数字相位测量仪
基于CPLD的低频数字相位测量仪
・
测控技术 ・
电 子 工 皇 师
20 0 6年 1 0月
3 软件实现
软件 主要 是 实 现 P WM 的 占空 比的 测量 , 基 本 其 原理 是利 用 85 单 片机 内部 的计数 器 来 测量 。具 0 l 体过 程是 : 过对 85 通 0 l的 P . 11口进行 实 时查询 , 当检 测 到 P . 脚 的信 号为 高 电平 时 , 11 开 中断计 数 , 然后 继续 查 询 P . 1 1的状 态 。 当检 测 到 P . 脚 的信号 为低 11
同步平均 时 间的 门控 信 号 , 生 满 周 期 的控 制 门 。同 产 时 , 电路还 完成 了相 位超前 和滞 后 的判 断 。 该
收 稿 日期 : 05 1-5 修 回 日 : 0 6 2 2 0 —12 ; 期 2 0 3 。 图 2 系统 框 图
2 硬件电路 的设计与分析
T 中断程 序 O
读T 计数值为 O
i!
读T 计数值为 T: O o 关T 中断 O
电平 时, 录 计数器 当前的数信号为高电 11 11 平时 , 录 计数器 的计数值 作为一个 P 记 WM 周 期 ,WM 的 占空 比 D=( 。r 0 % , 电源 或 负 P / 0)X10 而
相、 门控 、 同步、 计数 、 锁存、 数据选择等逻辑功能 ; 片机部分对数据进行处理 , 单 完成数据 的读取、 运 算、 数据类型转化 、 循环扫描显示控制等功能 , 并将待测信号的相位差显示在八段数码管上。 关键词 : 相位测量仪 ;P D 单片机; CL ; 鉴相
中图 分类 号 : M 3 . T 9 33
维普资讯
第3 2卷第 l 0期 20 0 6年 l 0月
低频数字式相位测量仪简单介绍
低频数字式相位测量仪简单介绍相位差的测量在自动控制以及通讯电子等领域有着非常广泛的应用。
如水深测量、电磁波测量、电力系统的相位检测装置、激光测量等。
目前常用的低频数字式相位测量仪方法是将输入的两路信号经过某种处理将其变成方波,再通过比较这2路方波计算出相位差脉宽,最后通过用高频脉冲填充相位差,这个过程就实现了相位差的测量。
1、低频相位测量仪的意义大家都知道相位是交变信号三要素(频率伏值相位)之一,而相位差则是研究两个相同频率交流信号之间关系的重要指标。
相位差是测量两个同频率周期信号的相位差值。
相位计就是测量相位差的仪器,低频数字式相位测量仪就是专门测量低频信号的相位差,一般频率是100Hz以内的正弦频率信号,高精度相位计一般是指测量精度特别高,一般测量精度在0.2度以内。
低频数字式相位测量仪的工作原理和误差源就是设计低频数字式相位测量仪必须了解的内容。
2、低频数字式相位测量仪测试方法(1)示波器法示波器法是把两个被测信号同时加到双踪示波器的两个Y通道,直接进行比较,根据两个波形的时间间隔△T与波形周期T的比,计算相位差Φ。
示波器测量相位差缺点是精度不高。
(2)零示法零示法其实是将被测信号和可变移相器串联然后和另一同频率信号同时加在相位比较器如示波器、指示器等上,调节可变移相器,使比较器指示零值相位,则移相器上的读值即为两信号间的相位差。
这种测量方法的精度决定于所使用的移相器的精度,一般达十分之几度。
(3)直读式相位计法直读式相位计最大的优势就是可以直接读取相位差。
同事其测量速度也比较快,还能显示相位变化。
一般而言直读测量相位差的方法有:数字式直读相位计法、矢量电压表法相敏检波器法和环形调制器法。
其中前两种是目前低频数字式相位测量仪测试方法中最常见的,具体测试方法如下:a、数字式直读相位计法测量相位差的基本原理与测量时间间隔大体相同,见时频测量。
即将被测两信号电压经过脉冲形成电路,变换成尖脉冲,去控制双稳态触发器,由此产生宽度为△T的闸门信号。
CPLD低频数字相位测量仪的设计
包括数字移相信 号发生 器和相位 测量仪 2 部分 , 分别 完成移相信号的发生 、 频率 与相位差 的预置、 数字显示、 号的移相 以 信
及移相后信 号相位差和频率 的测量 与相识 等功能。 中数字 式移 相信号发生 器可 以产 生预置频率 的差值 ; 其 相位 测量仪可
以测量和显 示相位信 号的频率 、 位 差。 相
厂一
后, 将波形整形电路的2 0 ] 厂 厂 厂 厂 ] ]
图 1 波形变换 示意 图
的功能, 用以产生相位测量仪所需的输入正弦信号 。 其
技术 要 求 指标 : 率 范 围2 Hz~ 0 Hz 频 率 步进 为 频 0 2k ,
2H , 0 z 输出频率可预置; 相位差范围为0 3 9 , ~ 5 。相位差
( 具有设定保存功能。 5)
实现相位 、 频率的测量, 并且具有独 自的控制功能和数
字显示 功能。
11系统硬件 结构 .
首 先 将 被 测 2列 正
弦 信号 A 、 B经平 滑 滤 波
后 , 入 过 零 比较 电路 , 输
A
1系统硬件设计
总体要求 : ( ) 有相 位 测量 功 能 , 1具 即相 位 测量 仪 的 功 能 。 其
传 感 及 检 测 仪 表
C L 低频 数 字 相 位 测 量 仪 的设 计 PD
朱 红梅 , 美 君 潘
( 海西部矿 业铅业 摘
要: 绍 了一种基 于复杂的可编程逻辑 器件( L 和 高速 单片机s c8 c 8 介 CP D) T 9 5 的低频数字 相位 测量仪 。 该测量仪
京航 天航 空 大 学 出版 社 【] 白英 彩 . 型 计 算 机 常 用 芯 片 手 册 【 . 海 : 海科 学 3 微 M】 上 上
数字式相位差测量仪说明书_图文(精)
目录绪论 (1摘要 (21 结构设计与方案选择 (31.1 基于过零检测法的数字式相位差测量仪方法概述 (4 1.1.1 相位-电压法 (41.1.2 相位-时间法 (51.2 方案的比较与选择 (62 相位-时间法单元电路的原理分析与实现方法 (62.1 前置电路设计与分析 (62.1.1 放大整形电路的分析与实现 (62.1.2 锁相倍频电路的分析与实现 (72.2 计数器及数显部分的设计与分析 (92.2.1 计数器部分的分析与实现 (92.2.2 译码显示部分的分析与实现 (103 结论 (124 参考文献 (13附录1:元器件名细表 (14附录2:相位时间法总体电路原理图 (15附录3:相位时间法总体电路PCB板 (16附录4:相位时间法总体电路PCB板3D视图 (17随着科学技术突飞猛进的发展,电子技术广泛的应用于工业、农业、交通运输、航空航天、国防建设等国民经济的诸多领域中,而电子测量技术又是电子技术中进行信息检测的重要手段,在现代科学技术中占有举足轻重的作用和地位。
数字相位差测试仪在工业领域中是经常用到的一般测量工具,比如在电力系统中电网并网合闸时,需要两电网的电信号相同,这就需要精确的测量两工频信号之间的相位差。
更有测量两列同频信号的相位差在研究网络、系统的频率特性中具备重要意义。
相位测量的方法很多,典型的传统方法是通过显示器观测,这种方法误差较大,读数不方便。
为此,我们设计了一种数字相位差测量仪,实现了两列信号相位差的自动测量及数显。
近年来,随着科学技术的迅速发展,很多测量仪逐渐向“智能仪器”和“自动测试系统”发展,这使得仪器的使用比较简单,功能越来越多。
本低频数字相位测量仪主要是测量电压和电流的相位差,由整形放大电路、基本门电路、锁相倍频、计数译码等集成电路构成。
测量的分辨率可达到0.1°,可测信号的频率范围为0Hz~250Hz,幅度为0.5Ⅴ,由于74HC4046的性能比较好,使得所制得的仪器精度相对较高,达到了任务书中所规定的要求。
数字式相位测量仪
• 93•数字式相位测量仪是用数字形式显示两个同频信号之间相位差的仪器,是一种具有读数方便、精度高、测量速度快的电子仪器。
本文基于RS触发器检相原理,以可编程逻辑器件FPGA和单片机STM32为核心,通过对被测量信号的整形处理、数据采集、运算控制、显示等电路功能设计,最终实现了一个数字式相位测量仪系统。
引言:目前,随着社会经济的迅速发展与科技的不断进步,在各种测量方面对测量仪器的测量精度与整体性能的要求不断提高,越来越崇尚数字式的测量仪器。
由此可见,传统的模拟式测量仪器已无法满足现社会的需求,而在相位差测量方面的研究更是不容乐观;因此,对高精度的相位差测量的研究和相位差测量系统的设计,刻不容缓。
所以,本文设计了一台高精度的数字式相位测量仪。
本测量仪可以测量频率范围为10Hz ~100kHz 、信号峰峰值范围为 0.5V-5V 的任何两路同频率周期性波形的相位差及其频率,测量两路信号相位差的范围为 0°至359.9°,测量绝对误差小于1°;其频率测量绝对误差小于等于0.1Hz 。
1.总体框架本系统主要分为四大基本部分组成:LM393滞回比较器的整形电路、FPGA 数据采集与计数电路、RS 触发器数字电路和STM32数据拟合处理与显示电路。
系统设计中,可编程器件FPGA 采用等精度测量原理对经整行后的信号进行测频,采取其频率信息,同时对两路待测同频信号进行RS 触发器处理并通过计数器对两路待测同频信号相位差所对应的时间差进行测量。
单片机STM32通过与FPGA 进行SPI 通信,读取FPGA 测量得到的数据,并根据读取得到的数据进行计算两路待测同频信号之间的相位差及其频率,同时对数据进行多次测量与验证后,通过MATLAB 对数据进行拟合优化,最终通过使用人机界面友好的TFT 屏显示出来待测信号的相位差信息以及其频率信息。
总体框图如图1:图1 总框图1.1 LM393滞回比较器的整形电路的设计本系统中使用了两个精密运算放大器对两路信号进行放大或衰减,使两路待测输入信号的输入电压范围变宽,从而实现0.5V 到5V 的输入电压输入;滞回比较器在单限比较器的基础上引入了正反馈网络和上拉电阻,使其的门限电压随着输出电压Uo 的变化而改变,从而,使滞回比较器具有避免过零点多次触发的现象、提高了其抗干扰能力;因此,本系统采用了基于LM393的滞回比较器对放大或衰减后的信号进行整形,使两路待测输入信号变成方波信号,便于FPGA 对输入信号的信息采集,减少了FPGA 的计数误差,更准确地测出两路待测信号的相位差及其频率。
基于单片机和FPGA的低频数字相位测量仪研究
21信 号 整 形 电路 的 设计 . 由于输入信号幅值 、 频率都 是变化的, 以必须对信号进行整 所 形处理。 最简单 的信号整形 电路就 是一个单 门限 电压 比较器 。 当输 人为 正弦波时 , 信号每过 一次零 , 比较器的输出端会产生一次 电压 跳变 , 由于它 的正 负幅值均受 到供 电电源 的限制 , 但 因此输 出的 电 压波形是一 个具有正 负极 性的方波 , 这样就 完成了 电压 波形的整 形。 但该整形 电路抗 干扰 能力 比较差 , 会在信号过零点 时发生多次 触发的现象 , 而影  ̄F G 从 P A计数 , 使单片机无法准确计算出数值 。 为避 免发生 干扰 , 本系统使用两个引入正反馈网络 的施密特触发器 组成的整形 电路 , 以有效地 提高抗干扰能力。 中为保证输入 电 可 其 路对相位 差测量结果不带来误差 , 这里必须保 证两 个施密特触发器 的 门 限 电平 是 相 等 的D。 】 2 P . F GA数据 采 集 电路 的设 计 2 FG P A数据采集 电路测量正弦波信号频率的原理是 : 在正弦波 信号整 形后得到 的方 波信 号的一个周 期内 , 对周 期为T 秒的数据 c 采样信号进行计 数, 将其计数结果 除以T , 到的就 是被 测正 弦波 c得 信号 的频率 , 单位为Hz测量正 弦波信号周期的原理 是 : 。 同样在整 形得 到的方波信 号的一个周期 内 , 对周期为T 秒 的数据采样信号 c 进行计数 , 其计数结果乘以T , 是被测正弦波信号 的周期 , c就 单位为 秒 。 P 数据 采集 电路的功能是实现将待测同频正弦波信号 的周 F GA 期、 相位差转变 为l位的数字量 。 9 测量两个 同频正 弦波信号 的相位 差, 关键是要测 出两个同频信号起点之间的时间差 △t则根据 △ , △t 6 。 t ×30 / 即可求出相位差 △由, 因此测量正弦波信号相位差原 理与测量周 期的原理相似 。 根据 以上设计思想 , P A数据采集 电路 可设计成 时钟信号分 FG 频模 块F Q, P 测量控制信号发生模块KZ XH, 被测信号有 关时间检 测模块S J 数据 锁存 模块S S 和输出选择模 块S XZ JC, JC C 五个模块 ,
毕业设计论文《低频数字式相位测量仪》
毕业设计论文《低频数字式相位测量仪》摘要该数字式相位测量仪以单片机 (89c52) 为核心 , 通过高速计数器 CD4040 为计数器计算脉冲个数从 , 而达到计算相位的要求 , 通过 8279 驱动数码管显示正弦波的频率,不采用一般的模拟的振动器产生 , 而是采用单片机产生 , 从而实现了产生到显示的数字化 . 具有产生的频率精确 , 稳定的特点 . 相移部分采用一般的 RC 移相电路 , 节省了成本。
一方案论证与比较 :1 常见正弦信号的测量方法 :方案一:采用模拟分离元件如二极管,三极管等非线性元件,实现频率的测量,检相的功能,使用起来方便,价格便宜,但采用分离元件由于分散性太大,不便于集成及数字化,而且测量误差大。
方案二:采用集成的检相器,检频器实现频率及相位的测量。
这种方法的实现框图如下:这种方法虽然可实现比较精确的测量,但由于模拟信号易受外界的干扰,不易调节,无法实现智能化,数字化的缺点,一般在要求较低的情况下使用。
方案三:此方案采用高速信号发生器产生 20MHz 的高频信号,其主要特点是采用 CD4040 高频计数器结合单片机,利用计数脉冲实现测量相位与频率的目标。
这种方法克服了模拟电路的缺点,实现了数字化与集成化。
本设计采用了这种方法。
这种方案的组成框图:二系统总体设计按照题目要求,我们设计的相位测量系统包括三部分:正弦波产生系统(包括频率调整电路),移相电路和相位显视系统,其总体框图如下:三各部分硬件电路设计及参数计算1、正弦波产生电路•方案一:利用 8038 芯片或 MAX038 可以实现压控的函数发生器通过改变少量的外围元件,可实现正弦波,方波,三角波,并可实现频率调节,但采用模拟器件由于元件分散性太大,即使使用单片函数发生器,参数也与外部元件有关,外接的电阻,电容对参数影响很大,因而产生的频率稳定度差,精度低,抗干扰能力差,调节困难,成本也高。
而且灵活性差,不能实现智能化。
数字式相位差测量仪的设计
目录绪论 (1)1 系统设计方案 (2)1.1 设计任务的分析 (2)1.1.1 设计主要内容及基本要求 (2)1.1.2 技术指标 (2)1.2 系统方案的选择 (2)1.3 系统的总体设计方案 (3)2 系统硬件电路的设计 (4)2.1 信号整形电路的设计 (4)2.1.1 LM339 的简介 (4)2.1.2 最简单的信号整形电路的设计 (4)2.1.3 采用了施密特触发器组成的信号整形电路的设计 (5)2.2 FPGA数据采集电路 (6)2.2.1 FPGA数据采集电路的功能分析 (6)2.2.2 FPGA数据采集电路的原理 (7)2.2.3 FPGA数据采集电路中各模块确定 (7)2.3 单片机数据运算控制电路的设计 (8)2.3.1 单片机数据运算控制电路的设计 (8)2.3.2 数据显示电路的设计 (9)3 软件部分的设计 (12)3.1 FPGA数据采集电路的VHDL语言程序设计 (12)3.1.1 VHDL语言的简介 (12)3.1.2 VHDL语言程序设计 (12)3.2 单片机数据运算控制电路的程序设计 (12)3.2.1 数据处理的技巧分析 (12)3.2.2 软件设计思路 (13)4 系统的仿真与调试 (17)4.1 FPGA数据采集电路的调试 (17)4.1.1 软件调试 (17)4.1.2 程序下载 (19)4.1.3 调试中的问题 (20)4.2 单片机数据运算控制电路的软件制作与调试 (20)4.2.1 操作过程 (20)4.2.2 问题分析 (21)4.3 系统的联合调试与验证 (21)结论 (22)参考文献 (23)附录一:元器件清单 (24)附录二:程序清单 (25)致谢 (46)数字式相位差测量仪的设计摘要本设计——数字式相位差测量系统使用FPGA和单片机相结合,构成整个系统的测控主体。
FPGA主要负责采集两个同频待测正弦信号的频率和相位差所对应的时间差,而两个同频待测正弦信号经过信号整形电路变成方波后送入FPGA数据采集电路中。
低频数字相位测量仪
、设计任务和技术要求1.1设计内容设计制作一个低频数字相位测量仪,要求使用单片机和 FPGA 来共同实现,FPGA 完成测量时间差,而单片机完成数据的读取、键盘控制和显示等功能。
1.2设计要求频率范围:20Hz~20kHz 。
相位测量仪的输入阻抗:仝 允许两路输入正弦信号峰峰值可分别在 1~5V 变化。
相位测量绝对误差W 2°。
具有频率测量及数字显示功能。
相位差数字显示,分辨力为 0.1 主芯片:Altera 的 FLEX10K10。
要求扩展键盘和显示接口电路,可以进行键盘控制以及显示等功能。
二、系统设计方案2.1方案论证根据系统的设计要求,本系统可分为三大基本组成部分:1. 数据采集电路数据采集电路主要是运用 FP GA/C PLD 采集两个同频待测正弦信号的频率和相位差所对应的时间差。
2. 数据运算控制电路数据运算控制电路主要是运用单片机读取FPGA/CPLD 采集到的数据,并根据这些数据计算待测正弦信号的频率及两路同频正弦信号之间的相位差。
3. 数据显示电路数据显示电路是通过功能键切换用LCD 液晶模块显示出待测信号的频率和相位差。
4. 整形电路由于FPGA 对脉冲信号比较敏感,而被测信号是周期相同、相位不同的两路正弦波信号, 为了准确地测出两路正弦波信号的相位差及其频率,我们需要对输入波形进行整形,使正弦 波变成方波信号,并输入 FPGA 进行处理。
整个系统的总体原理框图如图1) 2) 3) 4) 5) 6)7) 8)lOOkQ 。
2.1所示。
图2.1系统原理框图2.2程序设计框图图22程序设计流程图三、硬件电路图的设计与分析3.1 FPGA数据采集电路图3.1数据采集电路FPGA数据采集电路的功能就是实现将待测正弦信号的周期、相位差变为19位的数字量。
根据系统的总体设计方案,FPGA数据采集电路的输入输出信号有:CLK ――系统工作时钟信号输入端;A,B――两路被测信号输入端;EN ――单片机发出的传送数据使能信号;RSEL ――单片机发出的传送数据类型信号;DATA[18..O] ―― FPGA到单片机的数据输出口。
低频数字式相位测量仪
低频数字式相位测量仪设计报告目录1方案设计与论证2 1.1移相网络设计方案2 1.2相位测量仪设计方案3 2系统设计3 2.1总体设计32.1.1系统框图3 2.1.2模块说明4 2.2各模块设计及参数计算4 2.2.1移相网络设计及R、C参数设定4 2.2.2相位测量仪设计52.2.3软件系统63.结论64.参考文献75.附录7系统设计图7摘要本系统以单片机为核心,辅以必要的模拟电路,构成了一个基于具有高速处理能力的低频数字式相位测量仪。
该系统由相位测量仪和移相网络组成;移相网络能够产生-45~45°相位差的两路信号;相位测量仪能够测量出具有0°~359°的两路信号的相位差,绝对误差小于2°,具有频率测量及数字显示功能。
经过实验测试,以上功能均可以准确实现。
关键字:单片机移相相位差数字显示1方案设计与论证1.1移相网络设计方案本设计的核心问题是信号的模拟移相程控问题,其中包括波形相位以及波形幅度的程控。
在设计过程中,我们首先考虑了赛题中提供的方案。
如图1-1所示:V1VV2图1-1该模拟电路主要采用高、低通电路的临界截止点来产生极值相位的偏移。
当高、低通电路的截止频率等于输入信号频率时,根据其幅频特性,信号波形所产生的相位分别为45°和-45°,恰好满足赛题要求的连续相移范围-45°~45°的调节。
由于高、低通电路在截止点时会产生幅度的衰减,故电路在后级加了放大电路,且采用了电压串联负反馈的方式提高了输入阻抗并降低了输出阻抗,电路最后还设计有调幅装置,能够很好地满足A、B输出的正弦信号峰—峰值可分别在0.3V—5V范围内变化。
综上所述,该移相网络能够满足赛题的所有要求,且电路设计简单、易行,故我们直接采用了这种方式来产生模拟的相移输出。
1.2相位测量仪设计方案方案一:检相器可以利用正弦波形的正半周和负半周的对称特性。
基于单片机和CPLD的数字相位测量仪设计
测 量输 入 与输 出信 号 问 的相 差 △p以便 确 定 线性 控 制 的 范 围 。 ( , 常用 到的 一 般 测
量 工具 , 比如 在 电力 系统 中 电 网 并 网合 闸时 , 求 两 电 网 的电 信 要
号 相 同 , 就 要 求精 确 的 测 量 两工 频 信 号 之 间 的相 位 差 。 有 测 这 还
形, 电路 图如 图 2所 示 。 密 特触 发 器 在单 门限 电压 比较 器 的基 施
础 上 加 入 了 正反 馈 网 络 , 以 有 效提 高抗 干 扰 能 力 , 而 避 免 信 可 从
的 相位 。通 常所 谓 相 位 测量 是 指 对 两 个 同 频 率 信号 之 间 相 位 差
的 测量 。相 位 的 测 量很 重 要 , 测 某元 件 的阻 抗 Z 厶 因 此 如 = ,
姚 晖 李 伟 季上 满 沈科杰 胡 娅 ( 浙江理工大学信息电子学院, 浙江 杭州 30 1 ) 10 8
摘 要
介 绍 了数 字 式低 频 相 位 测量 仪 的 组成 、 作原 理 , 出 了一 种基 于单 片机 和 可编 程 逻辑 器件 的 低频 数 字相 位 测 量 仪 的 工 提 设 计 方 案。 系统 以 A 8 C 2单 片机 小 系统 及 Al r 司 的 E M7 2 S C8 — 5 C L 为核 心 , 频 率 为 2 H T9 5 t a公 e P 18 L 4 1 P D 对 0 z到 2 k z 0H 的 正 弦 波信 号 实现 精 确 测 频 、 相 , 用 以 8 7 测 并 2 9为 核 心 的键 盘 显 示 电路 给 以显 示 。 对 测 周 误 差进 行 了改进 分 析 。 设 计 还 该
Ke wors: a e m e s e, y d ph s a ur MCU, CPL f D,equ nc ,ror r e ye r
基于EMP 7128的数字式相位测量仪
基于EMP 7128的数字式相位测量仪1器件简介EMP7128SLC84-15是Altera公司的MAX7000S系列CPLD,它采用CMOS工艺,并以第二代矩阵结构为基础,实际上也是一种基于E2PROM的器件。
EMP7128SLC84-15有84个引脚,其中5根用于ISP(InSystemProgrammable)下载,可方便地对其进行在系统编程。
此器件内集成了6000门,其中典型可用门为2500个,有128个逻辑单元,60个可用I/O口,可单独配置为输入、输出及双向工作方式,2个全局时钟及一个全局使能端和一个全局清除端。
EMP7128SLC84-15支持多电压工作,其传输延时为7.5ns,最高工作频率高达125MHz,并支持多种编程方式,同时可利用Altera公司的第三代开发软件Max+PlusII方便地进行仿真、综合和下载。
2系统工作原理图1所示是一个数字式相位测量仪的系统工作示意图。
图中,输入的比较信号b与参照信号a,经参数相同的整形电路变换为正方波后,将两个方波进行异或(在CPLD中完成),同时与测得信号的频率f(由CPLD设计一频率计完成)再异或,然后将得到的信号经2f倍频,再将此信号作为闸门,并在其高电平时段利用高频时钟fc进行计数,最后在下降沿时将计数值读出并设为N,则相位为:Phase=180°N/fc设计系统软件时?运用VHDL语言,可将系统分为频率计、分频器、相位计数器3个子模块,现对其分别进行描述:(1)频率计libraryieee;useieee.std_logic_1164.all;useieee.std_logic_unsigned.all;entityfcounterisport(sig:instd_logic; --输入信号clk:instd_logic; --0.5Hz的闸门信号,可由晶振分频得到counter:outstd_logic_vector(19downto0));?--计数输出end;architecturedataoffcounterissignaltemp:std_logic_vector(19downto0);beginP1:process(sig)beginifsig'eventandsig=‘1’thenifclk=‘1’thentemp<=temp+1; --在闸门的高电平时段计数elsetemp<=“00000000000000000000”? --在闸门的低电平时段清零endif;endif;endprocessP1;P2?process(clk)beginifclk′eventandclk=′0′thencounter<=temp;在闸门的下降沿将数据读出内容仅供参考。
低频数字相位测量仪毕业设计毕业论文及文献综述[管理资料]
摘要本文设计的是低频数字相位测量仪的软件控制部分。
在设计中采用MCU与FPGA 相结合的方案,将软件部分系统分为控制数据采集处理和单片机控制显示两部分的软件设计,本部分分软件设计充分发挥单片机控制运算能力强的特点来对其各个模块进行软件编程。
数据的采集利用FPGA去完成,可以准确地采集到两个同频正弦信号的相位差所对应的时间差以及信号的周期,从而更好地提高系统的可靠性。
再根据单片机具有较强的运算、控制能力的特点,我们通过对单片机最小系统来进行编程以之完成读取FPGA的数据,并根据所读取的数据计算待测信号的频率及两路同频信号之间的相位差。
同时通过软件编程来实现功能键的切换,由显示模块显示待测信号的频率和相位差。
关键字:数据采集; 单片机; 频率; 相位差;ABSTRACTThis paper is designed to phase low-frequency digital measuring instrument. this design which uses the combination of The MCU and FPGA will be divided the hardware into two parts of data acquisition processing and MCU minimum system ,it give full use to the features of MCU-controlled computing for power , the FPGA data acquisition for high speed and resource-rich . we use the FPGA to complete collection of the data, so we can accurately collect the phrase difference between the two-phase sinusoidal signal ,corresponding to the time difference and the cycle of signal, so as to greatly improve the reliability of the system. Then according to characteristics of the shrapnel-strong operation and the ability to control, we use the minimum system of MCU to complete the reading of data FPGA, then according to the data read calculate the frequency of signals under test and the phase difference between the two-way same frequency signal. At the same time, through the switching of function keys ,the frequency and phase of signals under test Will be showed by moduleKeyword:Data; Acquisition; SCM; Frequency; phase目录绪论 (1)相位测量原理 (2)输入与采集 (2)频率的测量 (2)相位差对应的时间差的测量 (3)2 设计要求与设计方案 (4)设计要求 (4)设计方案 (4)设计思路 (4)各模块的作用 (4)设计方案 (4)3 整机电路原理 (6)MCU控制FPGA电路 (6)MCU控制显示电路 (7)整机电路原理 (8)4 软件设计 (10)MCU控制FPGA的软件设计 (10)MCU控制FPGA电路框图 (10)软件设计思路 (11)MCU控制FPGA各程序流程图 (11)MCU控制显示的软件设计 (13)显示软件设计 (13)单片机控制显示程序流程图 (14)5 程序设计 (15)单片机的源程序 (15)结论 (27)致谢 (28)参考文献 (29)绪论随着科学技术的突飞猛进的发展,电子技术广泛的应用于工业、农业、交通运输、航空航天、国防建设、科研、生产等国民经济的诸多领域中,而电子测量技术又是电子技术中进行信息检测的重要手段,在现代科学技术中占有举足轻重的作用和地位。
模电课程设计——数字式相位差测量仪
模电课程设计——数字式相位差测量仪小组成员:韦岸(组长)袁剑波农志兴杨勰一.数字式相位差测量仪的概念数字式相位差测量仪是利用MAX7219外界微处理器实现数码显示。
当两列同频率信号经过整形电路比较电路后,输出两列方波,然后通过微处理器对其进行处理,计算出两列信号的相位差,再向显示控制器下达显示指令,产生使LED显示器显示数码的电平,达到利用数码管显示相位差的效果。
这里,采用单片机的计数功能对输入脉冲进行计数,使计数器仪在两信号的相位差期间计数。
其功能,先将计数器进行清零,接下来检测输入的脉冲的上升沿,若上升沿到,则计数器开始工作,当下一个新号的上升沿到来的时候,计数器便停止计数,将计数器的结果送入锁存器进行锁存,再对计数器进行清零,这样,可是使计数器在下一次能正常工作。
该电路必须加计数锁存器,否则显示器上的数字会随计数器的状态而变化,所以要想稳定地显示测量结果,计数器的计数结果必须经锁存器锁存。
二.原理框图的构建相位差测量仪的原理框图,分辨率为1度。
基准信号(相位基准)f 经放大整形后加到锁相环的输入端,在锁相环的反馈环路中设置一个N=360 的分频器,使锁相环的输出信号频率为360f,但相位与f 相同,这个输出信号被用作计数器的计数时钟。
被测信号f s经过放大整形再2分频后得到f s/2与f/2送入由异或门组成的相位比较电路,其输出脉冲A的脉宽tp反映了两列信号的相位差:利用这个信号作为计数器的阀门控制信号,使计数器仅在f与f s的相位差tp内计数,这样计数器记得的数即为f与f s之间的相位差。
由于计数器时钟频率为360f,因此,一个计数脉冲对应1度。
计数的值经锁存译码后通过LED数码管显示。
D触发器用于判断f与f s的相位关系,当Q为1时,f超前于f s,相位取正值,符号位数码管显示全黑:当Q为0为0时,f滞后于f s,相位取负值。
原理框图三.电路原理图四.使用元件原理介绍(1)放大电路本设计采用的是LM324运算放大器,如下图:通过使用LM324运放器,我们可以使正弦波转变为方波。
基于DSP的低频数字式相位测量仪的设计
随着科学技 术的突飞猛进的发展, , 电 技 T 30 C 4 2 A 8S 2 MS 2 V 50 和 T 9 5 芯片的集成度高 、
智能 程 度 高 、功 能 强 大 ,使得 它实 现 起 来 比较
教 ,研 究方 向 为移 动 术 广 泛 的 应用 T工 、 、农 、 、交通 运 输 、航 I I
究网络 、系统的频率特性 中具有重 受意义。近 果。系统框 图如图 i 所示。
图 1低 频 数 字 式 相位 该 系统 以T 30 C 4 2 核心 , 待 测 MS 2 V 5 0 为 对
测量仪 系统框图
量信 号进行 采集 和处理 ,包括 栏彤和移 相电
路 ,把 采 集米 的 模 拟 信 号转换 为数 字 信 。其
湖南工学院 俞斌 贾雅琼 汤群芳 摘 要: 本 文提 出了一种 基于 T 3 0 C 4 2的低 频数字 式相位测 年来 ,随着科学技术的迅速发展 ,很多测量仪 MS 2 V 5 0
量仪 的设计方法。
逐渐 向 “ 智能仪器”和 “ 自动测试 系统”发展 , 这使得仪 器的使 _ 比较简单 ,功能越来越多。 } H
本低 频 数 字 式 相 位 测 量 仪 由 T 30 C 4 2 MS 2 V 5 0 、
关键 词 : DS ;低频 ;数字 式;相位 测量 ;S M P C
苯 06 文20 年
月2日收到。 俞斌 : 助
0 吉 |
AT8 2和 小 规 模 集 成 电 路 构 成 。 由 于 9S 5
通信、单片机和 DS 航天、国防建设 等国民经济的诸 多领域 中,而 简单 ,而且 ,具有体积小 、性价比高、性能稳 P
应 用。 电子 测量 技 术 又 是 电子 技 术 中进 行 信 息 检 测 的 定 的特 点 。
低频率数字相位差测量仪设计
引言相位差测量数字化的优点在于硬件成本低、适应性强、对于不同的测量对象只需要改变程序的算法,且精度一般优于模拟式测量。
在电工仪表、同步检测的数据处理以及电工实验中,常常需要测量两列同频率信号之间的相位差。
例如,电力系统中电网并网合闸时,需要求两电网的电信号的相位差。
相位差测量的方法很多,典型的传统方法是通过示波器测量,这种方法误差较大,读数不方便。
为此,我们设计了一种基于锁相环倍(分)频的相位差测量仪,该仪器以锁相环倍(分)频电路为核心,实现了工频信号相位差的自动测量及数字显示。
论文摘要本系统为低频数字式相位/频率测量仪,由移相网络模块、相位差测量模块及频率测量模块三大部份构成,其系统功能主要是进行相位差测量及频率测量。
移相网络主要是由RC移相电路和LM324运放电路组成,将被测信号送入移相网络,经RC移相、LM324隔离放大,产生两路信号,一路为基准信号经过波形转换,另一路为移相后的信号。
分别经过波形转换、整形、二分频送给相位测量模块及频率测量模块。
相位差测量仪主要是由锁相环PLL(Phase Lock Loop)产生360倍频基准信号和移相网络的基准信号与待测信号进行异或后的信号作为显示器的闸门电路和控制信号。
频率测量模块主要是用计数法测量频率的,它是有某个已知标准时间间隔Ts内,测出被测信号重复出现的次数N,然后计算出频率f=N/Ts.显示电路模块主要是由计数器、锁存器、译码器和数码管组成。
低频率数字相位测量仪目录1设计任务书 (3)2设计方案概述 (3)3系统的组成………………………………………………………………………………4.3.1总体框图 (4)3.2移相网络部分 (4)3.3相位测量部分 (6)1)波形转换、整形放大 (8)2)锁相环倍频 (9)3)闸门电路 (11)4)控制门 (11)5)计数器 (11)6)锁存器 (11)7)显示译码器与数码管 (11)3.4频率测量部分 (12)1)数字频率计的基本原理 (12)2)系统框图 (12)4附录………………………………………………………………………一、设计任务书(一)任务设计仿真一数字相位计(二)主要技术指标与要求:(1)输入信号频率为1KHZ~20KHZ可调(2)输入信号的幅度为10mV(3)采用数码管显示结果,相位精确到0.1°(4)采用外部5V直流电源供电(三)对课程设计的成果的要求(包括图表)设计电路,安装调试或仿真,分析实验结果,并写出设计说明书。
基于FPGA控制的低频数字式相位测量仪研究
法 两 种 : 统 依 靠 模 拟 器 件 的 方 法 , 二 极 传 如 管 鉴 相法 、脉 冲计 数 法 等 , 量 系统 复 杂 、 测 需专 用 器件 、硬 件 成本 高 、而 且精 度不 高 。 随 着 集 成 电 路 的 发 展 , 用 大 规 模 集 成 电 利
本 系 统 充 分 利 用 FPGA 对 数 据 的 高 速 处 理 能 力 , 使 得 系 统 设 计 高 效 , 可 靠 。 与 传 统 相 位 测 量 仪 相 比 , 系 统 具 有 处 理 速 度 快 、稳 该 定 性 高 、 性 价 比 高 , 易 于 实现 的优 点 。该 系统 具 有 较 强 的 实 用 价 值 和 良好 的 工 程 应 用 前 景 。 [ 键 词 ] 杂 可 编 程 逻 辑 器 件 低 频 相 位 测 量 仪 F 关 复 PGA VH DL 语 言 [ 图分类号1 2 中 x5 【 献标 识 码 】 文 A [ 章 编 号 l0 7 4 6 ( 0 0 0 - 0 6 4 文 10 -9 l 2 l ) 1 0 7 -0
视 频 字 符叠 加 的 一 种较 好 的 选 考 文献 ]
【 】 应 用 电 视 一一设 备 原 理 与 工 程 实 践 1 Ⅸ 京 : 子 工 业 出 版 社 》 中 国 广 播 电 视 设 北 电 备 工 业 协 会 应 用 电 视 专 业协 会 . [】Ga mi NC. GP 2 / 0 tc n cl 2 r nI S 5 2 e h ia
・
应 用研 究 ・
基于 F G P A控 制 的低 频数 字 式 相位 测量 仪研 究
王 振 红 于 磊
( 方 工 业 大 学 信 息 工 程 学 院 北 京 1 0 4 ) 北 0 1 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子设计竞赛报告电子设计竞赛报告题目: 数字相位测量仪设计报告院系名称:电气工程学院专业班级:电气F1104班学生姓名:陈x超学号:指导教师:教师职称:副教授评语及成绩:指导教师:日期:摘要本设计提出了一种基于c8051f020单片机开发的低频数字相位测量仪的方案。
主要包括相位测量模块、单片机最小系统、显示模块的设计。
可以对低频率范围的信号进行相位等参数的精确测量,测相绝对误差不大于1°。
相位测量模块采用对输入的两路信号(同频率、不同相位)通过比较器整形、鉴相器异或之后得到的相位差,输入到单片机的中断口进行数据采集处理;采用数码管显示被测信号的相位差。
硬件结构简单,软件采用汇编语言实现,程序简单可读写性强、效率高。
与传统的电路系统相比,其有处理速度快、稳定性高、性价比高的优点。
关键词相位差单片机比较器整形数码管目录1.方案设计1.1设计方案论证从功能角度来看,相位测量仪要完成信号相位差的测量。
相位测量仪有两路输入信号,也是被测信号,他们是两个同频率的正弦信号,频率范围为20Hz~20KHz (正好是音频范围),幅度为U PP =1~5V ,但两者幅度不一定相等。
相位和相位差的概念[4]:令正弦信号为:()()0sin ϕω+=t A t A m(2.1) 2.1式中Am 称为幅值(最大值),且A A m 2=,A 称为有效值;()0ϕωθ+=t t 称为相位,0ϕ称为初相位,ω称为角频率。
Am 、ω、0ϕ称为正弦量的三要素。
只有两个同频率的(正弦)信号才有相位差的概念。
不妨令两个同频率的正弦信号为:()()()()02220111sin sin ϕωϕω+=+=t A t A t A t A m m(2.2)则相位差:()()02010201ϕϕϕωϕωθ-=+-+=t t (2.3) 由2.3式中可看出,相位差在数值上等于初相位之差,θ是一个角度不妨令θωθT =,其中θT 是相位差θ对应的时间差,且令T 为信号周期,则有比例关系:θθ:360:T T = (2.4) 可以推导得到:()360/⨯=T T θθ (2.5) 式子2.5中可以说明,相位差θ与θT 一一对应,可以通过测量时间差θT 及信号周期T ,计算得到相位差θ,这就是相位差的基本测量原理。
由于相位差的基本测量原理可知,相位差的测量本质上是时间差θT 及信号周期T 的测量,也就是时间的测量,而时间的测量不可避免地要用到电子计数器。
时间的测量有多种方法,而设计题目关于相位测量仪的技术指标要求会影响到我们对方案的选择,MCU 应用系统一般能较好的实现各种不同的测量及控制功能,往往还能满足一些设计要求比较高的技术指标,因此,我们在进行电子系统设计时,可用MCU 实现系统功能,完成系统指标。
1.2相位差测量方案选择相位差测量的基本原理[5]主要有三种:对信号波形的变换和比较、对傅氏级数的运算及对三角函数的运算,其实现方法如下:过零点检测法[6]:这是一种将相位测量变为时间测量的方法,其原理是将基准信号通过零的时刻与被测信号通过零的时刻进行比较,由二者之间的时间间隔,推算出两信号之间的相位差。
这种方法的特点是电路简单,对启动采样电路要求不高,同时该方法还具有测量分辨率高、线性好、易数学化等优点。
倍乘法:任何一个周期函数都可以用傅氏级数表示,在这里运算器是一个乘法器,两个信号是频率相同的正弦数,相位差为一个角度ϕ,运算结果再经过一个积分电路,得到直流电压:ϕcos k V = (2.6) 电路的输出和被测信号相位差余弦成比例,因此其测量范围在45°以内,欲使测量范围扩展到360°,需要附加一些电路才能做到。
这种方法由于应用了积分环节,可以滤掉信号波形中的高次谐波,抑制了谐波对测量准确度的影响。
矢量法:任何一个正弦函数都可以用矢量来表示,如两个正弦信号幅度相等、频率相同,运算器运用减法器则合成矢量的模: 2sin 2ϕE V = (2.7) 这种方法用于测量小角度,灵敏度较好,可行度也较好;而在靠近180°附近灵敏度降低,读数困难也不准确。
由于输出是一余弦或正弦函数,因此这种方法适用的频带范围是较宽的信号。
上述三种测量相位的方法,各有优缺点,从测量范围、灵敏度、准确度、频率特性和谐波的敏感性等技术指标来看,过零点检测法比较好,它输出正比于相位差的直流电压和相位差的脉冲数,还易于实现数字化和自动化,现代的数字相位表多采用这种原理构成。
鉴相器就是异或门,在鉴相器的输出波形I 、V 中,正脉冲宽度就是要测量的I 和V 相位差所对应的时间差T θ,如图2-3所示。
在测量相位差时还应考虑超前、滞后两种情况(如图2-3中所示为I 超前V )。
把I ⊕V 波形中的正脉冲作为门控信号,控制闸门的启闭,即控制单片机内部定时器/计数器的启动/停止,从而达到测量时间差T θ的目的,再根据公式θ=ωT θ,计算得到相位差T θ。
另外,由图2-3可知,I ⊕V 信号是I 信号的二倍频(I 与V 同频),由此可见,对于同频不同相的两个信号,经过异或门后可得到二倍频的信号。
因此从这个意义上讲,异或门可实现信号的二倍频。
IVI、V图2-3 鉴相器的输入、输出波形图1.3 原理框图以单片机为核心的相位测量仪原理框图如图2-1所示。
两路待测信号经整形后变成了矩形波I、V,且可以认为I和V是同频率、不同相伴的矩形波。
图2-1 以单片机为核心的相位测量仪原理框图1.4 单片机测量时间差、周期的方法下面详细谈谈单片机测量时间差、周期的方法。
1.4.1、定时器C8051F020 内部有5 个计数器/定时器:其中三个16 位计数器/定时器与标准8051 中的计数器/定时器兼容,还有两个16 位自动重装载定时器可用于ADC、SMBus、UART1 或作为通用定时器使用。
这些计数器/定时器可以用于测量时间间隔,对外部事件计数或产生周期性的中断请求。
定时器0 和定时器1 几乎完全相同,有四种工作方式。
定时器2 增加了一些定时器0 和定时器1 中所没有的功能。
定时器3 与定时器2 类似,但没有捕捉或波特率发生器方式。
定时器4 与定时器2 完全相同,可用作UART1 的波特率发生源。
当工作在定时器方式时,计数器/定时器寄存器在每个时钟滴答加1。
时钟滴答为系统时钟除以 1 或系统时钟除以12,由CKCON 中的定时器时钟选择位(T4M-T0M)指定。
每滴答为12 个时钟的选项提供了与标准8051 系列的兼容性。
需要更快速定时器的应用可以使用每滴答1 个时钟的选项。
当作为计数器使用时,所选择的引脚上出现负跳变时计数器/定时器寄存器加1。
1.4.2、 具体实现方法电路图如图2-5所示,该电路由单片机、整形电路、门电路等组成。
由定时器/计数器T0、T1分别测量周期、时间差。
图2-5 单片机测量时间差、周期的电路图时序图如图2-6所示。
需要说明的是,由软件创建一标志位2FH.1,当输入引脚P3.6=0时,CPU 置位标志位2FH.1,而当P3.6=1时,CPU 在读取时间差数据后清零标志位2FH.1。
图2-6 时序图 2 系统硬件设计本设计将硬件系统分为数据采样处理及单片机最小系统两个部分,这就充分发挥了单片机控制运算能力强的特点。
数据采集由鉴相器完成,可以准确地采集到两个同频正弦的相位差所对应的时间差以及信号的周期,从而提高系统的可靠FED 定时器测量时间差CPU 从定时器计数据并清零定时器定时器测量周期 CBA性。
由于单片机具有较强的运算、控制能力,因此,使用单片机最小系统完成读取鉴相器得到的数据,并根据所读取的数据计算待测信号的频率及两路同频信号之间的相位差。
同时通过功能键切换,由显示模块可以显示待测信号的频率和相位差。
2.1输入电路设计输入电路起到波形变换及整形的功能,由于被测信号是周期相同、幅度和相位不同的两路正弦信号,为了准确地测量出两路正弦信号的相位差及其频率,需要对输入波形进行整形,使输入信号变成矩形信号,并送给鉴相器进行处理。
我们设计了这两种整形输入电路方案。
第一种方案是使用单门限电压比较器来完成,当输入信号电压每通过一次零时限电压比较器的输出就要翻转一次,即比较器的输出端将产生一次电压跳变,它的正、负向幅度均受到供电电源的限制,因此,输出电压小型是具有正负极性的方波,这样就完成了电压波形的整形工作。
但是通常情况下,输入信号往往会含有干扰,这对单门限电压比较器尤为不利,由于有干扰信号,导致单门限电压比较器在输入信号过零点时会产生多次触发翻转的现象,这样就会导致采集数据(计数)不准确,从而使单片机无法计算出正确的被测信号的频率和相位差数值。
这种方案电路图如图2-1。
图2-1 采用单门限电压比较器的整形电路另外,在相位差测量过程中,不允许两路被测输入信号在整形输入电路中发生相对相移,或者应该使得两路被测信号在整形输入电路中引起的附加相移是相同的,因此,我们对A、B两路信号采用了相同的整形电路。
为了避免出现被测输入信号在过零点时多次触发翻转的现象,我们设计了第二种整形电路,即使用迟滞比较器组成的整形电路。
由于在单门限电压比较器的基础上引入了负反馈网络,因为负反馈的作用,它的门限电压跟着输出电压U0的变化而改变,从而使施密特触发器有两个门限电压,所以可以提高输入电路的抗干扰能力。
第二种整形电路电路如图2-2所示,电路中我们使用两个施密特触发器触发器对两路被测输入信号进行整形。
在图2-2中,比较器LM339连接成施密特触发器的形式。
图2-2采用双门限持之电压比较器整形电路2.2 、C8051F020特性C8051F020器件是完全集成的混合信号系统级MCU芯片,具有64 个数字I/O 引脚(C8051F020/2)或32 个数字I/O 引脚(C8051F021/3)。
下面列出了一些主要特性;1. 高速、流水线结构的8051 兼容的CIP-51 内核(可达25MIPS)2. 全速、非侵入式的在系统调试接口(片内)3. 真正12 位(C8051F020/1)或10 位(C8051F022/3)、100 ksps 的8 通道ADC,带PGA和模拟多路开关4. 真正8 位500 ksps 的ADC,带PGA 和8 通道模拟多路开关5. 两个12 位DAC,具有可编程数据更新方式6. 64K 字节可在系统编程的FLASH 存储器7. 4352(4096+256)字节的片内RAM8. 可寻址64K 字节地址空间的外部数据存储器接口9. 硬件实现的SPI、SMBus/ I2C 和两个UART 串行接口10. 5 个通用的16 位定时器11. 具有5 个捕捉/比较模块的可编程计数器/定时器阵列12. 片内看门狗定时器、VDD 监视器和温度传感器13 具有片内VDD 监视器、看门狗定时器和时钟振荡器的C8051F020/1/2/3是真正能独立工作的片上系统。