抛物线中的内接三角形面积问题
关于抛物线的十个最值问题-模板
![关于抛物线的十个最值问题-模板](https://img.taocdn.com/s3/m/ec450264f7ec4afe04a1dfaf.png)
关于抛物线的十个最值问题本文用初等方法讨论了与抛物线有关的若干几何最值问题,得到了十个有趣的结论.为方便读者摘用, 现用定理形式叙述如下: 定理 1.抛物线的所有焦半径中,以过顶点的焦半径为最短. 证明:不妨设抛物线的极坐标方程为ρ= ,则显然有ρ≥,其中等号成立当且仅当θ=2kπ+π(k∈Z)即焦半径通过抛物线的顶点时.证毕. 定理 2.抛物线的过焦点的所有弦中,以抛物线的通径为最短. 证明:设抛物线极坐标方程为ρ= ,焦点弦为AB,且设A(ρ1,θ),B(ρ2,θ+π),则有│AB│=ρ1+ρ2 = +=≥ 2p =通径长, 其中等号成立当且仅当θ=kπ+π/2 (k∈Z) 即弦AB为通径时.证毕. 定理 3.设A(a,0)是抛物线 y2=2px(p>0)的对称轴上的定点,M(x,y)是抛物线上的动点,则│MA│m in =证明:由│MA│2= (x-a)2+y2=(x-a)2+2px = x2-2(a-p)x+a2 = [x-(a-p)]2+p(2a-p),并且注意到x∈[0,+∞),立知结论成立.证毕. 定理4.设A(a,b)是抛物线 y2=2px(p>0)内一定点, F是焦点,M 是抛物线上的动点,则y (│MA│+│MF│)min=a+p/2.Q MA(a,b) 证明:如图1所示,作AQ⊥准线L:x=-p/2于Q,则知O Fx (│MA│+│MF│)m in =│AQ│= a-(-p/2)=a+p/2.证毕.图1 定理5.设线段AB是抛物线y2=2px(p>0)的过焦点的弦,分别以A、B为切点的抛物线的两条切线相交于点M,则三角形ABM的面积的最小值为p2. 证明:设A(x1,y1),B(x2,y2),则由A、F、B三点共线可得:x1y2-x2y1=p/2·(y2-y1)……………(1)于是利用(1)式由两切线方程yAM:y1y=p(x+x1),A BM:y2y=p(x+x2),M Fx 易得M的坐标(x,y)适合:B∵ kMF·kAF=-1, ∴MF⊥AB,即│MF│是△MAB的AB边上的高. 图2 ∵ │MF│≥│FK│(焦点F到准线x=-p/2的距离)=p, 又由定理2知│AB│≥2p(通径长), ∴ S△MAB=1/2·│AB│·│MF│≥1/2·2p·p=p2,因其中等号当且仅当AB⊥x 轴时成立,故三角形MAB的最小值为p2.证毕. 定理6.过抛物线y2=2px的顶点O引两条互相垂直的动弦OA和OB,则三角形OAB的面积的最小值为4p2.y 证明:设A(x1,y1),B(x2,y2),则由OA⊥OB 得A x1x2+y1y2=0 ……………………………………(1) Ox 将y12=2px1, y22=2px2代入(1)立得: x1x2=4p2 (2)于是B (S△OAB) 2=1/4·│OA│2·│OB│2 图3 =1/4·(x12+y12)·(x22+y22)=1/4·(x12+2px1)·(x22+2px2)=1/4·[(x1x2)2+2px1x2(x1+x2)+4p2x1x2] ≥1/4·[(x1x2)2+2px 1x2 (2√x1x2)+4p2x1x2]………………………………………(3)将(2)式代入(3)则得(S△OAB)2≥16p4,从而S△OAB≥4p2,因其中等号当x1=x2=2p时取到,故三角形OAB的面积的最小值为4p2。
专题27 抛物线(解答题)(新高考地区专用)(原卷版)
![专题27 抛物线(解答题)(新高考地区专用)(原卷版)](https://img.taocdn.com/s3/m/0ea7093c172ded630a1cb63d.png)
专题27 抛物线(解答题)1.已知抛物线2:2(0)C y px p =>经过点()06,P y ,F 为抛物线的焦点,且||10PF =. (1)求0y 的值;(2)点Q 为抛物线C 上一动点,点M 为线段 FQ 的中点,试求点M 的轨迹方程.2.设抛物线C :22x py =(0p >)过点()2,1. (1)求抛物线C 的标准方程;(2)若直线l 交曲线C 于M 、N 两点,分别以点M 、N 为切点作曲线C 的切线相交于点P ,且两条切线垂直,求三角形MNP 面积的最小值.3.已知点F 为曲线2:2(0)C y px p =>的焦点,点M 在曲线C 运动,当点M 运动到x 轴上方且满足MF x ⊥轴时,点M 到直线4l y x p =+:的距离为. (1)求曲线C 的方程;(2)设过点F 的直线与曲线C 交于,A B 两点,则在x 轴上是否存在一点P ,使得直线PA 与直线PB 关于x 轴对称?若存在,求出点P 的坐标;若不存在,请说明理由. 4.已知抛物线()2:20C y px p =>上一点()0,2P x 到焦点F 的距离02PF x =.(1)求抛物线C 的方程;(2)过点P 引圆()(222:30M x y rr -+=<≤的两条切线PA PB 、,切线PA PB、与抛物线C 的另一交点分别为A B 、,线段AB 中点的横坐标记为t ,求t 的取值范围.5.已知抛物线2:2(0)C y px p =>的焦点为F ,过F 且斜率为2的直线交抛物线于,P Q 两点,10PQ =.(1)求抛物线C 的方程;(2)过点(3,0)的直线l 与抛物线C 相交于,A B 两点,已知(3,0)M -,且以线段AM 为直径的圆与直线3x =-的另一个交点为N ,试问在x 轴上是否存在一定点,使得直线BN 恒过此定点.若存在,请求出定点坐标,若不存在,请说明理由.6.设点F 为抛物线22(0)y px p =>的焦点,,,A B C 三点在抛物线上,且四边形ABCF 为平行四边形,当B 点到y 轴距离为1时,5BF =.(1)求抛物线的方程;(2)平行四边形ABCF 的对角线AC 所在的直线是否经过定点?若经过,求出定点的坐标;若不经过定点,请说明理由.7.设抛物线()2:20E x py p =>的焦点为F ,点A 是E 上一点,且线段AF 的中点坐标为()1,1.(1)求抛物线E 的标准方程;(2)若B ,C 为抛物线E 上的两个动点(异于点A ),且BA BC ⊥,求点C 的横坐标的取值范围.8.已知O 是坐标系的原点,F 是抛物线2:4C x y =的焦点,过点F 的直线交抛物线于A ,B 两点,弦AB 的中点为M ,OAB 的重心为G .(1)求动点G 的轨迹方程;(2)设(1)中的轨迹与y 轴的交点为D ,当直线AB 与x 轴相交时,令交点为E ,求四边形DEMG 的面积最小时直线AB 的方程. 9.已知抛物线2:2(0)C y px p =>过点(4,4)D (1)求抛物线C 的方程,并求其焦点坐标与准线方程;(2)直线l 与抛物线C 交于不同的两点E ,F 过点E 作x 轴的垂线分别与直线OD ,OF 交于A ,B 两点,其中O 为坐标原点.若A 为线段BE 的中点,求证:直线l 恒过定点. 10.已知抛物线2:4E y x =的焦点为F ,准线为l ,过焦点F 的直线交抛物线E 于A 、B . (1)若1AA 垂直l 于点1A ,且16AFA π∠=,求AF 的长;(2)O 为坐标原点,求 OAB 的外心C 的轨迹方程.11.已知抛物线2:2(0)T x py p =>的焦点为F ,B ,C 为抛物线C 上两个不同的动点,(B ,C 异于原点),当B ,C ,F 三点共线时,直线BC 的斜率为1,2BC =.(1)求抛物线T 的标准方程;(2)分别过B ,C 作x 轴的垂线,交x 轴于M ,N ,若MNPBCFS S=,求BC 中点P 的轨迹方程.12.已知抛物线2:2(0)T x py p =>的焦点为F ,B 、C 为抛物线T 上两个不同的动点,当B ,C 过F 且与x 轴平行时,BC 长为1. (1)求抛物线T 的标准方程;(2)分别过B ,C 作x 轴的垂线,交x 轴于M ,N ,若2MNFBCFS S=,求BC 中点的轨迹方程.13.已知抛物线()2:20C y px p =>的内接等边三角形AOB 的面积为O 为坐标原点).(1)试求抛物线C 的方程;(2)已知点()1,1,,M P Q 两点在抛物线C 上,MPQ ∆是以点M 为直角顶点的直角三角形. ①求证:直线PQ 恒过定点;②过点M 作直线PQ 的垂线交PQ 于点N ,试求点N 的轨迹方程,并说明其轨迹是何种曲线.14.设抛物线E :()220y px p =>焦点为F ,准线为l ,A 为E 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B 、D 点.(1)若60BFD ∠=︒,BFD △的面积为3,求p 的值及圆F 的方程; (2)若点A 在第一象限,且A 、B 、F 三点在同一直线1l 上,直线1l 与抛物线E 的另一个交点记为C ,且CF FA λ=,求实数λ的值.15.已知动圆Q 经过定点()0,F a ,且与定直线:l y a =-相切(其中a 为常数,且0a >).记动圆圆心Q 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线?(2)设点P 的坐标为()0,a -,过点P 作曲线C 的切线,切点为A ,若过点P 的直线m 与曲线C 交于M ,N 两点,证明:AFM AFN ∠=∠.16.在平面直角坐标系xOy 中,已知()2,0F ,()2,3M -,动点P 满足12OF MP PF ⋅=. (1)求动点P 的轨迹C 的方程;(2)过点()1,0D 作直线AB 交C 于A ,B 两点,若AFD 的面积是BFD △的面积的2倍,求AB .17.已知抛物线C 的顶点在原点,焦点为()1,0F -. (1)求C 的方程;(2)设P 为C 的准线上一点,Q 为直线PF 与C 的一个交点且F 为PQ 的中点,求Q 的坐标及直线PQ 的方程.18.光学是当今科技的前沿和最活跃的领域之一,抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出,今有抛物线2:2(0)C x py p =>,一平行于y 轴的光线从上方射向抛物线上的点P ,经抛物线2次反射后,又沿平行于y 轴方向射出,若两平行光线间的最小距离为8.(1)求抛物线C 的方程;(2)若直线:l y x m =+与抛物线C 交于A ,B 两点,以点A 为顶点作ABN ,使ABN 的外接圆圆心T 的坐标为493,8⎛⎫⎪⎝⎭,求弦AB 的长度. 19.已知抛物线C 的顶点在坐标原点,准线方程为12y =,F 为抛物线C 的焦点,点P 为直线123=+y x 上任意一点,以P 为圆心,PF 为半径的圆与抛物线C 的准线交于A 、B 两点,过A 、B 分别作准线的垂线交抛物线C 于点D 、E .(1)求抛物线C 的方程;(2)证明:直线DE 过定点,并求出定点的坐标. 20.已知动圆过定点(0,2)A ,且在x 轴上截得的弦长为4. (1)求动圆圆心M 的轨迹方程C ;(2)设不与x 轴垂直的直线l 与轨迹C 交手不同两点()11,P x y ,()22,Q x y .若12112+=x x ,求证:直线l 过定点.21.已知圆221:(1)4M x y -+=,动圆N 与圆M 相外切,且与直线12x =-相切.(1)求动圆圆心N 的轨迹C 的方程. (2)已知点11(,),(1,2)22P Q --,过点P 的直线l 与曲线C 交于两个不同的点,A B (与Q 点不重合),直线,QA QB 的斜率之和是否为定值?若是,求出该定值;若不是,说明理由. 22.已知抛物线()220y px p =->的焦点为F ,x 轴上方的点()2,M m -在抛物线上,且52MF =,直线l 与抛物线交于A ,B 两点(点A ,B 与M 不重合),设直线MA ,MB 的斜率分别为1k ,2k . (1)求抛物线的方程;(2)已知122k k +=-,l :y kx b =+,求b 的值.23.如图所示,A ,B 是焦点为F 的抛物线24y x =上的两动点,线段AB 的中点M 在定直线34x =上. (1)求FA FB +的值;(2)求AB 的最大值.24.已知直线2y x =-与抛物线22y px =相交于A ,B 两点,满足OA OB ⊥.定点()4,2C ,()4,0D -,M 是抛物线上一动点,设直线CM ,DM 与抛物线的另一个交点分别是E ,F .(1)求抛物线的方程;(2)求证:当M 点在抛物线上变动时(只要点E 、F 存在且不重合),直线EF 恒过一个定点;并求出这个定点的坐标.25.已知曲线C 是顶点为坐标原点O ,且开口向右的抛物线,曲线C 上一点A (x 0,2)到准线的距离为52,且焦点到准线的距离小于4. (1)求抛物线C 的方程与点A 的坐标;(2)若MN ,PQ 是过点(1,0)且互相垂直的C 的弦,求四边形MPNQ 的面积的最小值.26.设抛物线2:4y x Γ=的焦点为F ,直线:0l x my n --=经过F 且与Γ交于A 、B 两点.(1)若8AB =,求m 的值;(2)设O 为坐标原点,直线AO 与Γ的准线交于点C ,求证:直线BC 平行于x 轴. 27.已知抛物线2:2C y px =的焦点为()1,0F ,斜率为k 的直线1l 过点()()0,0P m m >,直线1l 与抛物线C 相交于A ,B 两点.(1)求抛物线C 的方程;(2)直线2l 过点()()0,0P m m >,且倾斜角与1l 互补,直线2l 与抛物线C 交于M ,N 两点,且FAB 与FMN 的面积相等,求实数m 的取值范围.28.已知曲线C 上每一点到直线l :32x =-的距离比它到点1,02F ⎛⎫⎪⎝⎭的距离大1. (1)求曲线C 的方程;(2)若曲线C 上存在不同的两点P 和Q 关于直线l :20x y --=对称,求线段PQ 中点的坐标.29.已知抛物线2:2(0)E x py p =>的焦点为,F 点Р在抛物线E 上,点Р的横坐标为2,且2PF =.(1)求抛物线E 的标准方程;(2)若,A B 为抛物线E 上的两个动点(异于点P ),且AP AB ⊥,求点B 的横坐标的取值范围.30.已知抛物线22x py =(0p >)上点P 处的切线方程为10x y --=. (1)求抛物线的方程;(2)设11()A x y ,和22()B x y ,为抛物线上的两个动点,其中12y y ≠,且124y y +=,线段AB 的垂直平分线l 与y 轴交于点C ,求ABC 面积的最大值.31.已知点P 是抛物线C :212y x =上的一点,其焦点为点F ,且抛物线C 在点P 处的切线l 交圆O :221x y +=于不同的两点A ,B . (1)若点()2,2P ,求AB 的值;(2)设点M 为弦AB 的中点,焦点F 关于圆心O 的对称点为'F ,求'F M 的取值范围. 32.已知M 是抛物线2:4C y x =上一点,F 是抛物线C 的焦点,4MF =. (1)求直线MF 的斜率;(2)已知动圆E 的圆心E 在抛物线C 上,点()2,0D 在圆E 上,且圆E 与y 轴交于A ,B 两点,令||DA m =,||DB n =,求n mm n+最大值.33.已知抛物线2:2(0)C x py p =>的焦点为F ,Q 是抛物线上的一点,()2FQ =.(1)求抛物线C 的方程;(2)过点()0,4P x 的直线l 与抛物线C 交于M 、N 两点,且P 为线段MN 的中点.若线段MN 的中垂线交y 轴于A ,求AMN 面积的最大值.34.已知抛物线()2:20C y px p =>的焦点为F ,点F 到直线10x y -+=.(1)求抛物线C 的方程;(2)点O 为坐标原点,直线1l 、2l 经过点()1,0M -,斜率为1k 的直线1l 与抛物线C 交于A 、B 两点,斜率为2k 的直线2l 与抛物线C 交于D 、E 两点,记MA MB MD ME λ=⋅⋅⋅,若1212k k =-,求λ的最小值. 35.已知曲线C 上的动点M 到y 轴的距离比到点F (1,0)的距离小1, (1)求曲线C 的方程;(2)过F 作弦PQ RS 、,设PQ RS 、的中点分别为A B 、,若0PQ RS ⋅=,求||AB 最小时,弦PQ RS 、所在直线的方程;(3)在(2)条件下,是否存在一定点T ,使得AF TB FT λ=-?若存在,求出T 的坐标,若不存在,试说明理由.36.已知抛物线2:2(0)C x py p =>的焦点到直线:l y x =-的距离为.(1)求抛物线C 的方程; (2)如图,若1,02N ⎛⎫-⎪⎝⎭,直线l '与抛物线C 相交于,A B 两点,与直线l 相交于点M ,且||||AM MB =,求ABN 面积的取值范围.37.已知抛物线2:4C y x =的焦点为F ,过点()2,0P 的直线交抛物线C 于()11,A x y 和()22,B x y 两点.(1)当124x x +=时,求直线AB 的方程;(2)若过点P 且垂直于直线AB 的直线l 与抛物线C 交于,C D 两点,记ABF 与CDF 的面积分别为12,S S ,求12S S 的最小值.38.已知抛物线2:2(0)C x py p =>上一点()M ,9m 到其焦点下的距离为10. (1)求抛物线C 的方程;(2)设过焦点F 的的直线l 与抛物线C 交于,A B 两点,且抛物线在,A B 两点处的切线分别交x 轴于,P Q 两点,求AP BQ ⋅的取值范围.39.已知抛物线E :()220y px p =>的焦点为F ,过点F 作圆C :229(2)2x y ++=的两条切线1l ,2l 且12l l ⊥. (1)求抛物线E 的方程;(2)过点F 作直线l 与E 交于A ,B 两点,若A ,B 到直线34200x y ++=的距离分别为1d ,2d .求12d d +的最小值.40.已知抛物线C 的顶点在原点O ,准线为12x =-.(1)求抛物线C 的标准方程;(2)点A ,B 在C 上,且OA OB ⊥,⊥OD AB ,垂足为D ,直线OD 另交C 于E ,当四边形OAEB 面积最小时,求直线AB 的方程.。
设点法在求解抛物线内接三角形面积问题中的应用
![设点法在求解抛物线内接三角形面积问题中的应用](https://img.taocdn.com/s3/m/30dc62ca4bfe04a1b0717fd5360cba1aa8118ce6.png)
的一类问题,较大.有效地解决这一问题.运用设点法解题的基本思路是:1.设点.2.3.4.公式解题.在解题时,线的方程,问题便能迎刃而解.例1.已知抛物线y 2=2px 三点A ,B ,C ,连接A ,B ,C 面积.解:由于A ,B ,C 点的坐标分别为:A æèçöø÷a 22p ,a ,B æèçb 22p ,则AB 两点间的距离为|AB |=直线AB 的方程为2px -(a +则C 点到直线AB 的距离:d 4p +()a +b 蔡彧凯廖小莲思路探寻50()a +b y +ab =0,4x -()a +c y +ac =0.由于直线AB 过抛物线的焦点F ,所以将点F (1,0)代入直线AB 的方程可得ab =-4;由点B 在准线l 上的投影为E ,所以E 点的坐标为(-1,b ),所以k EF ∙k AC =0-b 1-(-1)×4a +c =-1,即c =2b -a ,而AB =C 到AB2则S ΔABC =|a -b |8×|c 2-()a +b c +ab |=|a -b |34,设a =2t ,b =-2t,则S ΔABC =|f ()t |=f ()t =2æèöøt +1t 3≥16,所以三角形ABC 面积的最小值为16.在解答有关抛物线问题的过程中,我们经常使用设线法求解,而在这一题中我们运用设点法,在设出点A 、B 、C 的坐标后,由点的坐标来写出直线的方程,再根据题目条件一一进行计算、化简,便能得到可直接应用基本不等式的式子,进而求得面积的最小值.例3.如图2,已知点A (4,4)在抛物线y 2=2px上,过点B (1,1)的直线交抛物线于点P (x 1,y 1),Q (x 2,y 2),若直线AP 与OQ 交于点I ,记ΔIPQ ,ΔIAO 的面积分别为S 1,S 2.求S 1S 2的最小值.图2解:由题意可设点P (p 24,p ),Q (q24,q ),则直线PQ 的方程为:4x -()p +q y +pq =0,因为B ()1,1∈PQ ,所以4-()p +q +pq =0,化简得q =-4+pp -1,所以直线AP 的方程为:4x -()4+p y +4p =0,直线OQ 的方程为:4x -qy =0,联立两方程可得y I =4p -4p +2,所以S 1S 2=IP ×IQ IA ×IO =-()p -y I ()q -y I ()4-y I y I=()p2-2p +4()12-6p +3p 264()p -12,设p =t +1,对上式进行化简可得S 1S 2=()t 2+3()3t 2+964t2=364éëùût +3t 2≥916,当且仅当t =3,即y I =p =3+1时等号成立.所以S 1S 2的最小值为916.解答本题依旧采用的是设点法,设出P 、Q 两点的坐标,然后分别写出直线PQ 、AP 、OQ 的方程,根据题意得到关于p 与q 的一个关系式,通过联立方程组求得I 点的纵坐标,再利用三角形的面积公式以及两点之间距离公式求得S 1S 2的表达式,最后设p =t +1,化简后便可运用基本不等式求得S 1S 2的最小值.解答抛物线内接三角形面积问题并不一定要用设线法,设点法也是一种很不错的选择.运用设点法来解答抛物线内接三角形面积问题,不仅能简化繁琐的计算,还能优化解题的方案,有利于提高解题的效率.(作者单位:湖南人文科技学院数学与金融学院)思路探寻51。
所有的面积公式
![所有的面积公式](https://img.taocdn.com/s3/m/aed5767ecbaedd3383c4bb4cf7ec4afe04a1b121.png)
所有的面积公式数学中,面积公式可以让我们计算出它的具体面积。
下面是店铺给大家整理的所有的面积公式,供大家参阅!梯形面积公式S=(a+b)×h÷2{梯形面积=(上底+下底)×高÷2}球体(正球)表面积公式S=4πr^2{球体(正球)表面积=圆周率×半径×半径×4}坐标公式1:△ABC,三顶点的坐标分别为 A(a1,a2),B(b1,b2)C(c1,c2),S△ABC=∣a1b2+b1c2+c1a2-a1c2-c1b2-b1a2∣/2.2:空间△ABC,三顶点的坐标分别为A(a1,a2,a3),B(b1,b2,b3)C(c1,c2c3),面积为S,则S^2=(a1b2+b1c2+c1a2-a1c2-c1b2-b1a2)^2+(a2b3+b2c3+c2a3-a2c3-c2b3-b2a3)^2+(a1b3+b1c3+c1a3-a1c3-c1b3-b1a3)^2.圆公式/面积公式设圆半径为:r, 面积为:S .则面积S= π·r^2 ; π 表示圆周率即圆面积等于圆周率乘以圆半径的平方扇形面积公式在半径为R的圆中,因为360°的圆心角所对的扇形的面积就是圆面积S=πR^2,所以圆心角为n°的扇形面积:比如:半径为1cm的圆,那么所对圆心角为135°的扇形的周长:C=2R+nπR÷180=2×1+135×3.14×1÷180=2+2.355=4.355(cm)=43.55(mm)扇形的面积:S=nπR^2÷360=135×3.14×1×1÷360=1.1775(cm^2)=117.75(mm^2)扇形还有另一个面积公式面积公式其中l为弧长,R为半径扇环面积公式面积公式图册圆环周长:外圆的周长+内圆的周长(圆周率X(大直径+小直径))圆环面积:外圆面积-内圆面积(圆周率X大半径的平方-圆周率X小半径的平方\圆周率X(大半径的平方-小半径的平方)用字母表示:S内+S外(πR方)S外—S内=∏(R方-r方)还有第二种方法:S=π[(R-r)×(R+r)]R=大圆半径r=圆环宽度=大圆半径-小圆半径还有一种方法:已知圆环的外直径为D,圆环厚度(即外内半径之差)为d。
第五讲+抛物线中三角形的面积问题
![第五讲+抛物线中三角形的面积问题](https://img.taocdn.com/s3/m/e8bb7c06581b6bd97f19ea64.png)
第五讲抛物线中三角形的面积问题一、抛物线内接三角形的面积问题:例、如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax²+bx+c(a≠0)经过A、B、C三点。
⑴求此抛物线的函数表达式和顶点M坐标;⑵求S△MBC;归纳:怎样求坐标系内任意三角形的面积问题:二、抛物线中三角形的等积变化:1、在抛物线上是否存在点D,使得△ABC和△ABD面积相等,若存在,求出点D的坐标,若不存在,说明理由。
2、在抛物线上是否存在点E,使得△ABC和△BCE面积相等,若存在,求出点E的坐标,若不存在,说明理由。
S△ABC。
若存在,求出点M的坐标;若不存在,请说明理由3、在抛物线上是否存在点M,使S△MBC= 134、(2011成都)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7√?若存在,求出点M的坐标;若不存在,说明理由.5、点P(2,-3)是抛物线对称轴上的一点,在线段OC上有一动点M,以每秒2个单位的速度从O向C 运动,(不与点O,C重合),过点M作MH∥BC,交X轴于点H,设点M的运动时间为t秒,试把△PMH 的面积S表示成t的函数,当t为何值时,S有最大值,并求出最大值;6、在抛物线的对称轴上有一点P的纵坐标为5,在直线上BC求一点M使得S△PBM∶S△ABC=1:5.7、在直线BC下方抛物线上是否存在一个点F,使得△BCF的面积最大,若存在,求出点F的坐标,并求出最大面积,若不存在,说明理由。
练习:1、如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,-4),其中x1,x2是方程x2-4x-12=0的两个根.(1)求A、B两点坐标;(2)求抛物线的解析式;(3)点M是线段AB上的一个动点(不与A、B两点重合),过点M作MN∥BC,交AC于点N,连接CM,在M点运动时,△CMN的面积是否存在最大值?若存在,求出△CMN面积最大时点M的坐标;若不存在,请说明理由.2、(2010玉溪)如图,在平面直角坐标系中,点A的坐标为(1,△AOB(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(4)在(2)中x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点D,线段OD 把△AOB分成两个三角形.使其中一个三角形面积与四边形BPOD面积比为2:3 ?若存在,求出点P的坐标;若不存在,请说明理由.yAB。
抛物线课件及练习题含详解
![抛物线课件及练习题含详解](https://img.taocdn.com/s3/m/b5b40dcef71fb7360b4c2e3f5727a5e9856a27ff.png)
为 y k(x p).
2
又因为A,B两点是直线AB与抛物线的交点,则
y k(x y2 2px
p ), 2
x2
(
2p k2
p)x
p2 4
0,
所以x1·x2=p2 .
4
由|AF|·|BF|=
x1
x2
p 2
x1
x
2
p2 4
1. 3
得 p2 p (4 p) 1 ,
2 23
3
即 2p 所1 ,以 p 1 ,
2p y21p2y1y1y1 y2
x
x1
,
= 2p x y1y2 2p (x y1y2 ),
y1 y2 y1 y2 y1 y2
2p
将y1·y2=-4p2代入上式得y 2p x 2p,
y1 y2
故直线AB恒过定点(2p,0).
【方法技巧】利用抛物线的性质可以解决的问题 (1)对称性:解决抛物线的内接三角形问题. (2)焦点、准线:解决与抛物线的定义有关的问题. (3)范围:解决与抛物线有关的最值问题. (4)焦点:解决焦点弦问题.
|AF|=1,|BF|= 1,求抛物线及直线AB的方程.
3
【解题指南】设出A,B两点的坐标,根据抛物线定义可分别表
示出|AF|和|BF|,进而可求得|AF|+|BF|,求得x1+x2的表达
式,表示出|AF|·|BF|,建立等式求得p,则抛物线方程可得.
再由|AB|=
2p sin 2
得4, sin2θ=
(2)y2=2px(p>0)的焦点为( p,0),由题意得
2
( p 2)2 解9 得 5p,=4或p=-12(舍去).
2
2017年中考数学复习指导抛物线内接三角形面积的计算通法
![2017年中考数学复习指导抛物线内接三角形面积的计算通法](https://img.taocdn.com/s3/m/0daf766569eae009581becc3.png)
抛物线内接三角形面积的计算通法一、问题的提出(2016年酒泉中考题)如图1(1),已知抛物线经过(3,0)A ,(0,3)B 两点.(1)求此抛物线的解析式和直线AB 的解析式;(2)如图1(1),动点E ,从O 点出发,沿着OA 的方向以1个单位/秒的速度向终点A 匀速运动,同时,动点F 从点A 出发,沿着AB /秒的速度向终点B 匀速运动,当EF 中任意一点到达终点时另一点也随之停止运动.连结EF ,设运动时间为t 秒,当t 为何值时,AEF V 为直角三角形?(3)如图1(2),取一根橡皮筋,两端点分别固定在A ,B 处,用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 与A ,B 两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P 的坐标;如果不存在,请简要说明理由.本题第(3)问是求抛物线内接不规则三角形的最大面积问题,解这类问题有没有一种通用的方法呢?值得我们探究.二、几种特殊情况1.抛物线内接三角形有一边在x 轴上:(这里约定A 点的横坐标记为A x ,A 点的纵坐 标记为为A y )如图2(1),有1122ABC A B C S AB OC x x y ∆=⨯=-⨯. 如图2(2),有1122ABC A B C S AB DC x x y ∆=⨯=-⨯. 如图2(3),有 1122ABC A B C S AB DC x x y ∆=⨯=-⨯. 2.抛物线内接三角形有一边与x 轴平行:如图3(1),有1122ABC A B C D S AB DC x x y y ∆=⨯=-⨯-, 或1122ABC B A D C S AB OC x x y y ∆=⨯=-⨯-; 如图3(2),有 1122ABC A B C D S AB DC x x y y ∆=⨯=-⨯-, 或1122ABCB A DC S AB OC x x y y ∆=⨯=-⨯-.在以上特殊情况下,只要求出A 、B 、C 、D 的坐标,代入即可以求出抛物线内接三角形的面积.三、建立模型当抛物线内接三角形的三边均不与坐标轴平行时(如图4),三角形的面积又该怎么计算呢?解题的基本思路是将任意三角形转化为上述特殊的三角形,然后类比解决.如图4,过点C 作“轴的垂线交AB 于点D ,则ABC ∆被分成了两个以CD 为一公共边的三角形.过点A 作AE CD ⊥于点E ,过B 作BF CD ⊥于点F ,则11()22ABC CDA ABC S S S CD AE CD BF CD AE BF ∆∆∆=+=⨯+⨯=⨯+,C D CD y y =-,C A B C AE BF x x x x +=-+-.A CB x x x <<Q ,A B AE BF x x ∴+=-,12ABC A B C D S x x y y ∆∴=---. 综合上述,已知三角形三个顶点坐标,可得抛物线内接ABC ∆的面积公式: 设,A B D a x x h y C y =-=-- .a 为两点的横坐标之差,可看成是两点之间的水平距离,可以称为水平宽; h 表示的是两点的纵坐标之差,可称为铅直高.在坐标系中,不规则三角形的面积公式可表示为:12ABC S ah ∆=. 此公式适用于坐标系中的任意三角形,它和一般三角形的面积公式形成了完美的一致. 当三角形的三个顶点都在抛物线上时,点的横坐标不可能州样,不妨设A C B x x x <<. 则A a x x B =--,即是水平宽.过点C 作x 轴的垂线,与直线AB 的交点记为D ,则C D h y y =-,即是铅直高,于是有1122ABC A B C D S ah x x y y ∆==-⋅-. 四、问题解决上述问题中,过点P 作//PN x 轴,垂足为N ,交AB 于点M (如图1(2)),抛物线解析式为223y x x =-++,直线AB 的解析式为3y x =-+.设(,3)N x x -+,则2(,23)M x x x -++.于是有 12ABC A B P M S x x y x ∆=-⋅- 21(30)(23)(3)2x x x ⎡⎤=-⋅-++--+⎣⎦ 23922x x =-+23327()228x =--+, 即当32x =时,ABP V 面积最大,最大面积是278,此时P 点的坐标为327(,)28. 五、模型应用(动点B 在定点A 与C 之内)例1 如图5,二次函数与x 轴交于点C ,与y 轴交于点A ,B 为直线AC 下方抛物线上一点,求ABC V 面积的最大值.解 易得点(0,4)A -,点(6,0)C ,则水平宽6A C a x x =-=.直线AC 的解析式为243y x =-. 设点B 的坐标为213(,4)34x x x --, 则点D 的坐标为2(,4)3x x -. 铅垂高22144(4)323B D h y y x x =-=----2123x x =-+, 故222116(2)6(3)923ABC S x x x x x ∆=⨯⨯-+=-+=--+. 06x <<Q ,当3x =时,即当点(3,5)B -时,ABC ∆面积最大,最大面积是9.评注 题中的ABC ∆满足公式中的,A C 为定点,B 为一动点,但在运动过程中,B 的横坐标介于,A C 的横坐标之间,所以直接套用公式即得.由此题可看出,在这种动点问题中,水平宽是两个定点间的水平跨度,铅直高即是由动点向x 轴作垂线,垂线与两定点的连线交于一点,动点和这个交点在竖直方向的跨度.六、模型拓展(动点P 在定点A 与C 之外)例2 如图6(1),二次函数与x 轴交于点C ,与y 轴交于点A ,直线AB 与x 轴平行,且点B 在抛物线上,点P 是直线AC 上方抛物线上的动点,是否存在点P ,使2P A C A B C S S ∆∆=,若存在,求出点P 的坐标,若不存在,说明理由.解析 由题意不难得出8ABC S ∆=,要使2PAC ABC S S ∆∆=,即求16PAC S ∆=.因为PAC ∆为动点三角形,由通用公式PAC S ah ∆=,其中a 为水平宽,6C A a x x =-=, h 为铅直高,应该过动点P 向x 轴作垂线;交直线AC 于点D ,则P D h y y =-.问题是此时动点P 不在两定点,A C 之间,而是运动到了两定点,A C 之外,那么通用公式还成立吗?由图6(2)可知,当动点P 在两定点,A C 之外时,1122PAC PDC PDA S S S PD CE PD AF ∆∆∆=-=⨯-⨯ 111()()222C A PD CE AF PD x x ah =-=⨯-=. 由此可见,当动点运动到两定点之外时,通用公式依然成立.区别是:动点在两定点之间时,动点图形的面积是两个规则图形的面积之和,用的是加法运算;动点在两定点之外时,动点图形的面积是两个规则图形的面积之差,用的是减法运算.。
抛物线内接三角形面积公式
![抛物线内接三角形面积公式](https://img.taocdn.com/s3/m/3cd90ffffc0a79563c1ec5da50e2524de518d00e.png)
抛物线内接三角形面积公式
抛物线的标准方程为 y = ax^2 + bx + c,其中a ≠ 0。
如果把抛物线的顶点设为坐标原点 (0,0),那么抛物线的顶点
坐标为 (h, k),其中 h = -b/(2a),k = c - b^2/(4a)。
接下来,我们设抛物线上任意一点的坐标为 (x, ax^2 + bx + c)。
我们知道,任意抛物线上的一点到抛物线顶点的距离可以用欧几里得距离公式计算:
d = √((x-h)^2 + (ax^2 + bx + c - k)^2)
现在我们要求抛物线上的三个点坐标 (x1, y1),(x2, y2),(x3,
y3),使得这个三角形与抛物线相内切。
由于内切三角形的性质,三个点到抛物线顶点的距离都是相同的。
因此我们可以将这个距离简化为:
d = √((x1-h)^2 + (ax1^2 + bx1 + c - k)^2)
根据欧几里得距离公式,这个内切三角形的面积可以通过海伦公式计算:
s = √(p(p-d1)(p-d2)(p-d3))
其中 p = (d1 + d2 + d3)/2 是三个边长的半周长。
我们可以进一步简化这个面积公式,将三个边长用 d 表示:s = √(3d^2(d-p))
其中d = √((x1-h)^2 + (ax1^2 + bx1 + c - k)^2) 是三个边长的距离,p = (3d)/2 是三个边长的半周长。
这就是抛物线内接三角形的面积公式。
抛物线内接直角三角形的一个性质及应用
![抛物线内接直角三角形的一个性质及应用](https://img.taocdn.com/s3/m/77be9d0b580102020740be1e650e52ea5518cef6.png)
抛物线内接直角三角形的一个性质及应用抛物线内接直角三角形是几何学中一个重要的定理,它告诉我们:如果一个直角三角形的一个顶点在抛物线上,那么其它两个顶点的坐标也会在这个抛物线上。
本文将简要介绍抛物线内接直角三角形的定义、性质及其应用。
首先,抛物线内接直角三角形定义为:一个直角三角形,其中一个顶点在抛物线上,另外两个顶点也在抛物线上,且抛物线的准线和直角三角形的两条腰都相交。
因此,抛物线内接直角三角形的性质有以下三点:
1)直角三角形的一个顶点在抛物线上,另外两个顶点也在同一
条抛物线上;
2)抛物线的准线与直角三角形的腰相交;
3)抛物线内接直角三角形的面积小于等于抛物线面积的一半。
此外,抛物线内接直角三角形还有一些其它特性:抛物线内接直角三角形的高度等于抛物线的端点之间的距离;两点定理说明了任何一点到抛物线上的点的距离等于直角三角形的斜边的长度。
抛物线内接直角三角形有许多实际应用,其中最为重要的是在机械设计中,抛物线被用来设计螺旋形线路,使得机械运动更加均匀,减少了摩擦力,减少了损耗。
在建筑过程中,抛物线也被用来设计电梯的曲线,使其运行曲线十分柔和,降低了电梯的震动,减少了乘客的不适感受。
另外,抛物线内接直角三角形也被用于医学领域中的X 射线成像技术,使得X射线的扫描更加准确,精确诊断病症。
综上所述,抛物线内接直角三角形是几何学中一个重要的定理,它描述了三角形和抛物线之间的关系,它的定义、性质和应用在许多不同的领域中有广泛的应用,它能够减少摩擦力、降低震动,使X射线扫描更准确,为人类带来科学和技术上的进步。
二次函数专题—抛物线的内接特殊三角形
![二次函数专题—抛物线的内接特殊三角形](https://img.taocdn.com/s3/m/a793bc3d0912a216147929ff.png)
《二次函数》专题训练(三)——抛物线的内接特殊三角形主备:鄢自红授课:鄢自红□自学导读【学习目标】(1)掌握二次函数图象内接特殊三角形的性质,并利用性质求解析式和参数的值。
(2)通过规律的推导和运用,提高类比推理和综合解题能力。
【重、难点】规律的推导和运用【读书思考】基础知识回顾:(1)抛物线顶点坐标公式:(_____, _________),简记为___________.(2)若抛物线与x轴有两个交点A(x1,0), B(x2,0),AB=___________=________.(3)韦达定理:若ax2+bx+c=0(a≠0)有两实根x1,x2,则_________________________.□典题解析(一)抛物线与x轴两个交点和顶点确定的三角形例1.已知,二次函数y=x2+kx+1与x轴的两个交点A、B都在原点右侧,顶点为M。
当△ABM是等腰直角三角形时,(1)求k值。
(2)求判别式△.解析:先画出函数大致图象,再利用等腰三角形性质,结合直角三角形的性质求解。
问题1:例1中,如果把y=x2+kx+1换成y=ax2+bx+c,△ABM是等腰直角三角形时,△值不变吗?规律1:练习1(变式). 已知抛物线y=x2—bx (b≠0)的顶点为M,与直线y=—2两交点分别为A、B,且△ABM为等腰直角三角形,则b=_______。
问题2:前面的问题中当△ABM为等边三角形时,y=ax2+bx+c的判别式△又是多少?导学设计教学重难点与抛物线内接特殊三角形有关的定值的推导和运用.教具准备多媒体.导学流程一、导入新课,揭示目标(2分钟) 情景导入:师生对照课件解读学习目标.二、新课导学基础知识回顾:(2分钟)(课件出示题目,点学生回答)自主探究完成例1(4分钟)(学生演板)追问拓展、合作探究:(3分钟)如果把y=x2+kx+1换成y=ax2+bx+c,△ABM是等腰直角三角形时,△还是4吗?规律小结(2分钟):当y=ax2+bx+c(a≠0)与x轴交于A、B 两点,C是顶点,当△ABM为等腰直角三角形,则△=b2-4ac=4.练习1点拨:实质是把抛物线与y=0的交点变成了与y=-2的,但要注意△是方程x2-bx=-2的,而不是x2-bx=0的.自主探究问2(5分钟)1、先自主探究问题2,展示探究的结果.2、并利用探究的结论完成例2,利用例2检查学习效果。
圆锥曲线内接三角形的面积公式及其应用
![圆锥曲线内接三角形的面积公式及其应用](https://img.taocdn.com/s3/m/95dc57de4793daef5ef7ba0d4a7302768e996ff2.png)
46中学数学研究2021年第1期(上)圆锥曲线内接三角形的面积公式及其应用广西防城港市东兴市东兴中学(538100)吴中伟摘要求三角形面积的方法有很多,但对于无法确定形状的三角形,其面积没有统一的求法•经过推导,发现在参数方程条件下圆锥曲线(圆,椭圆,双曲线与抛物线)的内接三角形的面积都有统一的表达式,并且这些表达式结构非常相似.关键词圆锥曲线;内接三角形;面积表达式求三角形面积的方法有很多,但对于无法确定形状的三角形,其面积没有统一的求法•笔者发现在参数方程条件下圆锥曲线(圆,椭圆,双曲线与抛物线)的内接三角形的面积都有统一的表达式,并且这些表达式结构非常相似.引理在4ABC中,已知一B—(x i,y i),一1—(血,y2),则4ABC的面积S a abc—2|x i y2—血y i|.(x a cos a(a为y—b sin a参数)的三点,它们对应的参数分别为a i,a2,a3,则S a abc——|sin(a2— a i)+sin(a i—a3)+sin(a3— a2)|.证明易知A(a cos a i,b sin a i),B(a cos a2,b sin a2), C(a cos a3,b sin a3),贝V a B—(a(cos a2—cos a i),b(sin a2—sin a i)),一1—(a(cos a3— cos a i),b(sin a3—sin a i)),由引理得,S a abc=2ab(cos a2— cos a i)(sin a3—sin a i)—ab(cos a3— cos a i)(sin a2—sin a i)ab=—cos a2sin a3— cos a2sin a i— cos a i sin a3+cos a i sin a i—(cos a3sin a2— cos a3sin a i S a abc-fx—a sec a,厶定理3已知A,B,C是双曲线|(a为参y—b tan a数)的三点,它们对应的参数分别为a i,a2,a3,则sin(a2—a i)+sin(a i—a3)+sin(a3—a2)cos a i cos a2cos a3x b tan a 同理可证,焦点在y轴的双曲线=(a为参y—a sec a数)的内接三角形的面积表达式与焦点在x轴的双曲线的完全一样.接下来推导在参数方程条件下,抛物线的内接三角形的面积的统一表达式.x—2p t2定理4已知A,B,C是抛物线{(t为参y=2pt数p>0)上的三点,它们对应的参数分别为t i,t2,t3,则S a abc—2p2|(t i—t2)血—t3)(t3—t i)|.特别的,若点C 为坐标原点,则S a abc—2p2|(t i—t2)t i t21证明易知A(2pt f,2pt i),B(2pt2,2pt2),C(2pt|,2pt3),则S a abc=2a B—a1=2p2|(t2—ti)(t3—t1)—(t3一ti)(t2一t1)=2p2(t i一 t2)(t2一t3)(t3一t i).显然,若C为原点,则S a abc—2p2|(t i— t2)t i t2〔.同理可证,其他情形的抛物线的内接三角形的面积表达式与定理4相同.基于以上的结论,本文从—cos a i sin+cos a i sin a i)豊|sin(a2-a i)+sin(a i— a3)+sin(a3-a2)同理可证,焦点在y轴的椭圆的内接三角形的面积表达式与焦点在x轴的椭圆的完全一样.利用类似的方法也易证得以下定理.亠.—x—a+r cos a「厶“定理2对于圆(a为参数),A,B,Cy—b+r sin a是其三点,对应的参数分别为a i,a2,a3,则S a abc r2—|sin(a2— a i)+sin(a i— a3)+sin(a3— a2)|.实例的角度,阐述这些公式在解决圆锥曲线的内接三角形面积问题的作用.例1已知椭圆C1:x+务=1(a>b>0)的左、右焦点为F i、F2,|F i F2—l/l,若圆Q方程(x—/l)l+(y—1尸=1,且圆心Q满足|QF i+|QF2=2a.(I)求椭圆C i的方程;(II)过点P(0,1)的直线l i:y—kx+1交椭圆C1于A、B两点,过P与l i垂直的直线h交圆Q于C、D两点, M为线段CD中点,若4MAB的面积为第1,求k的值.5解(I)略;(II)由(I)可知椭圆的参数方程为2021年第1期(上)中学数学研究47x—2cos ay=sin a(a为参数),与y—kx+1联立得V2sin a—2k cos a+1t i+t2—号,t i t2———.因为点M对应的参数为t—1,所以由定理3,得①S a ABM=8|(t i—t2)(t2—1)(1—t i)|代入sin2a+cos2a—1,整理得(2+4k2)cos2a+4k cos a—1=0.设A(2cos a.sin a i),B(2cos a2,sin a2)贝J-2k cos a i十cos a2=1+2k2联立①1①2得,■,■/2 sin a1十sin a2=1+2k2由①2①3得,|sin(a i-a2)|=|sin a2—sin a i|cos a i—cos a2—1 cos a i cos a2=2+4k2..1-4k2 sin a i sin a2=2+4k2V1+4k21+2k2,_2k/1+4k2=1+2k2,/2•/1+4k21+2k2因为Q(血,1)对应的参数为4,所以由定理1得①2①3S a qab=血 |sin(a i-a2)+sin(a2-寸)+sin(寸-a i)| =/2Lin(a i—a2)+(sin a2—sin a i)(cos a i—cos a2)=8J(t i+t2)2—4t i t2|—t i t2—1+t i+t2=\/(m2+4)(2m-3)2°令f(x)—(m2+4)(2m—3)2,贝」f z(m)—2(2m-3)(4m2-3m+8),33所以f z(m)—0的解为m=2,m e(—x>,2)时,f z(x)<0,322f(x)单调递减;m e$,+x>)时,f z(x)>0,f(x)单调递增;又因为m22,所以f(m)——f⑵—8,故三角形ABM面积的最小值为2/2.x2例3已知点F i是双曲线C:忑-y2—1的左焦点,点M为其右顶点,过点F i的斜率为1的直线交双曲线的左支于A,B两点,求AABM的面积.解由已知可知点F i(-/5,0),M(2,0),直线I ab:x—fx2sec a(a为参数),y—tan a得2sec a—tan a—a/5,即sin a—a/5cos a—2依题意得,sin(a i—a2)与cos a i—cos a2异号,所以①1S a qab—|sin a2-sin a i2W1+4k21+2k2因为M在线代入sin2a+cos2a—1,整理得6cos2a+cos a+3=0.段CD中点,所以MQ丄l2,又因为l i丄l2,所以MQ//l i,所以S a mab—S a qab,从而覚十誓—半,解得k—±/2.此时I2:y—士冷2x+1,圆心Q到^2的距离h=±畔x/2-1+1/<-,成立.例2在平面直角坐标系xOy中,已知抛物线C:x2—设A(2sec a i,tan a i),B(2sec a2,tan02),贝」2/5一"3cos a i+cos a2联立①1①2得,sin a i+sin a2cos a i cos a212①24y,点P是C的准线I上的动点且其横坐标m22,过点P 作C的两条切线,切点分别为A,B.若点M的坐标为(4,4),求三角形ABM面积的最小值.{x—4t(t为参y=4t2数),准线l:y——1,y z—1x.设A(4t i,4t f),B(4t2,4t2),点P(m,—1),则切线PA的方程为:y+1=2t i(x-m),把点A(4t i,4t f)代入上式,得4t f+1=2t i(4t i-m),即4t i-2mt i-1=0.同理可得,4t2-2mt2-1=0,故t i,t2是方程4t2-2mt-1—0的两个解.由根与系数关系得,23,2血I••=3,|s i n a2—sin a i1sin a i sin a2—------6①3^10因为由已知得M对应的参数为0,且sin(a i-a2)与由①①得,|sin(a i-a2)|sin a2—sin a i同号,所以由定理2,|sin(a i—a2)+sin a2+sin(—a i) S a abm—1----------------------------------------------|cos a i cos a22/2/10-丁;丁-竿(2+/5)2参考文献[1]吴中伟•一个三角形面积公式在解析几何中的应用[J].中学数学研究(华南师范大学版),2020(3):40-42.。
求二次函数之内接三角形求面积的方法
![求二次函数之内接三角形求面积的方法](https://img.taocdn.com/s3/m/e3c2731e581b6bd97f19ea45.png)
S CAB
1 32 2
3
(3)、假设存在符合条件的点 P,设 P 点的横坐标为 x,△PAB 的铅垂高为 h,
则 h y1 y2 (x2 2x 3) (x 3) x2 3x
9 由 S△ PAB= 8 S△ CAB
1 3 (x2 3x) 9 3
= 1 ������������ × ������������
2
AD 即为铅垂高,BF 即为 B 点与 C 点的水平宽。
明白了这个原理,让我们一起来看一下二次函数内接三角形求面积的题型。
例题 1:
如图 12-2,抛物线顶点坐标为点 C(1,4),交 x 轴于点 A(3,0),交 y 轴于点 B.
(1)求抛物线和直线 AB 的解析式;
设直线 AB 的解析式为: y2 kx b
由 y1 x2 2x 3求得 B 点的坐标为 (0,3)
y C
BDLeabharlann 1 O1x A图 12-2
把 A(3,0) , B(0,3) 代入 y2 kx b 中,解得: k 1,b 3 ,所以 y2 x 3 .
(2)、因为 C 点坐标为(1,4),所以当 x=1时,y1=4,y2=2,所以 CD=4-2=2 ,
向下的函数,所以把二次函数一般式化成顶点式即可求出面积的最大值。
讲了这么多,相信同学们已经跃跃欲试了,请自己动手做一下面这个习题↓↓↓
得: 2
8
化简得: 4x2 12x 9 0
|PE|即为铅垂高 h,h 等于 P,E 两点纵坐标之差
x 3 解得, 2
将
x
3 2
代入
y1
x2
专题14 直线与抛物线的位置关系(解析版)
![专题14 直线与抛物线的位置关系(解析版)](https://img.taocdn.com/s3/m/2787acf5bb68a98270fefa7e.png)
专题14 直线与抛物线的位置关系 一、定点1、已知抛物线24y x =的焦点为F ,直线l 过点(4,0)M . (1)若点F 到直线ll 的斜率;(2)设A ,B 为抛物线上两点,且AB 不与x 轴垂直,若线段AB 的垂直平分线恰过点M ,求证:线段AB 中点的横坐标为定值答案: (12)证明见详解.解析: (1)设出直线方程,根据点到直线的距离公式,即可求得直线;(2)设出直线方程,联立抛物线方程,根据韦达定理,利用直线垂直,从而得到的斜率关系,即可证明. 【详解】(1)由条件知直线l 的斜率存在,设为0k , 则直线l 的方程为:0(4)y k x =-, 即0040k x y k --=.从而焦点(1,0)F 到直线l(2)证明:设直线AB 的方程为(0)y kx b k =+≠,联立抛物线方程24y x =,消元得:222(24)0k x kb x b +-+=. 设()11,A x y ,()22,B x y , 线段AB 的中点为()00,P x y ,因为PM AB ⊥,1PM AB k k ∴⋅=-. 将M 点坐标代入后整理得:即可得:222kb k -=. 【点睛】本题考查抛物线中的定值问题,涉及直线方程的求解,韦达定理,属综合基础题.2、在平面直角坐标系xOy 中,已知抛物线()220y px p =>上一点其焦点F 的距离为4.(1)求抛物线的方程与准线方程;(2)直线l 与抛物线相交于,A B 两点(,A B 位于x 轴的两侧),若3OA OB ⋅=,求证直线l 恒过定点.答案: (1)22y x =,(2)见详解解析: (1)先计算n ,根据抛物线的定义,可得.(2)假设直线方程,然后与抛物线方程联立,利用韦达定理,表示出3OA OB ⋅=,可得结果. 【详解】(1在抛物线上,72,pn =或7p = 当7p =时, 所以,抛物线的方程为22y x=,(2)设直线l 的方程为x y a λ=+,由22x y ay xλ=+⎧⎨=⎩,得,2220.y y a λ--= 设()()1122,,,A x y B x y , 则12122,2y y y y a λ+==-.由221212121222y y OA OB x x y y y y ⋅=+=⋅+()22234a OA OB a -⋅=-=得3a =或1a =-.当1a =-时,1222,,y y a A B =-=位于x 轴的同侧,舍去;当3a =时,1226,,y y a A B =-=-位于x 轴的两侧,即直线l 的方程为3x y λ=+, 所以,直线l 恒过()3,0. 【点睛】本题主要考查抛物线中过顶点的问题,难点在于找到方程x y a λ=+中,a λ的关系,属中档题.3、已知1F 、2F 分别为椭圆1C :22221(0)y x a b a b+=>>的上、下焦点,其中1F 也是抛物线22:4C x y =的焦点,点M 是1C 与2C 在第二象限的交点,且15||3MF =.(1)求椭圆1C 的方程;(2)已知点(1,3)P 和圆O :222x y b +=,过点P 的动直线l 与圆O 相交于不同的两点,A B ,在线段AB 上取一点Q ,满足:AP PB λ=-,AQ QB λ=,(0λ≠且1λ≠±).求证:点Q 总在某定直线上.答案:(1(2)+33x y =. 试题分析:(1)设()00M x y ,,由已知得M 的坐标,代入椭圆的方程中可求得,,a b c ,可得椭圆1C 的方程;(2)由向量的坐标运算和向量相等的条件,以及点在圆上可得出点Q 所在的直线.详解:(1)设()00M x y ,,因为点M 在抛物线2C 上,且又点M 在抛物线1C 上,所以,且1c =,即221b a =-,解得224,3a b ==,所以椭圆1C 的方程(2)设()()1122,,A B x y x y ,,(),Q x y ,因为AP PB λ=-,所以()()1122131,3x y x y λ=-----,,即有()()()121211312x x y y λλλλ⎧-=-⎪⎨-=-⎪⎩,,, 又AQ QB λ=,所以()()1122,x x y y x x y y λ-=---,,即有()()()()1212+1+3+1+4x x x y y y λλλλ⎧=⎪⎨=⎪⎩,,,所以()()()()13+24⨯⨯得:()()()2222211222+++13x y x x y y λλ=--,又点A 、B 在圆223x y +=上,所以22221122+3+3x y x y ==,,又1λ≠±,所以+33x y =,故点Q 总在直线+33x y =上.【点睛】本题考查椭圆和抛物线的简单几何性质,以及直线与圆的交点问题,属于较难题.二、定值1、抛物级22(0)x py p =>的焦点F 到直线2py =-的距离为2. (1)求抛物线的方程;(2)设直线1y kx =+交抛物线于()11,A x y ,()22,B x y 两点,分别过A ,B 两点作抛物线的两条切线,两切线的交点为P ,求证:PF AB ⊥.答案: (1)24x y =;(2)证明见解析试题分析:(1)利用抛物线的定义求出p 即可得出结论;(2)联立直线和抛物线的方程,得出韦达定理,设切线PA 的斜率为PA k ,切线PB 的斜率为PB k ,点P 坐标为(),m n ,利用已知条件对函数214y x =求导得出切线的斜率,写出切线方程,求出两切线的交点坐标,利用1PF AB k k ⋅=-,即可得出结论.详解:(1)由题意知:0,2p F ⎛⎫ ⎪⎝⎭, 则焦点F 到直线2py =-的距离为:222p p p ⎛⎫--== ⎪⎝⎭, 所以抛物线的方程为:24x y =; (2)证明:把直线1y kx =+代入24x y =消y 得:2440x kx --=,又216160k ∆=+>, 利用韦达定理得121244x x kx x +=⎧⎨⋅=-⎩,由题意设切线PA 的斜率为PA k ,切线PB 的斜率为PB k ,点P 坐标为(),m n ,,切线PA 的方程为:()()i ii -利用韦达定理化简整理得:2m k =,把2m k =代入()i 整理得:则()()2,1,0,1P k F -,则PF AB ⊥ 【点睛】本题主要考查了利用定义求抛物线的方程,直线与抛物线应用.做这道题的时候要注意,利用韦达定理,得出两根的关系,设出两切线的交点,认真计算.属于中档题. 2、已知圆()22:11F x y +-=,动点(),M x y ()0y ≥,线段FM 与圆F 交于点N ,MH x ⊥轴,垂足为H ,(1)求动点M 的轨迹C 的方程;(2)设()()000,2P x y y >为曲线C 上的一点,过点P 作圆F 的两条切线,12,k k 分别为,求点P 的坐标. 答案: (1)24x y =(2试题分析:()1利用抛物线的概念及标准方程直接得结论;()2设过点P 的切线方程为()00y y k x x -=-,即000kx y y kx -+-=,则圆心()0,1F 到切线的距离为求解. 详解:()1圆F 的圆心为()0,1F ,半径为1,又MH x ⊥轴,垂足为H∴动点()(),0M x y y ≥到点()0,1F 等于到直线1y =-的距离.故动点()(),0M x y y ≥的轨迹是以()0,1F 为焦点的抛物线,2p ∴=,则动点M 的轨迹C 的方程是24x y =;()2设过点P 的切线方程为()00y y k x x -=-,即000kx y y kx -+-=,则圆心()0,1F 到切线的距离为化简得,()()2220000012120x k x y k y y ---+-=,两切线斜率分别为1k ,2k ,,又()00,P x y 为曲线C 上的一点,由()1知,2004x y =,,即20113430y y -+=, 或03y =, 02y >,03y ∴=,则 ∴点P【点睛】本题考查了抛物线的概念及标准方程和定点与定值问题.属于中档题.3、等腰直角△AOB 内接于抛物线2:2C y px =(0p >),其中O 为抛物线的顶点,OA OB ⊥,△AOB 的面积是16. (1)求抛物线C 的方程;(2)抛物线C 的焦点为F ,过F 的直线交抛物线于M ?N 两点,交y 轴于点E ,若1EM MF λ=,2EN NF λ=,证明:12λλ+是一个定值.答案: (1)24y x =;(2)证明见解析.试题分析:(1)设点()11,A x y ,()22,B x y ,由抛物线方程、两点之间距离公式可得12x x =,结合面积即可得点A 坐标,代入即可得解;(2)设直线():10MN x my m =+≠,点()33,M x y ,()44,N x y ,由平面向量的知识. 详解:(1)设点()11,A x y ,()22,B x y ,则2112y px =,2222y px =,因为△AOB 为等腰直角三角形,OA OB ⊥,所以22221122x y x y +=+,所以22112222x px x px ,化简得()()121220x x x x p -++=,由1>0x ,20x >,0p >可得1220x xp ,所以120x x -=即12x x =,所以点A 、点B 关于x 轴对称, 又△AOB 的面积是16不妨设点()4,4A ,所以1624p =⋅,解得2p =, 所以抛物线C 的方程为24y x =;(2)证明:由题意可知点()1,0F ,直线MN 的斜率存在且不为0, 设直线():10MN x my m =+≠,点()33,M x y ,()44,N x y ,,3,x EM ⎛ =,()331,x y MF -=-,4,x EN ⎛=()441,x y NF -=-,因为1EM MF λ=,2EN NF λ=,由241y xx my ⎧=⎨=+⎩消去x 可得2440y my --=,>0∆, 所以344y y m +=,344y y =-, 所以12λλ+是一个定值,且121λλ+=-.【点睛】本题考查了抛物线方程的求解及直线、平面向量与抛物线的综合应用,考查了运算求解能力,属于中档题.4、如图所示,倾斜角为α的直线经过抛物线28y x =的焦点F ,且与抛物线交于,A B 两点.(1)求抛物线的焦点F 的坐标及准线l 的方程;(2)若α为锐角,作线段AB 的垂直平分线m 交x 轴于点P .证明||||cos2α-FP FP 为定值,并求此定值.答案: (1),02p F ⎛⎫ ⎪⎝⎭;2x =-(2)证明见解析;定值为8试题分析:(1)根据抛物线标准方程得28p =,从而易得焦点坐标和准线方程; (2)设点,A B 的坐标分别为()(),,,A A B B x y B x y .直线AB 的斜率为tan k α=,则直线方程为(2)y k x =-,代入抛物线方程整理后可和A B x x +,这样可得AB 中点E 的坐标(,)E E x y ,由直线m 与AB 垂直可得m 的方程,在此方程中令0y =得P x ,计算化简||||cos2α-FP FP 得定值.详解:解(1)设抛物线的标准方程为22y px =,则28p =,从而4p =. 因此焦点,02p F ⎛⎫⎪⎝⎭的坐标为(2,0),又准线方程的一般式为2p x =-.从而所求准线的方程为2x =-.(2)设点,A B 的坐标分别为()(),,,A A B B x y B x y .直线AB 的斜率为tan k α=,则直线方程为(2)y k x =-.将此式代入28y x =,得()22224240k x k x k -++=. 故()2242++=A B k x x k.记直线m 与AB 的交点为(),E E E x y ,则()22222A B E k x x x k++==,故直线m 的方程为令0y =,得点P 的横坐标.【点睛】本题考查由抛物线的标准方程求焦点坐标和准线方程,考查直线与抛物线相交中的定值问题.直线与抛物线相交,可设交点坐标为()(),,,A A B B x y B x y ,再写出直线方程与抛物线方程联立消元后应用韦达定理得,A B A B x x x x +,本题中由此可得中点坐标(,)E E x y .这就是解析几何中的设而不求的思想方法,务必掌握住.5、已知()11,A x y ,()22,B x y 是抛物线C :()220x py p =>上不同两点.(1)若抛物线C 的焦点为F ,()00,D x y 为AB 的中点,且042AF BF y +=+,求抛物线C 的方程;(2)若直线AB 与x 轴交于点P ,与y 轴的正半轴交点Q ,且线AB ,求出直线AB 的方程;若不存在,请说明理由. 答案: (1)28x y =;(2)存在,AB :试题分析:(1)根据抛物线的定义求解即可.(2)设AB :()0,0y kx m k m =+≠>,联立直线与抛物线的方程,再转换可得进而利用点坐标与韦达定理代入化简求解即可. 详解:解:(1)由抛物线的定义得12AF BF y y p +=++00242y p y =+=+,∴4p =,∴所求抛物线方程为28x y =.(2)由题意得AB 的斜率存在设AB :()0,0y kx m k m =+≠>,222202y kx mx pkx pm x py=+⎧⇒--=⎨=⎩,∴122x x pk +=,122x x pm =-,,21222y y pk m +=+,作'AA x ⊥轴,'BB x ⊥轴,垂足为'A ,'B ,【点睛】本题主要考查了抛物线的定义运用,同时也考查了联立直线与抛物线的方程,利用韦达定理表达弦长进行化简求解的问题.属于中档题.6、已知O 为原点,抛物线()2:208C x py p =<<的准线与y 轴的交点为H ,P 为抛物线C 上横坐标为4的点,已知点P 到准线的距离为5. (1)求C 的方程;(2)过C 的焦点F 作直线l 与抛物线C 交于A ,B 两点,若以AH 为直径的圆过B ,求.答案: (1)24x y =;(2)4.试题分析:(1,求得p 后即可得解;(2)设()11,A x y ,()22,B x y ,直线AB 的方程为()10y kx k =+≠,联立方程组结合韦达定理可得124x x =-,由圆的性质、进而可得221216x x -=,再由抛物线的性质即可得解.详解:(1,解得2p =或8p =(舍), ∴抛物线方程为24x y =;(2)由题意抛物线24x y =的焦点为()0,1F ,准线方程为1y =-,()0,1H -, 由题意可知,直线AB 的斜率存在且不为0,设()11,A x y ,()22,B x y ,直线AB 的方程为()10y kx k =+≠, 代入抛物线方程可得2440x kx --=,>0∆, ∴124x x k +=,124x x =-,①由AH BH ⊥可得1HB k k ⋅=-,∴整理得()()1212110y y x x -++=,即把①代入②得221216x x -=,【点睛】本题考查了抛物线性质的应用及方程的求解,考查了直线与抛物线的综合问题,关键是对题目条件合理转化,属于中档题.7、设抛物线C :()220y px p =>的焦点为F ,经过点F 的动直线l 交抛物线C 于()()1122A x y B x y ,、,两点,且12 4.y y =-(1)求抛物线C 的方程;(2)若点M 是抛物线C 的准线上的一点,直线MF 、MA 、MB 的斜率分别为012k k k 、、,求证:当01k =时,12k k +为定值.答案: (1)24y x =;(2)122k k +=.试题分析:(1)设直线l 方程为即可求解;(2)根据条件求出M 点坐标,12k k +用12,y y 表示,再利用根与系数关系,即可证明结论. 【详解】(1)抛物线C :()220y px p =>的焦点设直线l 方程为 ,消去x 得,2220y pmy p --=,22212124(1)0,2,4p m y y pm y y p ∆=+>+==-=-,2p =,所以抛物线方程为24y x =;(2)抛物线准线方程为2x =-,设 直线l 方程为1x my =+,212124,4y y m y y p +==-=-所以12k k +为定值. 【点睛】本题考查求抛物线的标准方程及其性质,考查直线与抛物线的位置关系,要注意根与系数关系设而不求的应用,属于中档题.8、已知椭圆1C 的中心和抛物线2C 的顶点都在坐标原点O ,1C 和2C 有公共焦点F ,点F 在x 轴正半轴上,且1C 的长轴长、短轴长及点F 到直线 (Ⅰ)当2C 的准线与直线的距离为15时,求1C 及2C 的方程;(Ⅱ)设过点F 且斜率为1的直线l 交1C 于P ,Q 两点,交2C 于M ,N 两点.当时,求||MN 的值. 试答案: (Ⅰ)1C :,2C :212y x =(Ⅱ)试题分析:(1)依据题设条件“1C 的长轴长、短轴长及点F 到直线求得2a c =,从而求出1C 的右准线方程为4x c =,然后借助题设“2C 的准线与直线的距离为15”建立方程求出3c =,求出1C 及2C 的方程;(2)先建立直线l 的方程l :y x c =-,后与椭圆方程联立,借助求出c 的值,再与曲线1C 的方程联立求出 解:(Ⅰ)设1C :,其半焦距为c (0)c >.则2C :24y cx =.,得2a c =.1C 的右准线方程为,即4x c =.2C 的准线方程为x c =-.由条件知515c =,所以3c =,故6a =,从而1C :,2C :212y x =.(Ⅱ)由题设知l :y x c =-,设()11,M x y ,()22,N x y ,()33,P x y ,()44,Q x y .,即2223412x y c +=由2223412x y c y x c ⎧+=⎨=-⎩,知34,x x 满足227880x cx c --=,,所以129x x += 点睛:圆锥曲线是高中数学教材中较为典型的传统内容,也是高考每年重点考查的知识内容之一.本题以椭圆与抛物线两种圆锥曲线为背景设置问题,旨在考查椭圆、抛物线的标准方程与几何性质等基础知识,以及运用代数中的方程解决几何问题的各种综合能力.解答本题的第一问时,先依据题设条件“1C 的长轴长、短轴长及点F 到直线求得2a c =,从而求出1C 的右准线方程为4x c =,然后借助题设“2C 的准线与直线的距离为15”建立方程求出3c =,求出1C 及2C 的方程;求解本题的第二问,先建立直线l 的方程l :y x c =-,后与椭圆方程联立,求出c 的值,再与曲线1C 的方程联立求出的值使得问题获解.9、已知抛物线21:4C y x =与圆2222:C x y r +=一个交点的横坐标线l 与1C 相切于点P ,与2C 交于不同的两点A ,B ,O 为坐标原点. (1)求2C 的方程;(2)若OA OB ⊥,求.答案: (1)221x y +=;(2试题分析:(1)将抛物线方程和圆方程联立,消去y ,得到关于x 的方程,然后将交点代入方程中,可求出圆的半径,可得2C 的方程;(2)设直线l 的方程为x ky m =+,与抛物线方程联立成方程组,消元后判别式等于零,得到20k m +=,直线方程与圆的方程联立方程组,消元后利用根与系数的关系,再结合OA OB ⊥,可得22210m k --=,从而可求出k ,m 的值,从而可求出点P 的坐标,详解:(1)联立抛物线1C 与圆2C 的方程:22224y xx y r⎧=⎨+=⎩,得2240x x r +-=,解得21r =,所以2C 的方程为221x y +=.(2)设直线l 的方程为x ky m =+,联立直线l 与抛物线1C 的方程24x ky my x=+⎧⎨=⎩,得2440y ky m --=,由于直线l 与1C 相切,所以()()24440k m ∆=---=,即20k m +=①联立直线l 与圆2C 的方程:221x ky m x y =+⎧⎨+=⎩,得()2221210k y kmy m +++-=设()11,A x y ,()22,B x y ,则由OA OB ⊥得,12120x x y y +=,即()()()()221212121210ky m ky m y y k y y km y y m +++=++++=化简得,22210m k --=②,将①代入②得:2210m m +-=,解得1m =-或12m =(舍去),21k =,所以1k =±, 故直线l 的1x y =±-. 解方程组214x y y x =±-⎧⎨=⎩得,切点P 的坐标为()11,2P ,()21,2P -. (1)当P 的坐标为()11,2P 时,此时()0,1A ,()1,0B -,故2224PA PB =⨯=; (2)当P 的坐标为()21,2P -时,此时()1,0A -,()0,1B -,故2224PA PB =⨯=. 所以,4PA PB =.【点睛】本题主要考查抛物线方程、圆的方程、向量等综合知识,考查推理论证、转化与化归及运算求解能力,属于较难题.三、面积1、已知点()0,2A ,()2,0B .若点C 在抛物线2y x =上,则使得ABC ∆的面积为2的点C 的个数为( )A .1B .2C .3D .4答案: D解析: 由题意可得22AB =,AB 的方程为221x y +=,2(,)C m m ,求出点C 到AB 的距离d 的值,再代入面积公式得21|2|22222m m +-⨯⨯=,由此求得m 的值,从而得出结论.详解:由题意可得22AB =,AB 的方程为221x y+=,即20x y +-=. 设点2(,)C m m ,则点C 到AB 的距离2|2|2m m d -=+.由于ABC ∆的面积为2,故有21|2|22222m m +-⨯⨯=,化简可得2|2|2m m +-=, 222m m ∴+-=①,或222m m +-=-②.解①求得1172m -+=或1172m --=;解②求得0m =或1m =-. 综上可得,使得ABC ∆的面积为2的点C 的个数为4.故选:D. 【点睛】本题主要考查抛物线的简单性质的应用,点到直线的距离公式,一元二次方程的解法,属于中档题.2、在直角坐标系xOy 中,PAF △是以PF 为底边的等腰三角形,PA 平行于x 轴,点()1,0F ,且点P 在直线1x =-上运动.记点A 的轨迹为C.(1)求C 的方程. (2)直线AF 与C 的另一个交点为B ,等腰PAF △底边的中线与直线1x =-的交点为Q ,试问QAB 的面积是否存在最小值?若存在,求出该值;若不存在,请说明理由.答案: (1)()240y x x =≠;(2)存在,值为4.试题分析:(1)根据抛物线的定义得轨迹C 为抛物线(去除顶点),从而可得其方程; (2)设直线AB 的方程为1x ty =+,()11,A x y ,()22,B x y ,直线方程代入抛物线方程整理可得1212,y y y y +,由抛物线的焦点弦弦公式求得弦长AB ,再求出点Q 到直线AB 的距离,求得三角形面积(表示为t 的函数),由函数性质可得最小值. 详解:(1)由题意得PA 与直线1x =-垂直,且PA PF =, 故点A 到定点()1,0F 的距离和到直线1x =-的距离相等, 由抛物线的定义可得,C 是以()1,0F 为焦点, 直线1x =-为准线的抛物线(除原点O),故C 的方程为()240y x x =≠.(2)存在.设直线AB 的方程为1x ty =+,()11,A x y ,()22,B x y ,由214x ty y x=+⎧⎨=⎩,得2440y ty --=, 则()21610t ∆=+>,124y y t +=,124y y =-. 因为111x ty =+,221x ty =+,所以21242x x t +=+,又P 的坐标为()11,y -,所以PF故PAF △底边的中线所在的直线方程为令1x =-,得 故Q 的坐标为()1,2t -.点Q 到直线ABQABS=故当0t =时,QABS取得最小值4.【点睛】本题考查用定义求轨迹方程,考查抛物线的焦点弦性质及抛物线中三角形面积问题.解题方法是“设而不求”的思想方法,即设交点坐标()11,A x y ,()22,B x y ,设直线AB 的方程为1x ty =+,代入抛物线方程应用韦达定理得1212,y y y y +,然后用1212,y y y y +去表示出弦长,把三角形面积表示为参数t 的函数,再由函数知识得最小值.3、已知抛物线C :2y x a =+,点P 是C 上的不同于顶点的动点,C 上在点P 处的切线l 分别与x 轴轴交于点A 、B .若存在常数t 满足对任意的点P 都有PA tPB =. (Ⅰ)求实数a ,t 的值;(Ⅱ)过点P 作l 的垂线与C 交于不同于P 的一点D ,求PBD △面积的最小值.答案:试题分析:(Ⅰ)先求导数,利用导数几何意义得切线斜率,根据点斜式得切线方程,即得A 、B 坐标,根据坐标化简PA tPB =,最后根据等式恒成立得a ,t 的值;(Ⅱ)先设D ,根据向量垂直坐标表示得P 与D 横坐标关系,再根据两点间距离公式得结果.详解:(Ⅰ)设1111(,)(0,)P x y x y a ≠≠,则211y x a =+,22y x a y x '=+∴=2111111111:2()2222()l y y x x x y y x x x y y x x y a ∴-=-∴-=--=--,,,即11:22l y y a x x +-=.l 分别与x 轴轴交于点A 、B ,()10,2B a y -.PA tPB =∴0∵存在常数t 满足对任意的点P 都有PA tPB =∴ (Ⅱ)设22(,)D x y ,DP PB ⊥0DP PB ∴⋅=()()()()222121211121211,,2,,2DP PB x x y y x y x x x x x x ⋅=--⋅--=---⋅ ()()2221121122x x x x x x =----∵12x x ≠,10x≠,故()112120x x x ++=,即又DP PB ⊥,故PBD △的面积为()()()()222222221614141211411()88x x x x x f x x x +-+-+'=⋅=⋅.11(0,),()0;(,),()0;2323x f x x f x ''∴∈<∈+∞>∴()f x 在10,23⎛⎤ ⎥⎝⎦上是减函数,在1,23⎡⎫+∞⎪⎢⎣⎭上是增函数. ∴当123x =时,()f x 的最小值是439.故PBD △面积的最小值是439. 【点睛】本题考查抛物线切线方程、等式恒成立、抛物线中三角形面积、利用导数求最值,考查综合分析求解能力,属较难题.4、已知点F 是抛物线2:4C x y =的焦点,P 是其准线l 上任意一点,过点P 作直线PA ,PB 与抛物线C 相切,A ,B 为切点,PA ,PB 与x 轴分别交于Q ,R 两点.(1)求焦点F 的坐标,并证明直线AB 过点F ; (2)求四边形ABRQ 面积的最小值.答案: (1)(0,1)F ,证明见解析;(2)3试题分析:(1)由点斜式设出直线,AP BP 的直线方程,再由P 在,PA PB 上,得出直线AB 的方程,从而证明直线AB 过点F ;(2)将直线AB 的方程与抛物线方程联立,结合韦达定理,抛物线的性质,点到直线的距离公式得出PAB S ∆,PQR S ∆,再由四边形ABRQ 的面积PAB PQR S S S ∆∆=-,结合导数得出四边形ABRQ 面积的最小值. 详解:(1)由题意可知(0,1)F又P 在,PA PB 上,所以直线AB过焦点(2)由(1代入2:4C x y =得20240x x x --= 则1201224x x x x x +=⎧⎨=-⎩由(1则四边形ABRQ 的面积当2t ≥时,()0f t '>即函数()f t 在[2,)+∞上是增函数 则四边形ABRQ 面积的最小值为3【点睛】本题主要考查了抛物线中直线过定点问题,抛物线中的四边形的面积问题,属于中档题.5、已知抛物线()2:20C y px p =>经过点(1)写出抛物线C 的标准方程及其准线方程,并求抛物线C 的焦点到准线的距离; (2)过点()2,0且斜率存在的直线l 与抛物线C 交于不同的两点A ,B ,且点B 关于x与x 轴交于点M . (i 的坐标;(ii与OAB 面积之和的最小值.答案: 1焦点到准线的距离为1;(2)(i )(2,0)M -,(ii 试题分析:(1)由抛物线C 经过点,求得抛物线的方程为22y x =,再结合抛物线的几何性质,即可求解;(2)(i )设过点()2,0的直线:2l x my =+,联立方程组,求得1212,y y y y +,再由直线AD 的方程,0y =,即可求解M 的坐标;(ii )利用三角形的面积公式,求得OAM ∆与OAB ∆面积之和的表示,结合基本不等式,即可求解.详解:(1)由题意,抛物线()2:20C y px p =>经过点解得1p =,所以抛物线的方程为22y x =,1.(2)(i )设过点()2,0的直线:2l x my =+, 代入抛物线22y x =的方程,可得2240y my --=,设直线l 与抛物线C 的交点112222(,),(,),(,)A x y B x y D x y -,且10y >,则212122,4,4160y y m y y m +==-∆=+>,所以直线AD的方程为令0y =,可得()21211()2y y y x y -⋅-=-,所以21211122()()4x y y y y y y =-⋅-+==-,所以2x =-,所以(2,0)M -,1212111422OAB OAM S y y y y S y y y ∆∆-++=+=++=11114422242y y y y =+≥⋅=, 当且仅当1142y y =时,即12y =时等号成立, 所以OAM ∆与OAB ∆面积之和的最小值为42.【点睛】本题主要考查抛物线的标准方程及几何性质、及直线与抛物线的位置关系的综合应用,解答此类题目,通常联立直线方程与抛物线方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等。
关于抛物线的十个最值问题
![关于抛物线的十个最值问题](https://img.taocdn.com/s3/m/6fbd5456a98271fe910ef9f3.png)
竭诚为您提供优质的服务,优质的文档,谢谢阅读/双击去除关于抛物线的十个最值问题本文用初等方法讨论了与抛物线有关的若干几何最值问题,得到了十个有趣的结论.为方便读者摘用,现用定理形式叙述如下:定理1.抛物线的所有焦半径中,以过顶点的焦半径为最短.证明:不妨设抛物线的极坐标方程为ρ= ,则显然有ρ≥ ,其中等号成立当且仅当θ=2kπ+π(k∈Z)即焦半径通过抛物线的顶点时.证毕.定理2.抛物线的过焦点的所有弦中,以抛物线的通径为最短.证明:设抛物线极坐标方程为ρ= ,焦点弦为Ab,且设A(ρ1,θ),b(ρ2,θ+π),则有│Ab│=ρ1+ρ2= + = ≥2p=通径长,其中等号成立当且仅当θ=kπ+π/2(k∈Z)即弦Ab为通径时.证毕.定理3.设A(a,0)是抛物线y2=2px(p>0)的对称轴上的定点,m(x,y)是抛物线上的动点,则│mA│min=证明:由│mA│2=(x-a)2+y2=(x-a)2+2px=x2-2(a-p)x+a2 =[x-(a-p)]2+p(2a-p),并且注意到x∈[0,+∞),立知结论成立.证毕.定理4.设A(a,b)是抛物线y2=2px(p>0)内一定点,F是焦点,m是抛物线上的动点,则(│mA│+│mF│)min=a+p/2.Q m A(a,b)证明:如图1所示,作AQ⊥准线L:x=-p/2于Q,则知o F x(│mA│+│mF│)min=│AQ│=a-(-p/2)=a+p/2.证毕. 图1定理5.设线段Ab是抛物线y2=2px(p>0)的过焦点的弦,分别以A、b 为切点的抛物线的两条切线相交于点m,则三角形Abm的面积的最小值为p2.证明:设A(x1,y1),b(x2,y2),则由A、F、b三点共线可得:x1y2-x2y1=p/2.(y2-y1) (1)于是利用(1)式由两切线方程yAm:y1y=p(x+x1),Abm:y2y=p(x+x2),m F x易得m的坐标(x,y)适合: b∵kmF·kAF=-1,∴mF⊥Ab,即│mF│是△mAb的Ab边上的高. 图2∵│mF│≥│FK│(焦点F到准线x=-p/2的距离)=p,又由定理2知│Ab│≥2p(通径长),∴s△mAb=1/2·│Ab│·│mF│≥1/2·2p·p=p2,因其中等号当且仅当Ab⊥x轴时成立,故三角形mAb的最小值为p2.证毕.定理6.过抛物线y2=2px的顶点o引两条互相垂直的动弦oA和ob,则三角形oAb的面积的最小值为4p2. y证明:设A(x1,y1),b(x2,y2),则由oA⊥ob得Ax1x2+y1y2=0 (1)o x将y12=2px1,y22=2px2代入(1)立得:x1x2=4p2 (2)于是b(s△oAb)2=1/4·│oA│2·│ob│2图3=1/4·(x12+y12)·(x22+y22)=1/4·(x12+2px1)·(x22+2px2)=1/4·[(x1x2)2+2px1x2(x1+x2)+4p2x1x2]≥1/4.[(x1x2)2+2px1x2(2√x1x2)+4p2x1x2] (3)将(2)式代入(3)则得(s△oAb)2≥16p4,从而s△oAb≥4p2,因其中等号当x1=x2=2p时取到,故三角形oAb的面积的最小值为4p2。
探究割补法在求解抛物线内接三角形面积问题中的应用
![探究割补法在求解抛物线内接三角形面积问题中的应用](https://img.taocdn.com/s3/m/6103016e1611cc7931b765ce050876323112747d.png)
探究割补法在求解抛物线内接三角形面积问题中的应用陈巧【摘要】抛物线与三角形是初中数学的核心内容,它们的有机结合可以构建综合题和探究型的试题,特别是抛物线内接三角形面积问题,更是成为各地数学中考的热点题型,而割补法在解决此类题型时具有明显的优势.文章以一道中考复习题为例,通过灵活运用割补法来深入探究抛物线内接三角形的面积问题.【期刊名称】《中学教研:数学版》【年(卷),期】2017(000)007【总页数】3页(P46-48)【关键词】抛物线;内接三角形;割补法【作者】陈巧【作者单位】开元中学浙江杭州 310016【正文语种】中文【中图分类】O123.1抛物线内接三角形是指3个顶点都在抛物线上的三角形,它在有关二次函数的习题中经常出现,也是初中数学学习的难点之一.内接三角形的面积问题,由于涉及知识面广、综合性强,使得很多学生不知如何下手.笔者在长期的教学中发现,若学生能灵活掌握割补法,则能大大提高解决此类问题的正确率.所谓割补法,就是把不规则的图形通过等面积替换,转换位置,使不规则图形变成规则图形,以便使用公式求解的一种方法.这种数形结合的割补法,可以大大减少计算量,同时对于引导学生透过表象把握问题本质、培养学生举一反三的解题能力具有一定的指导意义[1].下面,笔者通过一道中考复习题来详细说明割补法在求解抛物线内接三角形面积问题中的实际应用.例1 已知二次函数y=x2-2x-3,设函数与x轴交于点A,B(其中点A在点B的左边),与y轴交于点C,顶点为D.1)求△BCD的面积;2)若点P是抛物线上位于直线BC下方的一个动点,试求△BCP面积的最大值;3)问:抛物线上是否存在点Q,使得S△BCQ=S△BCD?本题具有典型性,整个题目都是围绕抛物线内接三角形面积问题展开的.在第1)小题中,易求得B(3,0),C(0,-3),D(1,-4),从而本题可看作是根据三角形的3个顶点坐标来求三角形的面积.由于此类三角形为非特殊三角形,不便直接使用面积公式求解,但可用割补法来解决.以下提供4种常规的割补方法:方法1 如图1,根据S△BCD=S矩形OBNM-S△OBC-S△BDN-S△CDM即可求解. 方法2 如图2,根据S△BCD=S梯形OCDF+S△BDF-S△OBC即可求解.方法3 如图3,易求得直线BD的方程为y=2x-6,从而,根据S△BCD=S△BCG+S△DCG即可求解.方法4 如图4,易求得直线BC的方程为y=x-3,从而E(1,-2),根据S△BCD=S△BED+S△CED即可求解.不难看出:方法3和方法4的解题原理是一样的,都是将一个三角形分割成两个三角形,然后利用共有的底求解.这种割补法是比较常规的方法,学生比较容易理解,但若要将其上升到普遍规律的高度,进而得出固定的解题公式,则有点难度. 事实上,如图5,过△ABC的3个顶点分别作出与水平线垂直的3条直线l1,l2,l3,其中直线l2与直线AB相交于点D.记l1与l3之间的距离为△ABC的“水平宽(记作a)”,线段CD的长度为△ABC的“铅垂高(记作h)”.在方法4中,水平宽a即为线段BO的长,铅垂高h即为线段DE的长,从而第2)小题难度有所提高,但依然可以运用割补法,只是将固定的点D变成了动点P.延用上述结论即S△=ah,如图6,可设点P的坐标为(m,m2-2m-3),则点E的坐标为(m,m-3),此时点B,C间的水平宽BO=3,铅垂高为h,则-m2+m,第3)小题同样可利用结论S△=ah,如图7,这里点Q的坐标不确定,可设点Q的坐标为(n,n2-2n-3),则点F的坐标为(n,n-3),从而点B,C间的水平宽BO=3,铅垂高h=FQ,此时点F与点Q相对位置不确定,因此在此小题中,点F不一定在线段BC上(即点F不一定在点Q上方),故FQ=|(n-3)-(n2-2n-3)|=|-n2+3n|.事实上,当点F不在线段BC上时(如图8),BG·GF-BG·GQ-QF·GO=BG(GF-GQ)-QF·GO=BG·QF-QF·GO=QF·(BG-GO)=QF·BO=ah.因此,点F不在线段BC上时,S△=ah仍然成立.于是在引入水平宽(a)和铅垂高(h)的概念后,求解抛物线内接三角形面积问题的割补法就可以归纳为具有普遍指导意义的公式“S△=ah”解决.通过上述解题论证不难发现,割补法在求解抛物线内接三角形面积问题时都可以适用.例2 如图9,抛物线的顶点坐标为C(1,4),交x轴于点A(3,0),交y轴于点B.1)求抛物线的解析式和△CAB的面积.2)问:抛物线上是否存在一点P,使S△PAB=S△CAB?若存在,求出点P的坐标;若不存在,请说明理由.分析1)如图9,易得抛物线的解析式为y=-x2+2x+3,从而点B的坐标为(0,3),进而可得直线AB的解析式为y=-x+3.过点C作CD∥y轴交AB于点D,得点D的坐标为(1,2).在△CAB中,水平宽a=3,铅垂高h=2,于是2)如图10,因为点P在抛物线上,所以可设P(m,-m2+2m+3).过点P作PG∥y 轴交AB于点G,得点G的坐标为(m,-m+3).在△PAB中,水平宽a=3,铅垂高|-m2+3m|.数学作为一门科学,必然有其规律可循.笔者通过详细讲解割补法在求解抛物线内接三角形面积问题中的应用,目的就是寻找这种规律性.作为一线教师,在平常的教学过程中,不能满足于向学生生硬地灌输课本知识,而是要通过对规律的探究,使学生不仅知其然,还要知其所以然.割补法在实际应用中千变万化,只有对其作进一步地提炼,如文中所探讨的“引入‘水平宽’和‘铅垂高’的概念”,从而将这种割补法以公式的形式固定下来.只有这样才能使学生掌握割补法的要义,也才能使学生以不变应万变,灵活应用,提高解题的效率和正确率.1)求椭圆的标准方程;2)若k1+k2=0,求实数k的值.原解 1)由椭圆C经过点离心率为,知2)①当0<k<+∞时,因为直线AB经过焦点(3,0),所以可设直线AB的方程为y=k(x-3),联立②当k=0时,k1=,k2=-,从而k1+k2=-≠0.③当k不存在时,此时斜率k1,k2均不存在,不合题意.综上所述,k=.通过研究笔者发现:点P正好是过右焦点作垂直于x轴的直线与曲线的交点(位于x 轴上方),而所求k正好是离心率,并发现这不是巧合.对于第2)小题可作如下变式推广.变式1 已知椭圆C:+=1(其中a>b>0)经过点过椭圆C的右焦点作斜率为k的直线,交椭圆于点A,B,记PA,PB的斜率为kPA,kPB.若kPA+kPB=m,求实数k的值.解 1)当0<k<+∞时,因为直线AB经过焦点(c,0),所以可设直线AB的方程为y=k(x-c),联立2k-m=·,·=·=,2)当k=0时,kPA=-,kPB=,从而3)当k不存在时,斜率kPA,kPB均不存在,不合题意.变式2 已知双曲线C:-=1(其中a>0,b>0)经过点过椭圆C的右焦点作斜率为k 的直线,交椭圆于点A,B,记PA,PB的斜率为kPA,kPB.若kPA+kPB=m,求实数k的值.解 1)当0<k<+∞时,因为直线AB经过焦点(c,0),所以可设直线AB的方程为y=k(x-c),联立·=·=-,2)当k=0时,kPA=-,kPB=,从而3)当k不存在时,斜率kPA,kPB均不存在,不合题意.变式3 已知抛物线C:y2=2px(其中p>0)经过点过抛物线C的焦点作斜率为k的直线,交抛物线于点A,B,记PA,PB的斜率为kPA,kPB.若kPA+kPB=m,求实数k的值.解 1)当0<k<+∞时,因为直线AB经过焦点所以可设直线AB的方程为y=,联立2)当k=0时,A(0,0),点B不存在,则kPA=-2,kPB不存在.3)当k不存在时,斜率kPA,kPB均不存在,不合题意.以上就是对这道赛题的一般推广,请读者批评指正.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线中的内接三角形面积问题
抛物线与三角形是初中数学的两个支柱型图形,而它们有机的结合,则可以构建综合题和探究型的试题.特别是有关抛物线中的内接三角形面积问题更是成为各地中考的热点题型,求解时若能灵活运用二次函数、方程、三角形等知识,充分利用数形结合、分类讨论和待定系数法等方法,就能找到求解的最佳切入点.
例 (重庆市)已知:m n ,是方程2650x x -+=的两个实数根,且m n <,抛物线
2
y x bx c =-++的图像经过点(0)(0)A m B n ,,,.
(1)求这个抛物线的解析式;
(2)设(1)中抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C 、D 的坐标和B C D △的面积.
[注:抛物线2
(0)y ax bx c a =++≠的顶点坐标为2424b ac b a a ⎛⎫
-- ⎪⎝⎭
,]. (3)P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把
△PCH 分成面积之比为2∶3的两部分,请求出P 点的坐标.
解:(1)解方程2
650x x -+=,得1251x x ==,,由m n <,有15m n ==,,
所以点A 、B 的坐标分别为A (1,0),B (0,5).
将A (1,0),B (0,5)的坐标分别代入2
y x bx c =-++,得105.
b c c -++=⎧⎨
=⎩,
解这个方程组,得45.
b c =-⎧⎨
=⎩,
所以,抛物线的解析式为2
45y x x =-+.
(2)由2
45y x x =--+,令0y =,得2
450x x --+=.
解这个方程,得15x =-,21x =
所以C 点的坐标为(-5,0).由顶点坐标公式计算得点D (-2,9). 过D 作x 轴的垂线交x 轴于M . 则1279(52)2
2
D M C S =⨯⨯-=
△,
12(95)142
M
D
B O
S =⨯⨯+=梯形,125552
2B O C
S =⨯⨯=
△,
所以2725141522
B C D D M C B O C M D B O S S S S =+-=+
-=△△△梯形.
(3)设P 点的坐标为(a ,0),因为线段BC 过B ,C 两点,所以BC 所在的直线方程为5y x =+.
那么,PH 与直线BC 的交点坐标为(5)E a a +,.
PH 与抛物线245y x x =--+的交点坐标为2
(45)H a a a --+,.
由题意,得①EH EP =, 即2
3(45)(5)(5)2
a a a a --+-+=+.
解这个方程,得32
a =-或5a =-(舍去).
②23
E H E P =
,即2
2(45)(5)(5)3
a a a a --+-+=
+.
解这个方程,得23
a =-
或5a =-(舍去).
即P 点的坐标为3
02⎛⎫-
⎪⎝
⎭,或203⎛⎫
- ⎪⎝⎭
,. 说明:处理抛物线的内接三角形的面积问题还要能运用相关的知识来构造出与所求点的坐标相关的方程.要注意在设抛物线上的点的坐标时,应注意与函数表达式的联用,如本题
中(5)E a a +,和2
(45)H a a a --+,
,这样就可以简捷求解. 抛物线内三角形问题题型的覆盖面广,涉及知识点多,求解时既要求我们掌握有关抛物线的基础知识,又要求我们能够熟练地运用直角三角形、相似三角形等图形的性质,综合运
用点坐标与线段长的关系,利用方程、数形结合、转化归纳、分类等数学思想方法,才能顺利解决问题.。