信息光学第二章PPT课件
信息光学第二引言PPT学习教案
第33页/共36页
发展光学
信息光学-傅里叶光学
信号与系统的基本分析方法 通信理论、傅里叶分析与现代光学的结合 光学信息处理与全息学的基础
•数学基础
•二维线性系统分析
•标量衍射的角谱理论
•光学成像系统的频率特性
•光全息术
•光学信息处理 第34页/共36页
参考书
陈家璧、苏显渝主编:光学信息技术原理及应用 (面向21世纪课程教材) 高等教育出版社,2002 参考书
采传处存 集输理储
超高速度
超大容量
第20页/共36页
例1
重返大气层多弹头导弹的
拦截
弹头数量大于1000枚的情况
要求:在数分钟内完成五项功
能
寻
识
跟
发
迎
的
别
踪
射
击
在 3’ —— 29’ 时间内分 4 阶段拦截、确认
计结算果速度
要求达 1015 次/秒
第21页/共36页
目前 电子计算机 的计算速度举例
第14页/共36页
全息防伪 技术
第15页/共36页
20世纪光学的 主要特点
精密 加工
微电子
空间 化学 工程
能源
生物工程
印刷
医疗 4、应用范围的扩展
材料
遥感
遥测
核技 术
防灾
生命 科学
环境 保护
生态环境
农业
资源 保护
通信
计量
军事
第16页/共36页
信息科学
光信息 光电子 科学 技术
光电子成为信息产业的主角
能行走,能认识10个人 会握手、挥手、跟在人后面走
结论
电子系统速度慢,现代机器人比不上 人
信息光学 第二章ppt课件
可编辑课件
5
二 惠更斯-菲涅耳原理 三 目的:以子波相干叠加的方法对衍射结果进行定量描述。
Z
Q R
r
S
P
Z/
研究方法:单色点光源S发出的球面波波面为,波面半径为R, 光波传播空间内任意一点P的振动应是波面上发出的所有子波 在该点振动的相干叠加。
可编辑课件
24
可编辑课件
25
孔径输出
A 0 ( c, o c) s o ( c s, o c) s o * T ( c s, o c) s o T ( c s, o c) s o
上式说明通过衍射屏后,由δ函数所表征的入射光场 的角谱变成了孔径函数的傅里叶变换,显然角谱分量 大大增加。
• 相干光场在自由空间传播的平移不变性
• 相干光场在自由空间传播的脉冲响应
可编辑课件
4
2.1. 惠更斯—菲涅耳原理与基尔霍夫衍射公式
一 惠更斯原理 表述:任何时刻的波面上的每 一点都可作为发射子波的波源, 各自发出球面子波。其后任一时刻所有子波波面的包络面形成 整个波动在该时刻的新波面。 优点:① 可以直观描述波的传播并解释衍射产生的原因。
17
可编辑课件
18
(夫琅和费近似)
+
可编辑课件
19
2.2 衍射的角谱理论
孔径平面和观察平面上的光场分布都可以分别看成 是许多不同方向传播的单色平面波分量的线性组合。每 一平面波分量的相对振幅和相位取决于相应的角谱。
x0 y0
U0(x0, y0)
A0(c
os ,
c
os)
信息光学2
15
傅里叶变换与光学
在光学信息处理中,光学系统所传递和处理的信息是
随空间变化的函数。
一幅图像是一种光的强度和颜色按空间的分布,这种分 布的特征可用空间频率表明。把图像看作是由各种方向、
各种间距的线条组成。
16
傅里叶变换与光学
例:振幅型透射光栅的傅里叶级数展开
光栅常数:
d 2b
--空间周期为d 的函数
二维傅里叶变换
13
傅里叶变换的意义
傅里叶变换是一种解决问题的方法,一种工具,一种看待问题
的角度:一个连续的信号可以看作是一个个小信号的叠加,从
时域叠加与从频域叠加都可以组成原来的信号,将信号这么分 解后有助于处理。 时域信号:将信号从时间的角度的分割和叠加。 傅里叶变换:将信号从频率的角度叠加。
二维傅里叶变换
11
2 2
3 3
-3 -3
-2 -2
-1 -1 -0.25 -0.25 -0.5
1
1
2
2
3
3
-0.5 -0.75 -0.75
内容回顾
10
二维傅里叶变换 1.傅里叶变换
• 正变换 F ,
• 逆变换 f x , y
f ( x , y ) exp j 2 ( x y )dxdy
二维傅里叶变换的核 可为实函数或复函数
(x,y, ξ, η) 均为实变量
逆傅里叶变换
f x, y
F ( , ) exp j 2 ( x y ) d d
可以把非周期函数 f (x, y) 分解为连续频率的余弦分量的积分。
F(ξ, η) 表示个连续频率成分的权重因子。
《信息光学第二章》课件
干涉条纹:干涉现象产生的 明暗相间的条纹
光的干涉:光波在传播过程 中相互叠加,形成干涉现象
干涉原理:光的相位差、频 率和振幅对干涉条纹的影响
光的衍射和衍射系统
傅里叶光学基础
傅里叶光学是研究光的传播、干涉、衍射等现象的学科 傅里叶光学的基本原理包括光的波动性、干涉、衍射等 傅里叶光学的应用包括光学成像、光学通信、光学测量等 傅里叶光学的发展对现代光学和光电子学产生了深远影响
量子信息光学:研究量子信息处理和传 输
生物光子学:研究生物系统中的光子学 现象和应用
光子晶体:研究光子晶体的制备和应用
光学成像:研究光学成像技术和应用
光子学:研究光子学器件和系统的设计、 制造和应用
光学通信:研究光学通信技术和应用
信息光学的发展展望
光学技术在信息领域的应用越来 越广泛
光学技术在通信、传感、成像等 领域的发展趋势
1960年代,信息光学理论得到快速发展
1990年代,信息光学在光学通信、光学成像等 领域得到进一步发展
1970年代,信息光学在通信、雷达等领域得到 广泛应用
2000年代,信息光学在光学通信、光学成像等领域得 到广泛应用,并开始向生物医学、环境监测等领域拓展
信息光学的基本原理
光的干涉和干涉系统
干涉系统:由两个或多个光源 组成的系统,可以产生干涉现 象
光学技术在生物医学、环境监测 等领域的应用前景
光学技术在量子信息、人工智能 等领域的发展潜力
感谢您的耐心观看
汇报人:
添加副标题
信息光学第二章
汇报人:
目录
CONTENTS
01 添加目录标题
02 信息光学的基本概 念
03 信息光学的基本原 理
信息光学课件
电磁场与麦克斯韦方程
电磁场的基本概念
电磁场是由电场和磁场组成的, 它们之间存在相互作用。
麦克斯韦方程
描述了电磁场变化的四个基本方程 ,包括电场的散射方程、磁场的散 射方程、电场的波动方程和磁场的 波动方程。
电磁场的能量守恒
电磁场在空间中传播时,其能量不 会消失也不会凭空产生,即电磁场 的能量守恒。
将光学传感技术应用于物联网领域,实现智能化 、远程化和自动化的监测和控制。
3
光学传感器的集成与小型化
通过集成和优化光学器件,实现光学传感器的微 型化和便携化,满足不同应用场景的需求。
05 信息光学实验与实践教学 环节设计
实验内容与目标设定
实验内容
信息光学实验包括干涉、衍射、光学 信息处理等基本实验,以及一些综合 性和创新性实验。
信息光学课件
目录
CONTENTS
• 信息光学概述 • 信息光学基础理论 • 信息光学器件与系统 • 信息光学前沿技术与发展趋势 • 信息光学实验与实践教学环节设计 • 信息光学课程评价与总结反思环节设计
01 信息光学概述
信息光学定义与特点
信息光学定义
信息光学是一门研究光学信息的 获取、传输、处理、存储和显示 的科学。
傅里叶变换与信息光学
傅里叶变换
是一种将时域信号转换为频域信号的数学工具,常用于信号处理 和图像处理等领域。
信息光学的基本概念
信息光学是一门研究光波在空间和时间上传递、处理和存储信息的 科学。
信息光学的应用
信息光学在通信、生物医学成像、军事等领域有着广泛的应用,如 光纤通信、光学显微镜、光学雷达等。
03 信息光学器件与系统
光学器件分类与特点
主动光学器件
信息光学(傅里叶光学)Chap2-1
1
1
其它
其他频率 分量全通
H(f)
-1/4
0 1/4 -1
f
H(f) = 1-2rect(2f)
线性不变系统 例
H(f) = 1-2rect(2f)
脉冲响应: h( x)
-1
x H ( f ) d ( x) sinc 2
h(x)
x -2 0 2
线性不变系统 H(f) = 1-2rnc50 f sinc( f )
只要知道各个脉冲响应函数, 系统的输出即为脉冲响应函数 的线性组合. 问题是如何求对任意点的脉冲d 响应h(x,
y; xh)
§2-1 线性系统简介
脉冲响应函数h(x, y ; x h )的求法:
对一般系统而言, 脉冲响应函数的形式可能是点 点不同的
例如,
{d(x)}= h (x)=1 {d(x-1)}= h (x;1)= exp(-j2px) h (x;1) h (x-1)=1
{d(x-x, y-h)}=h (x-x, y-h) 则此线性系统称为空间不变系统或位移 不变系统.
线性不变系统的脉冲响应:
h (x, y; x, h) = h (x-x, y-h)
观察点 输入脉冲 坐标 坐标 二个坐标的 相对间距
线性不变系统的输入-输出变换关系不随空间位置变化.
§2-2 线性不变系统: 例
•低通滤波器: 允许通过的频率有一上限—截止频率 例2.1中的传递函数的性质:在|频率| < b的区间 内信号能无畸变地通过,此外全部阻塞. 这种系统的作用 是低通滤波器. • 高通滤波器: 允许通过的频率有一下限 • 带通滤波器: 只通过某特定频带内的频率分量 • 其它滤波器: 位相滤波器, 匹配滤波器等等
信息光学ppt课件
Introduction 4、应用范围的扩展
Information Optics
精选ppt
School of Physics & Material Science
Introduction
光电子 技术
光电子成为信息产业的主角
• 许多学科分支和方向
已形成大规模的产业
全世界光学和光(电)子学技术产业规模
• 空间尺度:百亿光年 单原子尺度,介观尺度
研究方向
天文光学
纳米光学
• 时间尺度:天文时间
原子反应时间(10-15 秒)
研究方向 静态光学
瞬态光学
如超快速现象
纳秒、 皮秒、飞秒
Information Optics
精选ppt
School of Physics & Material Science
Introduction
2、应用功能的扩展 光学工程 —— 综合技术学科
现代精密仪器:
多功能、高效率
光、机、电、算、材 一体化
光学
光
技术手段:自动化、 数字化、智能化
精密机械
机
材
材料
电子
Information Optics
电
算
计算机
精选ppt
School of Physics & Material Science
Introduction
Introduction
享受光 享受光学
光学科学与技术的成果已深深渗透到我们 的生活中.
--王大珩
Information Optics
精选ppt
School of Physics & Material Science
傅立叶光学(信息光学)_课件
0 x<0
step(x)
1
0
step(x-x0),间断点移到x0处
x
二、符号函数:描述某孔径一半宽有 的位相差
1 x>0 Sgn(x)= 0 x=0
-1 x<0
Sgn(x)=2step(x)-1
sgn(x)
1
x
0
1
三、矩形函数(门函数):表示狭缝、矩孔的透过
傅立叶光学
第一章 绪论 第二章 线性系统与Fourier分析 第三章 光波的标量衍射理论 第四章 透镜的Fourier变换性质 第五章 光学成像系统的频率响应 第七章 光学全息 第八章 空间滤波与光学信息处理
第一章 绪论
一、“信息光学”的含义 信息光学=数学工具(级数、积分)+经典光学 (光波的传播、干涉、衍射、成像、光学信息的记 录与再现、光学信号的处理)
2、光学中的线性叠加原理uv uuv uuv 波的迭加原理:矢量:E E1( p) E2( p) L
n
相干光场:复振幅:U(p)=Ui ( p) i 1
n
非相干光场:光强:I ( p) Ii ( p) i 1
3、利用系统的特性来求输入/输出关系 “三步法则”: 第一步:将复杂输入分解为简单输入函数之和 第二步:分别求出简单函数的输出 第三步:将简单函数输出加起来
2.1 线性系统的基本概念 一、系统:同类事物按一定关系所组
成的整体
特征(性):不管内部结构,只是全体与外 部的关系,是整体行为,综 合行为
二、物理系统:由一个或多个物理装
置所组成的系统
1、概念:考虑与外形的信息交换 2、内容:输入/输出关系 3、特点:系统的外特性 4、作用:对输入信号变换作用——运算作用
《光学信息技术》幻灯片
2、比例变化性质:
(ax) 1 (x)
3、 函数与普通函数的乘积:
a
h ( x )( x x 0 ) h ( x 0 )( x x 0 )
12
二维函数性质 19 0 6
1、可别离性: (x,y)(x)(y)
2、筛选性质: x x 0 ,y y 0 f x ,y d x d y f x 0 ,y 0
19 0 6
《光学信息技术》幻灯片
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
信息光学 19 0 6
应用光学〔几何光学〕 物理光学 傅立叶光学 全息光学 统计光学 光学传递函数 光学信息处理 相干光学 局部相干光学
16
1.2 二维傅里叶变换
19 0 6
17
二维傅里叶变换定义 19 0 6
假设函数f ( x, y) 在整个平面上绝对可积且满足狄里赫利条件,其 傅里叶变换定义为
4
第一章 二维线性系统分析 19 0 6
把光学系统看成二维线性系统,而不是看成一个物理的成 象系统或干预衍射系统 抽象的系统概念:某种装置,当施加一个鼓励时,它呈现 某种响应 电路网络,它的输入和输出是一维时序电信号 光学系统的输入和输出是二维空间分布物与像 系统定义为一个变换
5
系统的边端性质 19 0 6
对于任意复常数 ,在输入函数为
a 1 f1 ( x 1 ,y 1 ) a 2 f2 ( x 1 ,y 1 )
交换加法(乘法)与算符的顺序,得到输出函数为
L a 1 f1 (x 1 ,y 1 ) a 2f2 (x 1 ,y 1 ) L a 1f1 (x 1 ,y 1 ) L a 2f2 (x 1 ,y 1 ) a 1 L f1 (x 1 ,y 1 ) a 2 L f2 (x 1 ,y 1 )
信息光学原理第2章
2.1 光波的数学描述
2.1.5 复振幅分布的空间频谱(角谱)
利用傅里叶变换对位于单色光场中的xy平面上的复振幅分布进
行傅里叶分析,有
U x, y A fx, fy exp j2 fxx fy y dfxdfy
A fx, fy U x, yexp j2 fxx fy y dxdy
几何光学 (光与宏观物质的作用)
信息光学原理(电子工业出版社) 苏显渝 吕乃光 陈家壁
信息光学是光学和信息科学相结合的新的学科分支。 它研究以光为载体的信息的获取、信息的交换和处 理、信息的传递和传输,是信息科学的一个分支。 信息光学采用线性系统理论、傅里叶分析方法分析 各种光学现象。
第二章
标量衍射理论
cos2 cos2 cos2 1
2.1 光波的数学描述
对于如右图所示 的沿某一确定方向传播的平面波,在xy 平面上的复振幅为:
U x, y, z a exp jkz cos exp jk x cos y cos
a
exp
jkz
1
cos2
cos2
exp
jk
x
cos
y
cos
u x, y, z,t a x, y, zcos 2t x, y, z
其中,v是光波的时间频率;a(x,y,z)和(x,y,z)分别是P点光振动
的振幅和初相位。根据欧拉公式,可将该波函数表示为复指数函数 取实部的形式:
u x, y, z, t Re a x, y, z e j2tx,y,z
参考文献:
(1) W. Lauterborn, T.Kurz, M.Wiesenfeldt, Coherent optics, 北京:世界图书出版社,1998。
第二章 光学谐振腔信息光学 最新
2、其他方向开放导致损耗,限制了模数 (包括扩散、衍射、镜面非完全反射、工 作物质吸收等) 纵模:只有沿轴方向传播的模才能维持 振荡, ...(折射率 1, m, n 0) 满足 q 2 l..........
2
2
V lxl ylz ...... 实空间体积
( 4 )模密度(K空间)
8l xl y l z 1 8V 3 3 模体积 (2 ) (2 )
(5)振荡模总数
km , kn , kq 0
1 N 模 2 (球体积) k空间的模密度 8
因子2:每一个模有两个相互垂直偏振方向
dI 其中 f I
t tc
I I 0e
fc t l
I 0e
l 其中tc 光子在腔内的寿命,也 称腔的时间常数 fc
若只考虑反射损耗R,则 f=1-R l
tc (1 R )c
例如: l=100cm,
R 0.98....... tc 100 0.02 31010 1.7 107
8 2 N总 PmV 3 V c
2 28 | 8 1020 8 6 10 10 10 9 Pm 3 10 1 P 10 3 10 | m 3 1030 33 1030
获得单模振荡
| 该腔激起的模巨大,多模
§2.2 开放式谐振腔的模间距及带宽
l tc (1 R)c
1 (1 R)c (1 R)c c 2t c 2l l
R越大,带宽 越窄。 三种情况: R≈0;R<1; R≈1。
(4)谐振腔的品质因素Q 0 l Q 2 0tc 2l 0 (1 R)c c c(1 R)
《信息光学》课件
信息光学的发展历程
19世纪末至20世纪初
光学显微镜和望远镜等光学仪器的发明和应用,为信息光学的发展 奠定了基础。
20世纪中叶
随着激光技术的出现和发展,信息光学开始进入快速发展阶段。
20世纪末至今
随着计算机技术和光电子技术的不断进步,信息光学在通信、数据 存储、生物医学等领域得到了广泛应用。
信息光学的基本原理
02
信息光学的基本技术
光学全息技术
光学全息技术是一种利用光的干涉和衍射原理来记录和再现 三维物体的技术。通过将物体发出的光波与参考光波干涉, 将干涉图样记录在全息介质上,然后使用合适的照明光波进 行再现,即可得到物体的三维图像。
全息技术可以用于制作全息图、全息显示、全息干涉计量和 全息光学元件等。在科学研究、工业检测、医疗诊断和军事 领域等方面有广泛应用。
光学信息处理技术
光学信息处理技术是指利用光的干涉、衍射和折射等光学现象来进行信息处理的 技术。这种技术具有高速、大容量、并行处理等优点,可以用于图像处理、信号 处理、模式识别和计算机科学等领域。
常见的光学信息处理技术包括傅里叶变换光学、光学图像处理、光学计算和光学 神经网络等。
光学计算技术
光学计算技术是指利用光学方法来实现计算的技术。这种 技术利用了光的并行性和快速性,可以实现高速、高精度 和大容量的计算。
运行,为人工智能领域的发展提供新的动力。
信息光学在未来的应用前景
下一代光通信网络
随着5G、6G等通信技术的发展,信息光学将在构建下一代光通信 网络中发挥关键作用,实现超高速、超大规模的数据传输。
智能感知与物联网
光学传感器和光通信技术将在智能感知和物联网领域发挥重要作用 ,实现更高效、更智能的物联网应用。
《信息光学》课件
第二章:光学矩阵理论
光学矩阵是描述光学元件的传输特性的数学工具。学习光学矩阵的定义、表示方法、性质和计算方法,以及如 何通过光学矩阵推导光学元件的传输特性。
第三章:信息光学器件
光波导器件
光波导器件是利用光波导的特性来传输和处理信息的器件,包括光纤和光波导芯片。
光栅器件
光栅器件利用光栅结构的衍射特性来处理信息,例如光栅衍射和光栅激光器。
结束语
感谢大家的聆听与支持!在未来,信息光学将在通信、计算、存储等领域有 更广泛的应用,让我们Байду номын сангаас起探索信息光学的无限可能。
闪烁光记录器
闪烁光记录器是一种使用光固体材料记录和存储信息的高密度光存储设备。
第四章:信息光学应用
光学通信
光学通信是利用光信 号传输信息的通信方 式,具有高速、大容 量和低损耗的优势。
光存储
光存储技术利用光的 特性进行信息的高密 度存储,如光盘和固 态存储器。
光量子计算
光量子计算利用光的 量子特性进行高速并 行计算,被认为是未 来计算科学的重要方 向。
《信息光学》PPT课件
欢迎大家来到《信息光学》PPT课件!本课程将带领您探索信息光学的世界, 学习信息光学的概念、原理和应用,为您展示信息光学的魅力。
第一章:信息光学概述
信息光学是研究光与信息传输、处理和存储的学科,涉及广泛的应用领域。了解信息光学的定义、研究内容以 及与其他学科的关系,将打开信息光学的大门。
光晶体管
光晶体管是一种利用 光调控电流和电压的 器件,具有高速、低 功耗和可重构性。
第五章:信息光学前沿研究
1
研究热点
了解当前信息光学领域的研究热点,如全息影像、量子信息和高速光通信等。
信息光学讲义目录02
目录第一章信息光学的数学基础1.1 光学中常用的非初等函数 (1)1.1.1 矩形函数 (1)1.1.2 阶跃函数 (5)1.1.3 符号函数 (8)1.1.4 三角形函数 (10)1.1.5 斜坡函数 (13)1.1.6 圆域函数 (14)1.1.7 非初等函数的运算和复合 (15)1.2 光学中常用的初等函数 (17)1.2.1 sinc 函数 (17)1.2.2 高斯函数 (19)1.2.3 贝塞尔函数 (24)1.2.4 宽边帽函数 (27)1.3 函数的变换 (28)1.3.1 一维函数的变换 (28)1.3.2 可分离变量的二维函数的特性 (31)1.3.3 几何变换 (33)1.4 δ函数和梳状函数 (38)1.4.1 广义函数的含义 (38)1.4.2 δ函数的定义 (40)1.4.3 δ函数的性质 (49)1.4.4 δ函数的导数 (54)1.4.5 复合δ函数 (56)1.4.6 用δ函数描述光学过程的一个例子 (57)1.4.7 梳状函数 (59)1.5 周期函数 (64)1.5.1 周期函数的含义 (64)1.5.2 正弦函数 (66)1.5.3 周期脉冲序列 (67)1.6 离散函数 (70)1.6.1 单位脉冲序列 (70)1.6.2 单位阶跃序列 (72)1.6.3 矩形序列 (73)1.6.4 正弦型序列 (74)1.6.5 斜变序列 (75)1.6.6 实指数序列 (76)1.6.7 复指数序列 (76)1.6.8 随机序列 (77)1.7 复值函数 (77)1.7.1 复数 (77)1.7.2 复值函数 (79)1.7.3 几个常数的关系式和恒等式 (82)习题 1 (83)第二章傅里叶变换和系统的频域分析2.1 一维函数的傅里叶变换 (86)2.1.1 傅里叶级数 (86)2.1.2 傅里叶积分定理 (96)2.1.3 傅里叶变换 (97)2.1.4 极限情况下的傅里叶变换 (104)2.1.5 δ函数的傅里叶变换 (105)2.1.6 常用一维函数傅里叶变换对 (114)2.2 二维函数的傅里叶变换 (116)2.2.1 二维函数傅里叶变换的定义 (116)2.2.2 极坐标系中的二维傅里叶变换 (118)2.2.3 常用二维函数傅里叶变换对 (121)2.3 傅里叶变换的性质 (121)2.3.1 傅里叶变换的基本性质 (121)2.3.2 虚、实、奇和偶函数的傅里叶变换 (124)2.4 傅里叶变换的MATLAB 实现 (126)2.4.1 符号傅里叶变换 (126)2.4.2 离散傅立叶变换 (127)2.4.3 快速傅里叶变换 (130)2.5 卷积和卷积定理 (137)2.5.1 卷积的定义 (137)2.5.2 卷积的计算 (138)2.5.3 函数f (x, y)与δ函数的卷积 (148)2.5.4 卷积的效应 (150)2.5.5 卷积运算的基本性质 (152)2.5.6 卷积的MATLAB 实现 (154)2.6 相关和相关定理 (157)2.6.1 互相关 (157)2.6.2 自相关 (159)2.6.3 归一化互相关函数和自相关函数 (161)2.6.4 有限功率函数的相关 (162)2.6.5 相关的计算方法 (162)2.6.6 相关的MATLAB 实现 (167)2.7 傅里叶变换的基本定理 (170)2.7.1 卷积定理 (170)2.7.2 互相关定理 (171)2.7.3 互相关定理 (173)2.7.4 自相关定理 (174)2.7.5 巴塞伐定理 (174)2.7.6 广义巴塞伐定理 (175)2.7.7 导数定理或微分变换定理 (differential transform theorem) 1752.7.8 积分变换定理 (176)2.7.9 转动定理 (176)2.7.10 矩定理 (176)习题2 (178)第三章线性系统和光场的傅里叶分析3.1 线性系统的概念 (180)3.1.1 信号和信息 (180)3.1.2 系统的概念 (180)3.1.3 线性系统 (182)3.1.4 线性平移不变系统 (183)3.2 线性系统的分析方法 (184)3.2.1 正交函数系 (184)3.2.2 基元函数的响应 (188)3.2.3 线性平移不变系统的传递函数 (193)3.2.4 线性平移不变系统的传递函数 (195)3.3 光场解析信号表示 (199)3.3.1 单色光场的数学形式和复数表示 (199)3.3.2 准单色光场的复数表示 (201)3.3.3 多色光场的复数表示 (203)3.4 光场的复振幅空间描述 (206)3.4.1 球面波的复振幅 (206)3.4.2 球面波的近轴近似 (207)3.4.3 平面波的复振幅 (212)3.5 二维光场的傅里叶分析 (216)3.5.1 平面波的空间频率 (216)3.5.2 球面波的空间频率 (222)3.5.3 复振幅分布的空间频谱和角谱 (222)3.5.4 局域空间频率 (224)3.5.5 复杂光波的分解 (225)3.6 函数抽样与函数复原 (228)3.6.1 一维抽样定理 (228)3.6.3 空间-带宽积 (239)3.6.4 线性光学系统的分辨率 (242)习题3 (242)第四章标量衍射理论 (248)4.1 从矢量电场到标量电场 (251)4.1.1 波动方程 (251)4.1.2 亥姆霍兹方程 (253)4.2 基尔霍夫衍射理论 (254)4.2.1 惠更斯-菲涅耳原理 (254)4.2.2 格林定理 (256)4.2.3 基尔霍夫积分定理 (257)4.2.4 基尔霍夫衍射公式 (260)4.2.5 菲涅耳-基尔霍夫衍射公式 (263)4.2.6 球面波的衍射理论 (265)4.3 衍射在空间频域的描述 (268)4.3.1 从空间域到空间频域 (268)4.3.2 谱频的传播效应 (269)4.3.3 角谱的传播 (272)4.3.4 孔径对角谱的效应 (273)4.3.5 传播现象作为一种线性空间滤波器 (276)4.4 衍射的菲涅耳近似和夫琅禾费近似 (277)4.4.1 菲涅耳近似 (277)4.4.2 夫琅禾费近似 (280)4.4.3 夫琅禾费衍射与菲涅耳衍射的关系 (280)4.4.4 衍射屏被会聚球面波照射时的菲涅耳衍射 (281)4.4.5 衍射的巴俾涅原理 (283)4.5 菲涅耳衍射的计算 (285)4.5.1 周期性物体的菲涅耳衍射 (285)4.5.2 矩形孔的菲涅耳衍射 (291)4.5.3 特殊矩形孔的菲涅耳衍射 (300)4.5.4 圆孔的菲涅耳衍射 (303)4.6 夫琅禾费衍射的计算 (306)4.6.1 矩形孔和狭缝 (307)4.6.3 衍射光栅 (313)4.6.4 圆形孔径 (324)习题 4 (329)第五章光学成像系统的空域描述及傅里叶分析 (336)5.1 成像系统和透镜的结构及变换作用 (336)5.1.2 透镜的结构及变换作用 (337)5.2 透镜作为相位变换器 (341)5.2.1 薄透镜的厚度函数 (341)5.2.2 薄透镜的相位变换及其物理意义 (343)5.3 透镜的傅里叶变换性质 (345)5.3.1 透镜的一般变换特性 (345)5.3.2 物在透镜之前 (349)5.3.3 物在透镜后方 (353)5.4 透镜的空间滤波特性 (355)5.4.1 透镜的截止频率、空间带宽积和视场 (356)5.4.2 透镜孔径引起的渐晕效应 (359)5.5 光学系统的一般模型 (363)5.5.1 光阑 (363)5.5.2 入射光瞳和出射光瞳 (366)5.5.3 黑箱模型 (368)5.6 衍射受限光学系统成像的空域分析 (370)5.6.1 衍射受限系统的点扩散函数及成像 (370)5.6.2 正薄透镜的点扩散函数 (374)5.6.3 相干照射下衍射受限系统的成像规律 (375)5.6.4 成像系统的线性特性 (377)习题 5 (378)第六章光学成像系统的频谱分析和传递函数 (384)6.1 光成像系统像质评价概述 (384)6.1.1 星点检验法 (385)6.1.2 图像分辨率板法 (388)6.2 光学传递函数的基本概念 (394)6.2.1 以点扩散函数为基础的定义 (397)6.2.2 以正弦光栅成像为基础的定义 (401)6.2.3 以光瞳函数表示的光学传递函数 (404)6.2.4 组合成像系统的光学传递函数 (405)6.3 衍射受限相干成像系统的相干传递函数 (406)6.3.1 相干传递函数 (406)6.3.2 相干传递函数的角谱解释 (415)6.4 衍射受限系统非相干成像的频域分析—非相干传递函数 (416)6.4.1 非相干成像系统的光学传递函数(OTF) (417)6.4.2 OTF 和CTF 的关系 (421)6.4.3 衍射受限的OTF (421)6.4.4 有像差系统的传递函数 (426)6.5 线扩散函数和刃边扩散函数 (429)6.5.1 线扩散函数和刃边扩散函数的概念 (429)6.5.2 相干线扩散函数和相干刃边扩散函数 (431)6.5.3 非相干线扩散函数和刃边扩散函数 (433)6.6 相干与非相干成像系统的比较 (434)6.7 光学传递函数的测量 (436)6.7.1 光学传递函数测量装置 (436)6.7.2 光学传递函数测量步骤 (439)6.7.3 光学传递函数测量准确度 (440)6.7.4 光学传递函数的测量环境 (445)6.7.5 光学传递函数的测量数据的修正和表示 (447)6.7.6 光学传递函数的测量方法 (448)6.7.7 光学传递测量装置的检定 (450)6.7.8 光学传递标准装置 (450)6.7.9 离散采样系统光学传递测量 (451)习题 6 (452)第七章部分相干理论 (457)7.1 光的干涉理论 (457)7.1.1 叠加原理 (458)7.1.2 光波的干涉 (458)7.1.3 相干和非相干叠加 (460)7.1.4 干涉条纹的可见度 (462)7.2 互相干函数和相干度 (463)7.2.1 互相干函数的定义 (464)7.2.2 杨氏干涉条纹的几何结构 (468)7.2.3 互相干函数的谱表示 (470)7.3 时间相干性和相干时间 (471)7.3.1 时间相干性 (471)7.3.2 相干时间的定义 (476)7.3.3 傅里叶变换光谱技术 (477)7.4 空间相干性 (479)7.5 准单色条件下的干涉和互强度 (480)7.6 范西泰特-策尼克定理 (483)7.6.1 范西泰特-策尼克定理 (484)7.6.2 相干面积 (486)7.6.3 均匀圆形光源 (486)7.7 互相干函数的传播和广义惠更斯原理 (488)习题 7 (491)第八章光学全息 (496)8.1 光学全息概述 (496)8.1.1 全息术的发展简史 (496)8.1.2 全息照相的基本特点 (498)8.1.3 全息图的类型 (500)8.2 全息照相的基本原理 (501)8.2.1 全息照相的基本过程 (501)8.2.2 波前记录 (502)8.2.3 记录过程的线性条件 (503)8.2.4 波前再现 (504)8.3 同轴全息图和离轴全息图 (507)8.3.1 同轴全息图 (507)8.3.2 离轴全息图 (510)8.4 基元全息图 (514)8.4.1 基元全息图 (514)8.4.2 基元光栅 (515)8.5 菲涅耳全息图 (517)8.5.1 点源全息图和基元波带片 (517)8.5.2 几种特殊情况的讨论 (521)8.6 像全息图 (524)8.6.1 再现光源宽度的影响 (524)8.6.2 再现光源光谱宽度的影响 (525)8.6.3 色模糊 (527)8.6.4 像全息图的制作 (528)8.7 傅里叶变换全息图 (529)8.7.1 傅里叶变换全息图的原理 (530)8.7.2 准傅里叶变换全息图 (532)8.7.3 无透镜傅里叶变换全息图 (533)8.8 彩虹全息 (535)8.8.1 二步彩虹全息 (535)8.8.2 一步彩虹全息 (536)8.8.3 彩虹全息的色模糊 (537)8.9 相位全息图 (540)8.10 模压全息图 (541)8.10.1 模压全息图的制作 (542)8.10.2 全息烫印箔 (542)8.10.3 动态点阵全息图 (543)8.11 体积全息 (543)8.11.1 透射体积全息图 (544)8.11.2 反射全息图 (546)8.12 平面全息图的衍射效率 (546)8.12.1 振幅全息图的衍射效率 (547)8.12.2 相位全息图的衍射效率 (548)8.13 全息记录介质 (549)8.13.1 基本术语 (549)8.13.2 E-D曲线和特性曲线 (551)V8.13.3 全息记录介质的分类 (554)习题 8 (558)第九章光学信息处理技术 (562)9.1 引言 (562)9.2 早期研究成果 (563)9.2.1 阿贝成像理论 (563)9.2.2 阿贝-波特(Abbe-Porter)实验 (564)9.2.3 泽尼克相衬显微镜 (568)9.2.4 改善的照片质量 (570)9.3 空间频率滤波系统 (571)9.3.1 空间滤波系统 (571)9.3.2 空间滤波的傅里叶分析 (572)9.3.3 滤波器的种类及应用举例 (576)9.4 相干光学信息处理 (580)9.4.1 相干光学信息处理系统 (580)9.4.2 多重像的产生 (581)9.4.3 图像的相加和相减 (581)9.4.4 光学微分—像边缘增强 (584)9.4.5 综合孔径雷达 (586)9.5 非相干光学信息处理 (588)9.5.1 相干光与非相干光处理的比较 (588)9.5.2 非相干空间滤波 (589)9.5.3 基于几何光学的非相干处理 (593)9.6 白光信息处理 (594)9.7 光计算 (595)9.7.1 光学矩阵运算 (596)9.7.2 光学互连 (597)9.7.3 光学神经网络 (598)习题 9 (598)。
信息光学2
f ( x , y ) ∗ g ( x , y )= ∫ ∫− ∞ g (ξ ,η ) f ( x − ξ , y − η ) dξ dη
两个复函数f(x,y),g(x,y)的互相关: 的互相关: 两个复函数 的互相关
∞
= ∫∫ g (ξ ,η ) f * (ξ − x,η − y )dξdη f ( x, y )★g ( x, y ) ∞
e ff ( x, y ) ≤ e ff (0,0)
1-5 傅立叶变换的基本概念 - 傅立叶分析是广泛应用于物理学和各工程学科的重要数学工具。 傅立叶分析是广泛应用于物理学和各工程学科的重要数学工具。 1.二维傅立叶变换的定义 二维傅立叶变换的定义 复函数f(x,y)的傅立叶变换定义为: 的傅立叶变换定义为: 复函数 的傅立叶变换定义为
证明: 证明:
f ( x )★ g ( x ) = f ( − x ) ∗ g ( x )
*
= g ( x) ∗ f * (− x) = g * ( − x )★ f * ( − x )
2.自相关 自相关 当f(x,y)=g(x,y)时,互相关称为函数的自相关: = 时 互相关称为函数的自相关:
e ff ( x, y ) = ∫∫ f * (ξ ,η ) f ( x + ξ , y + η )dξdη
4.虚、实、奇、偶函数傅立叶变换的性质 虚 复函数f(x,y)的傅立叶变换可写为: 复函数 的傅立叶变换可写为: 的傅立叶变换可写为
F( fx, f y ) = ∫ ∫
∞
−∞
f ( x, y )e
−i 2π ( f x x + f y y )
dxdy
= ∫∫
∞
−∞
f ( x, y ) cos[2π ( f x x + f y y )]dxdy −
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故可将复振幅波动方程化简为
( k )U
其中 k称为波数,表示单位长度上产生的相位变化,定义为
k v
化简后的波动方程称为亥姆霍兹方程,是不含时间的偏微分方程。 在自由空间传播的任何单色光扰动的复振幅都必须满足这个不含时
间的波动方程。这也就意味着,可以用不含时间变量的复振幅分布
2021/3/9完善地描述单色光波场
信息光学
标量衍射理论
2021/3/9
授课:XXX
1
一 什么是标量衍射理论?
衍射:按照索末菲定义是“不能用反射或折射来解释的光线对直 线光路的任何偏离”
光的标量衍射理论的条件 (1)衍射孔径比波长大很多, (2)观察点离衍射孔不太靠近;
经典的标量衍射理论最初是1678年惠更斯提出的,1818年菲涅耳 引入干涉的概念补充了惠更斯原理,1882年基尔霍夫利用格林定 理,采用球面波作为求解波动方程的格林函数,导出了严格的标 量衍射公式
当直角坐标的原点与球面波中心重合时,单色发散球面波在光场 中任何一点产生的复振幅可写作
U P a e jkr
r a为离开点光源单位距离处的振幅
对于会聚球面波球面波方程指数上加负号
2021/3/9
授课:XXX
6
球面波在平面上的等位相线
2021/3/9
授课:XXX
7
球面波在平面上的复振幅分布
当点光源或会聚点位于空间任意一点时,有
12
平面波的空间频率
x ,y ,z方向上平面波的空间频率分别定义为
fx
cos
cos fy
fz
cos
从而平面波的复振幅的一般表达式变为
U (x, y, z) a exp[ j (xf x yf y zf z )]
空间频率的倒数即为振荡周期(X,Y,Z)
X
λ cosα
,Y
λ cosβ
r
x x y y z z
考察与其相距 z z 的平面 x y 上的光场分布。 r 可写为
如果
r
z
x x
y y
z
x
x
y
z
y
x x y y
z
利用二项式展开,并略去高阶项,得到 r z x x y y
z
将近似式代入发散球面波表达式,得到在平面上平面波复振幅
2021/3/9
授课:XXX
2
标量波动方程
作为空间和时间函数的电场或磁场分量 u ,在任一空间无源点
上满足标量波动方程
u u
式中
x
y
z
v t
是拉普拉斯算符,电磁场在介质中传播速度 v εμ
而 、 为介质的介电系数和磁导率。
满足该方程的基本解的线性组合都是方程的解。球面波和平面波 都是波动方程的基本解。任何复杂的波都可以用球面波和平面波 的线性组合表示,也都是满足波动方程的解。
2021/3/9
授课:XXX
3
光振动的复振幅定义
取最简单的简谐振动作为波动方程的特解,单色光场中某点在时 刻的光振动可表示成
uP,t aPcos2πν t φP
用复指数函数表示光振动是方便的,上式变成
u P, t Re a P e j2πν tφP Re a P e jφPe j2πν t
如波矢量 k 表示光波的传播方向,其大小为 k 2 ,方向余弦
为 cos, cos , cos ,则平面波传播到空间某点的复振幅的一般表
达式为
U (x, y, z) a exp( jk r)
a exp[ jk(x cos y cos z cos )]
其中 a 为常量振幅。由于方向余弦满足 cos 1 cos2 cos2
将花括号内的由空间位置确定的部分合在一起定义成一个物理量
U PaPexp jφP
称为单色光场中点的复振幅,它包含了点光振动的振幅和初位相, 仅仅是位置坐标的复值函数,与时间无关
光强可用复振幅表示成
2021/3/9
I
授P课:XUXX P
UU *
4
亥姆霍兹方程
在仅涉及满足叠加原理的线性运算(加、减、积分和微分等)时, 可用复指数函数替代表示光振动的余弦函数形式。在运算的任何一 个阶段对复指数函数取实部,与直接用余弦函数进行运算在同一个 阶段得到的结果是相同的
exp j
k z
x x
y
y
位相相同的点的轨迹,即等位相线方程为同心圆族
x x y y C
2021/3/9
授课:XXX
9
平面波在 x y 面上的等位相线
2021/3/9
授课:XXX
10
平面波的复振幅表示
在任意时刻、与波矢量相垂直的平面上振幅和位相为常数的光波称 为平面波
,
Z
性位相因子,当平面上复振幅分布的表达式中包含有这种因子, 就可以认为有一个方向余弦为 cos, cos 的平面波经过这个平 面
平面波等位相线方程为 x cos y cos C
因此,等位相线是一些平行直线。
前面图中用虚线表示出相位值相差 的一组波面与平面 x y 的
பைடு நூலகம்
2021/3交/9 线,即等位相线;它们是授一课组:平XX行X 等距的斜直线
授课:XXX
5
球面波的复振幅表示
从点光源发出的光波,在各向同性介质中传播时形成球形的波面, 称为球面波。一个复杂的光源常常可以看做是许多点光源的集合,
它所发出的光波就是球面波的叠加
这些点光源互不相干时是光强相加,相干时则是复振幅相加。
球面波的等位相面是一组同心球面,每个点上的振幅与该点到球 心的距离成反比
分布为
2021/3/9 U x,
y
a z
exp
jkzex授p课:j XkXzXx
x
y
y
8
球面波的位相因子和等位相线
发散球面波在平面上产生的复振幅分布的位相因子中包括两项
常量位相因子 exp jkz 与传播距离有关
随平面坐标变化的第二项称作球面波的(二次)位相因子,当平面上 复振幅分布的表达式中包含有下述因子,就可以认为距离该平面处有 一个点光源发出的球面波经过这个平面。
于是复振幅可写为 U (x, y) Aexp[ jk(x cos y cos )]
其中
A a exp( jkz cos cos )
2021/3/9
授课:XXX
11
平面波的位相因子和等位相线
和球面波表达式类似,平面波复振幅可分成与坐标有关和与坐标无 关的两部分
与坐标 x y有关的 exp[ jk(x cos y cos )]是表征平面波特点的线