概率论与数理统计— 独立性
概率论与数理统计(随机变量的相互独立性)
即X与Y独立.
3.4 随机变量的相互独立性
反之,若X与Y独立,由于f(x,y),fX(x),fY(y)都是 连续函数,故对所有的x,y,有
f ( x, y) fX ( x) fY ( y)
特别,令 x 1, y 2,可以得到
1
1
2 1 2 1 2 2 1 2
从而 0.
☺课堂练习
已知 ( X ,Y ) 的分布律为
( X ,Y ) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3)
111 1
pij
6
9 18
3
(1) 求 与 应满足的条件; (2) 若 X 与 Y 相互独立,求 与 的值.
解:将 ( X ,Y ) 的分布律改写为
(2) P{ X1 X2 1} D f ( x1, x2 )dx1d x2
x2
1
x1 x2 1 D
O
1
1 0
1 x2 0
1 9
e ( x1 x2 )/ 3
d
x1
d
x2
1 9
1 ex2 / 3 (
0
1 0
x2
e
x1
/
3
d
x1
)dx2
x1
9
18
3.4 随机变量的相互独立性
【例3.17】已知随机变量X与Y相互独立且都服从参 数为1/2的0-1分布,定义随机变量
1 当X Y为偶数 Z 0 当X Y为奇数
求Z的分布律,(X,Z)的分布律, 并问X与Z是否独立?
解:由X与Y的分布律
X
0
4概率论-独立性
等式总数为:C
2 n
C
3 n
C
n n
(1 1)n
C
1 n
C
0 n
2n
n1.
n个独立事件和的概率公式:
设事件 A1 , A2 ,…, An 相互独立,则
P(A1∪… ∪An) 1 P( A1 A2 … An ) 1 P( A1 A2 … An ) 1 P( A1 )P( A2 )… P( An )
《概率论与数理统计》 第四课:独立性
4 独立性
引例 将一颗均匀骰子连掷两次, 设 A ={第二次掷出6点}, B ={第一次掷出6点}, 显然 P(A|B)= P(A),
这表明, 事件B发生, 并不影响事件A 发生的概率.
在条件 P(B)>0下, P(A|B)= P(A) P(AB)=P(A)P(B).
A也1 ,相A2互,…独,立An
n个相互独立事件至少有一个发生的概率
=== 1 - 各自对立事件概率的乘积
若n个相互独立事件 A1 , A2 ,…, An 发生的概率分别为 p1 ,, pn , 则“ A1 , A2 ,…, An 至少有一个发生”的概率为
P(A1∪…∪An) = 1 -(1- p1 ) … (1- pn )
P(B)= 26/52 = 1/2 ,
显见, P(AB)=P(A)P(B), 所以事件A、B独立.
也可以通过计算条件概率去做: 由于 P(A) = 1/13, P(A|B)= 2/26 = 1/13,
显见 P(A)= P(A|B), 所以事件A、B 独立.
实际应用中往往根据问题的实际意义判断两事件是否独立
由此可见两事件互斥但不独立.
两个事件独立的定义可以推广到三个事件
1.5独立性及伯努利概型 《概率论与数理统计》课件
n 个事件相互独立,则必须满足 2n n1个等式.
显然 n 个事件相互独立,则它们中的任意
m (2 mn)个事件也相互独立.
2.事件独立性的性质
定理1.5.1 四对事件{A、B},{ A , B },{A,B }、
{ A 、B }中有一对相互独立,则其它三对也相互独立.
证明 不失一般性.设事件 A 与 B 独立,仅证 A 与 B
相互独立,其余情况类似证明 因为 P ( A B ) P ( B A ) P ( B A ) P B ( B ) P ( A )B
又 A 与 B 独立,所以 P (A)B P (A )P (B )
从而 P ( A B ) P ( B ) P ( A ) P ( B ) P ( B ) 1 P ( ( A ) P ) ( A ) P ( B ) 所以, A 与 B 相互独立.
AB={(男、女),(女、男)}
于是
P(A)= 1 , P(B)= 3 , P(AB)= 1
2
4
2
由此可知 P(AB) P(A) P(B).
所以 A与B 不独立.
2)有三个小孩的家庭,样本空间Ω={(男、
男、男),(男、男、女),(男、女、男),
(女、男、男)(男、女、女),(女、女、男),
(女、男、女),(女、女、女)}
= 1 P(A1A2An) = 1 P(A 1)P(A 2)P(A n)
这个公式比起非独立的场合,要简便的多,它 在实际问题中经常用到.
例1.5.6 假若每个人血清中含有肝炎病的概率为 0.4%,混合100个人的血清,求此血清中含有肝炎病 毒的概率?
解: 设 A i={第 i 个人血清中含有肝炎病毒}
概率论与数理统计-第3章-第4讲-随机变量的独立性
1, (x, y) G
f (x, y) 0,
其它.
1
2x
02 随机变量的独立性
例题 设二维离散型随机变量 X, Y 的联合分布律为
应用
Y X
1
1
1 6
2
3
1
1
9
18
2
1 3
试确定常数 , 使得随机变量 X 与Y 相互独立.
02
随机变量的独立性 由表,可得随机变量 X 与Y 的边缘分布律为
P{XY Y 0} P{( X 1)Y 0}
P{X 1 0,Y 0} P{X 1 0,Y 0}
P(X ) P(X ) 1
2
P{X 1}P{Y 0} P{X 1}P{Y 0} 1111 1
22 22 2
第4讲 随机变量的独立性
本节我们学习了二维随机变量的独立性, 后续会推广到更多维. 随机变量的独立性在概率论和数理统计中会发挥重要的作用.
用分布函数表示, 即 设 X,Y 是两个随机变量, 若对任意的x, y, 有 F ( x, y) FX (x)FY ( y)
则称 X, Y 相互独立 .
它表明, 两个随机变量相互独立时, 联合分布函数等于两个 边缘分布函数的乘积 .
01 两个随机变量独立的定义
离散型
X与Y 独立
对一切 i , j 有
01 两个随机变量独立的定义 两个随机变量独立的定义
设 X,Y是两个随机变量, 若对任意的x,y ,有 P ( X x,Y y) P( X x)P(Y y)
则称X,Y相互独立 .
如何判断
两事件A, B独立的定义是: 若 P(AB)=P(A)P(B)则称事件A, B独立 .
01 两个随机变量独立的定义
概率论与数理统计的独立性与条件概率研究
概率论与数理统计的独立性与条件概率研究概率论与数理统计是数学中的重要分支,它们的研究对象是随机事件和随机变量,通过对事件和变量的概率分布进行研究,可以揭示出事件和变量之间的规律。
在概率论与数理统计的研究中,独立性和条件概率是两个重要的概念。
首先,我们来探讨概率论与数理统计中的独立性。
独立性是指两个或多个事件之间的发生与否不相互影响。
在概率论中,如果事件A和事件B是独立的,那么它们的联合概率等于各自概率的乘积。
换句话说,P(A∩B) = P(A) * P(B)。
这个公式可以用来计算两个独立事件同时发生的概率。
独立性在实际生活中有很多应用。
例如,假设有一批产品,每个产品的质量是否合格是一个独立事件。
如果每个产品合格的概率是0.9,那么同时有两个产品合格的概率就是0.9 * 0.9 = 0.81。
这个概率可以帮助我们评估产品质量的可靠性。
然而,并不是所有的事件都是独立的。
有些事件之间存在一定的关联关系,这就引出了条件概率的概念。
条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
在概率论与数理统计中,条件概率可以用来计算事件之间的依赖关系。
条件概率的计算方法是通过已知条件来确定事件发生的概率。
假设事件A和事件B之间存在依赖关系,那么在已知事件B发生的条件下,事件A发生的概率可以表示为P(A|B)。
根据概率的定义,P(A|B) = P(A∩B) / P(B)。
这个公式可以用来计算在已知事件B发生的情况下,事件A同时发生的概率。
条件概率在实际中也有广泛的应用。
例如,在医学诊断中,医生需要根据病人的症状和检查结果来判断病人是否患有某种疾病。
这时,医生会根据已知的症状和检查结果计算疾病的概率,以帮助做出正确的诊断。
除了独立性和条件概率,概率论与数理统计还包括其他重要的概念和方法,如随机变量、概率分布、期望值等等。
这些概念和方法在现代科学和工程领域中有广泛的应用。
例如,在金融领域中,概率论与数理统计可以用来对股票价格的波动进行建模和预测,以帮助投资者做出决策。
概率论与数理统计 随机变量的独立性
g ( xi , y j ) f ( x, y)dxdy
概率论与数理统计
例9
求E(X),E(Y),E(XY).
E ( XY ) xi y j pij
j 1 i 1
解 X,Y的边缘分布为
1 3 (1 0) 0 (3 0) 3 (1 1) 3 (3 1) 0 1 E ( X ) xi pi 18 3 8 , 4 4 2 i 1 3 1 9 (1 2) (3 2) 0 3 (1 3) 0 (3 3) . 1 8 0 1 2 3 3 1 3 , 8 4 E (Y ) y j p j 8 8 8 8 2 j 1
E X i E( X i )
n i 1 n i 1
概率论与数理统计
例10
解
设随机变量Xi为
则X=X1+ X2+ …+ X10 故 E(X)=E(X1)+ E(X2)+ …+ E(X10) 而E(Xi)=1-(9/10)20 i=1,2,…,10
9 20 E( X ) E ( X i ) E ( X i ) 10 ] 8.784 [1 10 i 1 i 1
概率论与数理统计
若(X,Y)是二维离散型随机变量,Z=g(X,Y), 且E(Z)存在,则
E (Z ) E[ g ( X , Y )] g ( xi , y j ) pij
j 1 i 1
若(X,Y)是二维连续型随机变量,Z=g(X,Y), 且E(Z)存在,则
E (Z ) E[ g ( X , Y )]
概率论与数理统计
概率论与数理统计 第三节 条件概率与独立性
一、条件概率
4. 条件概率的计算
P ( AB ) 1) 用定义计算 P ( A | B ) P( B)
2)用缩减的样本空间计算
例:A={掷出2点}, B={掷出偶数点} 掷骰子
1 P(A|B) = 3
B发生后的 缩减样本空间 所含样本点总数 在缩减样本空间 中A所含样本点 个数
一、条件概率
例1 掷两颗均匀骰子,已知第一颗掷出6点,问“掷 出点数之和不小于10”的概率是多少?
一、条件概率
2. 条件概率的定义
设A、B是两个事件,且P(B)>0,则称 P ( AB ) (1) P( A | B) P( B)
为在事件B发生的条件下,事件A的条件概率.
若事件B已发生, 则为使 A 也发生 , 试验结果必须是既在 B 中又在A中的样本点 , 即此 点必属于AB. 由于我们已经知 道B已发生, 故B变成了新的样 本空间 , 于是有(1).
A={取到一等品}, B={取到正品} P(A ) =3/10,
3 10 P ( AB ) 3 P(A|B) 7 10 P( B) 7
一、条件概率
A={取到一等品}, B={取到正品}
P(A)=3/10, P(A|B)=3/7 本例中,计算P(A)时,依据的前提条件是10件 产品中一等品的比例. 计算P(A|B)时,这个前提条件未变,只是加上 “事件B已发生”这个新的条件. 这好象给了我们一个“情报”,使我们得以在 某个缩小了的范围内来考虑问题.
故抓阄与次序无关.
二、乘法公式
练习3 设某光学仪器厂制造的透镜, 第一次落下时 打破的概率为1/2,若第一次落下未打破, 第二次落下 打破的概率为7/10 , 若前两次落下未打破, 第三次落 下打破的概率为9/10.试求透镜落下三次而未打破的 概率.
概率论与数理统计 3.5 随机变量的独立性
dt
=
同理Байду номын сангаас
x R
fY ( y ) =
10
( y 2 )2 exp , 2 2 2 2 2 1
y R
若 = 0, 则对于任意实数x 与y 都有 f ( x, y) = f X( x ) fY( y ) 因此 X 与 Y 是相互独立的 . 反之, 若 X 与Y 相互独立, 则对于任意实数x 与y 都有 f ( x, y) = f X( x ) fY( y ) 若取 x = 1 , y = 2 , 则有
令
9
y 2 x 1 t= 2 1 1 2 1
则
dt =
1
2 1
1
2
dy ,
所以
2 t2 2
f X ( x) =
( x 1 ) 1 exp e 2 2 1 2 1 2
2 ( x ) 1 1 exp , 2 2 1 2 1
( x 1 )2 1 exp 2 2 2 2(1 ) 1 1 ( y 2 )2 + 2 2
( x 1 )( y 2 )
1 2
7
因为
( x 1 )2 ( x 1 )( y 2 ) ( y 2 )2 1 2 + 2 2 2 1 2 2(1 ) 1 2 ( x 1 )2 ( y 2 )2 1 = + 2 2 2 2(1 ) 1 2 2 ( x 1 )( y 2 )
y 1 2 e fY ( y ) = 2 0
, ,
y0 y0
概率论与数理统计:事件的独立性与相关性.ppt
由于 P( ABC ) 1 1 P( A)P(B)P(C ), 48
因此 A,B,C 不相互独立.
三 相互独立事件的性质
性质1 如果 n 个事件 A1, A2,, An 相互独立,则 将其中任何 m(1 m n)个事件改为相应的对立事 件,形成新的 n 个事件仍然相互独立. 性质2 如果 n 个事件 A1, A2,, An 相互独立,则有
Ai (i =1,2,…,100 ).
则
100
A Ai
i 1
100
P(A) 1 1P(Ai ) i 1 1 (1 0.004)100 0.33
若Bn表示 n 个人的血清混合液中含有肝炎病毒,则
P(Bn) 1 (1 )n, 0 1 n 1,2,
lim
n
P
(
Bn
)
1
—— 不能忽视小概率事件, 小概率事件迟早要发生
例5 甲、乙、丙三人同时对飞机进行射击, 三人 击中的概率分别为 0.4, 0.5, 0.7, 飞机被一人击中 而被击落的概率为0.2 ,被两人击中而被击落的概 率为 0.6 , 若三人都击中飞机必定被击落, 求飞机 被击落的概率.
n
n
n
P( Ai ) 1 P( Ai ) 1 (1 P( Ai ))
i 1
i 1
i 1
例4 设每个人的血清中含肝炎病毒的概率为0.4%, 求来自不同地区的100个人的血清混合液中含有肝 炎病毒的概率.
解:设这100 个人的血清混合液中含有肝炎病毒为
事件 A, 第 i 个人的血清中含有肝炎病毒为事件
注意: 从直观上讲,n个事件相互独立就是其中任何一个 事件出现的概率不受其余一个或几个事件出现与否的 影响.
伯恩斯坦反例
《概率论与数理统计》-课件 独立性
3.三事件两两相互独立的概念
定义 设 A, B,C 是三个事件,如果满足等式
P( AB) P( A)P(B),
P(
BC
)
P(
B)P(C
),
P( AC ) P( A)P(C ),
则称事件 A, B, C 两两相互独立.
4.三事件相互独立的概念
定义 设 A, B,C 是三个事件,如果满足等式
3 p3(1 2
p) 4 p3(1 2
p)2 .
由于 p2 p1 p2(6 p3 15 p2 12 p 3)
3 p2( p 1)2(2 p 1).
当
p
1 时, 2
p2
p1;
当
p
1 时, 2
p2
p1
1. 2
故当 p 1 时, 对甲来说采用五局三胜制有利 . 2
当 p 1 时, 两种赛制甲最终获胜的概率是 2
例7 甲、乙两人进行乒乓球比赛, 每局甲胜的 概率为 p( p 1 2),问对甲而言, 采用三局二胜制 有利, 还是采用五局三胜制有利. 设各局胜负相 互独立. 解 采用三局二胜制,甲最终获胜,
胜局情况可能是:
“甲甲”, “乙甲甲”, “甲乙甲”;
由于这三种情况互不相 容, 于是,由独立性得甲最终获胜的概率为:
又因为 A、B 相互独立, 所以有 P( AB) P( A)P(B),
因而 P( AB) P( A) P( A)P(B) P( A)(1 P(B))
P( A)P(B). 从而 A 与 B 相互独立.
两个结论
1 . 若事件 A1 , A2 , , An (n 2) 相互独立 , 则 其中任意 k (2 k n)个事件也是相互独立.
概率论与数理统计第1.3节条件概率及独立性
练习 一个家庭中有若干个小孩,假定生
男生女是等可能的,令
A =“一个家庭中有男孩又有女孩”
B =“一个家庭最多有一个女孩”
(1)家庭中有两个小孩, (2)家庭中有三个小孩。
对上述2种情况,讨论事件
A, B 的独立性。
(1) {( B, B),( B, G),(G, B),(G, G)}
(2) {( B, B, B),( B, B, G),( B, G, B),(G, B, B), (G, G, B),(G, B, G),( B, G, G),(G, G, G)}
今任选一个袋子然后再从选到的袋子中任取一个球问取到红球的概率为多上述分析的实质是把一个复杂事件分解为若干个互不相容的简单事件再将概率的加法公式和乘法定理结合起来这就产生了全概率公式
课堂练习: 化简事件
( AB
AC
C ) AC
解 原式 AB C
AC ABC AC
( A B)C
AC BC AC
P ( AB ) 1 6 P( A | B) 3 P( B) 3 6 2)从加入条件后改变了的情况去算
1
掷骰子
1 P(A|B)= 3
B发生后的 缩减样本空间 所含样本点总数 在缩减样本空间 中A所含样本点 个数
问题 : 分别考虑
P ( A)与P A B 哪个大?
A B, B A, AB
条件概率是概率(P30)
首先,不难验证条三条公理:
(1) 非负性 P( A | B) 0 (2) 正规性 P( | B) 1
(3) 完全可加性 若A1, A2 ,, An ,两两互斥, P( B) 0, 则
由此得
P( An | B) P( An | B)
概率论与数理统计1.5
例3(续) 3(续
由此可见
P ( AB ) = P( A)P(B )
P ( AC ) = P ( A)P (C )
P (BC ) = P (B )P (C ) 但是
1 1 P( ABC ) = ≠ = P( A)P(B )P(C ) 4 8
这表明A、 、 这三个事件是 这三个事件是两两相互独立 这表明 、B、C这三个事件是两两相互独立 但不是相互独立的. 的,但不是相互独立的.
称多个或可数无穷多个试验的集合为试验序列。 称多个或可数无穷多个试验的集合为试验序列。 试验序列 如果一个试验序列的各试验的结果之间是相互独立 则称该试验序列为一个独立试验序列 独立试验序列。 的,则称该试验序列为一个独立试验序列。 称只有两个基本结果的试验为伯努利试验 伯努利试验。 称只有两个基本结果的试验为伯努利试验。 有些试验的基本结果虽然不只两个, 有些试验的基本结果虽然不只两个,但若我们感兴 趣的是某个事件A是否发生,那么可以把A 趣的是某个事件A是否发生,那么可以把A作为一个基本 结果, 的对立事件作为另一个基本结果, 结果,A的对立事件作为另一个基本结果,从而也可归 结为伯努利试验。若试验结果是A发生,那么我们称试 结为伯努利试验。若试验结果是A发生,那么我们称试 发生的概率则称为成功概率 成功概率。 验成功, 验成功,而A发生的概率则称为成功概率。 由一个伯努利试验独立重复进行所形成的试验序列 称为伯努利试验序列 如果重复的次数是n 伯努利试验序列, 称为伯努利试验序列,如果重复的次数是n,则称该试 验序列为n重伯努利试验。 验序列为n重伯努利试验。
P( A1 + A2 + ⋯ + An ) = 1 − P( A1 A2 ⋯ An )
= 1 − P( A1 ) P( A2 ) ⋯ P( An ) = 1 − (1 − 0.7 )n = 1 − 0.3 n
概率论与数理统计 4.4 随机变量的独立性
0
1
9
6
0
25 25
6
4
1
25 25
P{ X1
0,
X2
0}
66 10 10
9 25
类似可得其余三个联合概率(见上表)。
再讨论边缘分布
(1)不放回抽取
X2 X1
0
1
pi•
1
4
3
0
3 15
5
4
2
2
1
15 15
5
p• j
3
2
5
5
X1 0
1
3
2
P
5
5
X2 0
1
P3
2
5
5
(2)有放回抽取
X2 X1
0
1
pi•
P(X xi ,Y y j ) P(X xi )P(Y y j )
即
pij pi. p. j
则称 X 和Y 相互独立.
二、例题
概率论
例1 设(X,Y)的概率密度为
xe( x y) , x 0, y 0
f (x, y)
0, 其它
问X和Y是否独立?
解
fX (x)
xe( x y)dy xe x ,
直接求面积
40
P(X <Y) =P(X >Y) =1/2
10
0 15
概率论
x y 5 xy5
45
x
xy
45
x
例3:设( X ,Y )服从二维正态分布,则X与Y相互独立 的充要条件是 0.
证明 : 先证充分性
若
1 0, f ( x, y)
21 2
概率论与数理统计:事件的独立性与相关性
0.4 0.5 0.3 0.6 0.5 0.3 0.6 0.5 0.7
0.36.
因为 A2 ABC ABC ABC , 得 P ( A2 ) P ( ABC ABC ABC )
P( A) P( B) P(C ) P( A) P( B) P(C ) P( A) P( B) P(C )
所以事件 A 与 B 不独立,即该校学生视力与听力
缺陷有关联.
(2)如果已知一学生视力有缺陷,那么他听力也有缺 陷的概率是多少?
) 这要求计算条件概率 P ( B A,由定义知
P ( AB) 0.03 1 P ( B A) P ( A) 0.30 10
(3)如果已知一学生听力有缺陷,那么他视力也有缺 陷的概率是多少? 类似地可算条件概率
则 P ( A) 0.4, P ( B) 0.5, P (C ) 0.7,
由于 A1 ABC ABC ABC ,
故得 P ( A1 ) P ( A) P ( B ) P (C ) P ( A) P ( B ) P (C ) P ( A) P ( B ) P (C )
故有
1 P ( AB ) P ( A) P ( B ) 4 , 1 P ( BC ) P ( B ) P (C ) , 4 P ( AC ) P ( A) P (C ) 1 , 4
则三事件 A, B, C 两两独立.
由于
1 1 P ( ABC ) P ( A) P ( B ) P (C ), 4 8
不能忽视小概率事件, 小概率事件迟早要发生
——
例5 甲、乙、丙三人同时对飞机进行射击, 三人 击中的概率分别为 0.4, 0.5, 0.7, 飞机被一人击中 而被击落的概率为0.2 ,被两人击中而被击落的概 率为 0.6 , 若三人都击中飞机必定被击落, 求飞机 被击落的概率. 解 设 Ai 表示有 i 个人击中飞机, A, B, C 分别表示甲、乙、丙击中飞机 ,
概率论与数理统计-基于R 第一章 第四节 事件的独立性
2. P(A|B)=P(A) 4. P(AB)=P(A)P(B)
定理1.3:若两事件A、B独立,则
A与B, A与B, A与B也相互独立.
证明:由已知A P(A-B) =P(A-AB)= P(A)- P(AB)
=P(A)- P(A)P (B) =P(A)[1- P (B)] =P(A) P (B).
(1)此密码能被译出的概率为
P( A B) P( A) P(B) P( AB) 0.55.
(2)密码恰好被一个人译出的概率为
P(AB AB) P(AB) P(AB)
P( A)P(B) P( A)P(B) 0.45.
二、多个事件的独立性
定义1.9对于三个事件A、B、C,若
课堂练习
1. 设A、B为互斥事件,且P(A)>0,P(B)>0,
下面四个结论中,正确的是:
1. P(B|A)>0 3. P(A|B)=0
2. P(A|B)=P(A) 4. P(AB)=P(A)P(B)
2. 设A、B为独立事件,且P(A)>0,P(B)>0,
下面四个结论中,正确的是:
1. P(B|A)>0 3. P(A|B)=0
n
n
P( A) 1 P Ak k1
1
k 1
P ( Ak )
1 (0.99)n
(2) P( A) 0.5 0.99n 0.5
n lg 2 2 lg 99
684.16.
例:有4个独立元件构成的系统(如图),设每个元 件能正常运行的概率为p,求系统正常运行的
由此可见两事件相互独立,但两事件不互斥.
14
若 P( A) 1 , P(B) 1
考研数学《概率论与数理统计》知识点总结
考研数学《概率论与数理统计》知识点总结引言《概率论与数理统计》是考研数学中的一个重要分支,它不仅要求学生掌握理论知识,还要求能够运用这些知识解决实际问题。
本文档旨在对《概率论与数理统计》的核心知识点进行总结,帮助考生系统复习。
第一部分:概率论基础1. 随机事件与样本空间随机事件:在一定条件下可能发生也可能不发生的事件。
样本空间:所有可能结果的集合。
2. 概率的定义古典定义:适用于有限样本空间,每个样本点等可能发生。
频率定义:长期频率的极限。
主观定义:基于个人信念或偏好。
3. 概率的性质非负性:概率值非负。
归一性:所有事件的概率之和为1。
加法定理:互斥事件概率的和。
4. 条件概率与独立性条件概率:已知一个事件发生的情况下,另一个事件发生的概率。
独立性:两个事件同时发生的概率等于各自概率的乘积。
5. 随机变量及其分布离散型随机变量:可能取有限个或可数无限个值。
连续型随机变量:可能取无限连续区间内的任何值。
分布函数:随机变量取值小于或等于某个值的概率。
第二部分:随机变量及其分布1. 离散型随机变量的分布概率质量函数:描述离散型随机变量取特定值的概率。
常见分布:二项分布、泊松分布、几何分布等。
2. 连续型随机变量的分布概率密度函数:描述连续型随机变量在某区间的概率密度。
常见分布:均匀分布、正态分布、指数分布等。
3. 多维随机变量及其分布联合分布:描述多个随机变量联合取值的概率。
边缘分布:从联合分布中得到的单一随机变量的分布。
条件分布:给定一个随机变量的条件下,另一个随机变量的分布。
第三部分:数理统计基础1. 数理统计的基本概念总体与样本:总体是研究对象的全体,样本是总体中所抽取的一部分。
统计量:根据样本数据计算得到的量。
2. 参数估计点估计:用样本统计量估计总体参数的单个值。
区间估计:在一定概率下,总体参数落在某个区间的估计。
3. 假设检验原假设与备择假设:研究问题中的两个对立假设。
检验统计量:用于决定是否拒绝原假设的量。
1-6概率论与数理统计
中找两个事件,它们既相 问:能否在样本空间Ω中找两个事件 它们既相 互独立又互斥? 互独立又互斥
φ 不难发现, 与任何事件既独立又互斥. 不难发现, 与任何事件既独立又互斥
φ A=φ
A
Ω
P( φ A) = 0 =P( φ )P(A)
前面我们看到独立与互斥的区别和联系, 前面我们看到独立与互斥的区别和联系, 练习 1.设A、B为互斥事件,且P(A)>0,P(B)>0, 设 为互斥事件, 为互斥事件 下面四个结论中,正确的是: 下面四个结论中,正确的是: A. P(B|A)>0 C. P(A|B)=0 B. P(A|B)=P(A) D. P(AB)=P(A)P(B)
性质 2 若 A, B 相互独立 , 则下列各对事件 , A 与 B , A 与 B , A 与 B 也相互独立 . 证明: 证明
先证 A 与 B 独立 .
因为 A = AB U A B 且 ( AB )( A B ) = ∅ , 所以 P ( A) = P ( AB ) + P ( A B ), 即 P( AB) = P( A) − P( AB).
则称 A1 , A2 ,L , An 为相互独立的事件 .
有兴趣的同学可以计算一下,上式中要成立的等式个数?
n 个事件相互独立
n个事件两两独立 个事件两两独立
下面我们来举一个右不能推出左的例子。 下面我们来举一个右不能推出左的例子。
伯恩斯坦反例 一个均匀的正四面体, 其第一面染成红色, 例 一个均匀的正四面体, 其第一面染成红色, 第三面染成黑色, 第二面染成白色 , 第三面染成黑色,而第四面同 时染上红、 黑三种颜色.现以 时染上红、白、黑三种颜色 现以 A , B,C 分别 , 记投一次四面体出现红、 黑颜色朝下的事件, 记投一次四面体出现红、白、黑颜色朝下的事件, 是否相互独立? 问 A,B,C是否相互独立 , , 是否相互独立 解 由于在四面体中红、 白、黑分别出现两面, 由于在四面体中红、 黑分别出现两面, 1 因此 P ( A) = P ( B ) = P ( C ) = , 2 1 又由题意知 P ( AB ) = P ( BC ) = P ( AC ) = , 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 概率论的基本概念
例7 如果构成系统的每个元件的可靠性均为r, 0<r<1.且各元件能否正常工作是相互独立的,试求 下列系统的可靠性:
n 1) 2)
3)
第一章 概率论的基本概念
解:1)每条通路要能正常工作,当且仅当该通路上的各 元件都正常工作,故可靠性为 Rc r n 2)通路发生故障的概率为 ,两条通路同时 n 2 ( 1 r ) . 故系统的可靠性为 发生故障的概率为 R s 1 (1 r n ) 2 r n (2 r n ) Rc (2 Rc )
2 2
1 1 1 当 p 时 , p2 p1 ; 当 p 时 , p2 p1 . 2 2 2 1 故当 p 时, 对甲来说采用五局三胜 制有利 . 2 1 当 p 时, 两种赛制甲最终获胜的 概率是 2 1 相同的, 都是 . 2
四、小结
1. A, B 两事件独立 P ( AB) P ( A) P ( B )
注意 三个事件相互独立 三个事件两两相互独立
伯恩斯坦反例 例3 一个均匀的正四面体, 其第一面染成红色, 第二面染成白色 , 第三面染成黑色,而第四面同 时染上红、白、黑三种颜色.现以 A , B,C 分别 记投一次四面体出现红、白、黑颜色朝下的事件, 问 A,B,C是否相互独立?
解 由于在四面体中红、 白、黑分别出现两面, 1 因此 P ( A) P ( B ) P ( C ) , 2 1 又由题意知 P ( AB ) P ( BC ) P ( AC ) , 4
“甲乙甲甲”,“乙甲甲甲”,“甲甲乙甲”; 由于这三种情况互不相容, 于是由独立性得 :
在五局三胜制下 ,甲最终获胜的概率为:
3 3 4 3 p2 p p (1 p) p (1 p)2 . 2 2
3
由于 p2 p1 p2 (6 p3 15 p2 12 p 3) 3 p ( p 1) (2 p 1).
由于AB =Φ,所以
P AB P 0
但是,由题设
P APB 0
所以, P AB P APB
这表明,事件 A 与 B 不相互独立. 互不相容与相互独立不能同时成立。
三事件两两相互独立的概念
定义 设 A, B , C 是三个事件, 如果满足等式 P ( AB ) P ( A) P ( B ), P ( BC ) P ( B ) P (C ), P ( AC ) P ( A) P (C ), 则称事件 A, B , C 两两相互独立 .
3
以 A 表示系统正常工作.
则有 A A1 A2 A3 A4 .
由事件的独立性 , 得系统的可靠性: P ( A) P ( A1 A2 ) P ( A3 A4 ) P ( A1 A2 A3 A4 ) P ( A1 ) P ( A2 ) P ( A3 ) P ( A4 ) P ( A1 ) P ( A2 ) P ( A3 ) P ( A4 ) p1 p2 p3 p4 p1 p2 p3 p4 .
0.41.
由 A3 ABC ,
得 P ( A3 ) P ( ABC )
P ( A) P ( B ) P (C )
0.4 0.5 0.7 0.14.
因而,由全概率公式得飞机被击落的概率为
P 0.2 0.36 0.6 0.41 1 0.14
0.458.
P( A1 ) P( A2 ) P( A3 ) P( A4 )
p p p 2p p .
2 2 4 2 4
例10
甲、乙两人进行乒乓球 比赛, 每局甲胜的
概率为 p (p 1 2) , 问对甲而言, 采用三局二胜制 有利, 还是采用五局三胜制有 利 . 设各局胜负相 互独立.
解 采用三局二胜制 , 甲最终获胜,
胜局情况可能是 :
“甲甲”, “乙甲甲”,
“甲乙甲”;
由于这三种情况互不相容,
于是由独立性得甲最终 获胜的概率为 :
p1 p2 2 p2 (1 p).
采用五局三胜制 ,甲最终获胜, 至少需比赛 3 局,
且最后一局必需是甲胜 , 而前面甲需胜二局.
例如, 比赛四局, 则甲的胜局情况可能是:
则 P ( AB) P ( A) P ( B ).
由此可见两事件相互独立,但两事件不互斥.
1 1 若 P ( A) , P ( B ) 2 2
则 P ( AB) 0,
1 P ( A) P ( B ) , 4
B A
故 P ( AB) P ( A) P ( B ) .
由此可见两事件互斥但不独立.
一个元件(或系统)能正常工作的概率称为 例6 元件(或系统)的可靠性. 如图所示, 设有 4 个独立 工作的元件 1, 2, 3, 4 按先串联再并联的方式 联结 ( 称为串并联系统) , 设第 i 个元件的可靠性为 pi ( i 1, 2, 3, 4 ) . 试求系统的可靠性.
1 2 4
解 以 Ai (i 1,2,3,4) 表示事件第i 个元件正常工作 ,
0.4 0.5 0.3 0.6 0.5 0.3 0.6 0.5 0.7
0.36.
因为 A2 ABC ABC ABC , 得 P ( A2 ) P ( ABC ABC ABC )
P( A) P( B) P(C ) P( A) P( B) P(C ) P( A) P( B) P(C )
A, B 相互独立 A 与 B, A 与 B , A 与 B相互独立.
因此 A,B,C 不相互独立.
第一章 概率论的基本概念
射击问题
例4 设每一名机枪射击手击落飞机的概率都是0.2,若 10名机枪射击手同时向一架飞机射击,问击落飞机的 概率是多少?
解 设事件 Ai 为“第 i 名射手击落飞机” ,
事件 B 为“击落飞机”,
i 1,2,,10.
则 B A1 A2 A10 ,
故有
1 P ( AB ) P ( A) P ( B ) 4 , 1 P ( BC ) P ( B ) P (C ) , 4 P ( AC ) P ( A) P (C ) 1 , 4
则三事件 A, B, C 两两独立.
由于
1 1 P ( ABC ) P ( A) P ( B ) P (C ), 4 8
A, B , C 三个事件相互独立 P ( AB ) P ( A) P ( B ), P ( BC ) P ( B ) P (C ), P ( AC ) P ( A) P (C ), P ( ABC ) P ( A) P ( B ) P (C ). 2. 重要结论
三事件相互独立的概念
定义 设 A, B , C 是三个事件, 如果满足等式 P ( AB ) P ( A) P ( B ), P ( BC ) P ( B ) P (C ), P ( AC ) P ( A) P (C ), P ( ABC ) P ( A) P ( B ) P (C ), 则称事件 A, B , C 相互独立 .
P ( B ) P ( A1 A2 A10 )
1 P ( A1 A2 A10 ) 1 P( A1 A2 A10 ) 1 P ( A1 ) P ( A2 ) P ( A10 )
1 (0.8)10 0.893.
例5 甲、乙、丙三人同时对飞机进行射击, 三人 击中的概率分别为 0.4, 0.5, 0.7, 飞机被一人击中 而被击落的概率为0.2 ,被两人击中而被击落的概 率为 0.6 , 若三人都击中飞机必定被击落, 求飞机 被击落的概率. 解 设 Ai 表示有 i 个人击中飞机, A, B, C 分别表示甲、乙、丙击中飞机 ,
则 P ( A) 0.4, P ( B) 0.5, P (C ) 0.7,
由于 A1 ABC ABC ABC ,
故得 P ( A1 ) P ( A) P ( B ) P (C ) P ( A) P ( B ) P (C ) P ( A) P ( B ) P (C )
n n ' n 2 时 , ( 2 r ) 2 r , 即 R s Rs . 由数学归纳法可证明当
第一章 概率论的基本概念
例 8 设有电路如图,其中 1, 2, 3, 4 为继电器接点。 设各继电器接点闭合与否相互独立,且每一个继电 器接点闭合的概率均为 p。求 L至 R 为通路的概率。 解 : 设事件 Ai( i=1,2,3,4 ) 为“第 i 个继电器 接点闭合”, L 至 R 为通路这一事件可表示为:
第一章 概率论的基本概念
设事件 A 与 B 满足:
P APB 0
若事件 A 与 B 相互独立,则 AB≠Φ;
若 AB =Φ,则事件 A 与 B 不相互独立.
证明: 由于事件 A 与 B 相互独立,故
P AB P APB 0
所以,AB
第一章 概率论的基本概念
n 1 r
Rc 1, R s Rc.
即附加通路可使系统可靠性增加。
' 2 R 1 ( 1 r ) r (2 r ) 3)每对并联元件的可靠性为
系统由每对并联的元件串联组成,故可靠性为
' ' Rs ( R ' ) n r n (2 r ) n Rc (2 r ) n . 显然 Rs Rc.
A A1 A2 A3 A4 .
L
1 3
2 4
R
第一章 概率论的基本概念
由和事件的概率公式及 A1, A2, A3, A4的相互独 立性,得到