⎩⎪⎨⎪⎧ 10x +20y +30z =41,12x +20y +28z =42,14x +25y +40z =54,解这个方程组得⎩⎪⎨⎪⎧x =1,y =0.8,z =0.5.答:技术革新一、二、三等奖的奖金额分别是1万元、0.8万元和0.5万元. 4.构造三元一次方程组解决问题 (1)求不定方程 不定方程,是指未知数的个数多于方程个数,且未知数受到某些限制(如要求是有理数、整数或正整数等等)的方程或方程组.任何一个三元一次方程都有无数组解,但是其整数解有有限个.一般的应用三元一次方程解决实际问题时所列出的三元一次方程的解应当有有限个. 因为对于实际问题,必须保证其解有意义,一般从某一个未知数的符合条件的最小值开始试,然后依次增大,分别求出另一个未知数的对应值,从而确定问题的答案.(2)方程组的解的应用 常见的考查方式是,已知二元一次方程组的解满足第三个二元一次方程或已知两个未知数的某种关系,求方程中的待定系数的值.通常是把方程组的解代入原方程,即可通过变形求出未知系数的值.【例4-1】 有一份选择题试卷共六道小题.其得分标准是:一道小题答对得8分,答错得0分,不答得2分.某同学共得了20分,则他( ).A .至多答对一道小题B .至少答对三道小题C .至少有三道小题没答D .答错两道小题 解析:设答对x 题,答错的有y 题,不答的有z 题. 依题意得⎩⎪⎨⎪⎧ x +y +z =6,8x +2z =20,①②且满足0≤x ≤6,0≤y ≤6,0≤z ≤6,都为整数.当x =0时,z =10,不合题意舍去;当x =1时,z =3,y =6,不合题意舍去;当x =2时,z =2,y =2.故选D.答案:D【例4-2】 如果方程组⎩⎪⎨⎪⎧3x +7y =10,ax +a -1y =5的解中的x 与y 的值相等,那么a 的值是( ).A .1B .2C .3D .4解析:理解清楚题意,运用三元一次方程组的知识,解出a 的数值,根据题意得⎩⎪⎨⎪⎧ 3x +7y =10,ax +a -1y =5,x =y ,①②③把③代入①得3y +7y =10,解得y =1,x =1,代入②得a +(a -1)=5,解得a =3.故选C.答案:C5.利用三元一次方程组解数字问题 (1)多位数字表示问题两位数=十位数字×10+个位数字.三位数=百位数字×100+十位数字×10+个位数字.如:一个两位数,个位数字是a ,十位数字是b ,所以这个两位数是b 个10和a 个1的和,那么这个数可表示为10b +a ;如果交换个位和十位上的数字,得到一个新的两位数可表示为10a +b .(2)数位变换后多位数的表示两位数x 放在两位数y 的左边,组成一个四位数,这时,x 的个位数就变成了百位,十位数就变成了千位,因此这个四位数里含有x 个100,而两位数y 在四位数中数位没有变化,因此这个四位数中还含有y 个1.因此用x ,y 表示这个四位数为100x +y .同理,如果将x 放在y 的右边,得到一个新的四位数为100y +x .(3)一个两位数,个位上的数字是m ,十位上的数字是n ,如果在它们之间添上零,十位上的n 便成了百位上的数.因此这个三位数是由n 个100,0个10,m 个1组成的,用代数式表示这个三位数即为100n +m .【例5-1】 一个三位数,它的十位上的数字是百位上数字的3倍,个位上数字是百位上数字的2倍,设这个三位数个位上的数字是x ,十位上的数字为y ,百位上的数字为z .(1)用含x ,y ,z 的代数式表示这个三位数:__________; (2)用含z 的代数式表示这个三位数:__________; (3)写出所有满足题目条件的三位数:__________.解析:(1)x 在个位上,直接用x 表示;y 在十位上,表示y 个10,用10y 表示;z 在百位上,表示z 个100,用100z 表示,用含x ,y ,z 的代数式表示这个三位数为100z +10y +x .(2)因为该数的十位上的数字是百位上数字的3倍,个位上数字是百位上数字的2倍,所以y =3z ,x =2z ,于是100z +10y +x =100z +10×3z +2z =132z .(3)当z =1时,y =3z =3,x =2z =2,该数为132;当z =2时,y =3z =6,x =2z =4,该数为264;当z =3时,y =3z =9,x =2z =6,该数为396;当z >3时,该数不存在.答案:(1)100z +10y +x (2)132z (3)132,264,396【例5-2】 某个三位数除以它各数位上数字和的9倍,得到的商为3,已知百位上的数字与个位上的数字的和比十位上数字大1,如果把百位上的数字与个位上的数字交换位置,则所得新数比原数大99,求这个三位数.分析:在设未知数时,应设出各位上的数字.题目中共有三个等量关系式:(1)这个三位数=各位数字之和的9倍×3;(2)百位上的数字+个位上的数字的和=十位上数字+1;(3)百位上的数字与个位上的数字交换位置所得新数-原三位数=99.解:设这个三位数,个位上的数字为x ,十位上的数字为y ,百位上的数字为z ,根据题意,得⎩⎪⎨⎪⎧100x +10y +z =3×9x +y +z ,x +z =y +1,100z +10y +x -100x +10y +z =99.解得⎩⎪⎨⎪⎧x =2,y =4,z =3.所以这个三位数是243.。
沪科版数学七上3章 综合与实践
学习目标
1.了解什么是CT技术,CT技术有什么作用. 2.体会CT技术与一次方程组的关系. 【学习重点】 用一次方程组分析CT数据. 【学习难点】 CT技术与一次方程组的关系.
旧知回顾
1.什么是三元一次方程组,解三元一次方程组基本 思路是什么? 答:(1)由三个一次方程组成的含有三个未知数的方 程组,叫做三元一次方程组.
(2)电视台选择哪种方式播放收益较大?
解:(1)设15秒广告插播x次,30秒广告插播y次,
可得15x+30y=120,x≥2,y≥2,且x,y为正整数.
可得
x=2,x=4, y=3,y=2;
(2)第一种收益为2×0.6+3×1=4.2,
第二种收益为4×0.6+2×1=4.4,第二种收益较大.
乙的2倍,乙比丙多1元,丙比甲少11元,则三人的
钱共有( D )
A.30元
B.33元
C.36元
D.39元
3.某电视台在黄金时段的2分钟广告时间内,计划
插播长度为15秒和30秒的两种广告.15秒广告每播一
次收费0.6万元,30秒广告每播一次
(1)两种广告的播放次数有几种安排方式?
3.求二元一次方程3x+2y=15的正整数解.
解:xy==16,,xy==33,.
知识模块二 一次方程组在实际生活中的应用
1.有甲、乙、丙三种商品,如果购甲3件,乙2件, 丙1件共需315元钱,购甲1件,乙2件,丙3件共需 285元钱,那么购甲、乙、丙三种商品各一件共需
150 元.
2.已知甲、乙、丙三人各有一些钱,其中甲的钱是
(2)解三元一次方程组的基本方法是消元,即通 过消元把三元一次方程组转化为二元一次方程组, 进而转化为一元一次方程,然后通过回代解得三元 一次方程组.
综合与实践 一次方程组与CT技术 课件 2023—2024学年沪科版数学七年级上册
= .
答:这个男孩的假期为16天.
合作探究
解三元一次方程组
+ + = , ①
1.解三元一次方程组: + + = , ②
+ + = . ③
解:由①-②×2可得z=3,
由③-②可得6y-3z=3,可得y=2,
合作探究
将y=2,z=3代入①式可得x=1,
= ,
该三元一次方程组的解为 = ,
= .
合作探究
三元一次方程组的应用
2.甲、乙、丙三数之和是26,甲数比乙数大1,甲数的两倍
与丙数的和比乙数大18,求这三个数.
解:设甲、乙、丙三数分别为x、y、z,根据题意,得
+ + = ,
问题为具体情境,让学生们明白方程的重要作用.
合作探究
1.在等式y=ax2+bx+c中,当x=-1时,y=0;当x=2时,
y=3;当x=5时,y=60.求a,b,c的值.
− + = ,
解:根据题意,得 + + = ,
+ + = ,
= ,
解得 = −,
− = ,
+ = + ,
合作探究
= ,
解得 = ,
= .
答:甲、乙、丙三数分别为10、9、7.
合作探究
方法归纳交流 问题中含三个未知数时,应该找出三个等
量关系,列三元一次方程组求解.
·导学建议·
本节课是综合与实践的内容,着重培养学生应用知识解决
实际问题的能力,教师应以激发学生的兴趣为突破口,以生活
七年级数学上册第3章一次方程与方程组3536综合与实践一次方程组与CT技术课件新版沪科版
,解得:xy==52 z=3
,原三位数为 253.
编后语
➢ 做笔记不是要将所有东西都写下,我们需要的只是“详略得当“的笔记。做笔记究竟应该完整到什么程度,才能算详略得当呢?对此很难作出简单回答。 课堂笔记,最祥可逐字逐句,有言必录;最略则廖廖数笔,提纲挈领。做笔记的详略要依下面这些条件而定。
➢ 讲课内容——对实际材料的讲解课可能需要做大量的笔记。 ➢ 最讲授的主题是否熟悉——越不熟悉的学科,笔记就越需要完整。 ➢ 所讲授的知识材料在教科书或别的书刊上是否能够很容易看到——如果很难从别的来源得到这些知识,那么就必须做完整的笔记。 ➢ 有的同学一味追求课堂笔记做得“漂亮”,把主要精力放在做笔记上,常常为看不清黑板上一个字或一句话,不断向四周同学询问。特意把笔记做得很全
的解使 kx+2y-z=7,则 k 的值
是( A )
A.1
B.2
C.-2
D.12
10.一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团 20
人准备同时租用这三种客房共 7 间,如果每个房间都住满,租房方案有
( C)
A.4 种
B.3 种
C.2 种
D.1 种
11.如果 x-y=-5,z-y=11,那么 z-x= 16 .
c=-7
16.有一个三位数,它的十位上的数字等于个位上的数字与百位上的数字的 和,个位上的数字与十位上的数字和等于 8,百位上的数字与个位上的数字 对调后所得的三位数比原来的三位数大 99.求原来的三位数.
解:设原来的三位数为 100x+10y+z.依题意列方程得:
yz+=yx=+8z 100z+10y+x=100x+10y+z+99
三元一次方程组的概念
由三 组.
数学沪科版七年级(上册)第3章3.6综合实践一次方程组与CT技术
体素 x
y
z
甲 0.25 0.20 0.19 乙
丙
问题3:设x射线束穿过健康器官、肿瘤、骨质的体 素吸收值如下:
组织类型 健康器官
肿瘤 骨质
体素吸收值 0.1625~0.2977 0.2679 ~ 0.3930 0.3857 ~ 0.5108
对照上表,分析3个病人的检测情况,判断哪位患 有肿瘤.
CT图像是由一定数目的由黑到 白不同灰度小方块(像素)按矩 阵排列所构成的。
这些小方块是反映相应单位容 积的吸收系数。
CT图像上的黑色表示低吸收区, 既低密度区,如脑室;白色表示 高吸收区,即高密度区,如颅骨。
CT图像能分辨吸收系数只有 0.1%~0.5%的差异。
课堂小结
学习了本节课,你都有哪些感受?谈谈你的感想。
此种检查方法称之为ray computed tomography( 计算机断层成像),这一成果于1972年英国放射学会 学术会议上发表,1973年在英国放射学杂志上报道。
这种图质好、诊断价值高而无创伤、无痛苦、 无危险的诊断方法是放射诊断领域的重大突破,促 进医学影像诊断学的发展。
由于对医学上的重大贡献,HOUNSFIELD获得 了1979年的诺贝尔医学生物学奖。
这种检查方法开始只能用于头部,1974年 LEDLEY设计成全身CT 装置,使之可以对全身各个 解剖部位进行检查。此后,CT装置在设计上有了很 大发展。
二、CT扫描
三、CT 基本结构
扫描部分:x线管、 探
测器和扫描架
计算机系统:将扫描收
集到的信息数据进行储存 和运算
图像显示和存储பைடு நூலகம்统 :经计算机处理,重建
的图像显示在电视屏上或 用多幅照相机或激光相机 将图像摄下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.6 综合与实践 一次方程组与CT 技术1.三元一次方程组(1)由三个一次方程组成的含三个未知数的方程组,叫做三元一次方程组.如⎩⎪⎨⎪⎧ x =3,y =1,z =-1,⎩⎪⎨⎪⎧ 4x +3y +2z =7,6x -4y -z =6,2x -y +z =1都是三元一次方程组.(2)判断一个方程组是不是三元一次方程组就看它是否满足以下两个条件:一是看整个方程组里含有的未知数是不是三个;二是看含有未知数的项的次数是不是1.【例1】 下列方程组不是三元一次方程组的是( ).A.⎩⎪⎨⎪⎧ x +y =1,2y +z =-2,3y =6B.⎩⎪⎨⎪⎧ x 2-4=0,y +1=x ,xy -z =-3C.⎩⎪⎨⎪⎧ x =2,2y =-3,x -z =1 D.⎩⎪⎨⎪⎧ y -x =-1,x +z =3,2y -z =0解析:由题意知,含有三个未知数,每个方程中含未知数的项的次数都是1次,并且一共有三个方程,叫做三元一次方程组.A 中满足三元一次方程组的定义,故A 选项正确;B 中x 2-4=0,未知量x 的次数为2次,所以不是三元一次方程,故B 选项错误;C 中满足三元一次方程组的定义,故C 选项正确;D 中满足三元一次方程组的定义,故D 选项正确.答案:B2.三元一次方程组的解法(1)解三元一次方程组的基本思路:化三“元”为二“元”,再化二“元”为一“元”,即利用代入法和加减法消“元”逐步求解.(2)解三元一次方程组的基本步骤:①把三个方程分成两组,分别组成两个方程组.一般地,把系数最小的方程作为公共方程,分别与其余两个方程组成两个方程组.②分别消去两个方程组中的同一个未知数,得到两个二元一次方程.一般消去两个方程组中系数小的未知数,特别注意,两个方程组必须消去同一个未知数.③把两个二元一次方程联立组成二元一次方程组,并解方程组,求出二元一次方程组的解.④把二元一次方程组的解代入三元一次方程组中的某个方程,求出另一个未知数的值.⑤写出三元一次方程组的解.【例2】 解方程组⎩⎪⎨⎪⎧ 3x +2y +z =13,x +y +2z =7,2x +3y -z =12. ①②③分析:比较此三元一次方程组的三个方程都含三元,三个方程中未知数z 的系数最简单,考虑用加减法消z ,消z 的方案有以下几种:方案:①+③;②+③×2;①×2-②.这里选择最简单的两种方案①+③和②+③×2,消同一个未知数z ,就可以得到关于x ,y 的二元一次方程组.解:①+③,得5x +5y =25,④②+③×2,得5x +7y =31,⑤④与⑤组成⎩⎪⎨⎪⎧ 5x +5y =25,5x +7y =31, 解这个方程组,得⎩⎪⎨⎪⎧ x =2,y =3.把⎩⎪⎨⎪⎧x =2,y =3代入①,得z =1. 所以⎩⎪⎨⎪⎧ x =2,y =3,z =1.3.列三元一次方程组解应用题的一般步骤(1)审:审题,分析题中已知什么,求什么,明确各数量之间的关系.(2)设:设未知数(一般求什么,就设什么为x ,y ,z ).(3)找:找出能够表示应用题全部意义的三个等量关系.(4)列:根据这三个等量关系列出需要的代数式,进而列出三个方程,组成方程组.(5)解:解所列方程组,得方程组的解.(6)验:检验所求未知数的值是否符合题意,是否符合实际.(7)答:写出答案(包括单位名称).谈重点 用三元一次方程组解应用题的步骤(1)“审”和“找”两步在草稿上进行,书面格式中主要写“设”、“列”、“解”和“答”四个步骤.(2)解应用题时,切勿漏写“答”,“设”和“答”要写清单位名称.【例3】 某企业为了激励员工参与技术革新,设计了技术革新奖,这个奖项分设一、二、三等,按获.分析:解:设一、二、三等奖的奖金额分别为x 万元、y 万元和z 万元,可得⎩⎪⎨⎪⎧ 10x +20y +30z =41,12x +20y +28z =42,14x +25y +40z =54,解这个方程组得⎩⎪⎨⎪⎧ x =1,y =0.8,z =0.5. 答:技术革新一、二、三等奖的奖金额分别是1万元、0.8万元和0.5万元.4.构造三元一次方程组解决问题(1)求不定方程不定方程,是指未知数的个数多于方程个数,且未知数受到某些限制(如要求是有理数、整数或正整数等等)的方程或方程组.任何一个三元一次方程都有无数组解,但是其整数解有有限个.一般的应用三元一次方程解决实际问题时所列出的三元一次方程的解应当有有限个.因为对于实际问题,必须保证其解有意义,一般从某一个未知数的符合条件的最小值开始试,然后依次增大,分别求出另一个未知数的对应值,从而确定问题的答案.(2)方程组的解的应用常见的考查方式是,已知二元一次方程组的解满足第三个二元一次方程或已知两个未知数的某种关系,求方程中的待定系数的值.通常是把方程组的解代入原方程,即可通过变形求出未知系数的值.【例4-1】 有一份选择题试卷共六道小题.其得分标准是:一道小题答对得8分,答错得0分,不答得2分.某同学共得了20分,则他( ).A .至多答对一道小题B .至少答对三道小题C .至少有三道小题没答D .答错两道小题解析:设答对x 题,答错的有y 题,不答的有z 题.依题意得⎩⎪⎨⎪⎧ x +y +z =6,8x +2z =20, ①② 且满足0≤x ≤6,0≤y ≤6,0≤z ≤6,都为整数.当x =0时,z =10,不合题意舍去;当x =1时,z =3,y =6,不合题意舍去;当x =2时,z =2,y =2.故选D.答案:D【例4-2】 如果方程组⎩⎪⎨⎪⎧3x +7y =10,ax +(a -1)y =5的解中的x 与y 的值相等,那么a 的值是( ). A .1 B .2C .3D .4 解析:理解清楚题意,运用三元一次方程组的知识,解出a 的数值,根据题意得⎩⎪⎨⎪⎧3x +7y =10,ax +(a -1)y =5,x =y , ①②③把③代入①得3y +7y =10,解得y =1,x =1,代入②得a +(a -1)=5,解得a =3.故选C.答案:C5.利用三元一次方程组解数字问题(1)多位数字表示问题两位数=十位数字×10+个位数字.三位数=百位数字×100+十位数字×10+个位数字.如:一个两位数,个位数字是a ,十位数字是b ,所以这个两位数是b 个10和a 个1的和,那么这个数可表示为10b +a ;如果交换个位和十位上的数字,得到一个新的两位数可表示为10a +b .(2)数位变换后多位数的表示两位数x 放在两位数y 的左边,组成一个四位数,这时,x 的个位数就变成了百位,十位数就变成了千位,因此这个四位数里含有x 个100,而两位数y 在四位数中数位没有变化,因此这个四位数中还含有y 个1.因此用x ,y 表示这个四位数为100x +y .同理,如果将x 放在y 的右边,得到一个新的四位数为100y +x .(3)一个两位数,个位上的数字是m ,十位上的数字是n ,如果在它们之间添上零,十位上的n 便成了百位上的数.因此这个三位数是由n 个100,0个10,m 个1组成的,用代数式表示这个三位数即为100n +m .【例5-1】 一个三位数,它的十位上的数字是百位上数字的3倍,个位上数字是百位上数字的2倍,设这个三位数个位上的数字是x ,十位上的数字为y ,百位上的数字为z .(1)用含x ,y ,z 的代数式表示这个三位数:__________;(2)用含z 的代数式表示这个三位数:__________;(3)写出所有满足题目条件的三位数:__________.解析:(1)x 在个位上,直接用x 表示;y 在十位上,表示y 个10,用10y 表示;z 在百位上,表示z 个100,用100z 表示,用含x ,y ,z 的代数式表示这个三位数为100z +10y +x .(2)因为该数的十位上的数字是百位上数字的3倍,个位上数字是百位上数字的2倍,所以y =3z ,x =2z ,于是100z +10y +x =100z +10×3z +2z =132z .(3)当z =1时,y =3z =3,x =2z =2,该数为132;当z =2时,y =3z =6,x =2z =4,该数为264;当z =3时,y =3z =9,x =2z =6,该数为396;当z >3时,该数不存在.答案:(1)100z +10y +x (2)132z (3)132,264,396【例5-2】 某个三位数除以它各数位上数字和的9倍,得到的商为3,已知百位上的数字与个位上的数字的和比十位上数字大1,如果把百位上的数字与个位上的数字交换位置,则所得新数比原数大99,求这个三位数.分析:在设未知数时,应设出各位上的数字.题目中共有三个等量关系式:(1)这个三位数=各位数字之和的9倍×3;(2)百位上的数字+个位上的数字的和=十位上数字+1;(3)百位上的数字与个位上的数字交换位置所得新数-原三位数=99.解:设这个三位数,个位上的数字为x ,十位上的数字为y ,百位上的数字为z ,根据题意,得⎩⎪⎨⎪⎧ 100x +10y +z =3×9(x +y +z ),x +z =y +1,100z +10y +x -(100x +10y +z )=99.解得⎩⎪⎨⎪⎧ x =2,y =4,z =3.所以这个三位数是243.初中数学试卷桑水出品。