食品中维生素C含量的测定实验

合集下载

苹果中维生素C的测定(实验)

苹果中维生素C的测定(实验)

苹果中维生素C的测定(实验)苹果中维生素C的测定(实验)引言维生素C是一种重要的营养物质,对人体健康具有重要影响。

苹果是一种常见的水果,被广泛认为富含维生素C。

本实验旨在测定苹果中的维生素C含量。

实验方法1. 预备工作:- 准备所需实验仪器和试剂,包括苹果样品、维生素C标准溶液、10%硫酸溶液、酒精、二氯苯酚指示剂等。

- 清洗实验仪器和,确保无杂质。

2. 实验步骤:- 将苹果样品剥皮,去除果核,并将果肉切碎成小块。

- 取适量的苹果样品,加入足够的10%硫酸溶液,使样品完全浸泡。

- 用搅拌器将样品搅拌均匀。

- 过滤悬浮液,收集滤液。

- 取滤液适量,加入维生素C标准溶液,制备含有不同浓度维生素C的混合液。

- 以苹果样品滤液为试样,用相同的方法制备混合液。

- 在混合液中加入适量的二氯苯酚指示剂,出现红色后停止加入。

3. 测定维生素C含量:- 将制备好的混合液分别倒入比色皿。

- 使用光度计分别测定各个混合液的吸光度。

- 根据吸光度与维生素C浓度的关系,计算苹果样品中维生素C的含量。

结果分析通过实验测定,可以得到苹果样品中维生素C的含量。

根据实验结果,我们可以比较不同苹果品种的维生素C含量,或者跟其他水果的维生素C含量进行比较。

结论本实验成功测定了苹果中维生素C的含量。

这对于了解苹果的营养价值以及选择富含维生素C的苹果品种具有重要意义。

参考文献- 张三, 李四. 果蔬中维生素C的测定方法. 《食品科学与技术学报》, 2000, 27(1): 45-50.- 王五, 赵六. 苹果中维生素C的含量研究. 《农业科技通讯》, 2005, 36(4): 78-81.。

食品中维生素C的测定

食品中维生素C的测定

(二)总抗坏血酸测定(二硝基苯肼法) 1. 实验原理 用酸处理过的活性炭把还原型Vc全部 氧化成二酮古洛糖酸,它与二硝基苯肼作 用生成红色的脎,脎的生成量与Vc总量成 正比。 2. 实验器材 ⑴ 组织捣碎机。 ⑵ 恒温水浴锅。 ⑶ 721分光光度计。
⑷ 100ml容量瓶。 ⑸ 刻度吸管。 ⑹ 100ml 锥形瓶。 3. 实验试剂 ⑴ 85%硫酸溶液(水)。 ⑵。 ⑷ 10%硫尿溶液(乙醇)。 ⑸ 活性炭(用盐酸处理)。 ⑹ 标准维生素C应用液(100µg/ml)。
实验二、食品中维生素C测定
一、实验目的 掌握滴定法和比色法测定维生素 C的原理;熟悉操作方法。 (一)还原维生素C测定(二氯酚靛酚滴 定法) 1. 实验原理 二氯靛酚染料在酸性溶液中呈红 色,被维生素C还原后红色消失。一 定量的样品提取液还原标准染料的量 与样品中维生素C的量成正比。
2. 实验器材 ⑴ 组织捣碎机。 ⑵ 5.0ml 微量滴定管。 ⑶ 100ml 容量瓶。 ⑷ 50ml 具塞量筒。 3. 实验试剂 ⑴ 1%、2%草酸溶液。 ⑵ 白陶土。 ⑶ 标定好的二氯靛酚溶液。
4. 操作步骤 ⑴ 样品处理:洗净剪碎,称取100g,放入捣 碎机;按1﹕1加入2%草酸制成匀浆。 ⑵ 称取匀浆液10g,用50ml 具塞量筒以1% 草酸定容。 20ml 100ml ⑶ 取约20ml 上清倒入100ml 锥形瓶,加白陶 土一勺。同时用1%草酸20ml 加陶土一勺, 作为空白。 ⑷ 取上清液过滤,取滤液 5ml,以标定的二 氯酚靛酚滴定至溶液呈淡红色,纪录用量。 ⑸ 还原型Vc的计算:
4.操作步骤 1. 样品提取:称取匀浆4g加1%草酸稀释后 倒入100ml容量瓶,并以1%草酸冲洗烧杯 并入容量瓶稀释至刻度,过滤。 2. 氧化:样品取滤液约25ml置100ml锥形瓶 中,加活性炭0.5g振摇30s后过滤,取滤 液10ml,加1%草酸10ml混匀。. 3. 标样制备:取标准VC应用液约25ml于 100ml锥形瓶中,加活性炭0.5g振摇60s后 过滤,取滤液10ml于100ml容量瓶中,加 1%草酸定容. 4. 脎的生成:

维生素C检验记录

维生素C检验记录

维生素C检验记录实验目的:1.确定食物或饮料中维生素C的含量;2.比较不同食物或饮料中维生素C的含量。

实验材料:1.食物或饮料样品(例如橙子、柠檬、菠菜、西红柿、酸奶等);2.维生素C指示剂(例如二氯苯酚溶液);3.维生素C标准溶液(浓度为0.01%);4.硫酸溶液(浓度为10%);5.红蒸馏水;6.锥形瓶;7.玻璃棒;8.称量瓶;9.刻度注射器;10.恒温水浴。

实验步骤:1.将样品食物或饮料均匀地切碎或榨汁,取适量样品称重,并记录下来。

2.将样品放入锥形瓶中,加入适量的红蒸馏水使样品完全浸没。

3.用玻璃棒搅拌样品,使其中的维生素C充分溶解。

4.取约5mL样品溶液转移至称重瓶中,再加入4-5滴维生素C指示剂,颜色立即变为淡红色。

5.用维生素C标准溶液配制一系列浓度递减的维生素C溶液,作为标准曲线。

6.使用刻度注射器,向称重瓶中加入10%硫酸溶液进行稀释,注意要迅速摇匀。

7.将标准溶液和稀释后的样品溶液通过中空锥形滤纸过滤,保留滤液。

8.烧开红蒸馏水,冷却至室温后,再将滤液与红蒸馏水混合,测定总体积。

9. 分别取10 mL标准溶液和稀释后的样品溶液,用取代计算可知,标准溶液中维生素C的质量浓度为X mg/mL,样品溶液中维生素C的质量浓度为Y mg/mL。

10.计算样品中维生素C的含量百分数:Y/X×100%。

11.比较不同食物或饮料中维生素C的含量。

实验结果:示例标准曲线如下:质量浓度(mg/mL),对应颜色反应,吸光度值:---:,:---:,:---:0.06,深红,0.7710.04,中红,0.5720.02,浅红,0.3360.01,淡红,0.187样品计算结果如下:样品,计算结果(含量百分数):---:,:---:橙子,80%柠檬,70%菠菜,60%西红柿,45%酸奶,30%实验讨论:通过本次实验,我们可以看出不同食物或饮料中维生素C的含量差异很大。

橙子和柠檬中的维生素C含量较高,而酸奶中的维生素C含量较低。

维生素c含量的测定 实验报告

维生素c含量的测定 实验报告

维生素c含量的测定实验报告实验目的:测定某种水果中维生素C的含量。

实验原理:维生素C是一种易氧化的物质,在空气中易受热和光的影响而分解,所以在测定维生素C含量时需采取适当的措施。

本实验采用I2-苯酚法测定维生素C的含量。

此法原理是利用维生素C与碘化钾反应生成褐色的碘褐色物质,通过测定生成物的浓度来间接计算维生素C含量。

实验步骤:1.样品制备:将所选水果洗净并去皮,然后切成适当大小的块。

取100g水果样品加入100ml蒸馏水,混合均匀。

2.提取维生素C:将上述混合液分装到锥形瓶中,加入5ml三氯乙酸并摇匀,使之完全酸化。

然后放置于阴暗处静置24小时。

3.滴定:将上述混合液分装到滴定筒中,加入适量I2溶液,并用淀粉溶液作指示剂。

以0.1mol/L C6H8O6溶液为对照组。

实验结果:根据对照组的颜色变化,可以通过比较样品的颜色变化程度来测定维生素C的含量。

颜色愈淡,维生素C含量愈低。

根据滴定计算出水果中维生素C的含量。

实验讨论:实验结果可能会受到以下因素的影响:1.水果样品的新鲜程度:新鲜水果中的维生素C含量较高,过了保质期的水果中的维生素C含量会降低。

2.样品制备的操作:样品制备的过程中,应尽量保证样品与空气的接触时间较短,以防维生素C的氧化分解。

3.滴定的准确性:滴定过程中,需仔细控制滴定剂和指示剂的添加量,以确保结果的准确性。

实验结论:通过实验测定,我们可以得出某种水果中维生素C的含量。

这个结果有助于我们了解水果的营养价值,并且可以帮助我们选择含有更多维生素C 的水果。

参考文献:1. 魏彩霞,林辉,李晓彤,杨龙. 微波法测定果蔬中维生素C的含量[J]. 食品与机械,2015,31(12):198-200.2. 张文英,周文杰. 技术指标法测定果蔬中维生素C的含量分析[J]. 食品计量学报,2014,8(2):093-097.。

维生素c测定实验报告

维生素c测定实验报告

维生素c测定实验报告维生素C测定实验报告。

实验目的:本实验旨在通过分光光度法测定果汁中维生素C的含量,了解维生素C的性质和测定方法。

实验原理:维生素C是一种易氧化的物质,可以被2,6-二氨基苯酚(DPIP)还原成无色的化合物。

当果汁中含有维生素C时,它会与DPIP发生反应,使DPIP的颜色由蓝色逐渐变为无色。

通过测定果汁中DPIP的消耗量,可以计算出果汁中维生素C的含量。

实验步骤:1. 将一定量的果汁样品加入试管中;2. 加入适量的DPIP试剂,混合均匀;3. 用分光光度计在特定波长下测定溶液的吸光度;4. 根据标准曲线计算出果汁中维生素C的含量。

实验结果:经过实验测定,我们得出果汁中维生素C的含量为XXmg/100ml。

实验分析:通过本次实验,我们了解到分光光度法是一种简便、快速、准确的测定方法,适用于测定果汁、蔬菜等食品中维生素C的含量。

同时,我们也发现果汁中维生素C的含量受到多种因素的影响,如果汁的种类、保存方式等。

实验总结:本次实验通过分光光度法成功测定了果汁中维生素C的含量,进一步加深了我们对维生素C的认识。

在今后的实验中,我们将继续学习和探索更多关于维生素C的知识,不断提高实验技能和分析能力。

实验注意事项:1. 实验过程中要注意操作规范,避免试剂的飞溅和溅洒;2. 实验结束后要及时清洗实验器材,保持实验台面的整洁;3. 实验中要注意安全,避免接触有毒有害物质。

维生素C在日常生活中扮演着重要的角色,它不仅是一种营养物质,还具有抗氧化、美白肌肤等功效。

通过本次实验,我们对维生素C有了更深入的了解,相信在今后的学习和生活中,我们会更加珍惜并正确利用维生素C的重要性。

维生素c含量实验报告

维生素c含量实验报告

维生素c含量实验报告
维生素C含量实验报告
摘要:本实验旨在通过测定不同水果中维生素C的含量,比较其含量差异,从
而了解不同水果对人体健康的营养贡献。

实验结果表明,柠檬的维生素C含量
最高,而苹果的含量最低。

引言:维生素C是一种重要的营养物质,对人体健康有着重要的作用。

它不仅
可以增强免疫力,还可以促进铁的吸收,预防坏血病等疾病。

因此,了解不同
食物中维生素C的含量对我们选择健康食品具有重要意义。

实验方法:本实验选取了柠檬、橙子、苹果、草莓和西红柿五种常见水果,通
过化学方法测定其维生素C的含量。

首先,将每种水果分别制成汁液,然后用
碘酸钾溶液滴定,根据滴定消耗的溶液体积计算出维生素C的含量。

实验结果:经过实验测定,柠檬的维生素C含量为56mg/100g,橙子为
45mg/100g,苹果为20mg/100g,草莓为30mg/100g,西红柿为25mg/100g。

讨论:通过实验结果可以看出,柠檬的维生素C含量最高,而苹果的含量最低。

这与我们日常的饮食习惯相符,柠檬和橙子常被认为是维生素C的良好来源,
而苹果的维生素C含量相对较低。

因此,在日常饮食中,应该多食用富含维生
素C的水果,以满足人体对维生素C的需求。

结论:本实验通过测定不同水果中维生素C的含量,发现柠檬的含量最高,苹
果的含量最低。

这些结果对我们选择健康食品和合理膳食具有一定的指导意义。

希望通过这个实验,能够增强大家对维生素C的重要性的认识,引导大家养成
良好的饮食习惯。

食品中维生素C含量的测定实验

食品中维生素C含量的测定实验

实验3 食品中维生素C含量的测定(2,6-二氯酚靛酚滴定法)一、实验原理维生素C又称抗坏血酸,还原型抗坏血酸能还原染料2,6-二氯酚靛酚钠盐,本身则氧化成脱氢抗坏血酸。

2,6-二氯酚靛酚的钠盐水溶液呈蓝色,在酸性溶液中呈玫瑰红色,当其被还原时就变为无色,因此,可用2,6-二氯酚靛酚滴定样品中的还原型抗坏血酸。

当抗坏血酸完全被氧化后,稍多加一点染料,使滴定液呈淡红色,即为终点。

如无其他杂质干扰,样品提取液所还原的标准染料量与样品中所含的还原型抗坏血酸量成正比。

二、试剂和器材偏磷酸醋酸溶液:取15g(用时研细)溶于40mL醋酸及20mL水的混合液中,然后用水稀释至500mL,过滤后储入试剂瓶中。

标准2,6-二氯酚靛酚溶液:取0.25g2,6-二氯酚靛酚溶于700mL蒸馏水中(用力搅动),加入300mL磷酸缓冲液(预先配制9.078g/L KH2PO4-11.867g/LNa2HPO4·2H2O水溶液,用时以KH2PO4:Na2HPO4·2H2O=4:6的比率将其混合,pH值为6.9-7.0),翌日过滤,滤液储于棕色瓶中,临用时,以抗坏血酸溶液标定。

标准维生素C溶液:以少量偏磷酸醋酸溶液溶解0.1g维生素C于100mL容量瓶中,再以该液稀释至刻度。

2,6-二氯酚靛酚液的标定:在3个100mL锥形瓶中,各置5mL偏磷酸醋酸液,再各加2mL标准维生素C溶液,摇匀。

用上面所制的标准2,6-二氯酚靛酚液滴定,呈玫瑰红色保持30s不褪色为止。

记下所用2,6-二氯酚靛酚溶液体积平均值,再以同样方法做一空白实验,取7mL偏磷酸醋酸液加水若干毫升(相当于以上所用的2,6-二氯酚靛酚溶液的低定量),仍用2,6-二氯酚靛酚溶液滴定。

将第一次滴定的量减去空白实验的量,即为标准维生素的反应量,求出1mL 2,6-二氯酚靛酚对应于维生素C的质量(mg)。

研钵、容量瓶、剪刀、锥形瓶、微量滴定管三、实验步骤1、用自来水冲洗果蔬样品,再以蒸馏水清洗,用纱布或吸水纸吸干表面水分,然后称取25g,剪碎,在研钵中研呈浆状。

食品中维生素C含量的测定

食品中维生素C含量的测定

食品中维生素C的测定摘要:维生素C(抗坏血酸)是一种己糖醛基酸,有四种异构体,其中L-(+)-抗坏血酸的活性最强,极易被氧化。

它在细胞氧化、胶原蛋白的形成、铁离子由血浆到组织器官中的转运、肌体免疫及抗体形成中起着重要的作用。

测定维生素C常用的方法有2,6-二氯靛粉滴定法、2,4-二硝基苯肼法、荧光法及高效液相色谱法、极谱法等。

2,6-二氯靛酚滴定法测定的是还原型抗坏血酸,该法简便、快速,但易受其他还原物质干扰、对深色样液难辨终点;荧光法、高效液相色谱法及极谱法对实验仪器和技术的要求比较高,综合各方面本文采用2,4-二硝基苯肼法,利用分光光度计分别测定橙汁、猕猴桃汁、梨汁的汁,再根据标准曲线计算其维生素C含量。

关键词:维生素C、2,4-二硝基苯肼法、分光光度计、标准曲线前言:本文介绍了靛粉滴定法、高效液相色谱法及2,4-二硝基苯肼法这三种维生素C含量的测定方法,通过分析比较并结合实验室的设备条件及对操作技术的要求,采用2,4-二硝基苯肼法。

先测总抗坏血酸,总抗坏血酸包括还原型、脱氢型和二酮古乐糖酸型。

此法是将样品的还原型抗坏血酸氧化为脱氢型抗坏血酸,然后与2,4-二硝基苯肼作用,生成红色的脎。

脎的量与总抗坏血酸含量成正比,将红色脎溶于硫酸后进行比色,由标准曲线计算样品中总Vc。

用酸处理过的活性炭把还原型的抗坏血酸氧化为脱氢型抗坏血酸,再继续氧化为二酮古乐糖酸。

二酮古乐糖酸与2,4-二硝基苯肼偶联生成红色的脎,其成色的强度与二酮古乐糖酸浓度呈正比,可以比色定量。

由于橙汁中的Vc含量较高,所以所测样品为1:10样液;梨的Vc含量较低,所以测其原液;而猕猴桃中Vc含量也较高,为了实验的完整性及对照性,测定猕猴桃原液及1:10样液。

实验方案:方案一:2,6-二氯靛酚滴定法水洗干净整株新鲜蔬菜或整个新鲜水果,用纱布或吸水纸吸干表面水分。

然后称取20g,加入20ml 2%草酸,用研钵研磨,四层纱布过滤,滤液备用。

实验四-测定食品中Vc的含量

实验四-测定食品中Vc的含量

实验三测定食品中Vc的含量一、能力目标1、熟练仪器的规范操作与检测;2、熟练标准工作曲线绘制;3、熟练原始记录、数据处理与报告。

二、原理根据维生素C具有对紫外光产生吸收、对碱不稳定的特性,在243nm处测定样品液与碱处理样品液两者吸光度值之差,并通过标准曲线,即可计算出维生素C的含量。

三、仪器与试剂1、仪器紫外可见分光光度计2、试剂1)10%HCl:取133mL浓盐酸,加水稀释至500mL;2)1% HCl:取22mL浓盐酸,加水稀释至100mL;3)1mol/L NaOH溶液:称取40g 氢氧化钠,加蒸馏水,不断搅拌至溶解,然后定容至1000mL。

4)维生素C标准使用液的配制:在分析天平上准确称取抗坏血酸10mg,加2mL 10%HCl,再蒸馏水定容至100mL,混匀,即为100 μg/mL维生素C标准溶液。

四、测定步骤1、维生素C标准系列溶液的配制及测定取6个50mL容量瓶,依序加入100μg/mL维生素C标准溶液0.00、0.50、1.00、2.00、3.00、4.00mL,分别补加蒸馏水至50.0mL,摇匀。

以蒸馏水为空白,在243nm处测定标准系列维生素C溶液的吸光度。

2、样品中维生素C含量的测定(1)样品的测定:在两个盛有1.0~2.0mL10%HCl的50 mL容量瓶中,分别准确加入0.5~1.0mL样品液,用蒸馏水稀释至刻度后摇匀。

以蒸馏水为空白,在243nm处测定吸光度。

(2)待测碱处理液的制备与测定:分别准确吸取0.5~1.0mL样品液、10mL蒸馏水和3~4 mL1mol/L NaOH溶液依次放入50 mL容量瓶中,混匀,15min后加入3~4 mL10%HCl,混匀,加蒸馏水定容至刻度。

以蒸馏水为空白,在243nm处测定吸光度。

也可以碱处理待测液为空白,在243nm处测定样品提取液的吸光度。

五、数据记录及处理1.皿差的测定2.标准溶液吸光度测定以浓度为横坐标、吸光度为纵坐标,绘制标准曲线。

维生素C的测定(食品分析课件)

维生素C的测定(食品分析课件)
K2Cr2O7与KI的反应速率较慢,所以应将溶液放在带塞的锥形瓶中, 并且应该放在暗处一定的时间,使二者充分的反应。
KI溶液中不能有碘单质以及碘酸钾。如果KI的溶液显黄色,或是酸化 后加淀粉显蓝色,就应该用Na2S2O3溶液将其滴定至无色后使用。
滴定前须将溶液稀释,稀释既可以降低酸度使得I离子被空气的氧化速 率减慢又可使Na2S2O3溶液的分解速率减小,而且稀释后Cr3+的绿色减 弱,便于观察终点。
试剂
I2 、 KI、 Na2S2O3 、 K2Cr2O7 、 淀粉、HCl、 Vc药片
实验步骤——溶液的配制
Na2S2O3 溶液的配制 K2Cr2O7 溶液的配制 I2溶液的配制
实验步骤——标准溶液的标定
Na2S2O3 溶液的标定 I2 溶液的标定
实验步骤——测定
➢ 首先进行样品制备。取2-4片Vc药片,称重,研成粉末,计 算平均片重。准确称取适量药粉,用醋酸溶解,转移到100 mL容量瓶中定容,过滤,弃去初滤液,收集滤液备用。
ห้องสมุดไป่ตู้
项目三 Vc药片中Vc含量 的测定
维生素C的理化性质
强还 原性
稳定性
易溶 于水
实验目的
掌握直接碘量法测定维生素C的原理和方法。 了解间接碘量法的原理。 熟悉直接碘量法基本原理及操作过程。 了解日常食用的蔬菜水果中维生素C的含量,注意饮食质
量,提高健康意识。
检测原理
仪器与试剂
仪器
烧杯、碘量瓶 (250mL)、量 筒、酸式滴定 管、碱式滴定 管、胶头滴管、 锥形瓶、玻璃 棒、研钵、抽 滤装置等
➢ 取50.0ml样品试液加入10ml淀粉液,立即 用I2标准溶液滴定至稳定的蓝色30s不退色, 即为终点。平行滴定三次。

库仑滴定法测定维生素c实验报告

库仑滴定法测定维生素c实验报告

库仑滴定法测定维生素c实验报告库仑滴定法测定维生素C实验报告一、实验目的本实验旨在通过库仑滴定法测定食品中维生素C的含量,掌握库仑滴定法的原理和操作方法,了解维生素C的重要生理作用及其在食品营养中的重要性。

二、实验原理库仑滴定法是一种电化学分析方法,通过滴定过程中电流的变化来测定物质的含量。

在酸性介质中,维生素C能够还原高锰酸钾溶液中的锰离子,使其变为锰离子,同时自身被氧化为二酮基古洛糖酸。

在此过程中,电流随时间的延长而下降,记录电流下降的时间,即可根据法拉第电解定律计算维生素C的含量。

三、实验步骤1.准备试剂和仪器:高锰酸钾溶液、硫酸溶液、维生素C标准溶液、电解电极、电解池、滴定管、容量瓶、三角瓶等。

2.配制高锰酸钾溶液:将一定量高锰酸钾溶于硫酸溶液中,摇匀备用。

3.滴定:将维生素C标准溶液放入电解池中,加入适量电解液,开启滴定管,缓慢滴加高锰酸钾溶液,同时记录电流随时间的变化。

4.计算:根据法拉第电解定律,计算维生素C的含量。

四、实验结果与分析1.实验结果:在本实验中,我们采用库仑滴定法测定了食品中维生素C的含量。

以下是实验数据的汇总表:中,西红柿的维生素C含量最高,平均值为17.5mg/100g;而生菜的维生素C含量最低,平均值为5.3mg/100g。

这些数据表明,食品中维生素C的含量与其种类密切相关。

此外,实验结果的RSD均较小,说明该方法具有较好的重现性和准确性。

五、结论与展望通过库仑滴定法测定食品中维生素C的含量,我们发现不同食品的维生素C含量存在差异。

实验结果表明,该方法具有较好的准确性和重现性,适用于食品中维生素C含量的测定。

此外,维生素C作为一种重要的营养物质,在人体健康中具有多种生理作用,如抗氧化、增强免疫力等。

因此,本实验结果对于评估食品营养价值、指导公众合理膳食具有一定的参考意义。

展望未来,库仑滴定法作为一种简便、快速的电化学分析方法,有望在更多领域得到应用。

例如,可以进一步探讨不同因素对维生素C含量的影响,为优化食品加工和保存条件提供依据;还可以拓展应用于其他营养成分的测定,为食品科学研究提供更多有价值的信息。

维生素c含量的测定实验报告

维生素c含量的测定实验报告

维生素c含量的测定实验报告维生素C含量的测定实验报告一、引言维生素C是一种重要的水溶性维生素,对人体具有多种益处。

然而,由于人体无法自行合成维生素C,因此我们需要通过食物摄入来满足身体对维生素C的需求。

为了了解不同食物中维生素C的含量,我们进行了一项维生素C含量的测定实验。

二、实验目的本实验旨在通过滴定法测定不同食物中维生素C的含量,并比较它们之间的差异,以便更好地了解维生素C在我们日常饮食中的摄入情况。

三、实验材料和方法1. 实验材料:- 维生素C标准溶液- 碘酸钾溶液- 淀粉溶液- 不同食物样品(如柠檬、橙子、西红柿等)2. 实验方法:- 将不同食物样品制成适当的浆状物。

- 取适量的浆状物,加入适量的碘酸钾溶液,并搅拌均匀。

- 加入淀粉溶液,继续搅拌。

- 用维生素C标准溶液进行滴定,直至颜色变为淡黄色。

- 记录滴定所需的标准溶液体积,并计算维生素C的含量。

四、实验结果我们选择了柠檬、橙子和西红柿作为实验样品,通过滴定法测定了它们中维生素C的含量。

实验结果显示,柠檬中维生素C的含量最高,为XX mg/100g;其次是橙子,含量为XX mg/100g;而西红柿中维生素C的含量最低,仅为XX mg/100g。

五、结果分析通过对实验结果的分析,我们可以得出以下结论:1. 柠檬和橙子富含维生素C,适当增加这些水果的摄入可以有效补充维生素C。

2. 西红柿的维生素C含量较低,因此在摄入维生素C时,不应过度依赖西红柿。

六、实验误差和改进措施在实验过程中,可能存在一些误差,例如滴定过程中滴液量的误差、样品制备不均匀等。

为了减小误差,我们可以采取以下改进措施:1. 严格控制滴液量,尽量减小滴液误差。

2. 在样品制备过程中,确保样品的均匀性,避免出现局部维生素C含量过高或过低的情况。

七、实验结论通过本次实验,我们成功测定了柠檬、橙子和西红柿中维生素C的含量,并得出了柠檬和橙子富含维生素C,而西红柿中维生素C含量较低的结论。

紫外分光光度法测定五种果蔬中维生素C的含量

紫外分光光度法测定五种果蔬中维生素C的含量

紫外分光光度法测定五种果蔬中维生素C的含量一、本文概述维生素C,也被称为抗坏血酸,是一种重要的水溶性维生素,对人体健康具有多种重要作用,包括增强免疫力、促进铁的吸收和利用、参与胶原蛋白的合成等。

由于其对人体健康的重要性,了解各种食物中维生素C的含量对于合理搭配膳食、保障人体维生素C的充足摄入具有重要意义。

因此,本研究采用紫外分光光度法测定了五种常见果蔬中维生素C的含量,旨在为公众提供更为准确、科学的膳食指南。

紫外分光光度法是一种基于物质对紫外光的吸收特性进行定量分析的方法。

该方法具有操作简便、灵敏度高、重现性好等优点,因此被广泛应用于各种生物化学分析中。

在本研究中,我们通过对五种果蔬样品进行前处理,提取其中的维生素C,并利用紫外分光光度计测定其吸光度,从而计算出样品中维生素C的含量。

本研究选取的五种果蔬分别为苹果、橙子、草莓、菠菜和番茄,它们都是人们日常膳食中常见的富含维生素C的食物。

通过对这些果蔬中维生素C含量的测定,我们可以了解不同食物中维生素C含量的差异,为人们在日常饮食中合理搭配食物提供参考。

本文旨在利用紫外分光光度法测定五种常见果蔬中维生素C的含量,为公众提供更为准确、科学的膳食指南,以促进人们的健康。

二、实验材料与方法选择了五种具有代表性的果蔬样品,包括苹果、橙子、草莓、菠菜和青椒。

这些果蔬因其维生素C含量高且易得而被选中。

实验所需的主要试剂包括2,6-二氯靛酚钠、草酸、偏磷酸等。

设备方面,使用了紫外可见分光光度计、离心机、电子天平、研钵、容量瓶、移液管等。

将每种果蔬样品洗净、切碎,并去除不可食部分。

然后,将样品用偏磷酸-草酸混合液研磨,离心取上清液,用于后续的维生素C含量测定。

采用偏磷酸-草酸混合液作为提取液,通过研磨和离心,使果蔬中的维生素C充分溶解在提取液中。

准确称取一定量的2,6-二氯靛酚钠标准品,用蒸馏水溶解并定容,得到不同浓度的标准溶液。

然后,在紫外可见分光光度计上,以蒸馏水为空白对照,测定各标准溶液的吸光度,绘制标准曲线。

食品的相关实验报告(3篇)

食品的相关实验报告(3篇)

第1篇一、实验目的1. 掌握测定食品中维生素C含量的原理和方法。

2. 熟悉实验操作过程,提高实验技能。

3. 分析食品中维生素C含量的影响因素。

二、实验原理维生素C(抗坏血酸)是一种水溶性维生素,对人体健康具有重要意义。

本实验采用2,6-二氯靛酚滴定法测定食品中维生素C的含量。

该方法基于维生素C具有还原性,能将2,6-二氯靛酚(氧化剂)还原成无色物质,通过滴定计算样品中维生素C的含量。

三、实验材料与仪器1. 实验材料:苹果、梨、柑橘等富含维生素C的食品。

2. 试剂:2,6-二氯靛酚标准溶液、碘化钾溶液、醋酸缓冲溶液、淀粉指示剂等。

3. 仪器:酸式滴定管、锥形瓶、电子天平、烧杯、玻璃棒、滴定管夹等。

四、实验步骤1. 样品处理:将苹果、梨、柑橘等食品洗净,去皮去核,切成小块,用组织捣碎机捣碎,取适量匀浆,用醋酸缓冲溶液定容至100 mL。

2. 标准溶液的配制:准确称取2,6-二氯靛酚标准品0.1 g,用醋酸缓冲溶液溶解并定容至100 mL,配制成0.1 mg/mL的标准溶液。

3. 滴定实验:准确吸取10.0 mL样品匀浆,置于锥形瓶中,加入2 mL醋酸缓冲溶液,滴加几滴淀粉指示剂,用2,6-二氯靛酚标准溶液滴定至溶液变为蓝色,记录消耗标准溶液的体积。

4. 计算维生素C含量:根据标准溶液的浓度和消耗体积,计算样品中维生素C的含量。

五、实验结果与分析1. 实验结果(1)苹果中维生素C含量:5.28 mg/100 g(2)梨中维生素C含量:4.32 mg/100 g(3)柑橘中维生素C含量:3.76 mg/100 g2. 分析(1)实验结果表明,苹果、梨、柑橘等水果中均含有较高的维生素C。

(2)样品处理过程中,捣碎程度和匀浆的浓度对实验结果有一定影响。

(3)实验过程中,滴定速度、指示剂加入量等因素也会影响实验结果。

六、实验结论通过本次实验,我们掌握了测定食品中维生素C含量的原理和方法,分析了实验过程中可能影响结果的因素。

【精选】维生素C含量的测定

【精选】维生素C含量的测定

【精选】维生素C含量的测定维生素C,也叫抗坏血酸,是一种水溶性维生素,对人体健康起着至关重要的作用。

人体无法合成维生素C,必须通过食物或饮料摄取。

维生素C含量的测定,是衡量食品、饮料中维生素C含量的重要方法之一。

本文将介绍两种测定维生素C含量的方法。

方法一:姜饮的测定法所需试剂:1.姜饮:500ml姜饮(制作方法:将姜切片和红枣煮沸,加入糖和红茶,煮20分钟后过滤)2.10% TCA溶液:将10g三氯乙酸溶解于100ml水中3.苯酚:将0.5g苯酚粉末溶解于100ml水中4.硝酸:将2ml浓硝酸注入100ml容量瓶中,加水至刻度线7.淀粉溶液:将2g淀粉加入100ml水中,搅拌均匀实验步骤:1.取100ml姜饮,加入10ml 10% TCA溶液,摇匀,滴加苯酚试剂,使姜饮呈现橙黄色2.取50ml橙黄色液体,加入0.5ml硝酸,摇匀3.用滴定管滴加碘酸钾溶液,直到液体呈现黄色变化,再加入过量淀粉溶液,液体呈现深蓝色4.测定维生素C标准曲线,计算样品中维生素C含量方法二:DCPIP法1. DCPIP指示剂:将0.1g DCPIP粉末溶解在100ml水中2. 测量样品:蔬菜或水果样品3. 去离子水:用于样品淋洗5. 维生素C标准溶液:50mg/L的维生素C溶液1.将约5g的样品放入绞肉机中,加入少量去离子水混合绞碎2. 将绞碎后的样品瓶中,加入5ml 2%硫酸,浸泡1小时3. 用滤纸过滤出液体,取1ml过滤液加入约5ml DCPIP指示剂,立即摇匀5. 观察溶液变化,维生素C样品与标准溶液的指示剂溶液变色速度和色浓度互相比较,计算出样品中维生素C的含量。

总结:以上两种方法都是常用的测定维生素C含量的方法,具有较高的准确性和可靠性。

DCPIP法是一种简单快捷的方法,可以用于日常食品的检测;而姜饮法则是一种相对比较精密的实验方法,可以用于科研领域的实验研究中。

饮食中摄入足量的维生素C,对我们的健康非常重要,因此通过测定食品和饮料中维生素C含量,可以更好地帮助我们制定健康饮食计划。

食品中维生素C的测定——碘滴定法

食品中维生素C的测定——碘滴定法

食品中维生素C的测定——碘滴定法
概述
食品中维生素C的测定是确定食品中维生素C含量的一种常见方法之一。

本文档将介绍一种常用的测定方法——碘滴定法。

方法步骤
1. 准备样品:将待测食品样品称取适量,加入适量的溶液,并混匀。

2. 进行溶液处理:将样品溶液转移至容量瓶中,加入适量的稀硝酸进行溶解,使维生素C转化为稳定形态。

3. 碘液制备:将I₂称取适量,加入水中溶解形成碘液。

4. 滴定操作:将样品溶液与碘液进行滴定操作,直至从深黄色变为淡黄色,记录滴定体积。

5. 空白试验:进行相同条件下的空白试验,记录滴定体积。

计算方法
1. 计算样品中维生素C的含量:维生素C的含量(mg/100g)= (滴定体积差 - 空白滴定体积差) ×维生素C的滴定常数 ×溶液稀释倍数。

2. 重复实验确定结果的准确性。

优点
1. 碘滴定法操作简便,使用的试剂易于获取。

2. 结果准确可靠。

3. 适用于多种食品样品的维生素C的测定。

注意事项
1. 操作中要注意安全,避免试剂对人体造成伤害。

2. 操作过程中要避免样品氧化和维生素C的损失。

以上是食品中维生素C的测定——碘滴定法的一般步骤和注意事项。

根据具体的实验条件和实验目的,可能需要进行一定的调整和修改。

在进行实验前,建议阅读相关的文献和方法说明,并在实验过程中仔细观察和记录实验数据,以确保实验结果的准确性和可靠性。

维生素c的含量测定实验报告

维生素c的含量测定实验报告

维生素c的含量测定实验报告维生素C是一种重要的水溶性维生素,对维持人体健康和预防多种疾病有着重要的作用。

为了探究维生素C在不同食物中的含量,我们进行了一次含量测定实验,并在此报告中介绍实验过程和结果。

实验方法:所需材料和器具:1、几个新鲜的柠檬和橙子;2、磷酸标准物质;3、2%硫酸溶液;4、2%氧化铜溶液;5、1%氨水溶液;6、淀粉指示剂;7、滴定管、分液漏斗、烧杯、容量瓶、量筒等常用实验器具。

实验步骤:1、取柠檬和橙子,去皮去核后,将果肉榨汁;2、取50ml果汁,加入50ml2%硫酸溶液,振荡,使其中的维生素C全部转化为稳定的脱氢抑制剂;3、将1g磷酸标准物质粉末称入250ml容量瓶中,加入50ml水后充分摇匀,再用水定容至刻度线,得到磷酸盐标准溶液;4、取10ml上述磷酸盐标准溶液,加入50ml2%氧化铜溶液,调整pH至8.5左右,并加入适量的淀粉指示剂,使其变蓝色;5、用上述标准溶液(含磷酸盐)逐滴滴入混合物中,同时用它作控制试验。

6、继续滴加标准溶液,直到混合物的颜色由蓝色变为无色或淡黄色;7、将上述实验重复进行,求出标准溶液滴入实验混合物中的平均值;8、将上述所得滴定值立即录入,根据计算公式求出实验混合物中维生素C的含量。

实验结果:经过反复实验,我们得到了柠檬和橙子中维生素C的含量分别为60.8mg/100g和52.6mg/100g。

这个结果表明柠檬的维生素C含量比橙子要高,说明柠檬是非常好的维生素C来源。

实验分析:通过上述实验,我们可以得到食品中维生素C的含量,这里我们选取了柠檬和橙子来进行实验。

但是,实验中我们仅仅得到了这两种水果维生素C的含量,并不能代表所有相关食品的含量。

在进行实验时,还需注意以下几点:1、要保持所有试剂的纯度和浓度,特别是磷酸盐标准溶液;2、在样品的榨汁过程中不应加入过多的水,以保证榨汁的浓缩度;3、实验过程中需要严格按照各种试剂的用量比例进行配制试剂,否则会影响实验结果的准确性;4、应注意实验过程中溶液的pH值,不同条件下pH值的变化会导致实验结果的变化。

维生素c测定实验报告

维生素c测定实验报告

维生素c测定实验报告维生素C是一种重要的营养物质,对人体具有许多益处。

为了了解维生素C在不同食物中的含量,我们进行了一项实验来测定食品中维生素C的含量。

本实验使用了硫酸亚铁-碘法来测定维生素C的含量,并通过多个试验样品的测定结果来得出结论。

第一部分:实验步骤和材料实验所需材料包括:硫酸亚铁溶液、碘酸钾溶液、维生素C标准品、几种常见水果样品、酒精灯和滴管等。

首先,我们准备了维生素C标准品溶液,根据浓度顺序配制了不同浓度的标准品溶液。

随后,我们取一定量的标准品溶液和不同的水果样品溶液,加入硫酸亚铁溶液,并搅拌均匀。

然后,再分别加入碘酸钾溶液,继续搅拌。

我们观察到反应混合物的颜色从无色逐渐转变为蓝色,最后变为深褐色。

记录下每个试管中的颜色和反应时间。

第二部分:实验结果和分析根据我们的实验结果,我们得出了不同食物样品中维生素C含量的相对大小。

通过对反应混合物颜色的观察,我们可以看到含有较高维生素C含量的食物产生了更深的褐色,而含有较低维生素C含量的食物则呈现出较浅的褐色。

维生素C的浓度高低可以通过反应混合物的颜色深浅来评估。

我们根据颜色的深浅,可以判断出不同食物中维生素C的含量大小,从而得出了测定结果。

通过我们的实验数据和观察结果,我们可以得出一份关于不同食物中维生素C含量的排名。

然而,需要指出的是,由于实验条件的限制,我们的测定结果并不一定完全准确。

可能存在一些误差。

例如,我们可能在操作过程中添加的试剂量不准确,或者得到的颜色可能受到其他因素的影响。

第三部分:实验的局限性和改进措施该实验是通过测定反应混合物的颜色来评估维生素C含量的。

然而,颜色的主观判断存在一定的局限性,不同的观察者可能给出不同的结果。

因此,我们在实验中只能得出一个相对的结论,而无法准确测定维生素C的绝对含量。

为了提高实验结果的准确性,可以尝试使用更精确的测量方法。

例如,可以使用高级仪器进行维生素C的浓度测定,例如高效液相色谱(HPLC)等。

维生素c的含量测定实验报告

维生素c的含量测定实验报告

维生素c的含量测定实验报告
实验目的:
测定某品牌柠檬汁中维生素C的含量。

实验原理:
本实验采用间碘量法测定柠檬汁中维生素C的含量。

维生素C能被氧化为脱氢抗坏血酸,而脱氢抗坏血酸与碘反应生成稳定的碘化物,利用这种特性可以测定维生素C的含量。

实验步骤:
1. 预处理:取适量的柠檬汁,用稀硫酸稀释,并加入几滴淀粉指示剂。

2. 滴加标准碘溶液:滴加适量的0.1mol/L碘标准溶液至颜色变红褐色。

3. 滴加样品:滴加柠檬汁溶液至颜色变浅黄,且保持2-3分钟不变。

4. 读数:用0.1mol/L碘标准溶液滴加,使颜色变红褐色,维生素C的含量即可通过滴加标准溶液的体积计算得出。

实验结果:
某品牌柠檬汁的维生素C含量为10mg/100mL。

实验结论:
某品牌柠檬汁中维生素C的含量为10mg/100mL。

这个结果可以提供给消费者参考,有助于他们选择适合的饮品。

实验注意事项:
1. 柠檬汁中维生素C含量的测定过程中,要注意标准溶液的滴加量,避免过量或不足影响准确性。

2. 实验过程中要注意与硫酸、碘等化学物品的安全操作,避免发生意外。

3. 实验中要严格按照实验步骤进行操作,保证实验结果的准确性和可靠性。

参考文献:
王XX. 食品营养学实验技术 [M]. 北京:科学出版社, 2015.。

实验九 食品中维生素C含量的测定

实验九  食品中维生素C含量的测定

实验九 食品中维生素C 含量的测定1.实验目的学习并掌握用2,6-二氯酚靛酚滴定法测定食品材料中维生素C 含量的原理和方法。

2.实验原理维生素C 是人类营养中最重要的维生素之一,它与体内其它还原剂共同维持细胞正常的氧化还原电势和有关酶系统的活性。

维生素C 能促进细胞间质的合成,如果人体缺乏维生素C 时则会出现坏血病,因而维生素C 又称为抗坏血酸。

水果和蔬菜是人体抗坏血酸的主要来源。

不同栽培条件、不同成熟度和不同的加工贮藏方法,都可以影响水果、蔬菜的抗坏血酸含量。

测定抗坏血酸含量是了解果蔬品质高低及其加工工艺成效的重要指标。

维生素C 具有很强的还原性。

它可分为还原性和脱氢型。

金属铜和酶(抗坏血酸氧化酶)可以催化维生素C 氧化为脱氢型。

2,6-二氯酚靛酚(DCPIP )是一种染料,在碱性溶液中呈蓝色,在酸性溶液中呈红色。

抗坏血酸具有强还原性,能使2,6-二氯酚靛酚还原褪色,其反应如图:当用2,6-二氯酚靛酚滴定含有抗坏血酸的酸性溶液时,滴下的2,6-二氯酚靛酚被还原成无色;当溶液中的抗坏血酸全部被氧化成脱氢抗坏血酸时,滴入的2,6-二氯酚靛酚立即使溶液呈现红色。

因此用这种染料滴定抗坏血酸至溶液呈淡红色即为滴定终点,根据染料消耗量即可计算出样品中还原型抗坏血酸的含量。

3.仪器及材料3.1仪器容量瓶、锥形瓶、微量滴定管、洗耳球3.2试剂(1)1%草酸溶液:草酸1g 溶于100ml 蒸馏水;2%草酸溶液:草酸2g 溶于100ml 蒸馏水。

(2)维生素C 标准储备液:准确称取20mg 维生素C 溶于1%草酸溶液中,移入100ml 容量瓶中,用1%草酸溶液定容,混匀,冰箱中保存。

(3)维生素C 标准使用液(0.02648mg/ml ):吸取维生素C 贮备液5ml ,用1%草酸溶液稀释至50ml 。

标定:准确吸取上述维生素C 标准使用液25.0mL 于50mL 锥形瓶中,加入0.5mL 60g/L 碘化钾溶液,3~5滴淀粉指示剂 (10g/L),混匀后用0.0010mol/L 标准碘酸钾溶液滴定至淡蓝色(极淡蓝色)为终点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验3 食品中维生素C含量的测定(2,6-二氯酚靛酚滴定法)
一、实验原理
维生素C又称抗坏血酸,还原型抗坏血酸能还原染料2,6-二氯酚靛酚钠盐,本身则氧化成脱氢抗坏血酸。

2,6-二氯酚靛酚的钠盐水溶液呈蓝色,在酸性溶液中呈玫瑰红色,当其被还原时就变为无色,因此,可用2,6-二氯酚靛酚滴定样品中的还原型抗坏血酸。

当抗坏血酸完全被氧化后,稍多加一点染料,使滴定液呈淡红色,即为终点。

如无其他杂质干扰,样品提取液所还原的标准染料量与样品中所含的还原型抗坏血酸量成正比。

二、试剂和器材
偏磷酸醋酸溶液:取15g(用时研细)溶于40mL醋酸及20mL水的混合液中,然后用水稀释至500mL,过滤后储入试剂瓶中。

标准2,6-二氯酚靛酚溶液:取,6-二氯酚靛酚溶于700mL蒸馏水中(用力搅动),
加入300mL磷酸缓冲液(预先配制L L Na
2HPO
4
·2H
2
O水溶液,用时以KH
2
PO
4

Na
2HPO
4
·2H
2
O=4:6的比率将其混合,pH值为),翌日过滤,滤液储于棕色瓶
中,临用时,以抗坏血酸溶液标定。

标准维生素C溶液:以少量偏磷酸醋酸溶液溶解维生素C于100mL容量瓶中,再以该液稀释至刻度。

2,6-二氯酚靛酚液的标定:在3个100mL锥形瓶中,各置5mL偏磷酸醋酸液,再各加2mL标准维生素C溶液,摇匀。

用上面所制的标准2,6-二氯酚靛酚液滴定,呈玫瑰红色保持30s不褪色为止。

记下所用2,6-二氯酚靛酚溶液体积平均值,再以同样方法做一空白实验,取7mL偏磷酸醋酸液加水若干毫升(相当于以上所用的2,6-二氯酚靛酚溶液的低定量),仍用2,6-二氯酚靛酚溶液滴定。

将第一次滴定的量减去空白实验的量,即为标准维生素的反应量,求出1mL 2,6-二氯酚靛酚对应于维生素C的质量(mg)。

研钵、容量瓶、剪刀、锥形瓶、微量滴定管
三、实验步骤
1、用自来水冲洗果蔬样品,再以蒸馏水清洗,用纱布或吸水纸吸干表面水分,然后
称取25g,剪碎,在研钵中研呈浆状。

加入20mL 3%偏磷酸醋酸液,搅动,抽提。

过滤液经漏斗流入100mL 容量瓶中,残渣再以30mL 偏磷酸醋酸液提取3次,滤液及洗涤液皆流入该容量瓶中,以蒸馏水稀释至刻度,加塞摇匀。

如滤液颜色较深,可用白陶土脱色。

2、吸取10mL 提取液于锥形瓶中,加5mL 偏磷酸醋酸液,混合均匀,以2,6-二氯酚
靛酚溶液滴定,并不断摇动,至溶液呈玫瑰红色保持30s 不褪色为止。

3、吸取15mL 偏磷酸醋酸液,加水若干毫升(相当于以上样品实验滴定所用2,6-
二氯酚靛酚溶液的量)做一空白实验,用同样方法,以2,6-二氯酚靛酚溶液滴定。

4、结果计算
维生素C 的含量(mg/100g )按下式计算:
m c v v *100
10100**C 2
1)(的含量维生素-= 式中 v 1——样品用2,6-二氯酚靛酚溶液的滴定体积,mL
V 2——空白用2,6-二氯酚靛酚溶液的滴定体积,mL
C ——1 mL 2,6-二氯酚靛酚相当于维生素C 的含量,mg/mL
m ——样品质量。

四、注意事项
1、样品中某些杂质也能还原2,6-二氯酚靛酚,但速率均较抗坏血酸慢,故终点以
淡色存在30s 为准。

2、维生素C 还可以用2%草酸溶液来提取,2%草酸和偏磷酸同样具有抑制抗坏血酸氧
化酶的功效。

3、若样品中含有大量Fe 2+,可以还原2,6-二氯酚靛酚,用草酸为提取液,则Fe 2+不
会很快与染料起作用。

五、思考题
1、对含有大量色素的样品如何测定其中维生素C 的含量。

相关文档
最新文档