天体运动总复习绝对经典

合集下载

天体运动的基础复习

天体运动的基础复习

天体运动基础复习一、开普勒三定律定律内容公式或图示开普勒第一定律(椭圆定律)所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上开普勒第二定律(面积定律)对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积开普勒第三定律(周期定律)所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等公式:a2T2=k,k是与行星无关的常量【例1】(多选)关于开普勒第二定律,正确的理解是( )A.行星绕太阳运动时,一定是匀速曲线运动B.行星绕太阳运动时,一定是变速曲线运动C.行星绕太阳运动时,由于角速度相等,故在近日点处的线速度小于它在远日点处的线速度D.行星绕太阳运动时,由于它与太阳的连线在相等的时间内扫过的面积相等,故它在近日点的线速度大于它在远日点的线速度【例2】一颗小行星,质量为m=1.00×1021kg,它的轨道半径是地球绕太阳运动的轨道半径的2.77倍,求它绕太阳运动一周所需要的时间。

【变式1】1. 如图所示是行星m 绕恒星M 运动情况的示意图,下列说法正确的是( ) A.速度最大点是B 点 B.速度最小点是C 点 C.m 从A 到B 做减速运动 D.m 从B 到A 做减速运动2. 如图所示,某人造地球卫星绕地球做匀速圆周运动,其轨道半径为月球绕地球运转半径的19,设月球绕地球运动的周期为27天,则此卫星的运转周期大约是( )A. 19天B. 13天 C.1天 D.9天3. (多选)如图所示,B 为绕地球沿椭圆轨道运行的卫星,椭圆的半长轴为a ,运行周期为T B ;C 为绕地球沿圆周运动的卫星,圆周的半径为r ,运行周期为T C 。

下列说法或关系式中正确的是( ) A.地球位于B 卫星轨道的一个焦点上,位于C 卫星轨道的圆心上 B.卫星B 和卫星C 运动的速度大小均不变 C. a 3T B2=r 3T C2,该比值的大小与地球有关D. a 3T B2≠r 3T C2,该比值的大小不仅与地球有关,还与太阳有关4. 太阳系的八大行星的轨道均可以近似看成圆轨道.下面4幅图是用来描述这些行星运动所遵循的某一规律的图象.图中坐标系的横轴是lg (T/T 0),纵轴是lg (R/R 0);这里T 和R 分别是行星绕太阳运行的周期和相应的圆轨道半径.T 0和R 0分别是水星绕太阳运行的周期和相应的圆轨道半径.下列4幅图中正确的是( )5.飞船沿半径为R 的圆周绕地球运动的周期为T ,地球半径为R 0,若飞船要返回地面,可在轨道上某点A 处将速率降到适当的数值,从而使飞船沿着以地心为焦点的椭圆轨道运行,椭圆与地球表面在B 点相切,求飞船由A 点到B 点所需要的时间。

高一物理必修二 天体的运动专题复习

高一物理必修二  天体的运动专题复习

同步练习: 步练习:
现代观测表明,由于引力的作用,恒星有“聚焦” 现代观测表明,由于引力的作用,恒星有“聚焦” 的特点,众多的恒星组成不同层次的恒星系统, 的特点,众多的恒星组成不同层次的恒星系统,最 简单的恒星系统是两颗互相绕转的双星. 简单的恒星系统是两颗互相绕转的双星.它们以两 者连线上的某点为圆心做匀速圆周运动, 者连线上的某点为圆心做匀速圆周运动,这样就不 至于由于万有引力的作用而吸引在一起. 至于由于万有引力的作用而吸引在一起.设某双星 中A、B两星的质量分别为 m 和 3m,两星间距为 , 、 两星的质量分别为 ,两星间距为L, 在相互间万有引力的作用下, 在相互间万有引力的作用下,绕它们连线上的某点 O转动,则O点距 星的距离是多大?它们运动的周 转动, 点距B星的距离是多大 转动 点距 星的距离是多大? 期为多少? 期为多少?
基本知识点: 基本知识点:
1、开普勒行星运动定律: 、开普勒行星运动定律:
第一定律: 第一定律: 第二定律: 第二定律: 第三定律: 第三定律: 内容 内容 内容 说明的问题 说明的问题 说明的问题
注意: 注意: 1、行星的实际运动轨迹为椭圆运动,只不过一般情况下把其当成 行星的实际运动轨迹为椭圆运动, 圆周运动来处理了。 圆周运动来处理了。 2、开普勒第三定律不仅适用于太阳系,而且还适用于地月系! 开普勒第三定律不仅适用于太阳系,而且还适用于地月系! 其中的K值由中央天体的质量决定! 其中的K值由中央天体的质量决定!
R2 g m ( R + h) 2
m 3 R 2 gω 4
同步练习: 同步练习:
宇航员站在一星球表面上的某高处,以初速度 竖 宇航员站在一星球表面上的某高处,以初速度V0竖 直向上抛出一个小球,经过时间t, 直向上抛出一个小球,经过时间 ,小球回到抛出 已知该星球的半径为R,引力常量为G 点. 已知该星球的半径为 ,引力常量为 ,求该 星球的质量M(不计阻力影响) 星球的质量 (不计阻力影响)

天体运动章节知识点总结

天体运动章节知识点总结

天体运动章节知识点总结1. 日的运动太阳是太阳系中的主要天体之一,其运动对太阳系中其他天体的运动都有着重要的影响。

日的运动包括日冕的运动、日球的自转和公转。

据观测,太阳自转是不均匀的,赤道区域的自转速度要比极区快得多。

此外,太阳还会产生大规模的太阳风和太阳黑子等现象。

这些现象都会影响着地球和其他行星的运动。

2. 月的运动月球是地球的天然卫星,月球的运动对地球的潮汐和太阳系其他行星的运动都有着显著的影响。

月球有自己的自转和公转运动,但由于月球的自转周期和公转周期相等,使得我们只能从地球上看到月球的一面。

另外,由于地球自转产生的离心力和引力的作用,月球的轨道还会发生变形。

月球的周期性现象也是天文学家们研究的重要对象,例如日食和月食等现象都是由月球的运动引起的。

3. 行星的运动在太阳系中,行星的运动也是天文学家们关注的重点。

根据观测结果,行星的轨道都呈椭圆形,且它们的公转速度和周期都是不相同的。

这也是开普勒三定律的一个重要内容。

此外,由于行星的自转轴倾角、自转速度和公转速度的不同,使得我们在不同的时间和位置观测到行星的外观也会有所不同。

4. 彗星的运动彗星是太阳系中的一种小天体,它的运动规律和其他天体有所不同。

彗星的轨道一般十分长而狭窄,其中一部分建立在近日点的轨道上,广大部分则建立在充满星际空间的轨道上。

一般来说,彗星的轨道可以划分为椭圆形、抛物线和双曲线三种,而椭圆形轨道的彗星更多为周期性彗星。

彗星的运动规律和光度变化也成为了天文学家们研究的重要课题。

5. 引力与牛顿运动定律牛顿的引力定律是自然科学的基本定律之一,它揭示了天体之间相互作用的规律。

根据牛顿的引力定律,每两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。

而牛顿的运动定律可以描述物体的运动状态和受力情况。

这些定律对于天体运动的研究有着重要的意义,也为我们理解宇宙的运动提供了重要的基础。

总而言之,天体运动是天文学中的重要课题,它包括日、月、行星和彗星的运动规律,引力和牛顿运动定律等多个方面。

天体运动总复习绝对经典汇总

天体运动总复习绝对经典汇总

一.考点梳理1.考纲要求:万有引力定律的应用、人造地球卫星的运动(限于圆轨道)、动量知识和机械能知识的应用(包括碰撞、反冲、火箭)都是Ⅱ类要求;航天技术的发展和宇宙航行、宇宙速度属Ⅰ类要求。

2.命题趋势:本章内容高考年年必考,题型主要有选择题:如2004年江苏物理卷第4题、2004上海卷第3题、2005年安徽卷第16题、2005年全国卷第3题、2005年北京物理卷第20题、2005年江苏物理卷第5题;计算题:如2001年全国卷第31题、2003年第24题、2004年全国卷第23题、2004年广西物理卷第16题、2005年江苏物理卷第18题、2005年广东卷第15题等。

飞船、卫星运行问题与物理知识(如万有引力定律、匀速圆周运动、牛顿运动定律等)及地理知识有十分密切的相关性,以此为背景的高考命题立意高、情景新、综合性强,对考生的理解能力、综合分析能力、信息提炼处理能力及空间想象能力提出了极高的要求,是新高考突出学科内及跨学科间综合创新能力考查的命题热点,亦是考生备考应试的难点. 特别是今年10月神州六号飞船再次实现载人航天飞行试验以来,明年高考有很大可能考查与“神六”相关的天体运动问题。

3.思路及方法:(1).基本方法:把天体运动近似看作圆周运动,它所需要的向心力由万有引力提供,即: Gr v m r Mm 22==mω2r=mr T224π(2).估算天体的质量和密度由G 2rMm=mr T 224π得:M=2324Gt r π.即只要测出环绕星体M 运转的一颗卫星运转的半径和周期,就可以计算出中心天体的质量.由ρ=V M ,V=34πR3得: ρ=3233R GT r π.R 为中心天体的星体半径特殊:当r=R时,即卫星绕天体M 表面运行时,ρ=23GT π(2003年高考),由此可以测量天体的密度.(3)行星表面重力加速度、轨道重力加速度问题表面重力加速度g 0,由02GMm mg R = 得:02GMg R= 轨道重力加速度g ,由2()GMm mg R h =+ 得:220()()GM R g g R h R h==++ (4)卫星的绕行速度、角速度、周期与半径的关系(1)由Gr v m rMm 22=得:v=r GM . 即轨道半径越大,绕行速度越小(2)由G2rMm =mω2r得:ω=3r GM 即轨道半径越大,绕行角速度越小(3)由2224Mm G m r r T π=得:32r T GMπ= 即轨道半径越大,绕行周期越大. (5)地球同步卫星所谓地球同步卫星是指相对于地面静止的人造卫星,它的周期T =24h .要使卫星同步,同步卫星只能位于赤道正上方某一确定高度h .由: G2224()Mm m R h Tπ=+(R+h) 得:2324h R GMT π=-=3.6×104km=5.6RR表示地球半径【例4】侦察卫星在通过地球两极上的圆轨道上运行,它的运行轨道距地面高度为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件的情况下全都拍摄下来,卫星在通过赤道上空时,卫星上的摄像机至少应拍摄地面上赤道圆周的弧长是多少?设地球半径为R ,地面处的重力加速度为g ,地球自转的周期为T 。

天体运动总复习讲义.doc

天体运动总复习讲义.doc

天体运动总复习1.开普勒行星运动定律(1)开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上.(2)开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过的面积相等.(3)开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的平方的比值都相等,即a 3T 2=k .开普勒常数仅与中心天体的质量有关.2、万有引力定律及其应用(1)内容:自然界中任何两个物体都相互吸引,引力方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比.(2)表达式:F =G m 1m 2r 2,G 为引力常量:G =6.67×10-11 N·m 2/kg 2.(3)适用条件:①公式适用于质点间的相互作用.当两物体间的距离远远大 于物体本身的大小时,物体可视为质点.②质量分布均匀的球体可视为质点,r 是两球心见的距离.必备知识二 宇宙速度[基础梳理]1.第一宇宙速度(环绕速度):是近地卫星绕地球表面做匀速圆周运动的速度,也是卫星绕地球做匀速圆周运动的最大速度,是人造地球卫星的最小发射速度,计算公式为:v 1= GM r =gR ;大小为v 1=7.9km/s.2.第二宇宙速度(脱离速度):在地面上发射物体,使之能脱离地球引力束缚而成为绕太阳运动的人造行星或飞到其他行星的最小发射速度;大小为v 2=11.2km/s.3.第三宇宙速度(逃逸速度):在地面上发射物体,使之能脱离太阳引力束缚,飞到太阳系以外的宇宙空间的最小发射速度;大小为v 3=16.7km/s.[即时训练]2.一宇航员在某星球上以速度v 0竖直上抛一物体,经t 秒落回原处,已知该星球半径为R ,那么该星球的第一宇宙速度是( )A.v 0t RB. 2v 0R tC. v 0R tD. v 0Rt要点一 天体质量和密度的计算1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即G Mm r 2=ma 向=m v 2r =mω2r=m 4π2T 2r(2)在中心天体表面或附近运动时,万有引力近似等于重力,即G Mm R 2=mg (g 表示天体表面的重力加速度).[深化拓展] (1)在研究卫星的问题中,若已知中心天体表面的重力加速度g 时,常运用GM =gR 2作为桥梁,可以把“地上”和“天上”联系起来.由于这种代换的作用很大,此式通常称为黄金代换公式.(2)利用此关系可求行星表面重力加速度、轨道处重力加速度:在行星表面重力加速度:G Mm R 2=mg ,所以g =GM R 2.在离地面高为h 的轨道处重力加速度:G Mm (R +h )2=mg h ,所以g h =GM (R +h )2. 2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R .由于G Mm R 2=mg ,故天体质量M =gR 2G ,天体密度ρ=M V =M 43πR 3=3g 4πGR .(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3GT 2; ②若已知天体半径R ,则天体的平均密度ρ=M V =M 43πR 3=3πr 3GT 2R 3;③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度ρ=3πGT 2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.即时训练:1.一行星绕恒星做圆周运动.由天文观测可得,其运行周期为T ,速度为v ,引力常量为G ,则( )A .恒星的质量为v 3T 2πGB .行星的质量为4π2v 3GT 2C .行星运动的轨道半径为v T 2πD .行星运动的加速度为2πv T[规律总结]解决天体(卫星)运动的基本思路(1)把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,关系式:G Mm r 2=m v 2r =mω2r =m (2πT )2r .(2)在地球表面或地面附近的物体所受的重力可认为等于地球对物体的引力,即mg =G Mm R 2夯实必备知识精研疑难要点提升学科素养演练目标课堂提能课时冲关第四章曲线运动万有引力与航天人教版物理3.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s.(3)两种卫星的轨道平面一定通过地球的球心.[深化拓展] (1)卫星的a 、v 、ω、T 是相互联系的,如果一个量发生变化,其它量也随之发生变化;这些量与卫星的质量无关,它们由轨道半径和中心天体的质量共同决定.(2)卫星的能量与轨道半径的关系:同一颗卫星,轨道半径越大,动能越小,势能越大,机械能越大.要点三 卫星变轨问题的分析当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行:1.当卫星的速度突然增加时,G Mm r 2<m v 2r ,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v = GM r可知其运行速度比原轨道时减小. 2.当卫星的速度突然减小时,G Mm r 2>m v 2r ,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v = GM r 可知其运行速度比原轨道时增大.卫星的发射和回收就是利用这一原理.即时训练:[例3] “天宫一号”被长征二号火箭发射后,准确进入预定轨道,如图所示,“天宫一号”在轨道1上运行4周后,在Q点开启发动机短时间加速,关闭发动机后,“天宫一号”沿椭圆轨道2运行到达P点,开启发动机再次加速,进入轨道3绕地球做圆周运动,“天宫一号”在图示轨道1、2、3上正常运行时,下列说法正确的是()A.“天宫一号”在轨道3上的速率大于在轨道1上的速率B.“天宫一号”在轨道3上的角速度大于在轨道1上的角速度C.“天宫一号”在轨道1上经过Q点的加速度大于它在轨道2上经过Q点的加速度D.“天宫一号”在轨道2上经过P点的加速度等于它在轨道3上经过P点的加速度[规律总结]卫星变轨问题的判断1.卫星的速度变大时,做离心运动,重新稳定时,轨道半径变大.2.卫星的速度变小时,做近心运动,重新稳定时,轨道半径变小.3.圆轨道与椭圆轨道相切时,切点处外面的轨道上的速度大,向心加速度相同.处理卫星变轨问题的思路和方法1.要增大卫星的轨道半径,必须加速;2.当轨道半径增大时,卫星的机械能随之增大.对点训练:3.北京航天飞行控制中心对“嫦娥三号”卫星实施多次变轨控制并获得成功.首次变轨是在卫星运行到远地点时实施的,紧随其后进行的3次变轨均在近地点实施.“嫦娥三号”卫星的首次变轨之所以选择在远地点实施,是为了抬高卫星近地点的轨道高度.同样的道理,要抬高远地点的高度就需要在近地点实施变轨.如图为“嫦娥三号”某次在近地点A由轨道1变轨为轨道2的示意图,下列说法中正确的是()A.“嫦娥三号”在轨道1的A点处应点火加速B.“嫦娥三号”在轨道1的A点处的速度比在轨道2的A点处的速度大C.“嫦娥三号”在轨道1的A点处的加速度比在轨道2的A点处的加速度大D.“嫦娥三号”在轨道1的B点处的机械能比在轨道2的C点处的机械能大四、双星系统[模型概述]在天体运动中,将两颗彼此相距较近且在相互之间万有引力作用下,绕两者连线上的某点做周期相同的匀速圆周运动的行星称为双星. 如图所示.[模型特点](1)两颗行星做匀速圆周运动所需的向心力是由它们之间的万有引力提供的,故两行星做匀速圆周运动的向心力大小相等.(2)两颗行星均绕它们连线上的一点做匀速圆周运动,因此它们的运行周期和角速度是相等的.(3)两颗行星做匀速圆周运动半径r 1和r 2与两行星间距L 的大小关系:r 1+r 2=L .[典例] 1、冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动.由此可知,冥王星绕O 点运动的( )A .轨道半径约为卡戎的17B .角速度大小约为卡戎的17C .线速度大小约为卡戎的7倍D .向心力大小约为卡戎的7倍2、银河系的恒星中大约四分之一是双星,某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观察测得其运动周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知引力常量为G .由此可求出S 2的质量为( )A.4π2r 2(r -r 1)GT 2B.4πr 21GT 2C.4π2r 2GT 2D.4π2r 2r 1GT 2。

天体运动知识点总结笔记

天体运动知识点总结笔记

天体运动知识点总结笔记天体运动,是指天体在空间中运动的规律和现象。

它包括行星、卫星、彗星等天体的运动规律和运动状态。

在地球上观测到的天体运动,主要为地球和其他天体的相对运动,例如太阳在天空中的日运动、行星在天空中的年运动等。

天体运动的规律是宇宙运动定律的具体应用,是了解宇宙的基础。

下面对天体运动的一些知识点进行总结。

一、天体的自转1. 天体的自转是指天体自身围绕自己的轴线转动。

在太阳系中,太阳、地球、其他行星和卫星都有自转运动。

自转是造成天体自身的白昼和黑夜的原因。

2. 特别地,太阳自转速度在赤道上约为25天转一圈,在极地上约为35天转一圈。

而地球的自转速度约为24小时转一圈。

3. 当天体自转速度增大时,天体的赤道凸起会变大,使得天体呈现扁球狀。

4. 行星和卫星的自转是与它们的公转方向一致的,这种现象称为自转共享现象。

二、地球的公转1. 地球绕太阳运行一周的时间称为地球的一年。

地球公转轨道是椭圆形的,由于轨道的椭圆度,地球到太阳的距离会有所变化,这种现象称为近日点和远日点。

2. 地球的公转速度约为每秒30千米,公转轨道的倾角是23.5度,这是引起四季变化的原因。

在北半球的夏至时,地球北半球远离太阳,而南半球靠近太阳;在冬至时则相反。

春分和秋分时,地球两极离太阳距离相等。

3. 我们所感受到的四季变化是由地球公转和地球轴的倾斜造成的。

地球自转使得不同地区的太阳高度角不同,从而造成了不同季节的温度差异。

4. 天体的公转速度是由其离太阳的距离决定的,公转周期越长,离太阳越远。

三、行星的轨道运动1. 行星的公转轨道是椭圆形的,椭圆的几何性质由轨道长短轴的长度决定。

轨道的长短轴之比称为离心率,离心率越小,椭圆越圆。

离心率为零时,轨道为圆形;随着离心率的增加,轨道趋向椭圆形。

2. 地球是典型的椭圆轨道行星,太阳位于椭圆轨道的一个焦点上。

3. 行星的近日点和远日点分别是距太阳最近和最远的点。

在近日点时,行星运行速度最快,在远日点时运行速度最慢。

天体运动精要点总结

天体运动精要点总结

天体运动归纳Ⅰ、重力类:(重力近似等于万有引力)1.主要解决天体表面重力加速度问题 基本关系式:2R GMm mg =例1、某星球质量是地球的1/5,半径为地球的1/4,则该星球的表面重力加速度与地球表面重力加速度的比值是多少?设天体表面重力加速度为g ,天体半径为R ,则:GR ρπ342==R GM g (334R M πρ=) 由此推得两个不同天体表面重力加速度的关系为:2.行星表面重力加速度、轨道重力加速度问题: 例2、设地球表面的重力加速度为g,物体在距地心4R(R 是地球半径)处,由于地球的引力作用而产生的重力加速度g ,则g //g 为A 、1;B 、1/9;C 、1/4;D 、1/16.表面重力加速度:22RGM g mg R Mm G =⇒= 轨道重力加速度:g h R R h R M G g 222)()(+=+=' Ⅱ、天体运动类:行星(卫星)模型:F =G 错误!=m 错误!=mrω2=m 错误!r一、周期类:主要解决天体的质量(或密度)与同步卫星问题 基本关系式:r T m r GMm 222⎪⎭⎫ ⎝⎛=π 设恒星质量为M ,行星质量为m (或行星质量为M ,卫星质量为m),它们之间的间距为r,行星绕恒星(或卫星绕行星)的线速度、角速度、周期分别为v 、ω、T . 可以推得开普勒第三定律:K Tr ==4πG M 23(常量) 1.天体质量(或密度)问题2324GT r M π=323G T 3ρR r V M π== 当r=R 时,则天体密度简化为:2GT 3ρπ= R 、T 分别代表天体的半径和表面环绕周期,由上式可以看出,天体密度只与表面环绕周期有关.2.周期公式332r GMr T ∝=π 21212221M M R R g g ⋅=①对人造地球卫星而言,轨道半径越大,离地面越高,周期越大。

②近地卫星的轨道半径r 可以近似地认为等于地球半径R ,又因为地面2R GM g =,所以有min 5.84101.523=⨯==s gR T π。

高一物理必修二 天体的运动专题复习共22页文档

高一物理必修二 天体的运动专题复习共22页文档

谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。。——孔子
高一物理必修二 天体的运动专题复习
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。

天体运动-高三一轮复习 讲义版

天体运动-高三一轮复习 讲义版

天体运动【知识框架】【知识点一】行星运动规律第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上第二定律:太阳与任何一个行星的连线(矢径)在相等的时间内扫过的面积相等,即:S1=S2第三定律:行星绕太阳运行轨道半长轴r 的立方与其公转周期T 的平方成正比,即:k Tr =23其中k 是与中心天体有关的常数【例】某行星绕太阳运行的椭圆轨道如图所示,F 1和F 2是椭 圆 轨道的两个焦点,行星在A 点的速率比在B 点的大,则太阳是位于( )A F2 B AC F 1D B【例】设行星绕恒星的运动轨道是圆,则其运行周期T 的平方与其运动轨道半径R 的三次方之比为常数,即R 3/T 2=k ,那么k 的大小( )A 只与行星质量有关B 只与恒星质量有关C 与恒星及行星的质量均有关D 与恒星的质量及行星的速率有关【知识点二】万有引力定律及其应用 1、万有引力定律:2rmGM F =,由牛顿总结而得 注:式中,G 为引力常量,由卡文迪许扭秤实验测出。

r 为两质点距离,若是两个均匀球体,则r 是两球心的距离。

2、应用万有引力定律分析天体运动 地面上的物体与地球一起运动:G F =万,即mg m2=RGM ,得2g GM R =(黄金代换式) 绕地球做圆周运动的物体g m '==向万F F 即g m 2mr mr r mv r m 2222'=⎪⎭⎫ ⎝⎛===T GM πω 归纳变轨卫星:↓↓↓↓↓↑↑↑F E T ,,,,,,,g a v r ω 3、两种特殊卫星近地卫星(第一宇宙速度) 得R g v =同步卫星 相对地面静止,运动轨迹在赤道正上空4、宇宙速度理解第一宇宙速度:最小发射速度,最大环绕速度第二宇宙速度:发射速度大于第二宇宙速度,将脱离地球束缚,绕太阳运动变成“人造行星” 第三宇宙速度:发射速度大小第三宇宙速度,将脱离太阳束缚,跑到其他星系中题型一:万有引力定律公式的理解 【例】对于太阳与行星间引力的表述2rmGM F =式,下面说法中正确的是( ) A 公式中G 为引力常量,它是牛顿规定的 B r 为太阳半径C 太阳与行星受到的引力总是大小相等的、方向相反,是一对平衡力D 太阳与行星受到的引力总是大小相等的、方向相反,是一对作用力与反作用力【例】关于万有引力定律,下列说法正确的是( ) A 牛顿提出了万有引力定律,并测定了引力常量的数值 B 万有引力定律只适用于天体之间C 万有引力的发现,揭示了自然界一种基本相互作用的规律D 地球绕太阳在椭圆轨道上运行,在近日点和远日点受到太阳的万有引力大小是相同的【例】关于万有引力定律及其表达式221rm m G F =的理解,下列说法中正确的是( ) A 万有引力定律对质量大的物体适用,对质量小的物体不适用 B 公式中的是引力常量,说明它在数值上等于质量为1kg 的两个质点相距1m 时的相互作用力C 当物体间的距离r 趋于零时,万有引力趋于无穷大D 两个物体间的引力总是大小相等、方向相反的,是一对平衡力【例】 如图所示,有人设想要“打穿地球”从中国建立一条通过地心的光滑隧道直达巴西。

天体运动专题复习

天体运动专题复习

(已知地球表面重力加速度g=9.8m/s2,R=6400km) 法二:重力提供物体作圆周运动的向心力
2、第二宇宙速度(脱离速度) v =11.2 km/s
2
• 这是卫星挣脱地球的引力束缚,成为绕太阳运行的人 造行星的最小发射速度.
3、第三宇宙速度(逃逸速度) v =16.7 km/s
3
• 这是卫星挣脱太阳引力束缚的最小发射速 度. • 如果人造天体具有这样的速度,就可以摆脱 地球和太阳引力的束缚而飞到太阳系外了.
天体质量M=
③若天体的卫星在天体表面附近环绕天体运动,可认为其轨
道半径r等于天体半径R,则天体密度ρ=
方法总结:
(2)利用天体表面的重力加速度g和天体半径R. 由于 =mg,故天体质量M= ,
天体密度ρ=
2.天体运动的模型 (以人造地球卫星为例 ) 当卫星稳定运行时,轨道半径 r 越大,v 越小,ω 越小, 二:天体运动规律 (以卫星绕地球为例) T 越大;万有引力越小,向心加速度越小;同一圆周轨道内正 卫星的线速度、角速度、周期与轨道半径的关系 常运行的所有卫星的速度、 角速度、 周期、 向心加速度均相等. GM v2 Mm r (1)由 G 2 =m ,得 v=____________ ,所以 r 越大,v r r 越小; GM Mm 2 r3 (2)由 G 2 =mω r,得 ω=____________,所以 r 越大,ω r 越小; 2 3 4π r 2 4π Mm GM (3)由 G 2 =m 2 r,得 T=____________,所以 r 越大,T r T 越大.
基础知识梳理 (二)、开普勒行星运动定律
定律
开普勒第 一定律
开普勒第 二定律
开普勒第 三定律
内容 所有的行星绕太阳运动的轨 椭圆 ,太阳处在椭 道都是_____ 焦点 上 圆的一个______ 对任意一个行星而言,它与 太阳的_____ 连线 在相等的时间 内扫过_____ 相等 的面积 所有行星轨道半长轴的____ 三次 方跟它的公转周期的 ____ 二次方 3 a 的比值都相等. T2 =k

天体运动总复习绝对经典

天体运动总复习绝对经典

一.考点梳理1.考纲要求:万有引力定律的应用、人造地球卫星的运动(限于圆轨道)、动量知识和机械能知识的应用(包括碰撞、反冲、火箭)都是Ⅱ类要求;航天技术的发展和宇宙航行、宇宙速度属Ⅰ类要求。

2.命题趋势:本章内容高考年年必考,题型主要有选择题:如2004年江苏物理卷第4题、2004上海卷第3题、2005年安徽卷第16题、2005年全国卷第3题、2005年北京物理卷第20题、2005年江苏物理卷第5题;计算题:如2001年全国卷第31题、2003年第24题、2004年全国卷第23题、2004年广西物理卷第16题、2005年江苏物理卷第18题、2005年广东卷第15题等。

飞船、卫星运行问题与物理知识(如万有引力定律、匀速圆周运动、牛顿运动定律等)及地理知识有十分密切的相关性,以此为背景的高考命题立意高、情景新、综合性强,对考生的理解能力、综合分析能力、信息提炼处理能力及空间想象能力提出了极高的要求,是新高考突出学科内及跨学科间综合创新能力考查的命题热点,亦是考生备考应试的难点. 特别是今年10月神州六号飞船再次实现载人航天飞行试验以来,明年高考有很大可能考查与“神六”相关的天体运动问题。

3.思路及方法:(1).基本方法:把天体运动近似看作圆周运动,它所需要的向心力由万有引力提供,即: Gr v m r Mm 22==mω2r=mrT224π(2).估算天体的质量和密度由G 2rMm=mr T 224π得:M=2324Gt r π.即只要测出环绕星体M 运转的一颗卫星运转的半径和周期,就可以计算出中心天体的质量.由ρ=V M ,V=34πR3得: ρ=3233R GT r π.R 为中心天体的星体半径特殊:当r=R时,即卫星绕天体M 表面运行时,ρ=23GT π(2003年高考),由此可以测量天体的密度.(3)行星表面重力加速度、轨道重力加速度问题 表面重力加速度g 0,由02GMm mg R = 得:02GMg R =轨道重力加速度g ,由2()GMm mg R h =+ 得:220()()GM R g g R h R h==++ (4)卫星的绕行速度、角速度、周期与半径的关系(1)由Gr v m rMm 22=得:v=r GM . 即轨道半径越大,绕行速度越小(2)由G2rMm=mω2r得:ω=3r GM 即轨道半径越大,绕行角速度越小(3)由2224Mm G m r r T π=得:32rT GMπ= 即轨道半径越大,绕行周期越大.(5)地球同步卫星所谓地球同步卫星是指相对于地面静止的人造卫星,它的周期T =24h .要使卫星同步,同步卫星只能位于赤道正上方某一确定高度h .由: G2224()Mm m R h T π=+(R+h) 得:2324h R GMT π=-=3.6×104km=5.6RR表示地球半径二.热身训练1.把火星和地球绕太阳运行的轨道视为圆周。

高一物理必修二__天体的运动专题复习共22页文档

高一物理必修二__天体的运动专题复习共22页文档
高一物理必修二__天体的运动专题复习
56、死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄归 。道狭 草木长 ,夕露 沾我衣 。衣沾 不足惜 ,但使 愿无违 。 59、相见无杂言,但道桑麻长。 60、迢迢新秋夕,亭亭月将圆。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左

高考物理天体运动知识点梳理

高考物理天体运动知识点梳理

高考物理天体运动知识点梳理1.开普勒第三定律:T2/R3=K(=42/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:F=Gm1m2/r2 (G=6.6710-11Nm2/kg2,方向在它们的连线上)3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;=(GM/r3)1/2;T=2(r3/GM)1/2{M:中心天体质量}5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s6.地球同步卫星GMm/(r地+h)2=m42(r地+h)/T2{h36000km,h:距地球表面的高度,r地:地球的半径}摩擦力1、定义:当一个物体在另一个物体的表面上相对运动(或有相对运动的趋势)时,受到的阻碍相对运动(或阻碍相对运动趋势)的力,叫摩擦力,可分为静摩擦力和滑动摩擦力。

2、产生条件:①接触面粗糙;②相互接触的物体间有弹力;③接触面间有相对运动(或相对运动趋势)。

说明:三个条件缺一不可,特别要注意相对的理解。

3、摩擦力的方向:①静摩擦力的方向总跟接触面相切,并与相对运动趋势方向相反。

②滑动摩擦力的方向总跟接触面相切,并与相对运动方向相反。

说明:(1)与相对运动方向相反不能等同于与运动方向相反。

滑动摩擦力方向可能与运动方向相同,可能与运动方向相反,可能与运动方向成一夹角。

(2)滑动摩擦力可能起动力作用,也可能起阻力作用。

4、摩擦力的大小:(1)静摩擦力的大小:①与相对运动趋势的强弱有关,趋势越强,静摩擦力越大,但不能超过最大静摩擦力,即0ffm 但跟接触面相互挤压力FN无直接关系。

具体大小可由物体的运动状态结合动力学规律求解。

②最大静摩擦力略大于滑动摩擦力,在中学阶段讨论问题时,如无特殊说明,可认为它们数值相等。

天体运动总复习

天体运动总复习
v2 F m
r
追寻牛顿的足迹
2. 天文观测难以直接得到行星的速度 v,但可以得到行星的公转周期T
有 v 2r
T
v2 代入 F m
r
F

4 2mr
T2
追寻牛顿的足迹
3. 根据开普勒第三定律
r3 T2
k

T 2 r3
k
4 2mr
代入
F T2
所以
F

4
2k
m r2
追寻牛顿的足迹
4. 太阳对行星的引力
F

4
2k
m r2

F

m r2
太阳对不同行星的引力,与行星的质量 成正比,与行星和太阳间的距离的二次方成 反比。
追寻牛顿的足迹
5。根据牛顿第三定律,行星对太 阳引力F`应满足
, F
M

r
2 太


F F`
追寻牛顿的足迹
概括起来有
F

Mm r2
则太阳与行星间的引力大小为
• 开谱勒三定律
开普勒第一定律:
所有行星绕太阳的轨道都 是椭圆,太阳处在椭圆的一个 焦点上。
太阳

焦点
焦点
• 开普勒第二定律:
• 对任意一个行星来说,它与太阳 的连线在相等的时间内扫过相等的面 积。
A
B
开普勒第三定律:
所有行星的轨道的半长轴 的三次方跟它的公转周期的二 次方的比值都相等。
表达式: a3 T2
行,最后再次点火,将卫星送人
1
同步圆轨道3,轨道1、2相切于Q
点,轨道2、3相切于P点.如图
所示,设卫星在1轨道和3正常运

天体运动复习讲义精简版(含经典例题后附习题及答案)

天体运动复习讲义精简版(含经典例题后附习题及答案)

天体运动复习讲义1. 天体运动(1)万有引力提供向心力F 合外力=G Mmr 2 (万有引力为合外力,合外力提供向心力)G Mm r 2=m v 2r G Mmr2=mrω2 G Mm r 2=m 4π2T2r (2)天体问题的计算方法:万有引力G Mm r 2 = 向心力(m v 2r 或mrω2或m 4π2T2r )说明:等式左边为万有引力,等式右边为计算中常用的参数(线速度v , 角速度w , 周期 T ),计算时用万有引力G Mm r 2 等于带有参数线速度v 角速度w 周期 T 的向心力。

不能用m v2r=mrω2 = m 4π2T 2r ,因为m v 2r =mrω2 = m 4π2T2r 推算出V = WR = 2πR/T = 2πfR=2πnR 只能算出线速度v 角速度w 周期 T 的关系等式,没有用到万有引力公式。

例1:科学家们推测,太阳系的第十颗行星就在地球的轨道上.从地球上看,它永远在太阳背面,人类一直未能发现它,可以说是“隐居”着的地球的“孪生兄弟”.由以上信息可以推知( ) A.这颗行星的公转周期与地球相等 B.这颗行星的自转周期与地球相等 C.这颗行星的质量与地球质量相等 D.这颗行星的密度与地球密度相等(3)万有引力约等于重力G MmR2=mg → 2gR GM =(黄金代换式) 说明:①物体在地球表面且忽略物体随地球一起转动所需向心力②只有题目中说该行星地表重力加速度为g 时,等式才成立2. 人造卫星的加速度、线速度、角速度、周期跟轨道半径的关系F 万=G Mmr2=F 向=⎩⎪⎪⎨⎪⎪⎧ma →a =GM r 2→a ∝1r2m v2r →v =GM r →v ∝1r mω2r →ω=GM r 3→ω∝1r3m 4π2T 2r →T =4π2r 3GM→T ∝r 3.说明:以地球为中心天体总结出:离地球越近的卫星线速度v 角速度W 加速度a 越大只有周期T 越小,即“越高越慢”)例2:一个卫星绕着某一星球作匀速圆周运动,轨道半径为R 1,因在运动过程中与宇宙尘埃和小陨石的摩擦和碰撞,导致该卫星发生跃迁,轨道半径减小为R 2,则卫星的线速度、角速度,周期的变化情况是 ( )A.增大,增大,减小;B.减小,增大,增大;C.增大,减小,增大; D.减小,减小,减小。

天体运动知识点高中总结

天体运动知识点高中总结

天体运动知识点高中总结天体运动知识点主要包括以下几个方面:1. 天体的运动规律地球、其他行星和卫星都遵循着一定的运动规律。

地球绕太阳公转,同时自转;其他行星也绕太阳公转,同时自转;卫星则围绕行星公转。

通过学习天体的运动规律,学生可以了解宇宙中的运动规律,如行星的公转周期、自转周期等。

2. 天体的轨道每个天体都围绕着自己的轨道运行,轨道形状和大小不同。

通过天体的轨道,可以了解天体之间的相对位置和运动轨迹,掌握天体在宇宙中的运动规律。

3. 天体的视运动天体在观测者的视线中呈现出不同的视运动,包括直线视运动、圆周视运动、椭圆视运动等。

通过学习天体的视运动,可以了解天体在宇宙中的运动规律和相对位置,培养学生观察和推理能力。

4. 天体的周期现象天体运动中存在着一些周期现象,如行星的合、冲、留、升现象;月相的变化;日食、月食等现象。

通过学习天体的周期现象,可以了解宇宙中的运动规律和周期性,培养学生观察和分析能力。

5. 天体的引力作用天体之间存在着引力作用,通过引力作用导致了宇宙中的各种运动现象,如行星的轨道运动、卫星的围绕行星运动等。

通过学习天体的引力作用,可以了解宇宙中的力学规律和运动规律,培养学生分析和推理能力。

6. 天体运动的观测方法观测天体运动是天文学的重要内容,可以通过望远镜观测天体的位置、轨道、视运动等现象,了解天体的运动规律和相对位置。

通过学习天体运动的观测方法,可以培养学生的观察和实验能力,提高他们对天文学的理解和认识。

天体运动知识点涉及了许多复杂的物理现象和数学概念,需要学生具备一定的数理基础和推理能力。

在教学中,可以通过举例、实验、观测等方式,激发学生对天体运动的兴趣,提高他们的学习积极性。

同时,也可以结合最新的科学研究成果和技术手段,让学生了解天体运动领域的最新进展和发展趋势,拓展他们的宇宙观念。

总之,天体运动是高中天文学课程中的重要知识点,通过学习天体运动,可以让学生了解宇宙中的运动规律,掌握宇宙中的基本概念和常识,培养他们的科学思维和观察能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

龙文教育个性化辅导授课案教师: 学生: 日期: 星期: 时段:课 题 天体运动学情分析教学目标与 考点分析教学重点 难点教学方法教学过程一.考点梳理1.考纲要求:万有引力定律的应用、人造地球卫星的运动(限于圆轨道)、动量知识和机械能知识的应用(包括碰撞、反冲、火箭)都是Ⅱ类要求;航天技术的发展和宇宙航行、宇宙速度属Ⅰ类要求。

2.命题趋势:本章内容高考年年必考,题型主要有选择题:如2004年江苏物理卷第4题、2004上海卷第3题、2005年安徽卷第16题、2005年全国卷第3题、2005年北京物理卷第20题、2005年江苏物理卷第5题;计算题:如2001年全国卷第31题、2003年第24题、2004年全国卷第23题、2004年广西物理卷第16题、2005年江苏物理卷第18题、2005年广东卷第15题等。

飞船、卫星运行问题与物理知识(如万有引力定律、匀速圆周运动、牛顿运动定律等)及地理知识有十分密切的相关性,以此为背景的高考命题立意高、情景新、综合性强,对考生的理解能力、综合分析能力、信息提炼处理能力及空间想象能力提出了极高的要求,是新高考突出学科内及跨学科间综合创新能力考查的命题热点,亦是考生备考应试的难点. 特别是今年10月神州六号飞船再次实现载人航天飞行试验以来,明年高考有很大可能考查与“神六”相关的天体运动问题。

3.思路及方法:(1).基本方法:把天体运动近似看作圆周运动,它所需要的向心力由万有引力提供,即: Gr v m r Mm 22==mω2r=mr T224π(2).估算天体的质量和密度由G 2rMm=mr T 224π得:M=2324Gt r π.即只要测出环绕星体M 运转的一颗卫星运转的半径和周期,就可以计算出中心天体的质量.由ρ=V M ,V=34πR3得: ρ=3233R GT r π.R 为中心天体的星体半径特殊:当r=R时,即卫星绕天体M 表面运行时,ρ=23GT π(2003年高考),由此可以测量天体的密度.(3)行星表面重力加速度、轨道重力加速度问题表面重力加速度g 0,由02GMm mg R = 得:02GMg R= 轨道重力加速度g ,由2()GMm mg R h =+ 得:220()()GM R g g R h R h==++ (4)卫星的绕行速度、角速度、周期与半径的关系(1)由Gr v m rMm 22=得:v=r GM . 即轨道半径越大,绕行速度越小(2)由G2rMm =mω2r得:ω=3r GM 即轨道半径越大,绕行角速度越小 (3)由2224Mm G m r r T π=得:32r T GMπ= 即轨道半径越大,绕行周期越大. (5)地球同步卫星所谓地球同步卫星是指相对于地面静止的人造卫星,它的周期T =24h .要使卫星同步,同步卫星只能位于赤道正上方某一确定高度h .由: G2224()Mm m R h T π=+(R+h) 得:2324h R GMT π=-=3.6×104km=5.6RR表示地球半径二.热身训练1.把火星和地球绕太阳运行的轨道视为圆周。

由火星和地球绕太阳运动的周期之比可求得 A .火星和地球的质量之比 B .火星和太阳的质量之比C .火星和地球到太阳的距离之比D .火星和地球绕太阳运动速度之比2.某人造卫星运动的轨道可近似看作是以地心为中心的圆.由于阻力作用,人造卫星到地心的距离从r 1慢慢变到r 2,用E Kl 、E K2分别表示卫星在这两个轨道上的动能,则(A)r 1<r 2,E K1<E K2 (B)r 1>r 2,E K1<E K2 (C)r 1<r 2,E K1>E K2 (D)r 1>r 2,E K1>E K23.宇航员在探测某星球时,发现该星球均匀带电,且电性为负,电荷量为Q .在一次实验时,宇航员将一带负电q (q <<Q )的粉尘置于离该星球表面h 高处,该粉尘恰好处于悬浮状态.宇航员又将此粉尘带至距该星球表面2h 高处,无初速释放,则此带电粉尘将A .仍处于悬浮状态B .背向该星球球心方向飞向太空C .向该星球球心方向下落D .沿该星球自转的线速度方向飞向太空4.如图3-1所示,a 、b 、c 是在地球大气层外圆形轨道上运动的3颗卫星,下列说法正确的是: A .b 、c 的线速度大小相等,且大于a 的线速度;ba c地球 图3-1B .b 、c 的向心加速度大小相等,且大于a 的向心加速度;C .c 加速可追上同一轨道上的b ,b 减速可等候同一轨道上的c ;D .a 卫星由于某原因,轨道半径缓慢减小,其线速度将增大。

三.讲练平台【例1】如图3-2所示为一空间探测器的示意图,P 1、P 2、P 3、P 4是四个喷气发动机,P 1、P 3的连线与空间一固定坐标系的x 轴平行,P 2、P 4的连线与y 轴平行,每台发动机开动时,都能向探测器提供推力,但不会使探测器转动。

开始时,探测器以恒定的速率v 0向x 方向平动,要使探测器改为向正x 偏负y 60°方向以原速率v 0平动,则可A .先开动P 1适当时间,再开动P 4适当时间B .先开动P 3适当时间,再开动P 2适当时间C .开动P 4适当时间D .先开动P 3适当时间,再开动P 4适当时间【例2】中子星是恒星演化过程的一种可能结果,它的密度很大。

现有一中子星,观测到它的自转周期为130T s =。

问该中子星的最小密度应是多少才能维持该星的稳定,不致因自转而瓦解。

计算时星体可视为均匀球体。

(引力常量:G =6.67⨯1011-m 3/kg·s 2)【例3】宇航员在一星球表面上的某高处,沿水平方向抛出一小球。

经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L 。

若抛出时初速度增大到2倍,则抛出点与落地点之间的距离为3L 。

已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G 。

求该星球的质量M 。

【例4】侦察卫星在通过地球两极上的圆轨道上运行,它的运行轨道距地面高度为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件的情况下全都拍摄下来,卫星在通过赤道上空时,卫星上的摄像机至少应拍摄地面上赤道圆周的弧长是多少?设地球半径为R ,地面处的重力加速度为g ,地球自转的周期为T 。

四.达标测试1.太空被称为是21世纪技术革命的摇篮。

摆脱地球引力,在更“纯净”的环境中探求物质的本质,拨开大气层的遮盖,更直接地探索宇宙的奥秘,一直是科学家们梦寐以求的机会。

“神州号” 两次载人飞船的成功发射与回收给我国航天界带来足够的信心,我国提出了载人飞船——太空实验室——空间站的三部曲构想。

某宇航员要与轨道空间站对接,飞船为了追上轨道空间站( ) A. 只能从较低轨道上加速 B. 只能从较高轨道上加速C. 只能从空间站同一高度的轨道上加速D. 无论在什么轨道上,只要加速都行2.) 2007 年3 月26 日,中俄共同签署了《中国国家航天局和俄罗斯联邦航天局关于联合探测火星——火卫一图3-2yxP 1P 2P 4P 3合作的协议》,双方确定2008年联合对火星及其卫星“火卫一”进行探测.“火卫一”在火星赤道正上方运行,与火星中心的距离为9450km .绕火星1周需7h39min ,若其绕行轨道简化为圆轨道,引力常量G 已知.则由以上信息能求出( )A .“火卫一”的质量B .火星的质量C .“火卫一”受到火星的引力D .火星的密度3.)我们的银河系的恒星中大约四分之一是双星。

某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动。

由天文观察测得其运动周期为T 。

S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知引力常量为G 。

由此可求出S 2的质量为 ( )A .4π2r 2r 1GT2B .4π2r 13GT2C .4π2r 3GT 2D . 4π2r 2(r -r 1)GT24.三颗人造地球卫星A 、B 、C 绕地球作匀速圆周运动,如图所示,已知M A =M B <M C ,则对于三个卫星,正确的是( ) A. 运行线速度关系为 C B A υυυ=> B. 运行周期关系为 T A <T B =T C C. 向心力大小关系为 F A = F B < F CD. 半径与周期关系为232323CC BB AA T R T R T R ==5.如图所示,从地面上A 点发射一枚远程弹道导弹,在引力作用下沿ACB 椭圆轨道飞行击中地面目标B ,C 为轨道的远地点,距地面高度为h.已知地球半径为R ,地球质量为M ,引力常量力G 。

没距地面高度为h 的圆轨道上卫星运动周期为T0,下列结论中正确的是( ) A .导弹在c 点的速度大于hR GM + B .导弹在C 点的加速度等于GM/(R+h)2C .地球球心为导弹椭圆轨道的—个焦点D .导弹从A 点运动到B 点的时间—定小于To6.如图所示,A 为静止于地球赤道上的物体,B 为绕地球做椭圆轨道运行的卫星,C 为绕地球做圆周运动的卫星,P 为B 、C 两卫星轨道的交点.已知A 、B 、C 绕地心运动的周期相同,相对于地心,下列说法中正确的是( ) A .物体A 和卫星C 具有相同大小的加速度 B .卫星C 的运行速度小于物体A 的速度B APC航天飞机月球空间站BC .可能出现:在每天的某一时刻卫星B 在A 的正上方D .卫星B 在P 点运行的加速度大于卫星C 的加速度7.2008年9月25日21时10分,载着翟志刚、刘伯明、景海鹏三位宇航员的神舟七号飞船在中国酒泉卫星发射中心发射成功,9月27日翟志刚成功实施了太空行走。

已知神舟七号飞船在离地球表面h 高处的轨道上做周期为T 的匀速圆周运动,地球的半径R ,万有引力常量为G 。

在该轨道上,神舟七号航天飞船( ) A .运行的线速度大小为TRπ2 B .运行的线速度小于第一宇宙速度C .运行时的向心加速度大小22)(4T h R +π D .地球表面的重力加速度大小为2232)(4R T h R +π8我国未来将建立月球基地,并在绕月轨道上建造空间站.如图所示,关闭动力的航天飞机在月球引力作用下经椭圆轨道向月球靠近,并将与空间站在B 处对接.已知空间站绕月轨道半径为r ,周期为T ,万有引力常量为G ,下列说法中正确的是( )A .图中航天飞机在飞向B 处的过程中,月球引力做正功 B .航天飞机在B 处由椭圆轨道可直接进入空间一站轨道C .根据题中条件可以算出月球质量D .根据题中条件可以算出空间站受到月球引力的大小9. 2008年9月25日,我国利用“神州七号”飞船将翟志刚、刘伯明、景海鹏三名宇航员送入太空。

相关文档
最新文档