workbench瞬态动力分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

积分时间步长
Training Manual
• 积分时间步长(亦称为ITS 或 Dt )是时间积 分法中的一个重要概念
– ITS = 两个时刻点间的时间增量 Dt ; – 积分时间步长决定求解的精确度,因而其数值应仔 细选取。 – 对于缩减矩阵法与模态叠加法瞬态分析ANSYS 只 允许ITS常值. – 完全法瞬态分析, ANSYS 可以自动调整时间步大 小在用户指定的范围内
DYNAMICS 11.0
Hale Waihona Puke Baidu析过程
• 讨论完全法瞬态分析过程. • 五个主要步骤:
– – – – – 建立模型 选择分析类型和选项 指定边界条件和初始条件 施加载荷历程并求解 查看结果
Training Manual
DYNAMICS 11.0
模型: 所有的非线性因素可允许注意要求密度!
分析选项
– – – – 进入求解阶段,并选择瞬态分析. 选择完全法 求解选项 阻尼
Training Manual
DYNAMICS 11.0
Dx ITS 3c
Dx 单元尺寸 L / 20 L 波长方向的长度 c 弹性波速 E 杨氏模量 E

质量密度
非线性响应
• 非线性响应
Training Manual
DYNAMICS 11.0
–全瞬态分析可包括任何非线性类型. – 更小的 ITS 通常有助于平衡迭代收敛. – 塑性、蠕变及摩擦等非线性本质上是非保守的,需 要精确地遵循载荷加载历程.小的 ITS 通常有助于精 确跟踪载荷历程. – 小的ITS可跟踪接触状态的变化.
DYNAMICS 11.0
– 需假定位移、速度和加速度是如何随时间而变化的, (积分方案选择) – 有多种不同的积分方案,如中心差分法,平均加速度 法, Houbolt, WilsonQ, Newmark 等.
求解方法
Training Manual
DYNAMICS 11.0
• 时间积分方案 – 两种积分方案 Newmark 和 HHT. 缺省为 Newmark
– 当不确定时,就选择 大变形瞬态分析
指定载荷步结束时间
自动时间步长 (discussed next)
Training Manual
DYNAMICS 11.0
指定初始、最大、最小时间步长 Dt.
输出控制 controls (discussed next)
分析选项
• 自动时间步长
– – – –
Training Manual
在瞬态分析过程中,可自动计算正确的时间步长. 推荐激活该选项同时指定最大与最小积分步长. 如果有非线性因素,选择 ―Program Chosen‖选项 注意: 在ANSYS 中,总体求解器控制开关 [SOLCONTROL]的缺省状态为开, 建议保留这一状态, 更为重要的是,不要在载荷步之间打开或关闭此开关
DYNAMICS 11.0
分析选项
• 输出控制
Training Manual
DYNAMICS 11.0
–用来控制写到结果文件的内容. –使用命令 OUTRES 或选择 Solution > Sol’n Control.. > Basic –通常的选项用来将每个子步的结果写到结果文件中去.
• 可光滑绘制结果与时间的关系曲线. • 可能造成结果文件庞大.
指定 GAMMA 或 ALPHAF/ALPHAM
0 < af < 0.5 am < af
DYNAMICS 11.0
求解方法
Training Manual
DYNAMICS 11.0
• 时间积分方案 – 为了稳定性与精度要求,下列关系需满 足. (HHT 方法退化成 Newmark 当af与am =0时)
• 不同的a 和d 造成积分方案的变化 (隐式 / 显式 / 平均加速度 ). • Newmark 是隐式积分方案. • ANSYS/LS-DYNA 利用显式积分方案.
求解方法
• 时间积分方案 HHT 方法 :
Training Manual
DYNAMICS 11.0
Newmark 方法是求解 t n+1时刻的运动 方程
Training Manual
DYNAMICS 11.0
• 求解方法
– 完整矩阵方法为缺省方法。允许下列非 线性选项:
• 大变形 • 应力硬化 • Newton-Raphson 解法
• 集中质量矩阵
– 主要用于细长梁和薄壁壳或波的传播
• 方程求解器
– 由程序自行选择
分析选项
• 求解选项 • 选择大位移瞬态分析 或小变形瞬态分析 .
HHT 方法 –求解中间时间点的运动 方程然后外推到 t n+1. (Note: 缺省HHT方法 am = 0 )
求解方法
Training Manual
• 时间积分方案 - 时间积分参数, γ, a, d, af, am, 通过 求解控制选项输入
– TRNOPT, FULL ,,, ,, NMK|HHT ! 缺省 Newmark – [TINTP,GAMMA,ALPHA,DELTA,THETA ,,, ,,, ALPHAF,ALPHAM]
运动方程
• 基本运动方程
M u Cu K u F t
Training Manual
DYNAMICS 11.0
• 这是动力学最通常的方程形式,载荷 可以是任意随时间变化的. • 按照求解方法, ANSYS 允许在瞬态动 力分析中包括各种类型的非线性 —— 大变形、接触、塑性等等.
积分时间步长
Training Manual
DYNAMICS 11.0
• 如何选择 ITS? • 推荐打开自动时间步长选项 (AUTOTS), 并设置 初始时间步长Dtinitial和最小时间步长Dtmin 、最 大时间步长Dtmax. ANSYS 会利用自动时间步长 功能来自动决定最佳时间步长Dt. • 例如: 如果AUTOTS 是打开的, 并且Dtinitial= 1 sec, Dtmin= 0.01 sec, and Dtmax= 10 sec; 那 ANSYS 起始采用 ITS= 1 sec ,并依据结构的响 应允许其在0.01 和 10 之间变动.
• 初始条件
– 时间t = 0时的条件:u0 ,v0,a0 – 它们的缺省值为, u0 = v0 = a0 = 0 – 可能要求非零初始条件的实例:
• 飞机着陆 (v00) • 高尔夫球棒击球 (v00) • 物体跌落试验 (a00)
Training Manual
DYNAMICS 11.0
施加初始条件的两种方法
HHT法可以通过简单指定GAMMA值或指定ALPHAF与 ALPHAM可以得到其他的方法 Hilber, Hughes and Taylor (HHT) Wood, Bossack and Zienkiewicz Chung and Hulbert
缩减/完整结构矩阵
Training Manual
• 求解时既可用缩减结构矩阵,也可用完整结构矩阵; • 缩减矩阵:
• 以静载荷步开始
Training Manual
– 当只需在模型的一部分上施加初始条件时,例如,用 强加的位移将悬臂梁的自由端从平衡位置“拨”开时, 这种方法是有用的; – 用于需要施加非零初始加速度时。
DYNAMICS 11.0
• 使用IC 命令
– Solution > Apply > Initial Condit’n > Define + – 当需在整个物体上施加非零初始位移或速度时IC 命令 法是有用的。
Training Manual
DYNAMICS 11.0
Dt = 1/20f
式中 ,f 是所关心的最高响应频率。
响应周期
载荷突变
• 载荷突变
– ITS 小到足够获取载荷 突变现象
Load
Training Manual
DYNAMICS 11.0
t
Load
t
接触频率
• 接触频率
– 当两个物体发生接触,间隙或接触 表面通常用刚度(间隙刚度)来描 述; – ITS小到足够获取间隙“弹簧”频 率; – 建议每个循环三十个点,才足以获 取两物体间的动量传递。更小的 ITS 会造成能量损失,并且冲击可 能不是完全弹性的。
DYNAMICS 11.0
积分时间步长
• ITS 小到足够获取下列动力学现象:
– – – – 响应频率 载荷突变 接触频率 波传播效应
Training Manual
DYNAMICS 11.0
响应频率
• 响应频率
– 不同类型载荷激发系统不同的响 应频率; – ITS小到足够获取所关心的最高 响应频率(最低响应周期); – 每个循环中有20个时刻点应是足 够的,即:
GUI:MainMenu>Solution>-Loads-Apply>Initial Condit’n> Define
零初始位移和非零初始速度
Training Manual
非零速度是通过对结构中需指定速度的部分加上 小时间间隔上的小位移来实现的。比如如果 v0=0.25,可以通过在时间间隔0.004内加上0.001的 位移来实现,命令流如下:
分析选项
• 瞬态效应 on/off
– 用来设置初始条件
Training Manual
DYNAMICS 11.0
• 阶跃或渐进载荷
• 指定阻尼 • 使用缺省积分参数值
分析选项
• 阻尼
Training Manual
DYNAMICS 11.0
– α和b阻尼均可用; – 在大多数情况下,忽略α阻尼(粘性阻尼),仅指定b 阻尼(由滞后造成的阻尼):
Training Manual
第四章 瞬态动力分析
瞬态动力分析总论
• 定义:
– 确定结构在任意随时间变化载荷作用下系统瞬 态响应特性的技术。
Training Manual
DYNAMICS 11.0
• 输入数据:
– 最一般形式是载荷为时间的任意函数;
• 输出数据:
– 随时间变化的位移和其它的导出量,如:应力 和应变。
零初始位移和零初始速度
Training Manual
DYNAMICS 11.0
• 是缺省的初始条件,即如果u0 = v0 = 0 ,则不需 要指定任何条件。 • 在第一个载荷步中可以加上对应于载荷—时间 关系曲线的第一个拐角处的载荷。 • 非零初始位移及/或非零初始速度─可以用IC命 令设置这些初始条件。 • 命令:IC
b = 2/w
式中 为阻尼比,w 为主要响应频率 (rad/sec)。
典型命令: ALPHAD,… BETAD,…
分析选项
• 求解器选择
– 缺省ANSYS选择稀疏求解器 – 对于大自由度问题 (>100000 dofs) 使用PCG法
Training Manual
DYNAMICS 11.0
初始条件
求解方法
求解运动方程
Training Manual
DYNAMICS 11.0
直接积分法
模态叠加法
隐式积分
显式积分
完整矩阵法
缩减矩阵法
完整矩阵法
缩减矩阵法
求解方法
• 两种求解运动学方程方法:
– 模态叠加法 – 直接积分法
Training Manual
• 运动方程可以直接对时间按步积分。在每个时间点(time = 0, Dt , 2Dt, 3Dt,„.) ,需求解一组联立的静态平衡方程 (F=ma);
积分时间步长
Training Manual
• AUTOTS对于全瞬态分析缺省是打开的. 对于缩 减法和模态叠加法,是不可用的. • AUTOTS 会减小ITS (直到 Dtmin) 在下列情况:
– – – – – – 在响应频率处,小于20个点 求解发散 求解需要大量的平衡迭代(收敛很慢) 塑性应变在一个时间步内累积超过15% 蠕变率超过0.1 如果接触状态要发生变化 ( 决大多数接触单元可由 KEYOPT(7) 控制)
– 用于快速求解; – 不允许非线性因素存在 – 根据主自由度写出[K]、[C]和[M]等矩阵,主自由度是完全自由度 的子集; – 缩减的 [K] 是精确的,但缩减的 [C] 和 [M] 是近似的。
DYNAMICS 11.0
• 完整矩阵:
– 不进行自由度缩减,采用完整的[K]、[C]和[M]矩阵; – 下面的讨论都是基于此种方法。
Training Manual
DYNAMICS 11.0
1 ITS 30 f c fc 1 2 k m
f c 接触频率 k 间隙刚度 m 有效质量
波传播
• 波传播
– 由冲击引起。在细长结构中 更为显著(如下落时以一端 着地的细棒) – 需要很小的ITS ,并且在波 传播方向需要精细的网格 – 显式积分法(在ANSYSLS/DYNA采用)可能对此更 为适用
相关文档
最新文档