数学物理方法姚端正CH3 作业解答
数学物理方法姚端正CH作业解答.doc
数理方法CH3 作业解答P51习题3.21. 确定下列级数的收敛半径:∞kk(2)∑kz=12k∞(4)∑(k =0k + a )k z kk z k∞kk解:(2)∑kz k=12a k k +1 2k收敛半径为:R lim | | lim | /( ) | lim 2k= = = =k k+1→a 2 2 k +1→∞k ∞k →k ∞ k+1 ∞(4)∑(kk= 0 + a ) k z kk z kka k + ak解:收敛半径为:R lim | | lim | |若|a |≤1,则= = k+1k →a (k +1) + a∞k→∞k +1kk a+lim |→k∞+k (k 1) a+|1=+1若| a |> 1,则k k 1 k - 2-罗比塔法则k a 1 ka k(k 1)a 1罗比塔法则+ + -lim | | lim | | lim | |= =k =k k→∞k +1 k k ka k - 1 a(k 1) a 1 (k 1)a ( 1) |→∞+ + ++→∞+|∞k2.∑akz 的收敛半径为R (0 ≤R < ∞) ,确定下列级数的收敛半径:k=1∞(1)∑kk= 0 n a zkknk a k a k ak n k n k解:) | lim | |收敛半径为:lim | ) |= lim | ( ) | ?| |= lim | ( ?nk (k 1) a k +1 a k 1 a+ + k →∞k k →∞→∞k →∞k+1 k +1 +1kn 而lim |( ) |=1k k +1→∞limk→∞|akak+1|= R所以,所求收敛半径为RP55习题3.311.将下列函数在 z = 0 点展开成幂级数,并指出其收敛范围:(1)(1- 1 z)2解 : 解法之一 : 利用多项式的乘法 :1∞k已知 ∑= z1- z 0k=| z |< 1,(1 1 - 2 z)=∞ ∞kz k(∑0) ?∑z (k = k =0)= 1+ 2z +2 + 3+ + + k+ 3z 4z ... (k 1)z...=∞(∑k= 0k k+1)z解法之二:逐项求导: (1 1 1 = ( )' 2 z - z) 1- 1 则 = 2(1- z)( ∞ ∞ k kz k- 12+ 3 + + k - 1 +z )' 1 2 3 4 ... ...= ∑ = = + z + z z kz∑k =0 k =1由于(1- 1 2 z)在复平面内有唯一的奇点 z =1 ,它与展开中心的距离为1,故该级 数的收敛范围为| z |< 1 (2) 1 az+b k1 a1 1 ∞a ∞ k k k z k解: ∑ ∑= = (- 1) ( z) = (- 1)a k +1 az +b b b 0 b b(1+ z) bk =0 k =a 收敛范围:|z|<1bb 即|z|<||a(5)1+1z+ 2z解:1+11-z1z==-213133 z+z1-z-z-z令1∞3t=z,则∑=t1-t0k=k,故211 ∞3k= z∑3- z 0k =z31- z= ∞3kz∑k= 0+11∞∞3k 3k+1所以,= z ∑- z 收敛范围为| z|<11+ + zz ∑2k =0 k =02. 将下列函数按(z- 1) 的幂展开,并指明其收敛范围:(1)cosz解:cosz = cos[(z - 1) +1] = cos(z - 1) cos1 - sin(z - 1) sin 1=k 2k k 2k∞(- 1) (z - 1) ∞- z 1)( 1) ( -cos1 - sin1∑∑= (2k )! (2k + 1)!k 0 k =0+1收敛范围:| z- 1 |< ∞3.应用泰勒级数求下列积分:sinz (3)=∫Siz0 z zdz解:利用正弦函数的泰勒展开式:sink 2k +1∞(- 1) zz = ,得到∑(2k + 1)!k =0sinzz=k 2k∞(- 1) z∑= (2k + 1)!k 0则k 2k k 2k k 2k +1sin z (- 1) z (- 1) z (- 1) z∞∞∞z z zdz = dz= dz=∫∫∑∑∫∑0 z )! (2 1)!(2 1)0 = ( + 1)! ( k k + k +2k 0 2 +1k 0 k =0 k= 04.函数α(1+ z) 在α不等于整数时是多值函数,试证明普遍的二项式定理:(1( - 1) ( )( 2)2 + - 1 - +αααααααα3+ z) =1 [1+ z+ z z1! 2! 3!...]式中,α为任意复数;αe iαkπ21 =解:(1 + z)α= α( 1+Ln 1 eα[ln( + + e e+ = 1 z 2kπ] = ?z ) i α) iα2 ln(kπez)下面将α在z < 1中作泰勒展开:ln(1+ z)e∞α+z = a z ,其中,ln( 1 ) k记∑f (z) = ekk= 0 ak=f (k ) (0)k!f '(z) = αα+ αln(1 z) f ze = ( )1+ z 1+ z①? f ' (0) = α同时由①式有:(1+ z) f '(z) = αf (z) ②将②式两边再对z求导:(1+ z) f ''( z) + f '( z) = αf ' (z) 得到(1+ z) f ''(z) = (α- 1) f '( z) ③3得f '' (0) = α(α- 1)将③式两边再对z求导得:(1 ( z f z f z ( z f z3) 3)+ z) f ( ) + ''( ) = (α- 1) ''( ) 得到(1+ z) f ( ) = (α- 2) ''( )( 3 = αα- α-)得(0) ( 1) ( 2)f( k =αα- α- α- k +)以此类推,得(0) ( 1)( 2)...( 1)f( k)f (0) 1= = ( - 1) ( - 2)...( - k +1)则akααααk! k!所以∞∞∞1ln( z a z a z1 ) k kα+ = = ke ∑∑( 1) ( 2)...( k 1)z= ∑αα- α- α- + k k k!k 0 k 0 k =0= =∞则kαiα2kπ1+ ∑= αααα(1 z) e ( - 1)( - 2)...( - k +1)zk!k=0( - 1) ( 1)( 2)2 + - - + αααααα3αz <1 = 1 [1+ z+ z z ...]1! 2! 3!5.将Ln(1+ z)在z = 0 的邻域内展开为泰勒级数。
数学物理方法123章作业解答
另:()y x u u ,=,()y x v v ,=,⎩⎨⎧==ϕρϕρsin ,cos y xϕϕρρρsin cos yu xu y y u x x u u ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂ρϕϕϕϕϕρϕρρϕϕρϕρ∂∂=∂∂+∂∂=∂∂+∂∂-=⎪⎪⎭⎫⎝⎛∂∂+-∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=∂∂u x u y u y v xv yv x v y y v x x v vcos sin cos sin cos )sin (111 ϕϕρρρsin cos yv xv y y v x x v v ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂ρϕϕϕϕϕρϕρρϕϕρϕρ∂∂-=∂∂-∂∂-=∂∂+∂∂-=⎪⎪⎭⎫⎝⎛∂∂+-∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=∂∂v xv y v yu xu yu x u y y u x x u ucos sin cos sin cos )sin (111所以,有⎪⎪⎩⎪⎪⎨⎧∂∂-=∂∂∂∂=∂∂ρϕρϕρρv u v u 11 第18页第2题第27页 指出下列多值函数的支点及其阶。
(1))(a z -解:根式的可能支点是∞点和根式内多项式的零点,现在来逐个考察这些点的性质。
①az =:在此点的邻域内任取一点111φρi ea z +=(11<<ρ),则有211)(φφρρii eea z ==-当保持1ρ不变 πφφ211+→(绕az =一周)时,有2121221)(φπφπφρρρiiie eea z ≠==-++,当保持1ρ不变 πφπφ4211+→+(再绕az =一周)时,有212212221)(φπφππφρρρii ieeea z ===-+++,因此az =是一阶支点。
②∞=z :令tz 1=,tat a z -=-1)(,在0=t邻域内任取一点222φρi e z =,(12<<ρ),2222222111)(φφφρρρii i ee ea tat a z -≈-=-=-当t 绕0=t 一周回到原点时,22222211φπφρρiiee-+-≠当t 再绕0=t一周回到原点时,22222211φππφρρiiee-++-=因此0=t即∞=z 是)(a z -的一阶支点。
姚端正《数学物理方法》(第三版)部分勘误表
姚端正《数理方法》(第三版)勘误表(部分)P9,“(3)若()f x 在闭区域……”应更正为“(3)若()f z 在闭区域……”P33,中部“任意一条分段光滑的曲线”应更正为“任意一条分段光滑的封闭曲线” P66,习题3.5第2(2)题:“0||z b R <-<”应更正为“||z b R -<”P85,倒数第6行、第7行“1res ()n k f z =∑”应更正为“1res ()nkk f z =∑” P86,例3的计算过程中“||1a <”应更正为“01a <<”,但计算结果仍然对“||1a <”范围成立,即该例题的讨论过程不够完整。
P87,第10行“d[(π)]θ--”应更正为“d(π)θ-”P88,第4行“如图5.4”应更正为“如图5.4(b )”;第4题需补充条件:01x <<;第5题:“适当围道计算”应更正为“适当围道(图5.4(a ))计算”。
P107,第3行“稳定状态”应更正为“稳恒状态”;“则热量将停止流动”应去掉这段文字。
倒数第3行“F 为单位长度……”应更正为“F 为单位体积……”P108,第6行“通过介面”应更正为“单位时间通过介面”P111,第6行“k h E =”应更正为“k h EA =” P120,第1行“//at x a cat x a c ++--⎰ ”应准确写为“()/()()/()at x a c at x a c ++--⎰ ”P121,第4-5行“则在τ∆这段时间内”应更正为“则在τ∆这段时间以后”;第6行“t τττ<<+∆”应更正为“t τ<”P124,第4大题中“()x ψ”应更正为“(,)x y ψ”;“()x ϕ”应更正为“(,)x y ϕ”;解的表达式应更正为()01(,,)2π1 d 2πM M at at M a t t u x y t a t a τσσστ-⎡⎤∂=+⎢∂⎢⎣⎡⎤+⎢⎢⎣⎰⎰⎰⎰⎰⎰⎰P146,第2行“I 2I u xx u a u =”应更正为“I 2I tt xx u a u =” P271,第1行“2(2)(1)lim lim 1(1)(1)k k k k c k k R c l l k k →∞→∞+++===+-+”应更正为“1k k R ===” P274,习题14.1第2题“0y xy ''-=”应更正为“0y xy ''-=” P280,习题14.2第6题“介电常数为ε”应更正为“相对介电常数为ε”P286,习题14.3第3题(1)”部分习题答案勘误第一篇习题 3.22 (3)k R 应更正为n R ;第二篇习题 6.36 两端受压:“00(2)0t t t u l x u ε==⎧=-⎪⎨=⎪⎩”应更正为“0020t t t u x u ε==⎧=-⎪⎨=⎪⎩” 习题 7.22(3)2132at axt +应更正为2132t xt +; 习题 8.13(3)“…224(21)πek -+…”应更正为“…224(21)πe k t -+…”; 4 1π()sin n n n x a T t l ∞=∑应更正为1π()sin n n n n x a T t l ∞=∑; 10 “...4616πAb ...”应更正为“ (4)664πAb …” 习题 8.23(1)另一形式的答案:32223212(1)ππ()cos sin 6(π)n n A Al n at n x u x l x a n a l l ∞=-=-+∑。
数学物理方法课后答案 (2)
2
2+ 4 i
1+i
[( x 2 − y 2 ) + 2ixy ](dx + idy )
86 − 6i 3
= ∫ [ x 2 − (3 x − 2) 2 + 2ix(3 x − 2)](1 + 3i ) dx = −
(3)沿1 + i 到 2 + i ,再到 2 + 4i 的折线。
I =∫
2 1
2+ 4 i
L
∫ ∫
L
f (ξ )[
f (ξ ) Δ z ∫ L (ξ − z ) 2 (ξ − z − Δ z ) d ξ
ξ − z ( ξ − z − Δz )
2
d ξ , 现 在 讨 论 能 否 找 到 δ ( ε ), 使 当 Δ z < δ 时 d ,同 时 将 2
上 式 成 立 。 因 本 题 是 讨 论 Δ z → 0时 的 积 分 极 限 , 不 妨 令 Δ z < min z − ξ = d 代 入 有 Δ I ≤ δ
4 4 1 1 0 0
I3 = ∫ {[2(t2 + 3) + (2t)2 ]2dt + [3(2t)-(t2 + 3)]2tdt} = ∫ (24t 2 + 12 − 2t 3 − 6t )dt =
数学物理方法习题解答(完整版)
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()000000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z zz z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】 3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 332222220(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
高中物理物理解题方法:数学物理法习题知识点及练习题含答案
高中物理物理解题方法:数学物理法习题知识点及练习题含答案一、高中物理解题方法:数学物理法1.如图,在长方体玻璃砖内部有一半球形气泡,球心为O ,半径为R ,其平面部分与玻璃砖表面平行,球面部分与玻璃砖相切于O '点。
有-束单色光垂直玻璃砖下表面入射到气泡上的A 点,发现有一束光线垂直气泡平面从C 点射出,已知OA =32R ,光线进入气泡后第一次反射和折射的光线相互垂直,气泡内近似为真空,真空中光速为c ,求: (i )玻璃的折射率n ;(ii )光线从A 在气泡中多次反射到C 的时间。
【答案】(i )3n =;(ii )3t R c= 【解析】 【分析】 【详解】(i )如图,作出光路图根据折射定律可得sin sin n θα=① 根据几何知识可得3sin OA R θ==② 90αθ+=︒ ③联立解得3n =玻璃的折射率为3。
(ii )光从A 经多次反射到C 点的路程322R Rs R R R =+++=⑤ 时间st c=⑥ 得3t R c=光线从A 在气泡中多次反射到C 的时间为3R c。
2.如图所示,身高h =1.7 m 的人以v =1 m/s 的速度沿平直路面远离路灯而去,某时刻人的影长L 1=1.3 m ,2 s 后人的影长L 2=1.8 m .(1)求路灯悬吊的高度H .(2)人是远离路灯而去的,他的影子的顶端是匀速运动还是变速运动? (3)在影长L 1=1.3 m 和L 2=1.8 m 时,影子顶端的速度各是多大? 【答案】(1)8.5m (2)匀速运动(3)1.25/m s 【解析】 【分析】(1)匀匀速运动,画出运动图景,结合几何关系列式求解; (2)(3)根据比例法得到影子的顶端的速度的表达式进行分析即可. 【详解】(1)画出运动的情景图,如图所示:根据题意,有:CD=1.3m EF=1.8m CG=EH=1.7m ;CE=vt=2m ;BF=BC+3.8m 根据几何关系:1.3CG CDAB BC +=3.8EH EFAB BC += 可得:H=AB=8.5m ;(2)设影子在t 时刻的位移为x ,则有: x vt hx H-=, 得:x=HH h-vt , 影子的位移x 是时间t 的一次函数,则影子顶端是匀速直线运动; (3)由(2)问可知影子的速度都为v′= x Hv tH h=-=1.25m/s ; 【点睛】本题关键是结合光的直线传播,画出运动的图景,结合几何关系列式分析,注意光的传播时间是忽略不计的.3.在地面上方某一点分别以和的初速度先后竖直向上抛出两个小球(可视为质点),第二个小球抛出后经过时间与第一个小球相遇,要求相遇地点在抛出点或抛出点以上,改变两球抛出的时间间隔,便可以改变值,试求(1)若,的最大值 (2)若,的最大值【答案】(1)(2)22212v v v t g g-∆=-【解析】 试题分析:(1)若,取最大值时,应该在抛出点处相遇 ,则最大值(2)若,取最大值时,应该在第一个小球的上抛最高点相遇,解得,分析可知,所以舍去最大值22212v v v t g -∆=-考点:考查了匀变速直线运动规律的应用【名师点睛】本题的解题是判断并确定出△t 取得最大的条件,也可以运用函数法求极值分析.4.如图所示,一质量为M ,半径为R 的半圆圈,竖直放置于水平面上(假定圆圈不倒下,也不能沿水平面滑动).一质量为m 的小圆环套在大圆圈上,并置于顶端.现在小圆环以近于0的初速度沿大圆圈向右端无摩擦地滑下.问:小圆环滑至什么位置(用角度表示)可使得半圆圈右端A 点与水平面间的压力为零?并讨论此题若有解,需满足什么条件?(结果可用三角函数表达)【答案】小圆环下滑至与竖直成θ角,在3m M ≥的条件下有解,13cos 113M m θ⎛=- ⎝.【解析】 【分析】 【详解】设小圆环下滑至与竖直成θ角时,半圆圈右端A 点与水平面间的压力为零,由机械能守恒定律可得21cos 2mgR mgR mv θ=+.由牛顿第二定律可得 2cos mv mg N Rθ+=. 由此得11cos cos 22mgR mgR mgR NR θθ=++,即(23cos )N mg θ=-.对半圆圈有cos MgR NR θ=, 由此解得3221cos M m m m θ±-=.显然,在3m M ≥的条件下有解,考虑到余弦函数的特点,其大小为13cos 113M m θ⎛=- ⎝.5.水平射程:x =v 0t =v 0,即水平射程与初速度v 0和下落高度h 有关,与其他因素无关.6.如图所示,O 点离地面高度为H ,以O 点为圆心,制作一个半径为R 的四分之一光滑圆弧轨道,小球从与O 点等高的圆弧最高点A 从静止滚下,并从B 点水平抛出,试求:(1)小球落地点到O 点的水平距离.(2)要使这一距离最大,应满足什么条件?最大距离为多少? 【答案】(1)2()R H R (2)R=,s max =H【解析】试题分析:(1)小球在圆弧上滑下过程中受重力和轨道弹力作用,但轨道弹力不做功,即只有重力做功,机械能守恒,可求得小球平抛的初速度v 0. 根据机械能守恒定律得mgR=设水平距离为s ,根据平抛运动规律可得s=.(2)因H 为定值,则当R=H-R ,即R=时,s 最大,最大水平距离为s max ==H考点:圆周运动、平抛运动点评:本题考查了通过平抛运动和圆周运动,将两个物理过程衔接,并通过数学技巧求出相关物理量.7.在考古中为了测定古物的年代,可通过测定古物中碳14与碳12的比例,其物理过程可简化为如图所示,碳14与碳12经电离后的原子核带电量都为q ,从容器A 下方的小孔S 不断飘入电压为U 的加速电场,经过S 正下方的小孔O 后,沿SO 方向垂直进入磁感应强度为B 、方向垂直纸面向外的匀强磁场中,最后打在相机底片D 上并被吸收。
数学物理方法答案(完整版)
高等数学 第四册(第三版) 数学物理方法 答案(完整版)第七章 一维波动方程的傅氏解1. 今有一弦,其两端被钉子钉紧,作自由,它的初位移为: 2.(01)()(2)(12)hx x x h x x ϕ≤<⎧=⎨-≤≤⎩,初速度为0,试求其付氏解,其中h 为已知常数。
解:所求问题是一维波动方程的混合问题:2(12,0)(0,)(,)0(0)(01)(,0)(2)(12)(,0)0tt xx t u a u x t u t u l t t hx x u x h x x u x ⎧=<<>⎪==≥⎪⎪≤≤⎧⎨=⎨⎪-≤≤⎩⎪⎪=⎩,根据前面分离变量解法得其傅氏解为:1(,)(cossin )sin n n n n at n at n xu x t C D l l l πππ∞==+∑。
其中,122201228()sin [sin (2)sin ]222l n n n n hC d h d h d l l n πξπξπξϕξξξξξξπ==+-=⎰⎰⎰,0n D =,于是所求傅氏解为:2218(,)cos sin n h n at n xu x t n l l πππ∞==∑2.将前题之初始条件改为:(1)(10)()(1)(01)h x x x h x x ϕ+-≤≤⎧=⎨-≤≤⎩,试求其傅氏解。
解:所求问题为一维波动方程的混合问题:211((1)sin (1)sin n n l l l h d h d πξπξξξξξ--=++-⎰⎰n c 012222211(sinsinsin )n n n h d d d πξπξπξξξξξ--=++⎰⎰⎰2282sin h n n ππ=22821(,)sin cossinh n n at n x lln n u x t ππππ∞=∴=∑。
3今有一弦,其两端0x =和x l =为钉所固定,作自由摇动,它的初位移为0。
初速度为[](2()0(2,c x x x βϕβ≤≤⎧=⎨∉⎩,其中c 为常数,0,l αβ<<<试求其傅氏解。
数学物理方法姚端正CH3 作业解答
= ∑ ak z k , 其中, ak =
k =0
∞
f ( k ) (0) k!
① ②
f '( z) =
α α ln(1+ z ) α e = f ( z) 1+ z 1+ z
⇒
f ' (0) = α
同时由①式有: (1 + z ) f ' ( z ) = αf ( z ) 将②式两边再对 z 求导: (1 + z ) f ' ' ( z ) + f ' ( z ) = αf ' ( z )
∞ 1 ∞ 1 1 1 1 1 1 = = ⋅( = )= ∑ ∑ k k +1 z ( z + 1) − 1 z + 1 1 − 1 z + 1 k = 0 ( z + 1) k = 0 ( z + 1) z +1
其中,
1 1 1 1 1 ∞ ( z + 1)k ∞ ( z + 1) k = = ⋅ = ⋅∑ = ∑ k +1 1 − z 2 − ( z + 1) 2 1 − z + 1 2 k = 0 2 k k =0 2 2 f ( z) =
k →∞
lim |
k + ak |= 1 ( k + 1) + a k +1
若 | a |> 1 ,则
lim |
罗比塔法则 k + ak k ( k − 1) a k − 2 1 + ka k −1 罗比塔法则 1 = = | lim | | lim | |= k +1 k k −1 → ∞ → ∞ k k ( k + 1) + a 1 + (k + 1)a ( k + 1) ka |a|
数学物理方法姚端正CH3 作业解答
k →∞
k →∞
所以,所求收敛半径为 R
P55 习题 3.3
1
1.将下列函数在 z = 0 点展开成幂级数,并指出其收敛范围: (1) 1 (1 − z ) 2
解:解法之一:利用多项式的乘法: 已知
∞ 1 = ∑ zk 1 − z k =0
| z |< 1 ,
∞ ∞ 1 k = ( z ) ⋅ ( zk ) ∑ ∑ 2 (1 − z ) k =0 k =0
k →∞
lim |
k + ak |= 1 ( k + 1) + a k +1
若 | a |> 1 ,则
lim |
罗比塔法则 k + ak k ( k − 1) a k − 2 1 + ka k −1 罗比塔法则 1 = = | lim | | lim | |= k +1 k k −1 → ∞ → ∞ k k ( k + 1) + a 1 + (k + 1)a ( k + 1) ka |a|
收敛范围: | (5)
a z |< 1 b
即 | z |<|
b | a
1 1 + z + z2 1 1− z 1 z 解: = − = 2 3 3 1+ z + z 1− z 1 − z 1 − z3 令 t = z 3 ,则
∞ 1 = ∑t k , 1 − t k =0
故
2
∞ 1 = ∑ z 3k 1 − z3 k =0
数理方法 CH3 作业解答 P51 习题 3.2
1. 确定下列级数的收敛半径: (2) ∑ k k z k k =1 2 k k z k k =1 2 ak k k +1 2k |= lim | k /( k +1 ) |= lim =2 k →∞ k + 1 a k +1 k → ∞ 2 2
数学物理方法姚端正CH 作业解答
度为 s = πr = π . 在该路径上, x = r cosθ , y = r sin θ , 则
| f (z) |= x4 + y4 = r4 (cos4 θ + sin 4 θ ) = r2 (sin 2 θ + cos2 θ )2 − 2sin 2 θ cos2 θ
= r2 (sin 2 θ + cos2 θ )2 − 1 sin 2 2θ = r2 1 − 1 sin 2 2θ ≤ 1
1− n
1− n
P38 习题 2.2: 1.计算积分:
∫l
(
z
−
dz a)(z
−
b)
l 是包围 a 、 b 两点的围线。
解法之一:
(z
−
1 a)(z
−
b)
在
l
内有两个奇点, z
=
a
和
z
=
b
。在
l
内作小圆
l1
包围
a
,作小圆 l2
包围 b ,则由复通区域的柯西定理知:
∫ ∫ ∫ dz
dz
dz
=
+
l (z − a)(z − b) l1 (z − a)(z − b) l2 (z − a)(z − b)
z)3
dz
=
1 2πi
l0
ez z(1 −
z)3
dz
+
1 2πi
l1
ez z(1 −
z)3
dz
其中,
ez
∫ ∫ 1
2π i
l0
ez z(1 −
z)3
dz
=
1 2πi
l0
(1
数学物理方法姚端正CH 作业解答
数理方法CH3作业解答P51习题3.21. 确定下列级数的收敛半径:(2)∑∞=12k kk z k (4)∑∞=+0)(k k k z a k解:(2)∑∞=12k kkz k 收敛半径为:212lim |)21/(2|lim ||lim 11=+=+==∞→+∞→+∞→k k k k a a R k k k k k k k (4)∑∞=+0)(k k k z a k解:收敛半径为:|)1(|lim ||lim 11+∞→+∞→+++==k kk k k k a k a k a a R 若1||≤a ,则1|)1(|lim 1=++++∞→k kk a k a k 若1||>a ,则||1|)1()1(|lim |)1(11|lim |)1(|lim 1211a ka k a k k a k ka a k a k k k k k k k k k k =+−=+++=+++−−∞→−∞→+∞→罗比塔法则罗比塔法则2.∑∞=1k k k z a 的收敛半径为R )0(∞<≤R ,确定下列级数的收敛半径:(1)∑∞=0k k k n z a k解:||lim |)1(|lim |||)1(|lim |))1(|lim 111+∞→∞→+∞→+∞→⋅+=⋅+=+k k k n k k k n k k n k n k a a k k a a k k a k a k 收敛半径为:而 1|)1(|lim =+∞→n k k k R a ak k k =+∞→||lim 1所以,所求收敛半径为RP55习题3.31.将下列函数在0=z 点展开成幂级数,并指出其收敛范围: (1)2)1(1z − 解:解法之一:利用多项式的乘法:已知 ∑∞==−011k k z z 1||<z ,=−2)1(1z )()(00∑∑∞=∞=⋅k kk k z z ...)1(...432132+++++++=k z k z z z ∑∞=+=0)1(k k z k解法之二:逐项求导: 11()1(12zz −=−则=−2)1(1z ==∑∑∞=−∞=110)'(k k k k kz z (43211)32++++++=−k kz z z z 由于2)1(1z −在复平面内有唯一的奇点1=z ,它与展开中心的距离为1,故该级数的收敛范围为1||<z (2)baz +1解:∑∑∞=+∞=−=−=+=+010)1()()1(1)1(11k k k k k k k k z b a z b a b z ba b b az 收敛范围:1||<z b a 即||||ab z < (5)211z z ++ 解:33321111111z zz z z z z −−−=−−=++令3z t =,则 ∑∞==−011k k t t , 故∑∞==−03311k kz z =−31z z ∑∞=+013k k z所以,=++211z z ∑∞=03k kz∑∞=+−013k k z 收敛范围为1||<z2. 将下列函数按)1(−z 的幂展开,并指明其收敛范围: (1)z cos解:1sin )1sin(1cos )1cos(]1)1cos[(cos −−−=+−=z z z z∑∑∞=+∞=+−−−−−=01202)!12()1()1(1sin )!2()1()1(1cos k k k k k k k z k z 收敛范围: ∞<−|1|z3.应用泰勒级数求下列积分: (3)∫=zdz z zSiz 0sin解:利用正弦函数的泰勒展开式:∑∞=++−=012)!12()1(sin k k k k z z ,得到 z zsin ∑∞=+−=02)!12()1(k k k k z 则 ∑∑∫∫∑∫∞=+∞=∞=++−=+−=+−=0120020020)12()!12()1()!12()1()!12()1(sin k k k k z k k z k k k zk k z dz k z dz k z dz z z 4.函数α)1(z +在α不等于整数时是多值函数,试证明普遍的二项式定理:...]!3)2)(1(!2)1(!11[1)1(32+−−+−++=+z z z z αααααααα 式中,α为任意复数;πααk i e 21=解: )1ln(2]2)1[ln()1()1(z k i k i z z Ln e e e e z ++++⋅===+απαπααα 下面将)1ln(z e +α在1<z 中作泰勒展开:记∑∞=+==0)1ln()(k kk z z a ez f α, 其中,!)0()(k f a k k =)(11)(')1ln(z f ze z zf z +=+=+ααα ① ⇒ α=)0('f同时由①式有: )()(')1(z f z f z α=+ ② 将②式两边再对z 求导:)(')(')('')1(z f z f z f z α=++ 得到 )(')1()('')1(z f z f z −=+α ③得)1()0(''−=ααf将③式两边再对z 求导得:)('')1()('')()1()3(z f z f z f z −=++α 得到)('')2()()1()3(z f z f z −=+α得 )2)(1()0()3(−−=αααf以此类推,得 )1)...(2)(1()0()(+−−−=k f k αααα则!)0()(k f a k k =)1)...(2)(1(!1+−−−=k k αααα所以∑∑∞=∞=+==)1ln(k kk k kk z z a z a eαk k z k k )1)...(2)(1(!1+−−−=∑∞=αααα 则k k k i z k k e z )1)...(2)(1(!1)1(02+−−−=+∑∞=ααααπαα...]!3)2)(1(!2)1(!11[132+−−+−++=z z z ααααααα 1<z5.将)1(z Ln +在0=z 的邻域内展开为泰勒级数。
武汉大学姚端正报告——浅谈数学物理方法的学习共54页
Wuhan University
一、本课程的内容和特点
对物理问题的处理,通常需要三个步骤: ➢ 利用物理定律将物理问题翻译成数学问题; ➢ 解该数学问题,其中解数学物理方程占有很 大的比重,有多种解法; ➢ 将所得的数学结果翻译成物理,即讨论所得 结果的物理意义。
Wuhan University
二、数学物理方法在物理学中的地位
1.数理方法是物理学科的重要基础课 2.数理方法是进行基础研究的重要工具 3.数理方法是培养学生逻辑思维能力和 创造思维能力的重要课程
“金钱如粪土,朋友值千金” “朋友如粪土”
Wuhan University
二、数学物理方法在物理学中的地位
3.数理方法是培养学生逻辑思维能力和 创造思维能力的重要课程
1.数理方法是物理学科的重要基础课
数理方法是普通物理与四大力学的“粘合剂”
力学
热学
电学
原子物理
理力
热统
Wuhan University
电动
量子力学
二、数学物理方法在物理学中的地位
1.数理方法是物理学科的重要基础课
数理方法是普通物理与四大力学的“粘合剂”
力学
热学
电学 原子物理
数学物理方法
理力
热统
数理方法是普通物理与四大力学的“粘合剂” 数理方法是学习专业课的奠基石
材料物理: 热处理 热传导方程 光学、电子科技: 电磁波传播 波动方程
理论物理: 稳恒场 泊松方程
基础课与专业课的关系:
“这好比一把斧头,基础是斧背,专业是斧刃。 斧背要厚,斧刃要尖,这样的斧头才会锋利无比”。
武汉大学姚端正报告——浅谈数学物理方法的学习
四大力学
理论力学 热 统
数理方法
数理方程 分离变量法 正交曲线坐标 格林函数法 (电象法) 傅里叶变换法 δ函数 特殊函数 变分原理
电动力学
量子力学
Wuhan University
二、数学物理方法在物理学中的地位
1.数理方法是物理学科的重要基础课
数理方法是普通物理与四大力学的‚粘合剂‛ 理论力学: 用拉格朗日方程
---牛顿
xi xi (t ), t
“只要能解微分方程,我就能预测宇宙的过去 和将来‛ -Laplace
Wuhan University
二、数学物理方法在物理学中的地位
1.数理方法是物理学科的重要基础课 2.数理方法是进行基础研究的重要工具 3.数理方法是培养学生逻辑思维能力和 创造思维能力的重要课程
数理方法是普通物理与四大力学的‚粘合剂‛ 力学 热学 电学 原子物理
理力
Wuhan University
热统
电动
量子力学
二、数学物理方法在物理学中的地位
1.数理方法是物理学科的重要基础课
数理方法是普通物理与四大力学的‚粘合剂‛
力学 热学 电学 原子物理
数学物理方法
理力
Wuhan University
1.数理方法是物理学科的重要基础课
数理方法是普通物理与四大力学的‚粘合剂‛ 统计物理:用波尔兹曼输运方程
f f F f f v ( )c t r m v t
得到非平衡态的速度分布函数 量子力学:用 Nhomakorabea定谔方程
2 2 Zes2 ( ) E 2
Wuhan University
《数学物理方法》第1章复变函数与解析函数
平时考勤:5%; 平时作业:10%; 期中考试:15% (第一篇的教学考核成绩) 期终考试:70% (期末考试成绩)
本课程的考试均以闭卷方式进行 。
2021/1/14
4
教材与参考书
教材:汪德新,《数学物理方法》,第三版,科学出
版社,2006年8月
参考书:
[1]吴崇试,数学物理方法,北京大学出版社 2003-12-26出版
zz1 (x1iy1) (x1iy1)(x2iy2) z2 (x2iy2) (x2iy2)(x2iy2)
x1xx222
y1y2 y22
i
x2y1x1y2 x22 y22
同样,利用复数的指数表示式将更方便.
z
z1 z2
1ei1 2ei2
e 1 i(12)
2
35
(6)开方 复数的开方是乘方的逆运算。
为共轭复数。 常用z* 表示z的共扼复数。 (z* )* =z 例: z1=2+3i与z2=2-3i 称z1与z2互为共轭复数。
17
复数能不能比较大小?!
18
§1.1.2 复数的几何表示
复数可以用平面上的点来表示,称为复 数的平面表示法;
球面上的点来表示,称为球面表示法。
19
1. 复数平面表示法
利用复数的指数表示式计算复数的乘积,往往更为
方便 z z 1 z 2 1 e i 12 e i 2 12 e i( 1 2 )
两复数乘积的几何意义是将两复数的模相乘而辐角
相加.
30
(4)乘方 乘方可由乘法规则得到,用n个z相乘
zn nein
31
【例1.1.1-A】试证明棣莫弗(De Moivre)公式
9
数学物理方法姚端正CH9作业解答
则 1~2 式化为 ~(ω , t ) du ~ (ω , t ) = 0..................3 + a 2ω 2u dt ~ ~ u (ω ,0) = ϕ (ω )....................................4 满足初始条件 4 式的方程 3 的解为:
2 2
1 2π
∫
∞
−∞
e − a ω t eiωx dω =
2
2
1 ∞ − a 2 tω 2 e cos ωxdω π ∫0
b2
由教材 P91 积分公式
∫
∞
0
e
− ax 2
1 − π cos bxdx = e 4 a ,上式积分结果为: 2 a
2
F [e
−1
− a 2ω 2 t
1 1 − 4a 2t ]= e π 2
e
−
ξ2 4 a 2t
(sin x cos ξ − cos x sin ξ )dξ 1 2a πt e
− ax 2
=
−∞
e
−
ξ2 4a t
2
sin x cos ξdξ =
sin x ∫ e
−∞
∞
−
ξ2 4 a 2t
cos ξdξ
b2
再一次应用教材 P91 积分公式
∫
∞
0
π 1 − cos bxdx = e 4 a ,上式积分结果为: 2 a
F [sin ηx 2 ] = −
数学物理方法姚端正答案
数学物理方法姚端正答案【篇一:2014年省培在线课程列表】培在线学习先是选课环节,每位老师可以选2门课程,请把课程对应的序号私聊发到我qq上,我汇总后激活课程,学习流程于8月4号-6号发至群共享,请届时查看并自行开展在线学习。
【篇二:2013年下半年集中培训课程】ass=txt>2附件2 在线培训课程45【篇三:大学物理专业毕业去向分析_3】t>三、本专业去向分析(一)毕业去向分析1.直接就业,去中学任教,传授物理学知识。
2.继续深造考研。
考研主要专业研究方向有:理论物理、凝聚态物理、光学、原子分子物理、粒子物理核物理、声学、等离子体物理、半导体物理以及天体物理等。
最近几年,也有为数不少的物理系学生,考取了计算机类、经济管理类等专业的硕士研究生。
考研选择的主要院校有国内外科研院所和有关高校。
据不完全统计,北京某著名高校物理系在过去20年中,三分之一以上的的学生出国了,仅在美国的就有500多人。
根据研究方向的不同,考研的学生毕业后,一般去高校或科研院所工作或继续攻读博士学位。
也有一小部分去了企业或公司从事开发工作。
3.去企事业单位从事与物理学普及有关的管理、推广工作。
(二)毕业去向统计分析安徽某著名大学2007接参加工作的比例会高一些。
所以,上表中的统计数据,仅仅具有参考意义。
四、本专业与相关专业的比较与物理学专业相关的本科专业有:应用物理学、光信息科学与技术、材料物理、微电子学、电子科学与技术、材料物理学等。
下面,我们通过这几个相关专业的主要课程和培养目标来看他们与物理学专业的比较。
(一)物理学专业骨干课程:力学、热学、电磁学、光学、原子物理、理论力学、电动力学、量子力学、热力学与统计物理、数学物理方法、高等数学、电子技术与实验、普通物理实验、近代物理实验、固体物理等。
培养目标:本专业培养掌握物理学的基本理论与方法,具有良好的数学基础和实验技能,能在物理学或相关的科学技术领域中从事科研、教学、技术和相关的管理工作的高级专门人才。
数学物理方法姚端正CH10作业解答
数学物理方法姚端正CH10作业解答题目1题目描述求解一维无限深势阱中的薛定谔方程。
解答过程薛定谔方程为:$$ -\\frac{{\\hbar}^2}{2m}\\frac{{d^2}\\psi}{{dx^2}} + V(x)\\psi = E\\psi $$对于一维无限深势阱,即势能为零的区域内,薛定谔方程简化为:$$ -\\frac{{\\hbar}^2}{2m}\\frac{{d^2}\\psi}{{dx^2}} = E\\psi $$可以将上式改写为标准形式:$$ \\frac{{d^2}\\psi}{{dx^2}} = -k^2\\psi $$其中,$k = \\frac{\\sqrt{2mE}}{{\\hbar}}$。
上述方程为一个二阶常微分方程,可以通过分离变量的方法进行求解。
假设解为$\\psi(x) = A\\sin(kx) + B\\cos(kx)$,代入上式得到:$$ (A\\sin(kx) + B\\cos(kx))'' = -k^2(A\\sin(kx) +B\\cos(kx)) $$化简上式可得:$$ -Ak^2\\sin(kx) - Bk^2\\cos(kx) = -k^2(A\\sin(kx) +B\\cos(kx)) $$通过观察可以发现,上式两边的结果是相等的。
因此,我们只需对振幅因子A和B分别进行求解。
首先,将振幅因子A令为0,代入方程可得到:$$ B\\cos(kx) = 0 $$由于$\\cos(kx)$的周期为$2\\pi$,因此得到的解为$x = 0, \\pm \\pi, \\pm 2\\pi, \\cdots$。
接下来,将振幅因子B令为0,代入方程可得到:$$ A\\sin(kx) = 0 $$由于$\\sin(kx)$的周期也为$2\\pi$,因此得到的解为$x = \\pm \\frac{\\pi}{2}, \\pm \\frac{3\\pi}{2}, \\pm\\frac{5\\pi}{2}, \\cdots$。
数学物理方法习题解答(完整版)
数学物理方法习题解答(完整版)数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux=?,0v y ?=?,u v x y ??≠??。
于是u 与v 在z 平面上处处不满足C -R 条件,所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ??= =??。
v vx y==0 ??。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y, 在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ===='=+=-= ? ?????????。
或:()()()2*000lim lim lim 0z z x y z f z x i y z→?→?=?=?'==?=?-?=?。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=?→?→?→+?+?+??==+??→。
【当0,i z z re θ≠?=,*2i z e z θ-?=?与趋向有关,则上式中**1z zz z==??】3、设333322()z 0()z=00x y i x y f z x y ?+++≠?=+,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ?-+≠?=+?+??, 33222222(,)=00x y x y v x y x y x y ?++≠?=+?+??。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①在 z = 0 的邻域,即 z < a
4
1 1 1 1 =− ( )=− z−a a 1− z a a
∑ (a)
k =0
∞
z
k
1 1 1 1 ∞ z =− ( ) = − ∑ ( )k z−b b 1− z b k =0 b b
所以 f ( z) = 1 1 ∞ z 1 ∞ z 1 ∞ 1 1 (− ∑ ( )k + ∑ ( ) k ) = ( k +1 − k +1 )z k ∑ a − b a k =0 a b k =0 b b − a k =0 a b
k +1 ∞ ∞ z ∞ z 1 k k k k k z ln(1 + z ) = ∫ dz = ∫ ∑ (−1) z dz = ∑ (−1) ∫ z dz =∑ (−1) 01+ z 0 0 k +1 k =0 k =0 k =0 z ∞
则
Ln(1 + z ) = ln(1 + z ) + i 2kπ = 2kπi + ∑ (−1)k
α ln(1+ z )
= ∑ ak z k , 其中, ak =
k =0
∞
f ( k ) (0) k!
① ②
f '( z) =
α α ln(1+ z ) α e = f ( z) 1+ z 1+ z
⇒
f ' (0) = α
同时由①式有: (1 + z ) f ' ( z ) = αf ( z ) 将②式两边再对 z 求导: (1 + z ) f ' ' ( z ) + f ' ( z ) = αf ' ( z )
∞ 1 ∞ 1 1 1 1 1 1 = = ⋅( = )= ∑ ∑ k k +1 z ( z + 1) − 1 z + 1 1 − 1 z + 1 k = 0 ( z + 1) k = 0 ( z + 1) z +1
其中,
1 1 1 1 1 ∞ ( z + 1)k ∞ ( z + 1) k = = ⋅ = ⋅∑ = ∑ k +1 1 − z 2 − ( z + 1) 2 1 − z + 1 2 k = 0 2 k k =0 2 2 f ( z) =
∑[
k =0
∞
1 ( z + 1)k + ] ( z + 1) k +1 2 k +1
P66 习题 3.5
4.求出下列函数的奇点(包括 z = ∞ ) ,确定它们是哪一类的奇点(对于极点,要 指出它们的阶) 。 (2) z5 (1 − z ) 2 z5 (1 − z ) 2 φ ( z) ( z − 1)2 (4) 1 − ez 1 + ez (6) z 2 (7) z z +1 (8) ez 1 + z2
k →∞
2. ∑ ak z k 的收敛半径为 R (0 ≤ R < ∞) ,确定下列级数的收敛半径:
k =1
∞
(1) ∑ k n ak z k
k =0
ቤተ መጻሕፍቲ ባይዱ
∞
k n ak k n a k n a 解: 收敛半径为: lim | ) |= lim | ( ) | ⋅ | k |= lim | ( ) | ⋅ lim | k | k → ∞ ( k + 1) n a k →∞ k → ∞ k → ∞ k +1 ak +1 k +1 ak +1 k +1 而 lim | ( k n ) |= 1 k +1 lim | ak |= R ak +1
∞ (−1) k ( z − 1) 2 k (−1) k ( z − 1) 2 k +1 − sin 1∑ (2k )! (2k + 1)! k =0 k =0 ∞
收敛范围: | z − 1 |< ∞
3.应用泰勒级数求下列积分: (3) Siz =
∫
z
0
sin z dz z
∞ (−1)k z 2 k sin z =∑ z k = 0 ( 2 k + 1)!
α α (α − 1) 2 α (α − 1)(α − 2) 3 z+ z + z + ...] 1! 2! 3!
z <1
5.将 Ln(1 + z ) 在 z = 0 的邻域内展开为泰勒级数。 解: Ln(1 + z ) = ln(1 + z ) + i 2kπ 将 ln(1 + z ) 展开时,既可用泰勒定理直接展开,也可用逐项积分法。下面用逐项积分法:
数理方法 CH3 作业解答 P51 习题 3.2
1. 确定下列级数的收敛半径: (2) ∑ k k z k k =1 2 k k z k k =1 2 ak k k +1 2k |= lim | k /( k +1 ) |= lim =2 k →∞ k + 1 a k +1 k → ∞ 2 2
∞ ∞
= 1 + 2 z + 3 z 2 + 4 z 3 + ... + (k + 1) z k + ... = ∑ (k + 1) z k
k =0 ∞
解法之二:逐项求导: 1 1 =( )' 2 (1 − z ) 1− z 则
∞ ∞ 1 k = z kz k −1 = = 1 + 2 z + 3 z 2 + 4 z 3 + ... + kz k −1 + ... ( )' = ∑ ∑ (1 − z ) 2 k =0 k =1
=
∑ ak z =
k k =0
∑ ak z k = ∑
k=0
k =0
1 α (α − 1)(α − 2)...(α − k + 1) z k k!
∞ 则 (1 + z )α = e iα 2kπ ∑ 1 α (α − 1)(α − 2)...(α − k + 1) z k k =0 k!
= 1α [1 +
z = 1 − z3
∑z
k =0
∞
3 k +1
所以,
1 = 1 + z + z2
∑z
k =0
∞
3k
− ∑ z 3 k +1
k =0
∞
收敛范围为 | z |< 1
2. 将下列函数按 ( z − 1) 的幂展开,并指明其收敛范围: (1) cos z 解: cos z = cos[( z − 1) + 1] = cos( z − 1) cos1 − sin( z − 1) sin 1 = cos1∑
所以 f ( z ) = −
1 z −a
∞ ( z − a) k −1 ( z − a )k = − ∑ ∑ k +1 k +1 k = 0 (b − a ) k = 0 (b − a ) ∞
③在圆环 a < z < b ,
∞ ak 1 1 1 1 ∞ a = ⋅ = ∑ ( ) k = ∑ k +1 z − a z 1 − a z k =0 z k =0 z z ∞ 1 1 1 1 ∞ z zk =− ( ) = − ∑ ( ) k = − ∑ k +1 z −b b 1− z b k =0 b k =0 b b
5
(4) z − 1 > 1 f ( z) =
∞ 1 (−1) k 1 1 1 1 1 =− ⋅ =− ⋅ = − ⋅ ∑ ( z − 1)2 k = 0 ( z − 1) k ( z − 1) 2 1 + 1 z (1 − z ) z −1 z −1+1 z −1 ∞
(−1)k +1 =∑ k+2 k = 0 ( z − 1) (6) 1 < z + 1 < 2 f ( z) = 1 1 1 = + z (1 − z ) 1 − z z
收敛范围: | (5)
a z |< 1 b
即 | z |<|
b | a
1 1 + z + z2 1 1− z 1 z 解: = − = 2 3 3 1+ z + z 1− z 1 − z 1 − z3 令 t = z 3 ,则
∞ 1 = ∑t k , 1 − t k =0
故
2
∞ 1 = ∑ z 3k 1 − z3 k =0
解:利用正弦函数的泰勒展开式:
sin z = ∑
z
(−1)k z 2 k +1 k = 0 ( 2k + 1)!
∞
,得到
则
k 2k k 2k ∞ ∞ z ∞ (−1) z z ( −1) z sin z (−1) k z 2k +1 dz dz dz = = = ∑ ∫0 z ∫0 ∑ ∫0 (2k + 1)! ∑ k = 0 ( 2 k + 1)! k =0 k = 0 ( 2k + 1)!( 2 k + 1)
k →∞
k →∞
所以,所求收敛半径为 R
P55 习题 3.3
1
1.将下列函数在 z = 0 点展开成幂级数,并指出其收敛范围: (1) 1 (1 − z ) 2
解:解法之一:利用多项式的乘法: 已知
∞ 1 = ∑ zk 1 − z k =0
| z |< 1 ,
∞ ∞ 1 k = ( z ) ⋅ ( zk ) ∑ ∑ 2 (1 − z ) k =0 k =0