实验_一___霍尔效应及其应用
霍尔效应及其应用实验报告
![霍尔效应及其应用实验报告](https://img.taocdn.com/s3/m/a785785b640e52ea551810a6f524ccbff021ca5a.png)
霍尔效应及其应用实验报告一、实验目的。
本实验旨在通过实验观察和数据分析,探究霍尔效应的基本原理及其在实际应用中的意义和作用。
二、实验原理。
霍尔效应是指当导电体中有电流通过时,放置在导电体中的磁场中,会在导电体的横向产生电动势。
这一现象被称为霍尔效应,其数学表达式为E=KBI,其中E为霍尔电动势,K为霍尔系数,B为磁感应强度,I为电流。
三、实验仪器和材料。
1. 霍尔元件。
2. 恒定电流源。
3. 磁场调节装置。
4. 数字示波器。
5. 电源。
6. 万用表。
7. 磁铁。
8. 直流电流表。
9. 直尺。
10. 实验导线。
11. 笔记本电脑。
四、实验步骤。
1. 将霍尔元件固定在实验台上,并连接好电路。
2. 通过磁场调节装置,调整磁场的强度和方向。
3. 通过数字示波器和万用表,测量霍尔元件在不同磁场下的霍尔电动势和电流。
4. 记录实验数据,并进行数据分析和处理。
5. 根据实验数据,探究霍尔效应的规律,并分析其在实际应用中的意义和作用。
五、实验结果与分析。
通过实验数据的测量和分析,我们发现在不同磁场下,霍尔电动势与电流呈线性关系,且霍尔电动势的大小与磁场的强度和电流的大小均有关。
这一结论与霍尔效应的基本原理相吻合。
六、实验应用。
霍尔效应在实际应用中有着广泛的意义和作用。
例如在传感器领域,霍尔元件可以用来测量电流、磁场和速度,广泛应用于汽车、航空航天、电子设备等领域。
另外,霍尔元件还可以用于磁场测量、磁场探测和磁场传感等方面,具有很高的实用价值。
七、实验总结。
通过本次实验,我们深入了解了霍尔效应的基本原理和实际应用,通过实验数据的测量和分析,验证了霍尔效应的存在,并探究了其在实际应用中的意义和作用。
同时也加深了我们对电磁学知识的理解和掌握。
八、实验心得。
通过本次实验,我对霍尔效应有了更深入的了解,实验过程中也锻炼了我的实验操作能力和数据处理能力,使我对电磁学知识有了更加直观和深刻的认识。
以上就是本次实验的全部内容,希望能对大家有所帮助。
霍尔效应及其应用实验报告数据处理
![霍尔效应及其应用实验报告数据处理](https://img.taocdn.com/s3/m/5afb1c904793daef5ef7ba0d4a7302768e996fe4.png)
霍尔效应及其应用实验报告数据处理一、实验目的本次实验的主要目的是通过测量霍尔电压、电流等物理量,深入理解霍尔效应的原理,并探究其在实际中的应用。
同时,通过对实验数据的处理和分析,提高我们的科学研究能力和数据处理技巧。
二、实验原理霍尔效应是指当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象称为霍尔效应。
假设导体中的载流子为电子,其电荷量为 e,平均定向移动速度为v,导体宽度为 b,厚度为 d,外加磁场的磁感应强度为 B。
则电子受到的洛伦兹力为 F = e v B,在洛伦兹力的作用下,电子会向导体的一侧偏转,从而在导体两侧产生电势差,即霍尔电压 UH 。
根据霍尔效应的基本公式:UH = RH I B / d ,其中 RH 为霍尔系数。
三、实验仪器霍尔效应实验仪、直流电源、毫安表、伏特表、特斯拉计等。
四、实验步骤1、连接实验仪器,将霍尔元件放入磁场中,确保磁场方向与霍尔元件平面垂直。
2、调节直流电源,给霍尔元件通入恒定电流 I ,并记录电流值。
3、用特斯拉计测量磁场的磁感应强度 B ,并记录。
4、测量霍尔元件两端的霍尔电压 UH ,改变电流和磁场的方向,多次测量取平均值。
五、实验数据记录以下是一组实验数据示例:|电流 I (mA) |磁场 B (T) |霍尔电压 UH (mV) |||||| 500 | 050 | 250 || 500 | 100 | 500 || 500 | 150 | 750 || 1000 | 050 | 500 || 1000 | 100 | 1000 || 1000 | 150 | 1500 |六、数据处理方法1、计算霍尔系数 RH根据公式 UH = RH I B / d ,可得 RH = UH d /(I B) 。
由于 d 为霍尔元件的厚度,在实验中为已知量,因此可以通过测量不同电流和磁场下的霍尔电压,计算出霍尔系数 RH 。
大学物理实验课后答案
![大学物理实验课后答案](https://img.taocdn.com/s3/m/de18eec25ef7ba0d4a733bbd.png)
实验一霍尔效应及其应用【预习思考题】1.列出计算霍尔系数、载流子浓度n、电导率σ及迁移率μ的计算公式,并注明单位。
霍尔系数,载流子浓度,电导率,迁移率。
2.如已知霍尔样品的工作电流及磁感应强度B的方向,如何判断样品的导电类型?以根据右手螺旋定则,从工作电流旋到磁感应强度B确定的方向为正向,若测得的霍尔电压为正,则样品为P型,反之则为N型。
3.本实验为什么要用3个换向开关?为了在测量时消除一些霍尔效应的副效应的影响,需要在测量时改变工作电流及磁感应强度B的方向,因此就需要2个换向开关;除了测量霍尔电压,还要测量A、C间的电位差,这是两个不同的测量位置,又需要1个换向开关。
总之,一共需要3个换向开关。
【分析讨论题】1.若磁感应强度B和霍尔器件平面不完全正交,按式(5.2-5)测出的霍尔系数比实际值大还是小?要准确测定值应怎样进行?若磁感应强度B和霍尔器件平面不完全正交,则测出的霍尔系数比实际值偏小。
要想准确测定,就需要保证磁感应强度B和霍尔器件平面完全正交,或者设法测量出磁感应强度B和霍尔器件平面的夹角。
2.若已知霍尔器件的性能参数,采用霍尔效应法测量一个未知磁场时,测量误差有哪些来源?误差来源有:测量工作电流的电流表的测量误差,测量霍尔器件厚度d的长度测量仪器的测量误差,测量霍尔电压的电压表的测量误差,磁场方向与霍尔器件平面的夹角影响等。
实验二声速的测量【预习思考题】1. 如何调节和判断测量系统是否处于共振状态?为什么要在系统处于共振的条件下进行声速测定?答:缓慢调节声速测试仪信号源面板上的“信号频率”旋钮,使交流毫伏表指针指示达到最大(或晶体管电压表的示值达到最大),此时系统处于共振状态,显示共振发生的信号指示灯亮,信号源面板上频率显示窗口显示共振频率。
在进行声速测定时需要测定驻波波节的位置,当发射换能器S1处于共振状态时,发射的超声波能量最大。
若在这样一个最佳状态移动S1至每一个波节处,媒质压缩形变最大,则产生的声压最大,接收换能器S2接收到的声压为最大,转变成电信号,晶体管电压表会显示出最大值。
实验报告霍尔效应原理及其应用范文
![实验报告霍尔效应原理及其应用范文](https://img.taocdn.com/s3/m/0c4e6ccc05a1b0717fd5360cba1aa81144318f84.png)
实验报告霍尔效应原理及其应用范文一、实验目的1.掌握霍尔效应的基本原理。
2.学习如何测量霍尔电压。
3. 理解霍尔元件在磁场中的行为。
4. 了解霍尔效应的应用。
二、实验原理当一块半导体板通过一恒定电流时,板的两端会出现电压VH,即霍尔电压,其方向垂直于板和当前通过板的电流方向。
2.霍尔电压得出公式VH = BIL/ne其中B为磁场强度,I为电流强度,L为元件长度,e为元件载流子密度,n为载流子电荷数。
当元件置于磁场中时,霍尔电压会随着磁场的改变而线性变化。
磁场的强度越强,霍尔电压也越大。
霍尔效应可以应用于测量磁场、磁场传感器、磁传动、自动控制系统等领域。
三、实验材料1.霍尔元件2.磁铁3.电压表4.电流表5.恒流源6.导线四、实验步骤1.将霍尔元件固定在导轨上,并连接电路。
2.将电压表连接到霍尔元件的输出端,并将恒流源连接到元件的输入端。
3.用绿色磁铁靠近元件,然后再用蓝色磁铁靠近元件,观察电表显示。
4.改变恒流源的电流大小,再次使用磁铁观察电表的显示。
5.多次重复步骤3和4,记录数据。
五、实验结果通过实验可得,当恒定电流增加时,霍尔电压随之增加;当磁场强度增加时,电压也会增加。
当磁场方向改变时,霍尔电压的方向也会改变。
利用这些变化,可以测量磁场的强度和方向。
本实验通过观察霍尔效应,学习了如何测量霍尔电压和了解了霍尔元件在磁场中的行为。
同时,实验还介绍了霍尔效应的应用。
通过实验得出数据,验证了霍尔电压与电流、磁场强度之间的关系,并且可以得到准确的磁场测量结果。
霍尔效应及其应用实验报告
![霍尔效应及其应用实验报告](https://img.taocdn.com/s3/m/e200e70842323968011ca300a6c30c225801f061.png)
霍尔效应及其应用实验报告实验报告:
实验目的:
1. 了解霍尔效应的基本原理和特点。
2. 掌握霍尔系数的测定方法及其相关计算。
3. 熟悉霍尔元件的使用,实现霍尔效应的应用。
实验仪器:
霍尔元件、直流电源、稳压电源、数字万用表、模拟万用表、磁通量表、恒流源等实验仪器设备。
实验原理:
霍尔效应是指在一定条件下,当闭合电路中有外磁场作用时,导电材料中的电荷会被偏转而产生跨越电势差,这种现象被称为霍尔效应。
实验步骤:
1. 将实验仪器连接好,保证电路连接正确无误。
2. 将霍尔元件固定到直流电源的输出端,调节稳压电源电压至所需数值。
3. 将恒流源的输出端接入霍尔元件中,调节电流为所需数值。
4. 调节磁通量表与霍尔元件之间的距离,使其达到最佳感应距离。
5. 打开磁场控制开关,测量相应的电势差与电流值,计算出霍尔系数。
实验结果:
根据实验数据计算出的霍尔系数为2.36×10^-14m^3/C。
证明了实验的可靠性以及相关的计算方法的正确性。
实验结论:
霍尔效应是一种非常实用的物理现象,能够在很多方面应用到实际生活中。
通过本次实验的学习,我们掌握了基本的霍尔效应的原理和相关实验方法,可以更深入地理解和应用相关知识。
同时,我们还了解到了霍尔效应在电子工艺、能源技术和环境监测等领域的广泛应用前景,这也为我们未来的学习和研究提供了更加深入的思路和拓展空间。
霍尔效应及其应用实验报告
![霍尔效应及其应用实验报告](https://img.taocdn.com/s3/m/d30421e19f3143323968011ca300a6c30c22f1dd.png)
霍尔效应及其应用实验报告一、实验名称:霍尔效应原理及其应用二、实验目的:1、了解霍尔效应产生原理;2、测量霍尔元件的H s V I -、H m V I -曲线,了解霍尔电压H V 与霍尔元件工作电流s I 、直螺线管的励磁电流mI 间的关系;3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度B 及分布;4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。
三、仪器用具:YX-04型霍尔效应实验仪(仪器资产编号)四、实验原理:1、霍尔效应现象及物理解释霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力B f 作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。
对于图1所示。
半导体样品,若在x方向通以电流sI ,在z方向加磁场B ,则在y方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场HE ,电场的指向取决于样品的导电类型。
显然,当载流子所受的横向电场力E B f f <时电荷不断聚积,电场不断加强,直到E Bf f =样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压)HV 。
设HE 为霍尔电场,v 是载流子在电流方向上的平均漂移速度;样品的宽度为b ,厚度为d ,载流子浓度为n ,则有:,则有:s I nevbd = ((1-1) 因为E H f eE =,B f evB =,又根据E Bf f =,则,则1s s H H HI B I B V E b R ne d d =×=×= ((1-2)其中1/()H R ne =称为霍尔系数,是反映材料霍尔效应强弱的重要参数。
只要测出HV 、B以及知道sI 和d ,可按下式计算3(/)H R m c :H Hs V d RI B =((1-3)B I U K SHH/= ((1—4) H K 为霍尔元件灵敏度。
霍尔效应原理及其应用实验报告
![霍尔效应原理及其应用实验报告](https://img.taocdn.com/s3/m/6babef9fb04e852458fb770bf78a6529647d3594.png)
霍尔效应原理及其应用实验报告霍尔效应是指在导电材料中,当有电流通过时,垂直于电流方向的磁场会产生一种电压差,这种现象被称为霍尔效应。
霍尔效应的发现者是美国物理学家爱德温·霍尔,他在1879年首次观察到了这一现象。
霍尔效应在现代科技中有着广泛的应用,尤其在传感器、电子设备和测量仪器中起着重要作用。
霍尔效应的原理非常简单,当导电材料中有电流通过时,电子会受到磁场的作用而产生偏转,这会导致材料的一侧产生正电荷,另一侧产生负电荷,从而形成电压差。
这个电压差被称为霍尔电压,它与电流、磁场强度和材料本身的特性有关。
为了更直观地理解霍尔效应,我们进行了一系列的实验。
首先,我们准备了一块导电材料,如硅片或镁锂铝合金片。
然后我们在材料上施加一定大小的电流,并在材料的一侧放置一块磁铁,产生垂直于电流方向的磁场。
接下来,我们使用电压表测量材料两侧的电压差,通过改变电流大小和磁场强度,我们记录了一系列数据,并进行了分析。
实验结果表明,霍尔电压与电流成正比,与磁场强度成正比,与材料本身的特性有关。
我们还发现,当改变磁场方向时,霍尔电压的极性也会发生变化。
这些实验结果验证了霍尔效应的基本原理,也为我们进一步应用霍尔效应提供了重要的参考。
在实际应用中,霍尔效应被广泛用于传感器和测量仪器中。
例如,霍尔传感器可以用来检测电流、磁场和位置,它具有灵敏度高、响应速度快、耐用等优点,因此在汽车、电子设备、工业自动化等领域得到了广泛应用。
另外,霍尔元件还可以用于制造霍尔开关、霍尔电流计等设备,为工程技术提供了重要支持。
总之,霍尔效应是一种重要的物理现象,它不仅有着深刻的理论意义,还有着广泛的应用前景。
通过实验我们对霍尔效应有了更深入的了解,相信在未来的科研和工程实践中,霍尔效应会发挥越来越重要的作用。
霍尔效应及其应用实验报告
![霍尔效应及其应用实验报告](https://img.taocdn.com/s3/m/426391582379168884868762caaedd3383c4b5ad.png)
课程名称:大学物理实验(二)实验名称:霍尔效应及其应用
图3.3 霍尔器件输出特性测量仪器实物图
仪器操作注意事项
1、测试仪开关机前将I S和I M旋钮逆时针转到底,防止输出电流过大;
2、I S和I M接线不可颠倒,以防烧坏霍尔片;
3、式样应置于螺旋线圈/铁芯气隙内磁场均匀处(即尽量处于中心)。
4、电压表调零
,测试仪功能选择置于“V H”,然后调节I M=0.5A,d=0.5mm
K,单位为千高斯/安(KGs/A)
表5.1 V H—I S曲线图
表5.2测绘曲线V H—I M数据记录表
/mV V2/mV V3/mV V4/mV V
Is-B,+Is-B,-Is+B,-Is
-4.52 4.53-4.80
-6.07 6.11-6.36
-7.637.64-7.92
-9.199.20-9.47
-10.7510.76-11.03
-12.3112.32-12.60
图5.2V H—I M曲线图
测量螺线管轴线上磁场分布
图5.3螺线管轴线上磁场分布
I S曲线的数据处理如下
=0.500A,K=3.94(KGS/A)
V H1=V1−V2+V3−V4
4=2.64−(−2.54)+2.55−(−2.63)
4
=2.59(mV)
5.1;
B=KI M=0.394×0.5=0.197(T)。
霍尔效应及其应用实验报告
![霍尔效应及其应用实验报告](https://img.taocdn.com/s3/m/c913647130126edb6f1aff00bed5b9f3f90f720f.png)
霍尔效应及其应用实验报告摘要:霍尔效应是指当电流通过垂直于电场和磁场的导体时,会产生一种垂直于电流流向和磁场方向的电势差,这种现象称为霍尔效应。
本实验通过测量霍尔电势差和电流的关系,验证了霍尔效应的存在,并研究了其在磁通密度和电流变化下的性质。
最后,通过实验结果的分析,探讨了霍尔效应在实际应用中的潜力。
关键词:霍尔效应、霍尔电势差、磁通密度、导体、应用引言:霍尔效应是19世纪中叶由美国物理学家爱德华·霍尔首先发现的一种电磁现象。
霍尔效应不仅可以用于测量磁场的强度,还可以用于测量导体材料的电导率和载流子浓度。
因此,它在电子学领域有着广泛的应用。
实验目的:1.验证霍尔效应的存在。
2.研究霍尔电势差和电流的关系。
3.了解霍尔效应在磁通密度和电流变化下的性质。
4.探讨霍尔效应在实际应用中的潜力。
实验仪器和材料:1.霍尔效应实验装置(包括霍尔探头、恒流电源、磁铁等)。
2.电流表和电压表。
3.导线、电池等。
实验原理和步骤:1.实验原理:当电流通过垂直于电场和磁场的导体时,会产生一种垂直于电流流向和磁场方向的电势差,这种现象称为霍尔效应。
霍尔电势差与电流和磁通密度成正比。
2.实验步骤:(1)将霍尔探头连接到实验装置上,并调节磁铁的位置,使得磁场垂直于电流和导线。
(2)打开电源,设定一定的电流强度,并测量电压和电流的值。
(3)调整磁铁的位置,记录不同磁通密度下的电压和电流值。
(4)分析实验结果,得出霍尔电势差与电流和磁通密度的关系。
实验结果与分析:1.实验数据记录表:(略)2.实验结果分析:通过实验数据的分析,可以得出霍尔电势差与电流和磁通密度成正比的关系。
并且,在一定范围内,电流越大,霍尔电势差越大。
当磁通密度增加时,霍尔电势差也会随之增加。
实验结论:1.实验验证了霍尔效应的存在,证明了电流通过垂直于电场和磁场的导体时会产生霍尔电势差的现象。
2.实验结果表明,霍尔电势差与电流和磁通密度成正比。
3.霍尔效应具有测量磁场强度、导体电导率和载流子浓度等应用价值。
霍尔效应及应用实验报告
![霍尔效应及应用实验报告](https://img.taocdn.com/s3/m/18ecc9a96394dd88d0d233d4b14e852458fb39d0.png)
霍尔效应及应用实验报告霍尔效应及应用实验报告引言:霍尔效应是一种在导体中产生电势差的现象,它是由美国物理学家爱德华·霍尔于1879年首次发现并描述的。
霍尔效应在现代电子学和材料科学中具有广泛的应用,例如传感器、电流测量和电子设备等领域。
本实验旨在通过测量霍尔效应的电压和磁场强度之间的关系,验证霍尔效应的存在,并探究其在实际应用中的潜力。
实验设备和方法:实验所需的设备包括霍尔效应实验装置、恒流电源、磁场调节器和数字万用表。
首先,将霍尔效应实验装置连接至恒流电源,通过调节电流大小来控制导体中的电子流量。
然后,使用磁场调节器改变磁场的强度,并使用数字万用表测量霍尔效应产生的电压。
实验结果和分析:在实验过程中,我们分别测量了不同电流和磁场强度下的霍尔效应电压。
结果显示,随着电流的增加,霍尔效应电压也随之增加。
这是因为电流通过导体时,会受到洛伦兹力的作用,使电子在导体中发生偏移,从而产生电势差。
此外,我们还观察到磁场强度增加时,霍尔效应电压也随之增加。
这是因为磁场的存在会进一步影响电子的运动轨迹,增加电子流的偏移程度,从而增大霍尔效应电压的大小。
基于实验结果的分析,我们可以得出以下结论:1. 霍尔效应是一种由电流通过导体时,在垂直于电流方向和磁场方向的平面上产生电势差的现象。
2. 霍尔效应的电压与电流和磁场强度呈正相关关系,即电压随着电流和磁场强度的增加而增加。
3. 霍尔效应可以用于测量电流和磁场强度,因此在传感器和测量仪器中有着广泛的应用。
实验的局限性和改进方向:在本实验中,我们只考虑了电流和磁场强度对霍尔效应电压的影响,而未考虑其他因素的影响。
例如,温度和材料的特性可能会对霍尔效应产生一定的影响。
因此,未来的实验可以进一步探究这些因素对霍尔效应的影响,并提出相应的改进措施。
实际应用:霍尔效应在现代科技中有着广泛的应用。
其中之一是在汽车工业中的应用。
例如,霍尔效应传感器可以用于测量车辆的转速和位置,从而实现精确的控制和监测。
霍尔效应原理及其应用实验报告
![霍尔效应原理及其应用实验报告](https://img.taocdn.com/s3/m/77c08270effdc8d376eeaeaad1f34693dbef107a.png)
霍尔效应原理及其应用实验报告霍尔效应是指当导体中有电流通过时,如果在导体中垂直于电流方向施加一个磁场,就会在导体的横向两侧产生电势差。
这一现象被称为霍尔效应,它是由美国物理学家爱德温·霍尔于1879年发现的。
霍尔效应在电子学和磁学领域有着重要的应用,本实验旨在通过具体的实验操作,深入理解霍尔效应的原理及其在实际中的应用。
一、实验原理。
1. 霍尔效应原理。
当导体中有电流通过时,如果在导体中垂直于电流方向施加一个磁场,就会在导体的横向两侧产生电势差。
这一现象被称为霍尔效应。
霍尔效应的原理是基于洛伦兹力的作用。
当导体中有电流通过时,电子会受到磁场力的作用,从而产生横向的电势差。
2. 实验装置。
本实验采用的装置主要包括霍尔元件、直流电源、磁铁、示波器等。
霍尔元件是本实验的核心部件,它能够测量出在导体中产生的霍尔电压。
直流电源用来提供电流,磁铁用来产生磁场,示波器用来测量霍尔电压的大小。
二、实验步骤。
1. 将直流电源连接到霍尔元件的两端,调节直流电源的电流大小。
2. 将磁铁放置在霍尔元件的两侧,调节磁铁的位置和磁场强度。
3. 使用示波器来测量霍尔电压的大小,并记录下实验数据。
4. 根据实验数据,分析霍尔电压与电流、磁场强度之间的关系。
三、实验结果与分析。
通过实验数据的记录和分析,我们可以得出霍尔电压与电流、磁场强度之间的定量关系。
具体来说,霍尔电压与电流成正比,与磁场强度成正比。
这一定量关系可以用数学模型来描述,从而为霍尔效应的应用提供了理论基础。
四、应用实验。
1. 霍尔传感器。
霍尔传感器是利用霍尔效应原理制作的一种传感器,它可以测量磁场的强度。
在汽车、电子设备等领域有着广泛的应用,如测量车速、转速等。
2. 霍尔电流计。
霍尔效应还可以用来测量电流的大小。
通过将导体放置在磁场中,利用霍尔效应测量出导体中产生的霍尔电压,从而可以计算出电流的大小。
五、实验总结。
通过本实验,我们深入理解了霍尔效应的原理及其在实际中的应用。
霍尔效应及其应用实验报告数据处理
![霍尔效应及其应用实验报告数据处理](https://img.taocdn.com/s3/m/5def2ac7ed3a87c24028915f804d2b160a4e8674.png)
霍尔效应及其应用实验报告数据处理霍尔效应及其应用实验报告数据处理引言:霍尔效应是指当导体中有电流通过时,垂直于电流方向的磁场会在导体内产生一种电势差,这种现象被称为霍尔效应。
霍尔效应的应用非常广泛,例如在传感器、电流计、磁场测量等领域都有重要的应用。
本文将通过实验报告数据处理的方式,探讨霍尔效应及其应用的相关内容。
实验目的:通过实验测量和处理数据,验证霍尔效应的存在,并探究其在磁场测量中的应用。
实验步骤:1. 准备实验仪器和材料:霍尔元件、电源、电流表、磁场源、导线等。
2. 搭建实验电路:将霍尔元件与电源、电流表和磁场源连接,保证电路的正常工作。
3. 施加电流:通过电源向霍尔元件中施加一定大小的电流。
4. 施加磁场:通过磁场源在霍尔元件附近施加一定大小的磁场。
5. 测量电势差:使用电压表测量霍尔元件中产生的电势差。
6. 记录实验数据:记录不同电流和磁场下的电势差数值。
实验数据处理:1. 绘制电势差与电流的关系曲线:将实验数据绘制成电势差与电流的关系曲线,观察曲线的特点。
2. 分析曲线特点:根据曲线的变化趋势,判断霍尔元件的工作状态和特性。
3. 计算霍尔系数:根据实验数据和已知参数,计算霍尔元件的霍尔系数,用于后续的数据处理和应用。
4. 绘制电势差与磁场的关系曲线:将实验数据绘制成电势差与磁场的关系曲线,观察曲线的特点。
5. 分析曲线特点:根据曲线的变化趋势,判断霍尔元件对磁场的响应情况。
6. 应用数据:根据实验数据和已知参数,计算磁场的大小和方向。
实验结果与讨论:通过实验数据处理,我们得到了电势差与电流、磁场的关系曲线。
从曲线的变化趋势可以看出,电势差随着电流的增加而增加,符合霍尔效应的基本规律。
同时,电势差随着磁场的增加而变化,这表明霍尔元件对磁场有一定的响应能力。
根据实验数据和已知参数,我们还计算出了霍尔元件的霍尔系数。
霍尔系数是描述霍尔元件特性的重要参数,它可以用来计算磁场的大小和方向。
通过对实验数据的处理和分析,我们可以准确地测量出磁场的大小和方向,这对于磁场测量和磁场控制具有重要的意义。
霍尔效应原理及其应用实验报告
![霍尔效应原理及其应用实验报告](https://img.taocdn.com/s3/m/026b475558eef8c75fbfc77da26925c52cc59103.png)
霍尔效应原理及其应用实验报告实验目的:本实验旨在研究霍尔效应的原理及其在测量磁场强度和磁性材料特性等方面的应用。
实验仪器和材料:1. 霍尔效应实验装置(包括霍尔元件、恒流源、电压表等)2. 电磁铁3. 磁性材料(如铁、钢、铝等)4. 直流电源5. 电阻箱6. 连接线等实验原理:霍尔效应是指当电流通过具有横向磁场的半导体或金属材料时,在两侧形成电压差,这种现象称为霍尔效应。
霍尔效应的原理可由洛伦兹力和电子在材料中的运动轨迹相互作用来解释。
实验步骤:1. 将霍尔元件固定在实验装置中心位置上,并连接电路。
2. 将实验装置的电源和恒流源的开关打开,调节电源电压和恒流源电流,记录下相关数据。
3. 在没有磁场作用下,测量并记录下霍尔元件两侧的电压差。
4. 开启电磁铁,调节磁场强度,测量并记录下霍尔元件两侧的电压差。
5. 将不同磁性材料靠近霍尔元件,记录下霍尔元件两侧的电压差。
实验数据记录和处理:根据实际测量情况,记录下不同条件下的电流值、电压差、磁场强度等数据。
对实验数据进行分析和处理,绘制相关曲线和图表。
实验结果:根据实验数据处理的结果,可以得到不同条件下的电压-电流曲线、电压-磁场强度曲线等。
实验讨论:根据实验结果的分析,讨论霍尔效应在测量磁场强度和磁性材料特性方面的应用。
分析实验中可能存在的误差来源,并提出对实验的改进和完善。
结论:根据实验结果和讨论的分析,得出结论。
实验总结:通过本实验,我们深入了解了霍尔效应的原理及其在实际应用中的重要性。
实验中我们掌握了相关的实验操作技巧,提高了实验能力和科学研究的综合素质。
这对于我们日后的学习和科研工作具有重要意义。
霍尔效应及其应用实验报告
![霍尔效应及其应用实验报告](https://img.taocdn.com/s3/m/d26f2a555e0e7cd184254b35eefdc8d376ee1491.png)
霍尔效应及其应用实验报告霍尔效应及其应用实验报告引言:霍尔效应是指当电流通过导体时,如果该导体处于磁场中,就会在导体的两侧产生电势差。
这一现象被称为霍尔效应,它具有广泛的应用价值。
本实验旨在通过实验验证霍尔效应,并探索其在实际应用中的潜力。
实验装置和步骤:实验装置包括霍尔元件、电源、磁铁和电压测量仪器。
首先,将霍尔元件固定在导轨上,并将导轨与电源连接。
然后,将磁铁放置在导轨旁边,使其磁场垂直于导轨和霍尔元件。
最后,使用电压测量仪器测量霍尔元件两侧的电压差。
实验结果与分析:在实验过程中,我们发现当电流通过导轨时,霍尔元件两侧的电压差随着磁场的变化而变化。
当磁场方向与电流方向相同时,电压差为正值;当磁场方向与电流方向相反时,电压差为负值。
这一结果与霍尔效应的基本原理相吻合。
霍尔效应的应用:1. 磁场测量:由于霍尔效应的灵敏度高,可以将其应用于磁场测量中。
通过测量霍尔元件两侧的电压差,可以确定磁场的大小和方向。
2. 电流测量:霍尔元件可以用作电流传感器。
通过测量霍尔元件两侧的电压差,可以间接测量电流的大小。
3. 速度测量:在一些机械设备中,霍尔元件可以用于测量物体的速度。
当物体通过霍尔元件时,会产生电压差,通过测量这一电压差的变化,可以确定物体的速度。
4. 位置检测:霍尔元件可以用于检测物体的位置。
当物体移动到霍尔元件附近时,会产生电压差的变化,通过测量这一变化,可以确定物体的位置。
5. 开关控制:由于霍尔元件对磁场的敏感性,可以将其用作磁敏开关。
当磁场的存在或消失时,霍尔元件的电压差会发生变化,可以利用这一特性来控制开关的状态。
结论:通过实验验证了霍尔效应的存在,并探索了其在实际应用中的潜力。
霍尔效应在磁场测量、电流测量、速度测量、位置检测和开关控制等领域都具有重要的应用价值。
随着科技的不断发展,我们相信霍尔效应的应用将会越来越广泛,为我们的生活带来更多便利和创新。
霍尔效应及其应用实验报告
![霍尔效应及其应用实验报告](https://img.taocdn.com/s3/m/b5c0d51a1611cc7931b765ce0508763230127468.png)
霍尔效应及其应用实验报告一、实验目的1、了解霍尔效应的基本原理。
2、掌握用霍尔效应测量磁场的方法。
3、学习用“对称测量法”消除副效应的影响。
二、实验原理1、霍尔效应将一块半导体薄片置于磁场中(磁场方向垂直于薄片平面),当有电流通过时,在垂直于电流和磁场的方向上会产生一个横向电场,这种现象称为霍尔效应。
设半导体中的载流子为电子,它们以平均速度 v 沿 x 轴正方向运动,所受洛伦兹力为:\F_L = evB\其中 e 为电子电荷量,B 为磁感应强度。
在洛伦兹力作用下,电子向一侧偏转,在薄片的 y 轴方向上形成电荷积累,从而产生霍尔电场 EH ,霍尔电场对电子的作用力 FE 为:\F_E = eEH\当 FE = FL 时,电子的积累达到动态平衡,此时霍尔电场为:\EH = vB\设薄片的厚度为 d,宽度为 b,通过的电流为 I,则:\I = nevbd\其中 n 为单位体积内的电子数。
则霍尔电压 UH 为:\UH = EHb = vBb =\frac{1}{ne}\cdot\frac{IB}{d}\令 RH = 1/ne ,称为霍尔系数,则:\UH = RH\frac{IB}{d}\2、副效应及其消除方法在实际测量中,由于各种副效应的存在,会使测量结果产生误差。
主要的副效应有:(1)不等位电势差:由于霍尔片制作工艺的问题,霍尔片的两个电极不在同一等势面上,从而产生电势差,记为 U0 。
(2)爱廷豪森效应:载流子的速度服从统计分布,它们在磁场中受到的洛伦兹力不同,从而产生温差,形成温差电动势 UE 。
(3)能斯特效应:由于电流的热效应,在霍尔片两端会产生温度差,从而产生热扩散电流,在磁场作用下产生电势差 UN 。
(4)里纪勒杜克效应:热扩散电流的载流子也会受到洛伦兹力的作用,产生附加的电势差 UR 。
为了消除这些副效应的影响,通常采用“对称测量法”,即改变电流和磁场的方向,分别测量四组数据:\U1 = UH + U0 + UE + UN + UR\\U2 = UH U0 UE + UN + UR\\U3 = UH + U0 UE UN UR\\U4 = UH U0 + UE UN UR\则霍尔电压为:\UH =\frac{1}{4}(U1 U2 + U3 U4)\三、实验仪器霍尔效应实验仪、霍尔效应测试仪、双刀双掷开关、导线等。
霍尔效应原理及其应用实验报告
![霍尔效应原理及其应用实验报告](https://img.taocdn.com/s3/m/8fad6d05842458fb770bf78a6529647d27283494.png)
霍尔效应原理及其应用实验报告一、引言。
霍尔效应是指当导体中有电流通过时,在垂直于电流方向上会产生电压差的现象。
这一效应的发现和应用,对于电子学领域有着重要的意义。
本实验旨在通过实验验证霍尔效应的存在,并探究其原理及应用。
二、实验原理。
霍尔效应的实验装置由霍尔元件、电源、电流表、电压表和磁铁等组成。
当电流通过导体时,垂直于电流方向的磁场会使得导体中的自由电子受到洛伦兹力的作用,从而在导体的一侧产生电子聚集,而在另一侧产生电子空穴。
这就导致了在垂直于电流方向上产生电压差的现象,即霍尔电压。
霍尔电压的大小与电流强度、磁感应强度以及导体材料的性质有关。
三、实验步骤。
1. 将霍尔元件固定在实验台上,并连接好电源、电流表和电压表。
2. 调节电源使得电流通过霍尔元件,同时在霍尔元件周围放置磁铁,使得磁感应强度在一定范围内变化。
3. 测量不同电流强度下,霍尔元件产生的电压差,并记录实验数据。
4. 改变磁感应强度,重复步骤3的实验,并记录数据。
5. 根据实验数据,分析霍尔电压与电流强度、磁感应强度之间的关系。
四、实验结果与分析。
实验数据表明,当电流通过霍尔元件时,随着电流强度的增加,霍尔电压也随之增加。
而在相同电流强度下,随着磁感应强度的增加,霍尔电压也随之增加。
这与霍尔效应的原理相符合。
通过对实验数据的分析,可以得出霍尔电压与电流强度、磁感应强度之间的关系式。
五、应用实验。
霍尔效应在实际中有着广泛的应用,例如霍尔传感器可以用于测量电流、磁场、速度等物理量,同时也可以用于制作霍尔开关、霍尔电流表等电子元器件。
本实验还可以通过改变导体材料、磁铁形状等条件,探究霍尔效应在不同条件下的变化规律,从而拓展其应用领域。
六、结论。
通过本实验,验证了霍尔效应的存在,并探究了其原理及应用。
实验结果表明,霍尔电压与电流强度、磁感应强度之间存在一定的关系。
霍尔效应在电子学领域有着重要的应用价值,对于提高电子元器件的性能和精度有着重要的意义。
实验_一___霍尔效应及其应用(何惠梅)
![实验_一___霍尔效应及其应用(何惠梅)](https://img.taocdn.com/s3/m/f9297e659b6648d7c1c746ff.png)
霍尔效应及其应用霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。
1879年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象,故称霍尔效应。
后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属的霍尔效应太弱而未能得到实际应用。
随着半导体材料和制造工艺的发展,人们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著、结构简单、形小体轻、无触点、频带宽、动态特性好、寿命长,因而被广泛应用于自动化技术、检测技术、传感器技术及信息处理等方面。
在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。
近年来,霍尔效应实验不断有新发现。
1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。
目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。
在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。
霍尔效应也是研究半导体性能的基本方法,通过霍尔效应实验所测定的霍尔系数,能够判断半导体材料的导电类型,载流子浓度及载流子迁移率等重要参数。
【实验目的】(1) 了解霍尔效应产生的机理及霍尔元件有关参数的含义和作用。
(2) 学习利用霍尔效应研究半导体材料性能的方法及消除副效应影响的方法。
(3) 学习利用霍尔效应测量磁感应强度B 及磁场分布。
(4) 学习用最小二乘法和作图法处理数据。
【实验原理】(1) 霍尔效应霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
这个现象叫做霍尔效应。
如图1.1所示,把一块半导体薄片放在垂直于它的磁感应强度为B 的磁场中(B 的方向沿Z 轴方向),若沿X 方向通以电流S I 时,薄片内定向移动的载流子受到的洛伦兹力B F 为:quB F B = ,其中q ,u 分别是载流子的电量和移动速度。
实验3.15 霍尔效应及应用
![实验3.15 霍尔效应及应用](https://img.taocdn.com/s3/m/fdd4162c0066f5335a812115.png)
3.15 霍尔效应及应用【实验简介】将金属或半导体薄片置于磁场中,若在垂直于磁场方向上通以电流,则在垂直于磁场和电流方向上产生电场,这种效应是1879年美国霍普金斯大学研究生霍尔研究载流导体在磁场中受力时发现了这种电磁现象,因此称为霍尔效应。
霍尔效应不仅存在于金属导体中,同时也存在于半导体和导电流体(如等离子体)中,且半导体的霍尔效应比金属强得多。
霍尔效应在科学实验和工程技术中有着广泛的应用,利用霍尔效应可以测定半导体材料中载流子浓度、迁移率等重要参数,也可以判断半导体材料的导电类型,是研究半导体材料的重要手段;根据霍尔效应制成的传感器已广泛应用于非电量的电测量(磁场、位移、转速等的测量)、自动控制和信息处理等方面;在电流体中的霍尔效应也是目前研究中的“磁流体发电”的理论基础;此外,利用霍尔效应还可以制成磁读头、磁罗盘和单向传递信息的隔离器。
近年来,霍尔效应得到了重要发展,1980年原西德物理学家冯.克利青(K.Von Kliting)在极低温度和极强磁场下发现了量子霍尔效应,目前对量子霍尔效应正在进行深入研究,可以预期霍尔效应的应用范围将会进一步拓展。
【实验目的】1.了解霍尔效应,学习利用霍尔效应测量磁场B的原理和方法。
2.学习用“对称变换测量法”消除伴随霍尔效应产生的副效应。
【预习思考题】1.什么是霍尔效应?如何利用霍尔效应测量磁场?测量时应注意些什么?2.伴随着霍尔效应会产生一些其它副效应,使得测出的霍尔片两端电压并非真正的霍尔电压,为了消除其它效应的影响,实验中如何测量霍尔电压?【实验仪器】ZKY-HS霍尔效应实验仪和测试仪、测量导【实验原理】1.霍尔效应的产生机理及磁场的测量霍尔效应从本质上讲是运动的带电粒子在磁图3.15.1场中受到洛仑兹力作用而引起的。
将霍尔元件垂直置于磁场中,如图3.15.1所示,若在'AA 方向上通以电流S I (称为工作电流),霍尔元件内定向移动的载流子(以空穴为例)将受到垂直于工作电流和磁场方向的洛伦磁力作用而向D 侧偏转,并使D 侧形成正电荷积累,而相对于'D 侧形成负电荷积累,结果在'DD 方向上形成电场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
霍尔效应及其应用霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。
1879年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象,故称霍尔效应。
后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属的霍尔效应太弱而未能得到实际应用。
随着半导体材料和制造工艺的发展,人们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著、结构简单、形小体轻、无触点、频带宽、动态特性好、寿命长,因而被广泛应用于自动化技术、检测技术、传感器技术及信息处理等方面。
在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。
近年来,霍尔效应实验不断有新发现。
1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。
目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。
在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。
霍尔效应也是研究半导体性能的基本方法,通过霍尔效应实验所测定的霍尔系数,能够判断半导体材料的导电类型,载流子浓度及载流子迁移率等重要参数。
【实验目的】(1) 了解霍尔效应产生的机理及霍尔元件有关参数的含义和作用。
(2) 学习利用霍尔效应研究半导体材料性能的方法及消除副效应影响的方法。
(3) 学习利用霍尔效应测量磁感应强度B 及磁场分布。
(4) 学习用最小二乘法和作图法处理数据。
【实验原理】(1) 霍尔效应霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
这个现象叫做霍尔效应。
如图1.1所示,把一块半导体薄片放在垂直于它的磁感应强度为B 的磁场中(B 的方向沿Z 轴方向),若沿X 方向通以电流S I 时,薄片内定向移动的载流子受到的洛伦兹力B F 为:quB F B = ,其中q ,u 分别是载流子的电量和移动速度。
载流子受力偏转的结果使电荷在'AA 两侧积聚而形成电场,电场的取向取决于试样的导电类型。
设载流子为电子,则B F 沿着负Y 轴负方向,这个电场又给载流子一个与B F 反方向的电场力E F 。
设H E 为电场强度,H V 为A 、'A 间的电位差,b 为薄片宽度,则 bV qqE F HH E == (1.1)达到稳恒状态时,电场力和洛伦兹力平衡,有E B F F = , 即bV qquB H= (1.2) 设载流子的浓度用n 表示,薄片的厚度用d 表示,因电流强度S I 与u 的关系为bdnqu I S =,或bdnq I u S =,故得 dBI nq V S H 1= (1.3)令 nqR H 1=(1.4) 则(1.3)式可写成 dBI R V S HH = (1.5) H V 称为霍尔电压,S I 称为控制电流。
比例系数R H 称为霍尔系数,是反映材料霍尔效应强弱的重要参数。
由(1.5)式可知,霍尔电压V H 与I S 、B 的乘积成正比,与样品的厚度d 成反比。
(2)霍尔效应在研究半导体性能中的应用1.霍尔系数R H 的测量由(1.5)式可知,只要测得I S 、B 和相应的V H 以及霍尔片的厚度d ,霍尔系数R H可以按下式计算求得 BI dV R S H H =(1.6) 根据霍尔系数R H ,可进一步确定以下参数。
2.根据R H 的符号判断样品的导电类型XYZ半导体材料有N 型(电子型)和P 型(空穴型)两种,前者的载流子为电子,带负电;后者载流子为空穴,相当于带正电的粒子。
判别的方法是按图1.1所示的I S 和B 的方向,若0'>-=D D H V V V ,即D D V V >',则 R H >0,样品属n 型(电子型)半导体材料;反之,样品属p 型(空穴型)半导体材料。
3.由R H 确定样品的载流子浓度n(1.4)式是假定所有的载流子都具有相同的漂移速度得到的。
如果考虑载流子速度的统计分布规律,这个关系式需引入一个38π的修正因子。
可得,qR n H 138π=(1.7)根据测得的霍尔系数R H ,由(1.7)式可确定样品的载流子浓度n 。
4.结合电导率的测量,计算载流子的迁移率厚度为d ,宽度为b 的样品,通过电流为S I 时,测得长度为L (5.0mm )的一段样品材料上的电压为0V ,对应的电阻SI V R 0=。
由于电导率σ与电阻率ρ(单位长度上的电阻)互为倒数,所以由此可求出样品的σ为: bdV L I bdR LS 01===ρσ (1.8) 电导率σ与载流子浓度n 及迁移率u 之间有如下关系:σσH R nqu ==(1.9)式中q 为电子电量. 5.利用霍尔效应测磁场令nqdd R K H H 1==(1.5)式可写成如下形式 B I K V S H H = (1.10) 比例系数H K 称为霍尔元件的灵敏度,表示该元件在单位磁场强度和单位控制电流时的霍尔电压。
H K 的大小与材料性质(种类、载流子浓度)及霍尔片的尺寸(厚度)有关。
对一定的霍尔元件在温度和磁场变化不大时,可认为H K 基本上是常数。
可用实验方法测得,一般要求H K 愈大愈好。
H K 的单位为T mA mV ⋅/。
由(1.10)式可以看出,如果知道了霍尔片的灵敏度H K ,用仪器分别测出控制电流I S 及霍尔电压H V ,就可以算出磁场B 的大小,这就是用霍尔效应测磁场的原理。
从以上分析可知,要得到大的霍尔电压,关键是选择霍尔系数大(即迁移率高、电阻率高)的材料。
就金属导体而言,u 和ρ均很小,而不良导体ρ虽高,但u 极小,因此上述两种材料均不适宜用来制造霍尔器件。
由于半导体的u 高,ρ适中,是制造霍尔元件比较理想的材料,加之,电子的迁移率比空穴的迁移率大,所以霍尔元件多采用n 型半导体材料。
此外元件厚度d 愈薄,K H 愈高,所以制作时,往往采用减少d 的办法来增加灵敏度,但不能认为d 愈薄愈好,因为此时元件的输入和输出电阻将会增加,这对霍尔元件是不希望的。
本实验采用的霍尔片的厚度d 为0.2mm ,为1.5mm ,长度L 为1.5mm 。
由于霍尔效应建立需要的时间很短(约在10–12—10–14 s 内),因此使用霍尔元件时可以用直流电或交流电。
若控制电流S I 用交流电t I I S ωsin 0=, 则t I B K B I K V H S H H ωsin 0⋅=⋅⋅=所得的霍尔电压也是交变的,在使用交流电情况下,(1.1.5)式仍可使用,只是式中的SI 和H V 应理解为有效值。
(3)伴随霍尔电压产生的附加电压及其消除方法 在霍尔效应产生的过程中伴随有多种副效应,(参看附录)这些副效应产生的电压主要有:a. 厄廷好森效应产生的E V ;b. 能脱斯效应产生的N V ;c. 里纪—勒杜克效应产生的R V ;d. 不等位电位差0V 。
这些副效应产生的附加电压迭加在霍尔电压上,使测得的电压值并不完全是霍尔电压。
因此必须采取措施消除或减小各种副效应的影响。
若依次改变电流方向、磁场方向,取各测量值的平均值,就可以把大部分副效应消除掉,即测量值的平均值就是霍尔电压。
设电流、磁场取某方向(定为正方向)时,所有副效应与霍尔效应的电位差均为正(如果有负结果也是一样),用数学形式表示各种副效应的消除方法如下: ),(S I B ++ 01V V V V V V R N E H ++++=; ),(S I B -+ 02V V V V V V R N E H -++--=),(S I B -- 03V V V V V V R N E H ---+=; ),(S I B +- 04V V V V V V R N E H +---=则 )(44321E H V V V V V V +=-+-其中只有厄廷好森效应产生的电位差E V 无法消除,但E V 一般较小,可以忽略。
所以得:)(414321V V V V V H -+-=(1.11); 或: ()432141V V V V V H +++= (1.12) 在精密测量中,可采用交变磁场和交流电流及相应的测量仪器,使霍尔片上、下两侧来不及产生温差;从而可使霍尔电压的测量减小误差。
【实验仪器】图1.3 DH4512系列霍尔效应测试图1.2 DH4512 霍尔效应螺线管-双线圈实验架 DH4512系列霍尔效应实验仪用于研究霍尔效应产生的原理及其测量方法,通过施加磁场,可以测出霍尔电压并计算它的灵敏度,以及可以通过测得的灵敏度来计算线圈附近各点的磁场。
DH4512型霍尔效应实验仪由实验架和测试仪两大部分组成。
图1.2为DH4512型霍尔效应螺线管-双线圈实验架平面图;图1.3为DH4512型霍尔效应测试仪面板图。
1.移动尺;2.双线圈;3.螺线管;4.连接到霍尔片的工作电流端(红色插头与红色插座相联, 黑色插头与黑色插座相联);5.连接到霍尔片霍尔电压输出端(红色插头与红色插座相联, 黑色插头与黑色插座相联);6.用一边是分开的接线插、一边是双芯插头的控制连接线与测试仪背部的插孔相连接(红色插头与红色插座相联, 黑色插头与黑色插座相联);7.连接到测试仪上霍尔工作电流Is 端(红色插头与红色插座相联, 黑色插头与黑色插座相联);8.Is 工作电流换向开关;9.连接到测试仪上V H 、V σ测量端(红色插头与红色插座相联, 黑色插头与黑色插座相联);10.V H 测量换向开关;11.连接到测试仪磁场励磁电流I M 端(红色插头与红色插座相联, 黑色插头与黑色插座相联);12.励磁电流IM 换向开关;13.单、双线圈切换开关;14.螺线管、双线圈切换开关一. DH4512型霍尔效应螺线管-双线圈磁场测定仪实验架主要部件及技术性能二个励磁线圈:线圈匝数240匝(单个);有效直径75mm ;二线圈中心间距 37.5mm ;移动尺指示在115mm 时,为两线圈的中心。
霍尔效应片类型:N 型砷化镓半导体。
螺线管:线圈匝数1800匝,有效长度181mm ,等效半径21mm ;移动尺装置:横向移动距离235mm ;DH4512型霍尔效应测试仪主要由0~0.5A 恒流源、0~3.5mA 恒流源及20mV/2000mV 量程三位半电压表组成。
二.使用说明1.测试仪的供电电源为交流220V ,50Hz,电源进线为单相三线。
2.电源插座安装在机箱背面,保险丝为1A ,置于电源插座内。