浙江省台州市2016-2017学年高二第一学期期末数学试卷与答案
2016-2017学年高二上学期期末考试数学理试题 Word版含答案
3.将一根长为3米的绳子在任意位置剪断,则剪得两段的长度都不小于1米的概率是()
121
B.C.D.
3234
4.“a0b
”是“曲线ax2by21为椭圆”的()
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
5.执行右边的程序框图,若输入t1,则输出t的值等于()
A.3B.5
C.7D.15
否
t=t+1
开始
输入t
t>0是
t=2t+1
是
(t+2)(t5)<0
否
输出t
结束
6.从装有2个红球和2个黑球的口袋内任取2个球,则与事件恰有两个红球既不对立也不互斥的事件是)
A.至少有一个黑球B.恰好一个黑球
C.至多有一个红球D.至少有一个红球
7.已知F,F是双曲线的两个焦点,过F作垂直于实轴的直线PQ交双曲线于P,Q两点,若∠
2016-2017学年度第一学期期末考试
高二数学(理科)试卷
第一部分(选择题共40分)
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
1.命题p:xR,x0的否定是()
A.p:xR,x0B.p:xR,x0
C.p:xR,x0D.p:xR,x0
2.已知向量a(2,3,1),b(1,2,0),则ab等于()
2016-2017学年高二数学上学期期末考试试题文
2016—2017学年度高二级第一学期期末试题(卷)数学(文科)(满分:150分 时间:120分钟 ) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)温馨提示:考生作答时,将答案写在答题卡上。
请按照题号在各题的答题区域内作答.在草稿纸、试题卷上答题无效。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有 一项是符合题目要求的. 把答案填写在答题卷相应位置上. 1.数列1,3,7,15,…的通项n a 可能是A .2nB .21n+ C .21n- D .12n -2.若0cos sin <αα,则角α的终边在A .第二象限 B. 第二、四象限C.第四象限D.第三、四象限3.设a ,b 是实数,则“a+b >0”是“ab>0”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 4.已知命题p : x R ∀∈,3sin 2x >, 则 A.﹁p : x R ∃∈,sin 3x ≤B.﹁p : x R ∃∈,3sin x <C.﹁p : x R ∀∈,3sin 2x < D.﹁p : x R ∀∈,3sin 2x ≤5.下列求导运算正确的是 A .211()x x x x '+=+B .21(log )ln 2x x '= C .3(3)3log xxe '= D .2(cos )2sin x x x x '=-6. 曲线3x 2-y +6=0在x =-61处的切线的倾斜角是 A.4πB.-4πC.43πD.-43π 7.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为A .B .4C .D .28.已知f (sin x )=cos 3x ,则f (cos 10°)的值为 A .-12 B.12 C .-32 D.329.在ABC ∆中,sin :sin :sin 3:2:4A B C =,则cos C 的值为 A .23 B .23- C .14 D .14- 10.公比为2的等比数列{}n a 的各项都是正数,且311=16a a ⋅,则6a = A .1 B .2 C .4 D .811.过抛物线x y 42=的焦点F 的直线交该抛物线于点A .若|AF|=3,则点A 的坐标为 A.(2,2) B.(2,-2) C.(2,±2) D.(1,±2)12.已知定义在R 上的奇函数()f x 满足:当0x ≥时,()3f x x =,若不等式()()242f t f m mt ->+对任意实数t 恒成立,则实数m 的取值范围是A .(),2-∞- B .()2,0-C. ()(),02,-∞⋃+∞ D .()(),22,-∞-⋃+∞第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卷相应位置上 13.若实数列1,a ,b ,c ,4是等比数列,则b 的值为 ______.14.动点(,)P x y 满足20030x y y x y -≥⎧⎪≥⎨⎪+-≥⎩,则2z x y =+的最小值为 .15.已知a 、b 均为单位向量,它们的夹角为3π,那么3a b +等于______ 16.已知x >0,y >0,且2x+y=1,则的最小值是三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分) 已知数列{}n a 是等差数列,且12a =,12312a a a ++=.(1)求数列{}n a 的通项公式; (2)令nn n b a =⋅3*(N )n ∈,求数列{}n b 的前n 项和.18.(本小题满分12分)已知函数1)(23+++=bx ax x x f 在1-=x 与2=x 处有极值. (1)求函数)(x f 的解析式; (2)求)(x f 在]3,2[-上的最值.19、(本小题满分12分) 已知函数2sin 22cos 2sin 2)(2xx x x f -=.(Ⅰ) 求)(x f 的最小正周期;(Ⅱ) 求)(x f 在区间[]0,π-上的最小值.20.(本小题满分12分)在ABC ∆中,内角,,A B C 对边分别为,,a b c ,且sin 3cos b A a B =. (1)求角B 的大小;(2)若3,sin 2sin b C A ==,求,a c 的值.21. (本小题满分12分)如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E ,F 分别是A 1C 1,BC 的中点.(1)求证:C 1F ∥平面ABE ; (2)求三棱锥E -ABC 的体积.22.(本小题12分)已知椭圆C :()012222>>=+b a by a x ,经过点)26,1(,且离心率等于22. (1)求椭圆C 的方程;(2)过点)0,2(P 作直线PB PA ,交椭圆于B A ,两点,且满足PB PA ⊥,试判断直线AB 是否过定点,若过定点求出点坐标,若不过定点请说明理由.2016——2017学年度高二 第一学期期末数学(文科)答案一、选择题:(本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在试卷的答题卡中.) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBDABCAADBCA二、填空题:(本大题共4小题,每小题5分,共20分).13. 2 14.3 15.13 16.3+2三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分10分) 解:(1)12a =,12312a a a ++=133122a d d ∴+==,即………………..3分2(1)22.n a n n ∴=+-⋅=………………………………..5分(2)由已知:23n nb n =⋅23436323n n S n =⋅+⋅+⋅+⋅23…+ ①123436323n n S n +=⋅+⋅+⋅+⋅2343…+ ②………………………………..7分① -②得12323232323n n n S n +=⋅+⋅+⋅+⋅⋅⋅+⋅-⋅23-2=16(13)2313n n n +--⋅-……………..9分 11133313()3222n n n n S n n +++-∴=+⋅=+-.………………………………..10分18.解:(本小题满分12分)(1)由题知b ax x x f ++='23)(2的两根为1-和2, ------2分 ∴由韦达定理可得,⎪⎪⎩⎪⎪⎨⎧=⨯--=+-,321,3221b a -----------4分6,23-=-=∴b a -------------6分(2) 1623)(23+--=x x x x f ,633)(2--='x x x f ,令0)(='x f ,得11-=x ,22=x . -----------8分1)2(-=-f ,29)1(=-f ,9)2(-=f ,27)3(-=f . -----------10分 29)1()(max =-=∴f x f , 9)2()(min -==∴f x f -----------12分 19、(本小题满分12分)解:221cos ()2sin cos 2sin sin 2222222222sin cos sin 22242x x x x f x x x x x π-⎛⎫=-=- ⎪⎝⎭⎛⎫=+-=+- ⎪⎝⎭………………..4分(Ⅰ) πωπ22==T )x f (∴最小正周期为π2………………………………..6分(Ⅱ)[]⎥⎦⎤⎢⎣⎡--∈-⎪⎭⎫ ⎝⎛+=∴⎥⎦⎤⎢⎣⎡-∈⎪⎭⎫ ⎝⎛+⎥⎦⎤⎢⎣⎡-∈+-∈0,221224sin )(22,14sin ,4,434,0,ππππππx x f x x x故()x f 最小值为221--………………………………..12分 20.(本小题满分12分)解:(1)因为sin 3cos b A a B =,由正弦定理sin sin a bA B=…………………..2分 得:sin 3cos B B =,tan 3B = 因为02B π<<,所以3B π=………………………………..6分(2)因为sin 2sin C A =,由正弦定理知2c a = ①由余弦定理2222cos b a c ac B =+-得229a c ac =+- ② ……………..10分 由①②得3,23a c ==。
2016-2017学年浙江省台州市高二(上)期末数学试卷及答案
2016-2017学年浙江省台州市高二(上)期末数学试卷及答案2016-2017学年浙江省台州市高二(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.过点A(,1)与直线y=x-1平行的直线方程是()A。
x+y-1=0B。
x-y-1=0C。
x+y+1=0D。
x-y+1=02.若一个球的半径为1,则它的表面积是()A。
4πB。
2πC。
πD。
8π3.已知圆C:x^2+y^2+2x-4y=0,则圆C的圆心坐标为()A。
(1,-2)B。
(-1,2)C。
(1,2)D。
(-1,-2)4.在正方体ABCD-A1B1C1D1中,异面直线A1B与CC1所成角的大小为()A。
60°B。
30°C。
90°D。
45°5.设直线l的方向向量为(1,-1,1),平面α的一个法向量为(-1,1,-1),则直线l与平面α的位置关系是()A。
l⊂αB。
l∥αXXX⊥αD。
不确定6.已知直线l在平面α内,则“l⊥β”是“α⊥β”的()A。
充分不必要条件B。
必要不充分条件C。
充要条件D。
既不充分也不必要条件7.在平面直角坐标系中,方程x^2/9+y^2/4=1所表示的曲线是()A。
椭圆B。
三角形C。
菱形D。
两条平行线8.已知抛物线y^2=4x上一动点M(x,y),定点N(0,1),则x+|MN|的最小值是()A。
1B。
2C。
-1D。
-29.已知F1和F2分别是椭圆C:x^2/4+y^2=1的左焦点和右焦点,点P(x,y)是椭圆C上一点,满足∠F1PF2≥60°,则x的取值范围是()A。
[-1,1]B。
[-2,2]C。
[1,2]D。
[-2,-1]10.如图,在三棱柱ABC-A1B1C1中,E,F,E1,F1分别为棱AB,AC,AA1,CC1的中点,点G,H分别为四边形ABB1A1,BCC1B1对角线的交点,点I为△A1B1C1的外心,P,Q分别在直线EF,E1F1上运动,则在G,H,I,这三个点中,动直线PQ()A。
浙江省台州中学2016-2017学年高二上学期第一次统练数学试卷 含答案
台州中学2016学年第一学期第一次统练试题高二 数学命题人 王哲宝 审题人 林远淋一、选择题(本大题共10小题,每小题3分,共30分)1.用斜二测画法作出一个三角形的直观图,则原三角形面积是直观图面积的( )A .21倍 B .22倍 C .2倍D .42倍2.若直线03)1(:1=--+y a ax l 与直线02)32()1(:2=-++-y a x a l 互相垂直,则a 的值是( )A 。
3-B 。
1 C. 0或23- D. 1或3-3.三棱锥S ABC -及其三视图中的正视图和侧视图如图所示,则棱SB 的长为( )A .163B 38C .42D .211 4.设m 、n 是两条不同的直线,α、β是两个不同的平面,则下列命题中真命题是( )A .,,m n m n αβαβ⊥⊂⊥⇒⊥B .,,m m n n αβαββ⊥=⊥⇒⊥C .,,m n αβα⊥⊥∥βm n ⇒⊥D .α∥β,,m α⊥n ∥βm n ⇒⊥5.已知点P 是△ABC 所在平面外一点,点O 是点P 在平面ABC 上的射影,在下列条件下:P 到△ABC 三个顶点距离相等;P 到△ABC 三边距离相等;AP 、BP 、CP 两两互相垂直,点O 分别是△ABC 的( )A .垂心,外心,内心B .外心,内心,垂心C .内心,外心,垂心D .内心,垂心,外心6.在空间直角坐标系O xyz -中,一个四面体的顶点坐标为分别为(0,0,2),(2,2,0),(0,2,0),(2,2,2).画该四面体三视图中的正视图时,以xOz 平面为投影面,则得到正视图可以为7.已知点(),A a b 的坐标满足30x y --=,则由点A 向圆22:2430C x y x y ++-+=所作切线长的最小值是( )A 。
2 B 。
3 C 。
4 D 。
148.已知直线01243:=-+y x l ,若圆上恰好存在两个点P 、Q ,他们到直线l 的距离为1,则称该圆为“完美型"圆.则下列圆中是“完美型”圆的是( )A.122=+y x B 。
浙江省台州市2016-2017学年高一(上)期末数学试卷(解析版)(2021年整理)
浙江省台州市2016-2017学年高一(上)期末数学试卷(解析版)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省台州市2016-2017学年高一(上)期末数学试卷(解析版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省台州市2016-2017学年高一(上)期末数学试卷(解析版)(word版可编辑修改)的全部内容。
2016-2017学年浙江省台州市高一(上)期末数学试卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5},A={1,3},B={2,4},则∁U(A∪B)=() A.5 B.{5} C.∅ D.{1,2,3,4}2.已知平面向量=(1,2),=(x,﹣2),若与共线,则x的值为()A.﹣4 B.4 C.﹣1 D.13.的值为( )A.B.C.D.4.已知函数f(x)=|x﹣1|﹣1(x∈{0,1,2,3}),则其值域为( )A.{0,1,2,3}B.{﹣1,0,1}C.{y|﹣1≤y≤1} D.{y|0≤y≤2}5.若,,,则a,b,c的大小关系是()A.c>b>a B.c>a>b C.a>b>c D.b>a>c6.若x0是函数f(x)=﹣x3﹣3x+5的零点,则x0所在的一个区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)7.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则()A.ω=2, B.,C.ω=2, D.,8.已知函数f(x)=log a(x﹣+1)+2(a>0,a≠1)的图象经过定点P,且点P在幂函数g(x)的图象上,则g(x)的表达式为( )A.g(x)=x2B.C.g(x)=x3D.9.已知函数f(x)=x2﹣2x在区间[﹣1,t]上的最大值为3,则实数t的取值范围是()A.(1,3]B.[1,3]C.[﹣1,3] D.(﹣1,3]10.若存在实数α∈R,,使得实数t同时满足,α≤t ≤α﹣2cosβ,则t的取值范围是( )A.B.C.D.[2,4]二、填空题:本大题共6小题,单空题每小题3分,多空题每小题3分,共20分.11.集合{1,2}的子集个数为.12.已知函数f(x)=的值为.13.已知函数f(x)=2cos(2x+),函数g(x)的图象由函数f(x)的图象向右平移个单位而得到,则当x∈[﹣,]时,g(x)的单调递增区间是.14.已知定义在R上的偶函数f(x)在[0,+∞)上是减函数,且f(2)=0,若f(lnx)>0,则x的取值范围是.15.已知函数y=sinx(x∈[m,n]),值域为,则n﹣m的最大值为,最小值为.16.在等腰△ABC中,AD是底边BC上的中线,若•=m,AD=λBC,则当m=2时,实数λ的值是,当λ∈(,)时,实数m的取值范围为.三、解答题:本大题共5小题,共50分.解答应写出文字说明,证明过程或演算步骤.17.已知函数.(Ⅰ)判断f(x)的奇偶性,并加以证明;(Ⅱ)求方程的实数解.18.已知=(cosα,sinα),=(cosβ,sinβ),<α<β<.(Ⅰ)若,求;(Ⅱ)设=(1,0),若,求α,β的值.19.已知集合A={x|x2﹣2x﹣3<0},B={x|2a﹣1<x<a+1},a∈R.(Ⅰ)若B⊆A,求实数a的取值范围;(Ⅱ)设函数,若实数x0满足f(x0)∈A,求实数x0取值的集合.20.已知A为锐角△ABC的内角,且 sinA﹣2cosA=a(a∈R).(Ⅰ)若a=﹣1,求tanA的值;(Ⅱ)若a<0,且函数f(x)=(sinA)•x2﹣(2cosA)•x+1在区间[1,2]上是增函数,求sin2A﹣sinA•cosA的取值范围.21.已知函数f(x)=|x2﹣2x﹣3|,g(x)=x+a.(Ⅰ)求函数y=f(x)的单调递增区间;(只需写出结论即可)(Ⅱ)设函数h(x)=f(x)﹣g(x),若h(x)在区间(﹣1,3)上有两个不同的零点,求实数a的取值范围;(Ⅲ)若存在实数m∈[2,5],使得对于任意的x1∈[0,2],x2∈[﹣2,﹣1],都有f(x1)﹣m≥g(2)﹣5成立,求实数a的最大值.2016—2017学年浙江省台州市高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5},A={1,3},B={2,4},则∁U(A∪B)=( )A.5 B.{5}C.∅ D.{1,2,3,4}【考点】交、并、补集的混合运算.【分析】根据并集与补集的定义,写出运算结果即可.【解答】解:全集U={1,2,3,4,5},A={1,3},B={2,4},∴A∪B={1,2,3,4};∴∁U(A∪B)={5}.故选:B.2.已知平面向量=(1,2),=(x,﹣2),若与共线,则x的值为()A.﹣4 B.4 C.﹣1 D.1【考点】平行向量与共线向量.【分析】根据平面向量共线定理的坐标表示,列出方程求x的值.【解答】解:平面向量=(1,2),=(x,﹣2),若与共线,则2x﹣1×(﹣2)=0,解得x=﹣1.故选:C.3.的值为( )A.B.C.D.【考点】三角函数的化简求值.【分析】利用诱导公式化简即可计算出答案.【解答】解:sin=sin(4)=sin(﹣)=﹣sin=.故选A4.已知函数f(x)=|x﹣1|﹣1(x∈{0,1,2,3}),则其值域为() A.{0,1,2,3}B.{﹣1,0,1} C.{y|﹣1≤y≤1} D.{y|0≤y≤2}【考点】函数的值域.【分析】根据题意依次求出函数值,可得函数的值域.【解答】解:∵函数f(x)=|x﹣1|﹣1(x∈{0,1,2,3}),∴f(x)分别是0、﹣1、0、1,则函数f(x)的值域是{﹣1,0,1},故选:B.5.若,,,则a,b,c的大小关系是()A.c>b>a B.c>a>b C.a>b>c D.b>a>c【考点】对数值大小的比较.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵0<<,<0,∴b>a>c.故选:D.6.若x0是函数f(x)=﹣x3﹣3x+5的零点,则x0所在的一个区间是()A.(0,1)B.(1,2) C.(2,3)D.(3,4)【考点】函数零点的判定定理.【分析】判断函数的连续性,利用零点判定定理求解即可.【解答】解:函数f(x)=﹣x3﹣3x+5是连续函数,因为f(1)=1>0,f(2)=﹣8﹣6+5<0,可知f(1)f(2)<0,由零点判定定理可知,函数的零点x0所在的一个区间是(1,2).故选:B.7.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则()A.ω=2, B.,C.ω=2, D.,【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】根据三角函数图象确定函数的周期以及函数过定点坐标,代入进行求解即可.【解答】解:函数的周期T=﹣=π,即=π,则ω=2,当x=时,f()=sin(2×+φ)=,即sin(+φ)=,∵|φ|<,∴﹣<φ<,则﹣<+φ<,可得: +φ=,解得:φ=,故选:A.8.已知函数f(x)=log a(x﹣+1)+2(a>0,a≠1)的图象经过定点P,且点P 在幂函数g(x)的图象上,则g(x)的表达式为()A.g(x)=x2B.C.g(x)=x3D.【考点】幂函数的概念、解析式、定义域、值域.【分析】由题意求得定点P的坐标,根据点P在幂函数f(x)的图象上,设g(x)=x n,求得n的值,可得 g(x)的解析式即可.【解答】解:函数y=log a(x﹣+1)+2(a>0,a≠1)的图象过定点P(,2),∵点P在幂函数f(x)的图象上,设g(x)=x n,则2=n,∴n=3,g(x)=x3,故选:C.9.已知函数f(x)=x2﹣2x在区间[﹣1,t]上的最大值为3,则实数t的取值范围是( )A.(1,3]B.[1,3] C.[﹣1,3] D.(﹣1,3]【考点】二次函数的性质.【分析】求出函数的对称轴,判断开口方向,然后通过函数值求解即可.【解答】解:函数f(x)=x2﹣2x的对称轴为:x=1,开口向上,而且f(﹣1)=3,函数f(x)=x2﹣2x在区间[﹣1,t]上的最大值为3,又f(3)=9﹣6=3,则实数t的取值范围是:(﹣1,3].故选:D.10.若存在实数α∈R,,使得实数t同时满足,α≤t≤α﹣2cosβ,则t的取值范围是( )A.B.C.D.[2,4]【考点】三角函数的周期性及其求法.【分析】根据题意求出t≥,设f(t)=,求出f(t)的最小值;再根据题意求出t≤,设g(t)==2f(t),求出g(t)的最大值,从而求出实数t的取值范围.【解答】解:∵β∈[,π],∴﹣1≤cosβ≤0;∵α≤t,∴≥cos2β+cosβ,即t≥;令f(t)=,则f′(t)==;令f′(t)=0,解得sinβ=0或cosβ=0;当sinβ=0时,cosβ=﹣1,此时f(t)==,当cosβ=0时,f(t)=0为最小值;又t≤α﹣2cosβ,∴α≥t+2cosβ,∴t≤cos2β+•cosβ,即t≤;令g(t)==2f(t),则g′(t)=2f′(t)=2•;令g′(t)=0,解得sinβ=0或cosβ=0;当sinβ=0时,cosβ=﹣1,此时g(t)=2×=为最大值,当cosβ=0时,g(t)=0;综上,实数t的取值范围是[0,].故选:B.二、填空题:本大题共6小题,单空题每小题3分,多空题每小题3分,共20分.11.集合{1,2}的子集个数为 4 .【考点】子集与真子集.【分析】写出集合{1,2}的所有子集,从而得出该集合的子集个数.【解答】解:{1,2}的子集为:∅,{1},{2},{1,2},共四个.故答案为:4.12.已知函数f(x)=的值为.【考点】对数的运算性质.【分析】首先求出f()=﹣2,再求出f(﹣2)的值即可.【解答】解:∵>0∴f()=log3=﹣2∵﹣2<0∴f(﹣2)=2﹣2=故答案为.13.已知函数f(x)=2cos(2x+),函数g(x)的图象由函数f(x)的图象向右平移个单位而得到,则当x∈[﹣,]时,g(x)的单调递增区间是[﹣,].【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用y=Asin(ωx+φ)的图象变换规律,余弦函数的单调性,得出结论.【解答】解:把函数f(x)=2cos(2x+)的图象向右平移个单位,得到g(x)=2cos[2(x﹣)+]=2cos(2x﹣)的图象,令2kπ﹣π≤2x﹣≤2kπ,求得kπ﹣≤x≤kπ+,可得函数g(x)的增区间为[kπ﹣,kπ+],k∈Z.结合x∈[﹣,]时,可得g(x)的增区间为[﹣,],故答案为:[﹣,].14.已知定义在R上的偶函数f(x)在[0,+∞)上是减函数,且f(2)=0,若f (lnx)>0,则x的取值范围是.【考点】奇偶性与单调性的综合.【分析】根据题意、偶函数的单调性等价转化不等式,由对数函数的单调性求出解集.【解答】解:∵f(2)=0,f(lnx)>0,∴f(lnx)>f(2),∵定义在R上的偶函数f(x)在[0,+∞)上是减函数,∴f(lnx)>f(2)等价于|lnx|<2,则﹣2<lnx<2,即lne﹣2<lnx<lne2,解得,∴不等式的解集是,故答案为:.15.已知函数y=sinx(x∈[m,n]),值域为,则n﹣m的最大值为,最小值为.【考点】三角函数的最值.【分析】根据题意,利用正弦函数的图象与性质,即可得出结论.【解答】解:∵函数y=sinx的定义域为[m,n],值域为,结合正弦函数y=sinx的图象与性质,不妨取m=﹣,n=,此时n﹣m取得最大值为.取m=﹣,n=,n﹣m取得最小值为,故答案为,.16.在等腰△ABC中,AD是底边BC上的中线,若•=m,AD=λBC,则当m=2时,实数λ的值是±,当λ∈(,)时,实数m的取值范围为(,2).【考点】平面向量数量积的运算.【分析】以D为原点,以BC边所在的直线为x轴,以中线AD所在的直线为y轴,根据向量的数量积公式得到m=(4m﹣4)λ2,代值计算即可求出λ的值,再得到得m==1+,根据函数的单调性即可求出m的范围.【解答】解:以D为原点,以BC边所在的直线为x轴,以中线AD所在的直线为y 轴建立直角坐标系,不妨设B(a,0),C(﹣a,0),a>0∵AD=λBC=2λa∴A(0,2λa),∴=(a,﹣2λa),=(0,﹣2λa),=(﹣a,﹣2λa),∴•=4λ2a2,=﹣a2+4λ2a2,∵•=m,∴4λ2a2=﹣ma2+4mλ2a2,即m=(4m﹣4)λ2,当m=2时,λ2=,解得λ=±,由m=(4m﹣4)λ2,得m==1+∵m=1+在(,)上递减,∴m∈(,2)故答案为:±.,(,2)三、解答题:本大题共5小题,共50分.解答应写出文字说明,证明过程或演算步骤.17.已知函数.(Ⅰ)判断f(x)的奇偶性,并加以证明;(Ⅱ)求方程的实数解.【考点】函数的零点与方程根的关系;函数奇偶性的判断.【分析】(Ⅰ)利用奇函数的定义,即可得出结论;(Ⅱ)由,得2x=3,x=log23,即可得出结论.【解答】解:(Ⅰ)因为函数f(x)的定义域为R,且,所以f(x)是定义在R上的奇函数;…(Ⅱ)∵,∴2x=3,x=log23.所以方程的实数解为x=log23.…18.已知=(cosα,sinα),=(cosβ,sinβ),<α<β<.(Ⅰ)若,求;(Ⅱ)设=(1,0),若,求α,β的值.【考点】平面向量数量积的运算;向量的模.【分析】(Ⅰ)根据便可得到,从而可求得,这样即可得出的值;(Ⅱ)根据即可得出,平方后即可求出cosα,cosβ的值,从而求出α,β的值.【解答】解:(Ⅰ)∵;∴;∴;∴,;(Ⅱ)∵;∴,即;解得,;∵;∴,.19.已知集合A={x|x2﹣2x﹣3<0},B={x|2a﹣1<x<a+1},a∈R.(Ⅰ)若B⊆A,求实数a的取值范围;(Ⅱ)设函数,若实数x0满足f(x0)∈A,求实数x0取值的集合.【考点】三角函数的最值;集合的包含关系判断及应用.【分析】(Ⅰ)若B⊆A,分类讨论,即可求实数a的取值范围;(Ⅱ)由题意,,即可求实数x0取值的集合.【解答】解:(Ⅰ)A={x|﹣1<x<3},若B=∅,则2a﹣1≥a+1,解得a≥2,满足B⊆A,若B≠∅,则a<2,要使B⊆A,只要解得0≤a<2,综上,实数a的取值范围是[0,+∞);…(Ⅱ)由题意,,即,∴,或,k∈Z,∴,或,k∈Z.则实数x0取值的集合是,或,k∈Z}.…20.已知A为锐角△ABC的内角,且 sinA﹣2cosA=a(a∈R).(Ⅰ)若a=﹣1,求tanA的值;(Ⅱ)若a<0,且函数f(x)=(sinA)•x2﹣(2cosA)•x+1在区间[1,2]上是增函数,求sin2A﹣sinA•cosA的取值范围.【考点】正弦函数的单调性;三角形中的几何计算.【分析】(Ⅰ)利用同角三角函数的基本关系,求得sinA和cosA的值,可得tanA的值.(2)由题意可得1≤tanA<2,化简要求式子为﹣,再利用函数的单调性求得它的范围.【解答】解:(Ⅰ)锐角△ABC中,a=﹣1,由题意可得,求得,或(舍去),∴.(Ⅱ)若a<0,由题意可得sinA﹣2cosA<0,得tanA<2,又,tanA≥1,∴1≤tanA<2,∴=,令t=tanA+1,2≤t<3,∴,∵y=在[2,3)上递增,∴,∴.即sin2A﹣sinA•cosA的取值范围为.21.已知函数f(x)=|x2﹣2x﹣3|,g(x)=x+a.(Ⅰ)求函数y=f(x)的单调递增区间;(只需写出结论即可)(Ⅱ)设函数h(x)=f(x)﹣g(x),若h(x)在区间(﹣1,3)上有两个不同的零点,求实数a的取值范围;(Ⅲ)若存在实数m∈[2,5],使得对于任意的x1∈[0,2],x2∈[﹣2,﹣1],都有f (x1)﹣m≥g(2)﹣5成立,求实数a的最大值.【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)根据二次函数的性质求出函数的递增区间即可;(Ⅱ)求出h(x)的解析式,根据函数的零点得到关于a的不等式组,解出即可;(Ⅲ)设函数F(x)=f(x)﹣m,G(x)=g(2x)﹣5,分别求出F(x)的最小值和G(x)的最大值,求出a的范围即可.【解答】解:(Ⅰ)函数y=f(x)的单调递增区间为[﹣1,1],[3,+∞);(不要求写出具体过程)…(Ⅱ)∵﹣1<x<3,∴h(x)=f(x)﹣g(x)=|x2﹣2x﹣3|﹣x﹣a=﹣x2+x+3﹣a,由题意知,即得;…(Ⅲ)设函数F(x)=f(x)﹣m,G(x)=g(2x)﹣5,由题意,F(x)在[0,2]上的最小值不小于G(x)在[﹣2,﹣1]上的最大值,F(x)=|x2﹣2x﹣3|﹣m=﹣x2+2x+3﹣m=﹣(x﹣1)2+4﹣m(0≤x≤2),当x=0,或x=2时,F(x)min=3﹣m,G(x)=g(2x)﹣5=2x+a﹣5在区间[﹣2,﹣1]单调递增,当x=﹣1时,,∴存在m∈[2,5],使得成立,即,∴.∴a的最大值为.…2017年3月17日。
2016-2017学年高二上学期期末考试数学理试卷 Word版含答案
A . π5.已知双曲线 - = 1的离心率为 , 则 m =2016—2017 学年度第一学期期末考试高二数学理试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1 至 2 页,第Ⅱ卷 3 至 8 页,共 150分.考试时间 120 分钟.考试结束,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共 40 分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试卷上.一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题列出的四个选项中,选出符合题目要求的一项.1.在空间,可以确定一个平面的条件是A .两条直线B .一点和一条直线C .三个点D .一个三角形2.直线 x - y - 1 = 0 的倾斜角是6B .π4C .π3D .π23. 若椭圆x 2 y 2+ = 1 上的一点 P 到椭圆一个焦点的距离为 3 ,则 P 到另一焦点的距离为 25 16A . 7B . 5C . 3D . 24.在空间,下列结论正确的是A .平行直线的平行投影重合B .平行于同一直线的两个平面平行C .垂直于同一平面的两个平面平行D .垂直于同一平面的两条直线平行x 2 y 2 516 m 4A . 7B . 6C . 9D . 86.已知 A (-2,0) , B (2,0) ,动点 P ( x , y ) 满足 P A ⋅ PB = x 2,则动点 P 的轨迹为A .椭圆C .抛物线B .双曲线D .两条平行直线7.某四棱锥的三视图如图所示,该四棱锥的侧面积为A.[-1,1]B.[-11A.82B.162 C.10 D.62主视图左视图44俯视图8.设点M(x,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45,则x的取值范围是0022,]C.[-2,2]D.[-,]2222第Ⅱ卷(非选择题共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在答题纸上.2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.原点到直线4x+3y-1=0的距离为___________.10.抛物线y2=2x的准线方程是___________.11.已知a=(1,2,3),b=(-1,3,0),则a⋅b+b=___________.12.过点(1,0)且与直线x-2y-2=0平行的直线方程是____________.13.大圆周长为4π的球的表面积为____________.14.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,则堆放的米约有___________斛(结果精确到个位).三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本题满分13分)如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC=2,G,F 分别是AD,PB的中点.(Ⅰ)求证:C D⊥P A;(Ⅱ)证明:G F⊥平面PBC..16.(本题满分13分)已知直线l经过直线3x+4y-2=0与直线2x+y+2=0的交点P,并且垂直于直线x-2y-1=0.(Ⅰ)求交点P的坐标;(Ⅱ)求直线l的方程.1 1C如图,正方体ABCDA BC 1D 1 的棱长为 1,E 、F 分别是 BB 1 和 CD 的中点.(Ⅰ)求 AE 与 A 1F 所成角的大小;(Ⅱ)求 AE 与平面 ABCD 所成角的正切值.A1D1B1EC1ABFD18.(本小题共 13 分)已知直线 l 经过点 (2,1) 和点 (4,3) .(Ⅰ)求直线 l 的方程;(Ⅱ)若圆 C 的圆心在直线 l 上,并且与 y 轴相切于 (0,3) 点,求圆 C 的方程.平面 BCP 所成角的大小为 ? 若存在,求出如图, PD 垂直于梯形 ABCD 所在的平面, ∠ADC = ∠BAD = 90︒ . F 为 P A 中点, PD = 2 ,1AB = AD = CD = 1 . 四边形 PDCE 为矩形,线段 PC 交 DE 于点 N .2(Ⅰ)求证: AC // 平面 DEF ;(Ⅱ)求二面角 A - BC - P 的大小;PE(Ⅲ)在线段 EF 上是否存在一点 Q ,使得 BQ 与Nπ6FDCQ 点所在的位置;若不存在,请说明理由.A B20.(本小题满分 14 分)已知圆 O : x 2 + y 2 = 1的切线 l 与椭圆 C : x 2 + 3 y 2 = 4 相交于 A , B 两点.(Ⅰ)求椭圆 C 的离心率;(Ⅱ)求证: O A ⊥ OB ;(Ⅲ)求 ∆OAB 面积的最大值.高二数学理科参考答案及评分标准一、选择题:本大题共8小题,每小题5分,共40分.题号答案1D2B3A4D5C6D7B8A二、填空题:本大题共6小题,每小题5分,共30分.9.151;10.x=-;11.23+1;212.x-2y-1=0;13.16π;14.22.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本题满分13分)如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC=2,G,F 分别是AD,PB的中点.(Ⅰ)求证:C D⊥P A;(Ⅱ)证明:G F⊥平面PBC..解法一:(Ⅰ)证明:因为ABCD是正方形,所以CD⊥AD.又PD⊥底面ABCD,所以PD⊥CD.又AD PD=D,所以C D⊥平面PAD.而P A⊂平面P AD,所以CD⊥P A.-------------------------------------6分(Ⅱ)取PC的中点M,连结DM,FM,所以FM∥BC,FM=12 BC,因为GD∥BC,GD=12BC,所以四边形FMDG为平行四边形,所以GF∥DM.又易证BC⊥平面PDC,所以DM⊥BC,又PD=DC,M为PC的中点,所以DM⊥PC.则GF⊥BC且GF⊥PC.又BC⋂PC=C,所以GF⊥平面PCB---------------------------------------------13分(Ⅱ)设 G (1,0,0) 则 FG = (0, -1, -1) , CB = (2,0,0) , PC = (0,2, -2) .⎧得 ⎨2 x + y + 2 = 0, 1 1 BF解法二:(Ⅰ)证明:以 D 为原点建立如图空间直角坐标系则 A (2,0,0)B (2,2,0)C (0,2,0)P (0,0,2)F (1,1,1)所以 P A = (2,0, -2) , DC = (0,2,0) .则 P A ⋅ DC = 0 ,所以 P A ⊥ CD . --------------------------6 分⎧⎪ FG ⋅ C B = 0, 又 ⎨⎪⎩ FG ⋅ PC = 0,故 GF ⊥平面 PCB . ------------------------------------------------13 分16.(本题满分 13 分)已知直线 l 经过直线 3x + 4 y - 2 = 0 与直线 2 x + y + 2 = 0 的交点 P ,并且垂直于直线 x - 2 y - 1 = 0 .(Ⅰ)求交点 P 的坐标;(Ⅱ)求直线 l 的方程.解:(Ⅰ)由 ⎨3x + 4 y - 2 = 0, ⎧ x = -2,⎩ ⎩ y = 2,所以 P ( - 2 , 2 ).--------------------------------------------------5 分(Ⅱ)因为直线 l 与直线 x - 2 y - 1 = 0 垂直,所以 k = -2 ,l所以直线 l 的方程为 2 x + y + 2 = 0 .---------------------------------------13 分17.(本小题满分 13 分)如图,正方体 ABCD - A BC 1D 1 的棱长为 1,E 、F 分别是 BB 1 和 CD 的中点.(Ⅰ)求 AE 与 A 1F 所成角的大小;(Ⅱ)求 AE 与平面 ABCD 所成角的正切值.(Ⅰ)如图,建立坐标系 A-xyz,则 A(0,0,0),A1 D1B1 C1E1E (1,0, ),2A 1(0,0,1) F ( 1,1,0)2ACD.-------------------------------------13 分 5 ,可得 tan α =1AE =(1,0, ),2A1zD11A F =( ,1,-1) 1 2AE ⋅ A F =01B1EC1所以 AE ⊥ A F1所 以 AE 与 A 1F 所 成 角 为 90 °BACFDy-------------------------------------6 分x(Ⅱ)解法 1:∵ ABCD - A BC D 是正方体,1 1 1 1∴BB 1⊥平面 ABCD∴∠EAB 就是 AE 与平面 ABCD 所成角,又 E 是 BB 1 中点,1 在直角三角形 EBA 中,tan ∠EAB = 2解法 2:设 AE 与平面 ABCD 所成角为 α平面 ABCD 的一个法向量为 n =(0,0,1)则sin α =cos< AE , n >= AE ⋅ nAE ⨯ n = 112∴ AE 与平面 ABCD 所成角的正切等于 1 2. ----------------------------------13 分18.(本小题共 13 分)已知直线 l 经过点 (2,1) 和点 (4,3) .(Ⅰ)求直线 l 的方程;(Ⅱ)若圆 C 的圆心在直线 l 上,并且与 y 轴相切于 (0,3) 点,求圆 C 的方程.解:(Ⅰ)由已知,直线 l 的斜率 k = 3 - 1 = 1,4 - 2所以,直线 l 的方程为 x - y - 1 = 0 .--------------------6 分(Ⅱ)因为圆 C 的圆心在直线 l 上,可设圆心坐标为 (a , a - 1) ,因为圆 C 与 y 轴相切于 (0,3) 点,所以圆心在直线 y = 3 上.所以 a = 4 .所以圆心坐标为 (4,3) ,半径为 4.所以,圆 C 的方程为 ( x - 4)2 + ( y - 3)2 = 16 .---------------------------13 分AB = AD = CD = 1. 四边形 PDCE 为矩形,线段 PC 交 DE 于点 N .⎩ z = 2⎪ ⎧ ⎩ ⎩19.(本小题满分 14 分)如图, PD 垂直于梯形 ABCD 所在的平面, ∠ADC = ∠BAD = 90︒ . F 为 P A 中点, PD = 2 ,12(I) 求证: AC // 平面 DEF ; PE(II) 求二面角 A - BC - P 的大小;N(III)在线段 EF 上是否存在一点 Q ,使得 BQ 与F平面 BCP 所成角的大小为 π 6? 若存在,求 Q 点DC所在的位置;若不存在,请说明理由.AB解:(Ⅰ)连接 FN , 在 ∆PAC 中, F , N 分别为 P A , PC 中点,所以 FN / / AC ,因为 FN ⊂ 平面DEF , AC ⊄ 平面DEF ,所以 AC / / 平面 D EF ----------------------------------5 分(Ⅱ)如图以 D 为原点,分别以 DA , DC , DP 所在直线为 x,y,z 轴,建立空间直角坐标系 D - xyz .zPENFxACD yB则 P (0,0, 2), B (1,1,0), C (0,2,0), 所以 PB = (1,1, - 2), BC = (-1,1,0).⎧m ⋅ PB = ( x , y , z ) ⋅(1,1,- 2) = 0 设平面 PBC 的法向量为 m = ( x , y , z ), 则 ⎨⎪⎩m ⋅ BC = ( x , y , z ) ⋅ (-1,1,0) = 0⎧⎪ x + y - 2 z = 0 ⎪ x = x即 ⎨, 解得 ⎨ , ⎪- x + y = 0 ⎪ z = 2 x⎧ x = 1⎪令 x = 1 ,得 ⎨ y = 1 , 所以 m = (1,1, 2).⎪因为平 面ABC 的法向量 n = (0,0,1),n ⋅ m 2所以 cos n , m = = ,n ⋅ m2由图可知二面角 A - BC - P 为锐二面角,,因为直线 BQ 与平面 BCP 所成角的大小为 ,所以 e = c .所以椭圆 C 的离心率为 . -----------------------------------5 分k 2 + 1 = 1 ,即 k 2 + 1 = m 2 .⎧ 3k 2 + 1 3k 2 + 1所以二面角 A - BC - P 的大小为 π.4-----------------------------10 分(Ⅲ) 设存在点 Q 满足条件,且 Q 点与 E 点重合.1 2由 F ( ,0, ), E (0,2, 2). 设 FQ = λ F E (0 ≤ λ ≤ 1) ,2 21 - λ 2(1 + λ) 整理得 Q ( ,2 λ, ) , BQ = (-2 21 + λ 2(1 + λ),2 λ - 1, ), 2 2π6π BQ ⋅ m | 5λ - 1| 1所以 sin =| cos BQ , m |=| |== , 6 BQ ⋅ m 2 19λ 2 - 10λ + 7 2则 λ 2 = 1,由0 ≤ λ ≤ 1知 λ = 1 ,即 Q 点与 E 点重合. -------------------14 分20.(本小题满分 14 分)已知圆 O : x 2 + y 2 = 1的切线 l 与椭圆 C : x 2 + 3 y 2 = 4 相交于 A , B 两点.(Ⅰ)求椭圆 C 的离心率;(Ⅱ)求证: O A ⊥ OB ;(Ⅲ)求 ∆OAB 面积的最大值.解:(Ⅰ)由题意可知 a 2 = 4 , b 2 =4 8,所以 c 2 = a 2 - b 2 = . 3 36 6= a 3 3(Ⅱ)若切线 l 的斜率不存在,则 l : x = ±1.在x 2 3 y 2+ = 1 中令 x = 1 得 y = ±1 . 4 4不妨设 A (1,1), B (1, -1) ,则 OA ⋅ O B = 1 -1 = 0 .所以 O A ⊥ OB .同理,当 l : x = -1时,也有 OA ⊥ OB .若切线 l 的斜率存在,设 l : y = kx + m ,依题意m由 ⎨ y = kx + m ⎩ x 2 + 3 y 2 = 4,得 (3k 2 + 1)x 2 + 6kmx + 3m 2 - 4 = 0 .显然 ∆ > 0 .设 A ( x , y ) , B ( x , y ) ,则 x + x = - 1 1 2 2 1 2 6km 3m 2 - 4, x x = .1 2)[( x + x ) - 4 x x ] = 1 + k 1所以 y y = (kx + m )(kx + m ) = k 2 x x + km ( x + x ) + m 2 . 1 2 1 2 1 2 1 2所以 OA ⋅ O B = x x + y y = (k 2 + 1)x x + km ( x + x ) + m 2 1 21 2 1 2 1 2= (k 2 + 1) 3m 2 - 4 6km - km 3k 2 + 1 3k 2 + 1 + m 2== (k 2 + 1)(3m 2 - 4) - 6k 2m 2 + (3k 2 + 1)m 2 3k 2 + 14m 2 - 4k 2 - 4 3k 2 + 14(k 2 + 1) - 4k 2 - 4 = = 0 . 3k 2 + 1所以 OA ⊥ OB .综上所述,总有 O A ⊥ OB 成立. ----------------------------------------------10 分(Ⅲ)因为直线 AB 与圆 O 相切,则圆 O 半径即为 ∆OAB 的高,当 l 的斜率不存在时,由(Ⅱ)可知 AB = 2 .则 S∆OAB = 1 .当 l 的斜率存在时,由(Ⅱ)可知,AB = (1+ k 2 2 2 ⋅ ( 1 2 1 2 6km 3m 2 - 4 )2 - 4 ⋅ 3k 2 + 1 3k 2 + 12 1 + k 2 = ⋅ 9k 2m 2 - (3m 2 - 4)(3k 2 + 1) 3k 2 + 12 1 + k 2 2 1 + k 2 = ⋅ 12k 2 - 3m 2 + 4 = ⋅ 12k 2 - 3(k 2 + 1) + 4 3k 2 + 1 3k 2 + 12 1 + k 2 =⋅ 9k 2 + 1 .3k 2 + 1 所以 AB 2 = 4(1+ k 2 )(9k 2 + 1) 4(9k 4 + 10k 2 + 1) 4k 2 = = 4(1+ ) (3k 2 + 1)2 9k 4 + 6k 2 + 1 9k 4 + 6k 2 + 1= 4 + 16 ⋅ k 2 16 4 16 3 = 4 + ≤ 4 + = ( 当 且 仅当 k = ± 9k 4 + 6k 2 + 1 3 3 3 9k 2 + + 6 k 2时,等号成立).所以AB≤43∆OAB max=.综上所述,当且仅当k=±3时,∆OAB面积的最大值为.-------------------14分23.此时,(S)332333。
浙江省台州市高二上学期期末试题数学理.pdf
Unit 7 Would you mind turning down the music? I. Teaching objectives 单元教学目标 Skill Focus▲Make requests and apologize. ▲Listen, describe and talk about different ways to make requests and apologize. ▲Write about request notes and complaint letters. ▲Learn to deal with requests and complaints. Language Focus 功能句式Making requests Would you mind cleaning your room? Would you mind not playing baseball here? Could you please take out the trash? You have to do your homework. Responses to requests (to apologize) I’m sorry. I’ll do it right away. Sorry. We’ll go and play in the park. No, not at all. Sure, that’s no problem. 词 汇重点词汇 mind, yard, polite, perhaps, door, line, return, voice, Asian, Europe, impolite, allow, public, cough, break, smoke, drop, litter 2. 认读词汇 task, poster, waitress, brought, clothing, solution, annoy, annoyed, etiquette, normal, behavior, uncomfortable, sneeze, politely, cigarette, criticize, behave 3. 词组 not at all, turn down, right away, wait in line, cut in line, keep down , at first, put out, pick up 语 法1. 复习“表示客气和委婉的请求”的句子结构。
2016-2017学年高二上学期期末考试数学理试卷 Word版含答案
2016-2017高二年级第一学期期末考试数 学 (理科)本试卷共100分.考试时间90分钟.一.选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线01=+-y x 的斜率是 ( )A .1B .1-C .4π D .43π 2.方程2240x y x +-=表示的圆的圆心和半径分别为( )A .(2,0)-,2B .(2,0)-,4C .(2,0),2D .(2,0),43.若两条直线210ax y +-=与3610x y --=垂直,则a 的值为 ( )A .4B .4-C .1D .1-4.在空间直角坐标系中,点(1,2,3)P -关于坐标平面xOy 的对称点为 ( )A .(1,2,3)--B .(1,2,3)---C .(1,2,3)--D .(1,2,3)5.已知三条直线,,m n l ,三个平面,,αβγ,下面说法正确的是( )A .//αγαββγ⊥⎫⇒⎬⊥⎭B .//m l m n n l ⊥⎫⇒⎬⊥⎭C .////m l l m ββ⎫⇒⎬⊥⎭D .//m n m n γγ⎫⇒⊥⎬⊥⎭6.“直线l 的方程为)2(-=x k y ”是“直线l 经过点)0,2(”的 ( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 7.一个三棱锥的三视图如图所示,则三棱锥的体积为( )A .53B .103C .203D .2538.实数x ,y 满足10,1,x y x y a -+≥⎧⎪≤⎨⎪≥⎩,若2u x y =-的最小值为4-,则实数a 等于( )A .4-B .3-C .2-D .6二.填空题:本大题共6小题,每小题4分,共24分.9.双曲线2214y x -=的渐近线方程为_________.10.点P 是椭圆22143x y +=上的一点,1F 、2F 分别是椭圆的左右焦点,则∆21F PF 的周长是_________. 11.已知命题p :1x ∀>,2210x x -+>,则p ⌝是_________.12.在空间直角坐标系中,已知点)1,,0(),0,1,2(),2,0,1(a C B A ,若AC AB ⊥,则实数a 的值为_________. 13.已知点P 是圆221x y +=上的动点,Q 是直线:34100l x y +-=上的动点,则||PQ 的最小值为_________.14.如图,在棱长均为2的正三棱柱111C B A ABC -中,点M 是侧棱1AA 的中点,点P 、Q 分别是侧面11BCC B 、底面ABC 内的动点,且//1P A 平面BCM ,⊥PQ 平面BCM ,则点Q 的轨迹的长度为_________.三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分10分)已知圆M 过点A ,(1,0)B ,(3,0)C -. (Ⅰ)求圆M 的方程;(Ⅱ)过点(0,2)的直线l 与圆M 相交于D 、E 两点,且32=DE ,求直线l 的方程.16. (本小题满分10分)已知抛物线2:4C y x =,过焦点F 的直线l 与抛物线C 交于A ,B 两点,定点(5,0)M . (Ⅰ)若直线l 的斜率为1,求△ABM 的面积;(Ⅱ)若AMB ∆是以M 为直角顶点的直角三角形,求直线l 的方程.17. (本小题满分12分)如图,在底面是正三角形的三棱锥P ABC -中,D 为PC 的中点,1PA AB ==,PB PC ==.(Ⅰ)求证:PA ⊥平面ABC ;(Ⅱ)求BD 与平面ABC 所成角的大小; (Ⅲ)求二面角D AB C --的余弦值.18.(本小题满分12分)已知椭圆2222:1x y C a b+=(0a b >>)的左、右焦点分别为1F 、2F ,右顶点为A ,上顶点为B ,△12BF F 是边长为2的正三角形.(Ⅰ)求椭圆C 的标准方程及离心率;(Ⅱ)是否存在过点2F 的直线l ,交椭圆于两点P 、Q ,使得1//PA QF ,如果存在,试求直线l 的方程,如果不存在,请说明理由.高二年级第一学期期末练习参考答案数 学 (理科)阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数.2.其它正确解法可以参照评分标准按相应步骤给分.一.选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.二.填空题:本大题共6小题,每小题4分,共24分. 9. 2y x =±10. 6 11. 1x ∃>,2210x x -+≤ 12. 1- 13. 114.43三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. 15. 解:(Ⅰ)设圆M :220x y Dx Ey F ++++=,则3021009303F D D F E D F F ⎧+==⎧⎪⎪++=⇒=⎨⎨⎪⎪-+==-⎩⎩………………………………………………………………(3分)故圆M :22230x y x ++-=,即22(1)4x y ++= …………………………(4分)(Ⅱ)由(Ⅰ)得,(1,0)M -.设N 为DE 中点,则MN l ⊥,1||||2DN EN ==⋅=5分) 此时||1MN ==. …………………………………(6分)当l 的斜率不存在时,:0l x =,此时||1MN =,符合题意 …………(7分)当l 的斜率存在时,设:2l y kx =+,由题意1= ……………………………(8分)解得:34k =, ……………………………(9分) 故直线l 的方程为324y x =+,即3480x y -+=………………………………(10分)综上直线l 的方程为0x =或3480x y -+=16. 解:(Ⅰ)解法1:由题意(1,0)F ,当AB 的斜率为1时,:1l y x =- ……………(1分)2244401y xy y y x ⎧=⇒--=⎨=-⎩………………………………………………(2分)设11(,)A x y ,22(,)B x y ,由244(4)0∆=-⨯->故121244y y y y +=⎧⎨⋅=-⎩ ……………………………………………………………(3分)有12||y y -==………………………………………(4分)有121211||4||42||22AMB AMF BMF S S S y y y y ∆∆∆=+=⋅⋅+⋅⋅=⋅-=…………………………(5分)解法2:由题意(1,0)F ,当AB 的斜率为1时,:1l y x =- ……………(1分)2246101y xx x y x ⎧=⇒-+=⎨=-⎩……………………………………………(2分) 设11(,)A x y ,22(,)B x y ,由244(4)0∆=-⨯->126x x +=,1228AB x x =++= ……………………………………(3分) 点M 到直线AB的距离d ==4分)182ABM S ∆=⨯⨯…………………………………(5分)(Ⅱ)解法1:易得,直线l 的斜率不为零,设直线l 的方程为1x my =+2244401y xy my x my ⎧=⇒--=⎨=+⎩ ………………………………………………………(6分) 设11(,)A x y ,22(,)B x y ,由216160m ∆=+>,得121244y y my y +=⎧⎨⋅=-⎩………………………………………………………………(7分) 由0MA MB ⋅=,得1212(5)(5)0x x y y --+=, ………………(8分)即1212(4)(4)0my my y y --+=整理得:21212(1)4()160m y y m y y +-++=此时有:2(1)(4)4(4)160m m m +⋅--⋅+=,解得m =9分) 故l 的方程为15x y =+或15x y =-+即550x -=或550x -=………………………………………(10分)解法2:易知直线l x ⊥时不符合题意.可设直线l 的方程为)1(-=x k y .⎩⎨⎧=-=x y x k y 4),1(2,消去y ,可得0)42(2222=++-k x k x k . …………………………(6分) 则0)1(162>+=∆k .设11(,)A x y ,22(,)B x y ,则22142k x x +=+,121=x x . …………………………………………(7分)由0MA MB ⋅=,得1212(5)(5)0x x y y --+=,………………………(8分)即:0425)(5212121=-++-x x x x x x , 即:0425)42(512=-++-k ,解得315±=k . …………(9分) 故l 的方程为0535=--y x 或0535=-+y x .………………………………………(10分)17.解:(Ⅰ)∵ 1PA AB ==,PB =∴ PA AB ⊥ ……………………………………………(1分) ∵ 底面是正三角形 ∴ 1AC AB ==∵ PC =∴ PA AC ⊥ ……………………………………(2分) ∵ AB AC A = ,AB AC ⊂平面ABC ∴ PA ⊥平面ABC .………………………………………(3分)(Ⅱ)以A 为原点,AB 为x 轴,AP 为z 轴,平面ABC 中垂直于AB 的直线为y 轴建立空间直角坐标系,则(0,0,0)A ,(1,0,0)B ,1(,22C ,(0,0,1)P …………………………………………………………………………………………(4分)所以11()42D ,31()42BD =- . ………………………………(5分)平面ABC 的法向量为1(0,0,1)n =,…………………………………(6分)记BD 与平面ABC 所成的角为θ,则1sin cos ,BD θ=<> n =12……………………………(7分) ∴ 6πθ=.…………………………(8分)(Ⅲ)设平面ABD 的法向量为2(,,)n x y z =,由2n AD ⊥ 得:11042x y z ++=, ……………………………(9分) 由2n AB ⊥得:0x =代入上式得,z y =. ………………………(10分)令2y =,则z =2(0,2,n =. …………………………………(11分)记二面角D AB C --的大小为α,则12cos |cos ,|n n α=<>= .………(12分)18. 解:(Ⅰ)由题意可得2,1a b c === ……………………………………(2分)所以椭圆C 的标准方程为22143x y +=,……………………………………(3分)椭圆的离心率12c e a ==.……………………………………………(4分)(Ⅱ)解法1:由(Ⅰ)得,1(1,0)F -,2(1,0)F ,(2,0)A ,设11(,)P x y ,22(,)Q x y显然直线l 的斜率不为零,设直线l 的方程为1x my =+,则 ……………………………(5分)222213(1)412431x y my y x my ⎧+=⎪⇒++=⎨⎪=+⎩………………(6分)整理得:22(34)690m y my ++-=,此时21441440m ∆=+>,故122122634934m y y m y y m ⎧+=-⎪⎪+⎨⎪⋅=-⎪+⎩……………………………………(7分) 注意到1111(2,)(1,)AP x y my y =-=- ,12222(1,)(2,)FQ x y my y =+=+…………………………(8分)若1//PA QF ,则1221(1)(2)my y my y -⋅=+⋅,即212y y =- ……………(9分)此时由21212122212222627234612(34)3434m y y y m m y y m m m y y y m m ⎧=-=⎧⎪⎪⎪+⇒⇒=-⎨⎨++=-⎪⎪=-+⎩⎪+⎩, ………………………(10分)故2222729(34)34m m m -=-++,解得254m =,即m =……………(11分)故l的方程为1x y =+或1x y =+,20y -=20y += …………………………………(12分)解法2: 由(Ⅰ)得1(1,0)F -,2(1,0)F ,(2,0)A . 直线l x ⊥时,212221F F AF QF PF ≠=,则1//PA QF 不成立,不符合题意..………………………………(5分)可设直线l 的方程为)1(-=x k y . .……………………………(6分)⎪⎩⎪⎨⎧=+-=134),1(22y x x k y ,消去y ,可得()01248342222=-+-+k x k x k ………………(7分) 则0)1(1442>+=∆k .设11(,)P x y ,22(,)Q x y则3482221+=+k k x x ①,341242221+-=k k x x ② .…………………(8分)),2(11y x -=,),1(221y x F +=. 若1//PA QF ,则F 1//,则0)1)(1()1)(2(1221=-+---x x k x x k .化简得03221=-+x x ③. ………………………(9分)联立①③可得3494221++=k k x ,3494222+-=k k x , ………………………(10分) 代入②可以解得25±=k . …………………………(11分) 故l20y -=20y +=. ……………(12分)。
2016-2017学年高二上学期数学(理)期末考试题及答案
2016-2017学年度上学期期末考试高二数学(理)答案2017-01-04本试卷分选择题和非选择题两部分共22题,共150分,共2页.考试时间为120分钟.考试结束后,只交答题卡.第Ⅰ卷(选择题,共计60分)一、选择题(本大题共12小题,每小题5分)1. 已知命题“q p ∧”为假,且“p ⌝”为假,则( ) A .p 或q 为假 B .q 为假C .q 为真D .不能判断q 的真假2.椭圆1422=+y m x 的焦距为2,则m 的值等于( ) A .5或3- B .2或6 C .5或3 D .5或33.右图是一个几何体的三视图,其中正视图和侧视图都是腰长 为3,底边长为2的等腰三角形,则该几何体的体积是( )A. π322B. π22C. π28D. π3284. 以双曲线191622=-y x 的右顶点为焦点的抛物线的标准方程为( )A .x y 162= B .x y 122= C .x y 202-= D .x y 202=5. 已知直线α⊂a ,则βα⊥是β⊥a 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6. 已知l 是正方体1111D CB A ABCD -中平面11D B A 与下底面ABCD 所在平面的交线,正视图 俯视图侧视图.下列结论错误的是( ).A. 11D B //lB. ⊥l 平面C A 1C. l //平面111D B AD. 11C B l ⊥ 7. 设原命题:若向量c b a ,,构成空间向量的一组基底,则向量,a b 不共线. 则原命题、逆命题、否命题、逆否命题中真命题的个数是( ) A .1 B .2 C .3 D .4 8. 已知双曲线1244922=-y x 上一点P 与双曲线的两个焦点1F 、2F 的连线互相垂直,则三角形21F PF 的面积为( )A .20B .22C .28D .24 9. 两个圆0222:221=-+++y x y x C 与0124:222=+--+y x y x C的公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条10. 已知F 是抛物线y x=2的焦点,B A ,是该抛物线上的两点,3=+BF AF ,则线段AB 的中点到x 轴的距离为( ) A .43B .1C .45 D .47 11. 正三棱锥的顶点都在同一球面上.若该棱锥的高为3,底面边长为3, 则该球的表面积为( )A .π4B .π8C .π16D .332π12. 如图,H 为四棱锥ABCD P -的棱PC 的三等分点,且HC PH 21=,点G 在AH 上,mAH AG =.四边形ABCD 为 平行四边形,若D P B G ,,,四点共面,则实数m 等于( ) A .43 B .34 C .41D .21第Ⅱ卷(非选择题,共计90分)二、填空题(本大题共4小题,每小题5分,共20分) 13.命题“2,12≥≥∀xx ”的否定是 .14. 平面α的法向量)2,1,(1-=x n ,平面β的法向量)21,,1(2y n -=, 若α∥β,则=+y x __________________.15. 已知点A 的坐标为)2,4(,F 是抛物线x y 22=的焦点,点M 是抛物线上的动点,当MA MF +取得最小值时,点M 的坐标为 .16. 已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为)0,(),0,(21c F c F -,若双曲线上存在一点P 使2112sin sin F PF c F PF a ∠=∠,则该双曲线的离心率的取值范围是 . 三、解答题(本大题共6小题,共70分) 17.(本小题满分10分) 已知四棱锥ABCD P -的底面是边长为2的正方形,侧面是全等的等腰三角形,侧棱长为3 , 求它的表面积和体积.18.(本小题满分12分)已知直线方程为033)12()1(=-+--+m y m x m . (1)求证:不论m 取何实数值,此直线必过定点;(2)过这定点作一条直线,使它夹在两坐标轴间的线段被这点平分,求这条直线方程.19.(本小题满分12分)在棱长为1的正方体1111D C B A ABCD -中,F E ,分别是棱111,B D BB 的中点.(1) 求证:⊥EF 平面1ACB ; (2)求二面角C EF A--的余弦值.D ABC OP20.(本小题满分12分)已知圆M 满足:①过原点;②圆心在直线x y =上;③被y 轴截得的弦长为2. (1) 求圆M 的方程;(2) 若N 是圆M 上的动点,求点N 到直线8-=x y 距离的最小值.21.(本小题满分12分).在斜三棱柱111C B A ABC -中,点O 、E 分别是11C A 、1AA 的中点,AO ⊥平面111C B A .︒=∠90BCA ,21===BC AC AA .(1)证明:OE ∥平面11C AB ; (2)求异面直线1AB 与C A 1所成的角; (3)求11C A 与平面11B AA 所成角的正弦值.22.(本小题满分12分)已知椭圆C :)0(12222>>=+b a by a x 和直线L :1=-b ya x , 椭圆的离心率23=e , 坐标原点到直线L 的距离为552. (1)求椭圆的方程;(2)已知定点)0,1(E ,若直线)0(2≠-=k kx y 与椭圆C 相交于M 、N 两点,试判断是否存在实数k,使以MN为直径的圆过定点E?若存在求出这个k值,若不存在说明理由.2016-2017学年度上学期期末考试高二数学(理)答案一. 选择题:1.B2.C3.A4.A5.B6.D7.B8.D9.B 10.C 11.C 12.A二. 填空题: 13. 2,1200<≥∃x x 14. 41515. )2,2( 16. ]21,1(+三. 解答题:17.解:过点P 作BC PE ⊥,垂足为E ,由勾股定理得:221922=-=-=BE PB PE所以,棱锥的表面积 28422221422+=⨯⨯⨯+⨯=S -----5分过点P 作ABCD PO 平面⊥,垂足为O ,连接OE . 由勾股定理得:71822=-=-=OE PE PO所以,棱锥的体积 37472231=⨯⨯⨯=V ------10分18.(1)证明:将方程033)12()1(=-+--+m y m x m 变形为 03)32(=-+++-y x m y x解方程组⎩⎨⎧=-+=+-03032y x y x 得:⎩⎨⎧==21y x 所以,不论m 取何实数值,此直线必过定点)2,1(.-----6分(2)解:设所求直线交x 轴y 轴分别为点),0(),0,(b B a A由中点坐标公式得⎪⎪⎩⎪⎪⎨⎧=+=+220120ba4,2==∴b a所以直线的方程为:142=+yx即042=-+y x ------12分19. 解: (1)以DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系xyz D -,可得:)1,0,0(),1,1,1(),0,1,0(),0,1,1(),0,0,1(11D B C B A ,则中点 )1,21,21(),21,1,1(F E因)1,1,0(),0,1,1(),21,21,21(1=-=--=→→→AB AC EF 所以0,01=∙=∙→→→→AB EF AC EF1,AB EF AC EF ⊥⊥ 而A AB AC =⋂1 所以 ⊥EF 平面C AB 1 -------- 6分(2)设平面AEF 的一个法向量为),,(1z y x n =→,因)21,21,21(),21,1,0(--==→→EF AE由⎪⎩⎪⎨⎧=+--=+0212121021z y x z y 令2=z 得 )2,1,3(1-=→n 同理平面CEF 的法向量为)2,3,1(2--=→n 由71,cos 21->=<→→n n所以二面角C EF A --的余弦值是71 -------12分20.解:(1)设圆M 的方程为)0()()(222>=-+-r rb y a xD C B A由已知可得: ⎪⎩⎪⎨⎧=+==+222221r a b a r b a ,解方程组得: ⎪⎩⎪⎨⎧=-=-=⎪⎩⎪⎨⎧===211或211r b a r b a 所以, 圆M 的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x -----6分 (2)当圆M 的方程为2)1()1(22=-+-y x 时, 圆心M 到直线8-=x y 的距离为: 242811=--=d同理, 当圆M 的方程为2)1()1(22=+++y x 时, 圆心M 到直线8-=x y 的距离也为: 24=d所以, 点N 到直线8-=x y 距离的最小值为23224=- -------12分21.解 解法1:(1)证明:∵点O 、E 分别是A 1C 1、AA 1的中点, ∴OE ∥AC 1,又∵EO ⊄平面AB 1C 1,AC 1⊂平面AB 1C 1, ∴OE ∥平面AB 1C 1. -------4分 (2)∵AO ⊥平面A 1B 1C 1, ∴AO ⊥B 1C 1,又∵A 1C 1⊥B 1C 1,且A 1C 1∩AO=O , ∴B 1C 1⊥平面A 1C 1CA , ∴A 1C ⊥B 1C 1.又∵AA 1=AC ,∴四边形A 1C 1CA 为菱形, ∴A 1C ⊥AC 1,且B 1C 1∩AC 1=C 1, ∴A 1C ⊥平面AB 1C 1,∴AB 1⊥A 1C ,即异面直线AB 1与A 1C 所成的角为90°. ------8分 (3)∵O 是A 1C 1的中点,AO ⊥A 1C 1, ∴AC 1=AA 1=2,又A 1C 1=AC =2,∴△AA 1C 1为正三角形, ∴AO =3,又∠BCA =90°, ∴A 1B 1=AB =22,设点C 1到平面AA 1B 1的距离为d ,∵VA -A 1B 1C 1=VC 1-AA 1B 1,即13·(12·A 1C 1·B 1C 1)·AO=13·S△AA 1B·d.又∵在△AA 1B 1中,A 1B 1=AB 1=22, ∴S △AA 1B 1=7,∴d =2217,∴A 1C 1与平面AA 1B 1所成角的正弦值为217. -------12分 解法2:∵O 是A 1C 1的中点,AO ⊥A 1C 1, ∴AC =AA 1=2,又A 1C 1=AC =2, ∴△AA 1C 1为正三角形, ∴AO =3,又∠BCA =90°, ∴A 1B 1=AB =22,如图建立空间直角坐标系O -xyz ,则A(0,0,3),A 1(0,-1,0),E(0,-12,32),C 1(0,1,0),B 1(2,1,0),C(0,2,3).(1)∵OE →=(0,-12,32),AC 1→=(0,1,-3),∴OE →=-12AC 1→,即OE ∥AC 1,又∵EO ⊄平面AB 1C 1,AC 1⊂平面AB 1C 1, ∴OE ∥平面AB 1C 1. -------4分 (2)∵AB 1→=(2,1,-3),A 1C →=(0,3,3), ∴AB 1→·A 1C →=0, 即∴AB 1⊥A 1C ,∴异面直线AB 1与A 1C 所成的角为90°. -------8分 (3)设A 1C 1与平面AA 1B 1所成角为θ,A 1C 1→=(0,2,0), A 1B 1→=(2,2,0),A 1A →=(0,1,3),设平面AA 1B 1的一个法向量是n =(x ,y ,z), 则⎩⎪⎨⎪⎧A 1B 1→·n =0,A 1A →·n =0,即⎩⎨⎧2x +2y =0,y +3z =0.不妨令x =1,可得n =(1,-1,33), ∴sin θ=cos 〈A 1C 1→,n 〉=22·73=217,∴A 1C 1与平面AA 1B 1所成角的正弦值为217. -------12分22. 解:(1)直线L :0=--ab ay bx ,由题意得:552,2322=+==b a ab ac e 又有222c b a +=, 解得:1,422==b a椭圆的方程为1422=+y x . ——5分(2)若存在,则EN EM ⊥,设),(),,(2211y x N y x M ,则:21212211)1)(1(),1(),1(y y x x y x y x EN EM +--=-⋅-=⋅)(05))(12()1()2)(2()1)(1(212122121*=+++-+=--+--=x x k x x k kx kx x x联立⎪⎩⎪⎨⎧=+-=14222y x kx y ,得:01216)41(22=+-+kx x k ⎪⎩⎪⎨⎧+=+=+>+⨯⨯--=∆∴221221224112,41160)41(124)16(k x x k k x x k k 代入(*)式,解得:1617=k ,满足0>∆ —— 12分11。
2016-2017学年高二上学期期末数学试卷(解析版)20
高二(上)期末数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.准线方程是y=﹣2的抛物线标准方程是( )A .x 2=8yB .x 2=﹣8yC .y 2=﹣8xD .y 2=8x2.已知直线l 1:x ﹣y+1=0和l 2:x ﹣y+3=0,则l 1与l 2之间距离是( )A .B .C .D .23.设三棱柱ABC ﹣A 1B 1C 1体积为V ,E ,F ,G 分别是AA 1,AB ,AC 的中点,则三棱锥E ﹣AFG 体积是( )A .B .C .D .4.若直线x+y+m=0与圆x 2+y 2=m 相切,则m 的值是( )A .0或2B .2C .D .或25.在四面体ABCD 中( )命题①:AD ⊥BC 且AC ⊥BD 则AB ⊥CD 命题②:AC=AD 且BC=BD 则AB ⊥CD . A .命题①②都正确 B .命题①②都不正确C .命题①正确,命题②不正确D .命题①不正确,命题②正确6.设m 、n 是两条不同的直线,α、β是两个不同的平面.考查下列命题,其中正确的命题是( )A .m ⊥α,n ⊂β,m ⊥n ⇒α⊥βB .α∥β,m ⊥α,n ∥β⇒m ⊥nC .α⊥β,m ⊥α,n ∥β⇒m ⊥nD .α⊥β,α∩β=m ,n ⊥m ⇒n ⊥β 7.正方体ABCD ﹣A 1B 1C 1D 1中,二面角A ﹣BD 1﹣B 1的大小是( )A .B .C .D .8.过点(0,﹣2)的直线交抛物线y 2=16x 于A (x 1,y 1),B (x 2,y 2)两点,且y 12﹣y 22=1,则△OAB (O 为坐标原点)的面积为( )A .B .C .D .9.已知在△ABC中,∠ACB=,AB=2BC,现将△ABC绕BC所在直线旋转到△PBC,设二面角P﹣BC﹣A大小为θ,PB与平面ABC所成角为α,PC与平面PAB所成角为β,若0<θ<π,则()A.且 B.且C.且D.且10.如图,F1,F2是椭圆C1与双曲线C2的公共焦点,点A是C1,C2的公共点.设C1,C2的离心率分别是e1,e2,∠F1AF2=2θ,则()A.B.C.D.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(6分)双曲线C:x2﹣4y2=1的渐近线方程是,双曲线C的离心率是.12.(6分)某空间几何体的三视图如图所示(单位:cm),则该几何体的体积V= cm3,表面积S= cm2.13.已知抛物线y2=4x的焦点为F,准线与x轴的交点为M,N为抛物线上的一点,则满足= .14.(6分)已知直线l1:y=mx+1和l2:x=﹣my+1相交于点P,O为坐标原点,则P点横坐标是(用m表示),的最大值是.15.(6分)四面体ABCD中,已知AB=AC=BC=BD=CD=1,则该四面体体积的最大值是,表面积的最大值是.16.过双曲线G:(a>0,b>0)的右顶点A作斜率为1的直线m,分别与两渐近线交于B,C两点,若|AB|=2|AC|,则双曲线G的离心率为.17.在棱长为1的正方体ABCD﹣A1B1C1D1中,点P是正方体棱上的一点(不包括棱的端点),对确定的常数m,若满足|PB|+|PD1|=m的点P的个数为n,则n的最大值是.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)已知抛物线C:y2=4x,直线l:y=﹣x+b与抛物线交于A,B两点.(Ⅰ)若|AB|=8,求b的值;(Ⅱ)若以AB为直径的圆与x轴相切,求该圆的方程.19.(15分)在四棱锥E﹣ABCD中,底面ABCD是正方形,AC与BD交于点O,EC⊥底面ABCD,F为BE的中点.(Ⅰ)求证:DE∥平面ACF;(Ⅱ)求证:BD⊥AE;(Ⅲ)若AB=CE,在线段EO上是否存在点G,使CG⊥平面BDE?若存在,求出的值,若不存在,请说明理由.20.(15分)如图,四棱锥P﹣ABCD,PA⊥底面ABCD,AB∥CD,AB⊥AD,AB=AD=PA=2,CD=4,E,F分别是PC,PD的中点.(Ⅰ)证明:EF∥平面PAB;(Ⅱ)求直线AC与平面ABEF所成角的正弦值.21.(15分)已知点C (x 0,y 0)是椭圆+y 2=1上的动点,以C 为圆心的圆过点F (1,0).(Ⅰ)若圆C 与y 轴相切,求实数x 0的值;(Ⅱ)若圆C 与y 轴交于A ,B 两点,求|FA|•|FB|的取值范围.22.(15分)已知椭圆C 的方程是,直线l :y=kx+m 与椭圆C 有且仅有一个公共点,若F 1M ⊥l ,F 2N ⊥l ,M ,N 分别为垂足.(Ⅰ)证明:;(Ⅱ)求四边形F 1MNF 2面积S 的最大值.高二(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.准线方程是y=﹣2的抛物线标准方程是( ) A .x 2=8y B .x 2=﹣8y C .y 2=﹣8x D .y 2=8x 【考点】抛物线的简单性质.【分析】根据准线方程为y=﹣2,可知抛物线的焦点在y 轴的正半轴,再设抛物线的标准形式为x 2=2py (p >0),根据准线方程求出p 的值,代入即可得到答案.【解答】解:由题意可知抛物线的焦点在y 轴的正半轴, 设抛物线标准方程为:x 2=2py (p >0), ∵抛物线的准线方程为y=﹣2, ∴=2, ∴p=4,∴抛物线的标准方程为:x 2=8y . 故选A .【点评】本题主要考查抛物线的标准方程、抛物线的简单性质.属基础题.2.已知直线l 1:x ﹣y+1=0和l 2:x ﹣y+3=0,则l 1与l 2之间距离是( )A .B .C .D .2【考点】两条平行直线间的距离.【分析】直接利用两条平行直线间的距离公式,运算求得结果. 【解答】解:∵已知平行直线l 1:x ﹣y+1=0与l 2:x ﹣y+3=0,∴l 1与l 2间的距离 d==,故选C .【点评】本题主要考查两条平行直线间的距离公式的应用,注意未知数的系数必需相同,属于基础题.3.设三棱柱ABC ﹣A 1B 1C 1体积为V ,E ,F ,G 分别是AA 1,AB ,AC 的中点,则三棱锥E ﹣AFG 体积是( )A .B .C .D .【考点】棱柱、棱锥、棱台的体积.【分析】由E ,F ,G 分别是AA 1,AB ,AC 的中点,知S △AFG =,,由此能求出三棱锥E ﹣AFG 体积.【解答】解:∵三棱柱ABC ﹣A 1B 1C 1体积为V , ∴V=S △ABC •AA 1,∵E ,F ,G 分别是AA 1,AB ,AC 的中点,∴S △AFG =,,∴三棱锥E ﹣AFG 体积:V E ﹣AFG ===S △ABC •AA 1=.故选:D .【点评】本题考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.4.若直线x+y+m=0与圆x 2+y 2=m 相切,则m 的值是( )A .0或2B .2C .D .或2【考点】圆的切线方程.【分析】算出圆的圆心和半径,利用点到直线的距离公式列式得到关于m的方程,解之即可得到实数m的值.【解答】解:∵圆x2+y2=m的圆心为原点,半径r=∴若直线x+y+m=0与圆x2+y2=m相切,得圆心到直线的距离d==,解之得m=2(舍去0)故选B.【点评】本题给出直线与圆相切,求参数m的值.考查了直线与圆的位置关系和点到直线的距离公式等知识,属于基础题.5.在四面体ABCD中()命题①:AD⊥BC且AC⊥BD则AB⊥CD命题②:AC=AD且BC=BD则AB⊥CD.A.命题①②都正确B.命题①②都不正确C.命题①正确,命题②不正确 D.命题①不正确,命题②正确【考点】棱锥的结构特征.【分析】对于①作AE⊥面BCD于E,证得E是垂心,可得结论;对于②,取CD 的中点O,证明CD⊥面ABO,即可得出结论.【解答】解:对于①作AE⊥面BCD于E,连接DE,可得AE⊥BC,同理可得AE ⊥BD,证得E是垂心,则可得出AE⊥CD,进而可证得CD⊥面AEB,即可证出AB ⊥CD,故①正确;对于②,取CD的中点O,连接AO,BO,则CD⊥AO,CD⊥BO,∵AO∩BO=O,∴CD⊥面ABO,∵AB⊂面ABO,∴CD⊥AB,故②正确.故选A.【点评】本题考查线面垂直的判定与性质,考查学生分析解决问题的能力,属于中档题.6.设m、n是两条不同的直线,α、β是两个不同的平面.考查下列命题,其中正确的命题是()A.m⊥α,n⊂β,m⊥n⇒α⊥βB.α∥β,m⊥α,n∥β⇒m⊥nC.α⊥β,m⊥α,n∥β⇒m⊥n D.α⊥β,α∩β=m,n⊥m⇒n⊥β【考点】空间中直线与平面之间的位置关系.【分析】本题考查的知识点是空间中直线与平面之间位置关系的判定,我们要根据空间中线面关系的判定及性质定理对四个结论逐一进行判断.若m⊥α,n ⊂β,m⊥n时,α、β可能平行,也可能相交,不一定垂直;若α⊥β,m⊥α,n∥β时,m与n可能平行、相交或异面,不一定垂直,α⊥β,α∩β=m时,与线面垂直的判定定理比较缺少条件n⊂α,则n⊥β不一定成立.【解答】解:设m、n是两条不同的直线,α、β是两个不同的平面,则:m⊥α,n⊂β,m⊥n时,α、β可能平行,也可能相交,不一定垂直,故A不正确α∥β,m⊥α,n∥β时,m与n一定垂直,故B正确α⊥β,m⊥α,n∥β时,m与n可能平行、相交或异面,不一定垂直,故C错误α⊥β,α∩β=m时,若n⊥m,n⊂α,则n⊥β,但题目中无条件n⊂α,故D也不一定成立,故选B.【点评】判断或证明线面平行的常用方法有:①利用线面平行的定义(无公共点);②利用线面平行的判定定理(a ⊂α,b ⊄α,a ∥b ⇒b ∥α);③利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);④利用面面平行的性质(α∥β,a ⊄α,a ⊄,a ∥α⇒ a ∥β).线线垂直可由线面垂直的性质推得,直线和平面垂直,这条直线就垂直于平面内所有直线,这是寻找线线垂直的重要依据.垂直问题的证明,其一般规律是“由已知想性质,由求证想判定”,也就是说,根据已知条件去思考有关的性质定理;根据要求证的结论去思考有关的判定定理,往往需要将分析与综合的思路结合起来.7.正方体ABCD ﹣A 1B 1C 1D 1中,二面角A ﹣BD 1﹣B 1的大小是( )A .B .C .D .【考点】二面角的平面角及求法.【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出二面角A ﹣BD 1﹣B 1的大小.【解答】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设正方体ABCD ﹣A 1B 1C 1D 1中棱长为1,则A (1,0,0),B (1,1,0),B 1(1,1,1),D 1(0,0,1),=(0,﹣1,0),=(﹣1,﹣1,1),=(0,0,1),设平面ABD 1的法向量=(x ,y ,z ),则,取y=1,得,设平面BB 1D 1的法向量=(a ,b ,c ),则,取a=1,得=(1,﹣1,0),设二面角A ﹣BD 1﹣B 1的大小为θ,则cos θ===﹣,∴θ=.∴二面角A ﹣BD 1﹣B 1的大小为.故选:C .【点评】本题考查二面角的大小的求法,是基础题,解题时要认真审题,注意向量法的合理运用.8.过点(0,﹣2)的直线交抛物线y 2=16x 于A (x 1,y 1),B (x 2,y 2)两点,且y 12﹣y 22=1,则△OAB (O 为坐标原点)的面积为( )A .B .C .D .【考点】抛物线的简单性质.【分析】设直线方程为x=my+2m ,代入y 2=16x 可得y 2﹣16my ﹣32m=0,利用韦达定理,结合三角形的面积公式,即可得出结论.【解答】解:设直线方程为x=my+2m ,代入y 2=16x 可得y 2﹣16my ﹣32m=0, ∴y 1+y 2=16m ,y 1y 2=﹣32m , ∴(y 1﹣y 2)2=256m 2+128m , ∵y 12﹣y 22=1,∴256m 2(256m 2+128m )=1,∴△OAB (O 为坐标原点)的面积为|y 1﹣y 2|=.故选:D .【点评】本题考查抛物线的简单性质、直线和抛物线的位置关系的综合运用,注意抛物线性质的灵活运用,是中档题.9.已知在△ABC 中,∠ACB=,AB=2BC ,现将△ABC 绕BC 所在直线旋转到△PBC ,设二面角P ﹣BC ﹣A 大小为θ,PB 与平面ABC 所成角为α,PC 与平面PAB 所成角为β,若0<θ<π,则( )A .且B .且C .且D .且【考点】二面角的平面角及求法.【分析】可设BC=a ,可得AB=PB=2a ,AC=CP=a ,过C 作CH ⊥平面PAB ,连接HB ,则PC 与平面PAB 所成角为β=∠CPH ,由CH <CB ,可得sin β的范围;由二面角的定义,可得二面角P ﹣BC ﹣A 大小为θ,即为∠ACP ,设P 到平面ABC 的距离为d ,根据等积法和正弦函数的定义和性质,即可得到PB 与平面ABC 所成角α的范围.【解答】解:在△ABC 中,∠ACB=,AB=2BC ,可设BC=a ,可得AB=PB=2a ,AC=CP=a ,过C 作CH ⊥平面PAB ,连接HB , 则PC 与平面PAB 所成角为β=∠CPH , 且CH <CB=a ,sin β=<=;由BC ⊥AC ,BC ⊥CP ,可得二面角P ﹣BC ﹣A 大小为θ,即为∠ACP , 设P 到平面ABC 的距离为d , 由BC ⊥平面PAC ,且V B ﹣ACP =V P ﹣ABC ,即有BC •S △ACP =d •S △ABC ,即a ••a •a •sin θ=d ••a •a ,解得d=sin θ,则sin α==≤,即有α≤.故选:B .【点评】本题考查空间的二面角和线面角的求法,注意运用定义和转化思想,以及等积法,考查运算能力,属于中档题.10.如图,F 1,F 2是椭圆C 1与双曲线C 2的公共焦点,点A 是C 1,C 2的公共点.设C 1,C 2的离心率分别是e 1,e 2,∠F 1AF 2=2θ,则( )A .B .C .D .【考点】椭圆的简单性质.【分析】根据椭圆的几何性质可得, =b 12tan θ,根据双曲线的几何性质可得,=,以及离心率以及a ,b ,c 的关系即可求出答案.【解答】解:根据椭圆的几何性质可得, =b 12tan θ,∵e 1=,∴a 1=,∴b 12=a 12﹣c 2=﹣c 2,∴=c 2()tan θ根据双曲线的几何性质可得, =,∵a 2=,∴b 22=c 2﹣a 22=c 2﹣=c 2()∴=c 2()•,∴c 2()tan θ=c 2()•,∴()sin 2θ=()•cos 2θ,∴,故选:B【点评】本题考查了圆锥曲线的几何性质,以及椭圆和双曲线的简单性质,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.双曲线C :x 2﹣4y 2=1的渐近线方程是 y=±x ,双曲线C 的离心率是.【考点】双曲线的简单性质.【分析】将双曲线的方程化为标准方程,求得a ,b ,c ,即可得到所求渐近线方程和离心率.【解答】解:双曲线C :x 2﹣4y 2=1,即为﹣=1,可得a=1,b=,c==,可得渐近线方程为y=±x;离心率e==.故答案为:y=±x;.【点评】本题考查双曲线的方程和性质,主要是渐近线方程和离心率的求法,属于基础题.12.某空间几何体的三视图如图所示(单位:cm),则该几何体的体积V=cm3,表面积S= cm2.【考点】由三视图求面积、体积.【分析】由三视图可得该几何体是以俯视图为底面,有一条侧棱垂直于底面的三棱锥,根据标识的各棱长及高,代入棱锥体积、表面积公式可得答案.【解答】解:由题意,该几何体是以俯视图为底面,有一条侧棱垂直于底面的三棱锥,所以V==cm3,S=+++=.故答案为:;.【点评】本题考查的知识点是由三视图求体积、表面积,其中根据已知分析出几何体的形状及各棱长的值是解答的关键.13.已知抛物线y 2=4x 的焦点为F ,准线与x 轴的交点为M ,N 为抛物线上的一点,则满足=.【考点】抛物线的简单性质.【分析】由抛物线的定义可得d=|NF|,由题意得 cos ∠NMF=把已知条件代入可得cos ∠NMF ,进而求得∠NMF .【解答】解:设N 到准线的距离等于d ,由抛物线的定义可得d=|NF|,由题意得 cos ∠NMF===∴∠NMF=.故答案为:.【点评】本题考查抛物线的定义、以及简单性质的应用.利用抛物线的定义是解题的突破口.14.已知直线l 1:y=mx+1和l 2:x=﹣my+1相交于点P ,O 为坐标原点,则P 点横坐标是(用m 表示),的最大值是.【考点】平面向量数量积的运算.【分析】根据两条直线方程组成方程组,求出交点P 的坐标,再计算向量以及的最大值.【解答】解:直线l1:y=mx+1和l 2:x=﹣my+1相交于点P ,∴,∴x=﹣m (mx+1)+1,解得x=,y=m ×+1=,∴P 点横坐标是;∴=(﹣,﹣),∴=+=≤2,且m=0时“=”成立;∴的最大值是.故答案为:,.【点评】本题考查了直线方程的应用问题,也考查了平面向量的应用问题,是基础题目.15.四面体ABCD中,已知AB=AC=BC=BD=CD=1,则该四面体体积的最大值是,表面积的最大值是+1 .【考点】棱柱、棱锥、棱台的体积.【分析】当平面ABC⊥平面BDC时,该四体体积最大;当AC⊥CD,AB⊥BD时,该四面体表面积取最大值.【解答】解:∵四面体ABCD中,AB=AC=BC=BD=CD=1,∴当平面ABC⊥平面BDC时,该四体体积最大,此时,过D作DE⊥平面ABC,交BC于E,连结AE,则AE=DE==,∴该四面体体积的最大值:==.Smax∵△ABC,△BCD都是边长为1的等边三角形,面积都是S==,∴要使表面积最大需△ABD,△ACD面积最大,∴当AC⊥CD,AB⊥BD时,表面积取最大值,此时=,==1+.四面体表面积最大值Smax故答案为:,.【点评】本题考查四面体的体积的最大值和表面积最大值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.16.过双曲线G:(a>0,b>0)的右顶点A作斜率为1的直线m,分别与两渐近线交于B,C两点,若|AB|=2|AC|,则双曲线G的离心率为或.【考点】双曲线的简单性质.【分析】先根据条件求出直线l的方程,联立直线方程与渐近线方程分别求出点B,C的横坐标,结合条件得出C为AB的中点求出b,a间的关系,进而求出双曲线的离心率.【解答】解:由题得,双曲线的右顶点A(a,0)所以所作斜率为1的直线l:y=x﹣a,若l与双曲线M的两条渐近线分别相交于点B(x1,y1),C(x2,y2).联立其中一条渐近线y=﹣x,则,解得x2=①;同理联立,解得x1=②;又因为|AB|=2|AC|,(i )当C 是AB 的中点时,则x 2=⇒2x 2=x 1+a ,把①②代入整理得:b=3a ,∴e===;(ii )当A 为BC 的中点时,则根据三角形相似可以得到,∴x 1+2x 2=3a ,把①②代入整理得:a=3b ,∴e===.综上所述,双曲线G 的离心率为或.故答案为:或.【点评】本题考题双曲线性质的综合运用,解题过程中要注意由|AC|=|BC|得到C 是A ,B 的中点这以结论的运用.17.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,点P 是正方体棱上的一点(不包括棱的端点),对确定的常数m ,若满足|PB|+|PD 1|=m 的点P 的个数为n ,则n 的最大值是 12 .【考点】棱柱的结构特征.【分析】P 应是椭圆与正方体与棱的交点,满足条件的点应该在棱B 1C 1,C 1D 1,CC 1,AA 1,AB ,AD 上各有一点满足条件,由此能求出结果. 【解答】解:∵正方体的棱长为1,∴BD 1=,∵点P 是正方体棱上的一点(不包括棱的端点), 满足|PB|+|PD 1|=m ,∴点P 是以2c=为焦距,以2a=m 为长半轴的椭圆,∵P 在正方体的棱上,∴P应是椭圆与正方体与棱的交点,结合正方体的性质可知,满足条件的点应该在正方体的12条棱上各有一点满足条件.∴满足|PB|+|PD1|=m的点P的个数n的最大值是12,故答案为12.【点评】本题以正方体为载体,主要考查了椭圆定义的灵活应用,属于综合性试题,解题时要注意空间思维能力的培养.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)(2016秋•温州期末)已知抛物线C:y2=4x,直线l:y=﹣x+b 与抛物线交于A,B两点.(Ⅰ)若|AB|=8,求b的值;(Ⅱ)若以AB为直径的圆与x轴相切,求该圆的方程.【考点】抛物线的简单性质.【分析】(Ⅰ)由抛物线C:y2=4x,直线l:y=﹣x+b得y2+4y﹣4b=0,利用|AB|=8,即可求b的值;(Ⅱ)若以AB为直径的圆与x轴相切,求出M的坐标,即可求该圆的方程.【解答】解:(Ⅰ)设A(x1,y1),B(x2,y2),由抛物线C:y2=4x,直线l:y=﹣x+b得y2+4y﹣4b=0﹣﹣﹣﹣﹣(2分)∴|AB|=|y 1﹣y 2|===8﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣解得b=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)(Ⅱ)以AB 为直径的圆与x 轴相切,设AB 中点为M |AB|=|y 1+y 2|又y 1+y 2=﹣4﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)∴4=解得b=﹣,则M (,﹣2)﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)∴圆方程为(x ﹣)2+(y+2)2=4﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)【点评】本题考查直线与抛物线的位置关系,考查圆的方程,考查韦达定理的运用,属于中档题.19.(15分)(2014•齐齐哈尔三模)在四棱锥E ﹣ABCD 中,底面ABCD 是正方形,AC 与BD 交于点O ,EC ⊥底面ABCD ,F 为BE 的中点. (Ⅰ)求证:DE ∥平面ACF ; (Ⅱ)求证:BD ⊥AE ;(Ⅲ)若AB=CE ,在线段EO 上是否存在点G ,使CG ⊥平面BDE ?若存在,求出的值,若不存在,请说明理由.【考点】直线与平面垂直的性质;直线与平面平行的判定;直线与平面垂直的判定.【分析】(Ⅰ)利用线面平行的判定定理证明DE ∥平面ACF ;(Ⅱ)利用线面垂直的判定定理先证明BD ⊥平面ACE ,然后利用线面垂直的性质证明BD ⊥AE ;(Ⅲ)利用线面垂直的性质,先假设CG ⊥平面BDE ,然后利用线面垂直的性质,确定G 的位置即可.【解答】解:(I )连接OF .由ABCD 是正方形可知,点O 为BD 中点.又F为BE的中点,所以OF∥DE.又OF⊂面ACF,DE⊄面ACF,所以DE∥平面ACF….(II)证明:由EC⊥底面ABCD,BD⊂底面ABCD,∴EC⊥BD,由ABCD是正方形可知,AC⊥BD,又AC∩EC=C,AC、E⊂平面ACE,∴BD⊥平面ACE,又AE⊂平面ACE,∴BD⊥AE…(9分)(III):在线段EO上存在点G,使CG⊥平面BDE.理由如下:取EO中点G,连接CG,在四棱锥E﹣ABCD中,AB=CE,CO=AB=CE,∴CG⊥EO.由(Ⅱ)可知,BD⊥平面ACE,而BD⊂平面BDE,∴平面ACE⊥平面BDE,且平面ACE∩平面BDE=EO,∵CG⊥EO,CG⊂平面ACE,∴CG⊥平面BDE故在线段EO上存在点G,使CG⊥平面BDE.由G为EO中点,得.…(14分)【点评】本题主要考查了空间直线和平面垂直的判定定理和性质定理的应用,要求熟练掌握相应的定理,综合性较强,难度较大.20.(15分)(2015•绍兴县校级模拟)如图,四棱锥P﹣ABCD,PA⊥底面ABCD,AB∥CD,AB⊥AD,AB=AD=PA=2,CD=4,E,F分别是PC,PD的中点.(Ⅰ)证明:EF∥平面PAB;(Ⅱ)求直线AC与平面ABEF所成角的正弦值.【考点】直线与平面所成的角;直线与平面平行的判定.【分析】(Ⅰ)由E,F分别是PC,PD的中点,得EF∥CD,由此能证明EF∥平面PAB.(Ⅱ)取线段PA中点M,连结EM,则EM∥AC,故AC与面ABEF所成角的大小等于ME与面ABEF所成角的大小,由此能求出AC与平面ABEF所成的角的正弦值.【解答】(Ⅰ)证明:因为E,F分别是PC,PD的中点,所以EF∥CD,又因为CD∥AB,所以EF∥AB,又因为EF⊄平面PAB,AB⊂平面PAB,所以EF∥平面PAB.(Ⅱ)解:取线段PA中点M,连结EM,则EM∥AC,故AC与面ABEF所成角的大小等于ME与面ABEF所成角的大小.作MH⊥AF,垂足为H,连结EH.因为PA⊥平面ABCD,所以PA⊥AB,又因为AB⊥AD,所以AB⊥平面PAD,又因为EF∥AB,所以EF⊥平面PAD.因为MH⊂平面PAD,所以EF⊥MH,所以MH⊥平面ABEF,所以∠MEH是ME与面ABEF所成的角.在直角△EHM中,EM=AC=,MH=,得sin ∠MEH=.所以AC 与平面ABEF 所成的角的正弦值是.【点评】本题考查直线与平面平行的证明,考查直线与平面所成角的正弦值的求法,解题时要注意空间思维能力的培养.21.(15分)(2016•湖州模拟)已知点C (x 0,y 0)是椭圆+y 2=1上的动点,以C 为圆心的圆过点F (1,0).(Ⅰ)若圆C 与y 轴相切,求实数x 0的值;(Ⅱ)若圆C 与y 轴交于A ,B 两点,求|FA|•|FB|的取值范围.【考点】直线与圆锥曲线的综合问题;椭圆的简单性质.【分析】(Ⅰ)当圆C 与y 轴相切时,|x 0|=,再由点C 在椭圆上,得,由此能求出实数x 0的值.(Ⅱ)圆C 的方程是(x ﹣x 0)2+(y ﹣y 0)2=(x 0﹣1)2+,令x=0,得y 2﹣2y 0y+2x 0﹣1=0,由此利用根的判别式、韦达定理,结合已知条件能求出|FA|•|FB|的取值范围.【解答】解:(Ⅰ)当圆C 与y 轴相切时,|x 0|=,(2分)又因为点C 在椭圆上,所以,解得,因为﹣,所以.(6分)(Ⅱ)圆C 的方程是(x ﹣x 0)2+(y ﹣y 0)2=(x 0﹣1)2+,令x=0,得y 2﹣2y 0y+2x 0﹣1=0,设A (0,y 1),B (0,y 2),则y 1+y 2=2y 0,y 1y 2=2x 0﹣1,(8分)由,及得﹣2﹣2<x 0<﹣2+2,又由P 点在椭圆上,﹣2≤x 0≤2,所以﹣2≤,(10分)|FA|•|FB|=•=(12分)===,(14分)所以|FA|•|FB|的取值范围是(4,4].(15分)【点评】本题考查实数值的求法,考查两线段乘积的求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、圆、椭圆性质的合理运用.22.(15分)(2016秋•温州期末)已知椭圆C 的方程是,直线l :y=kx+m 与椭圆C 有且仅有一个公共点,若F 1M ⊥l ,F 2N ⊥l ,M ,N 分别为垂足.(Ⅰ)证明:;(Ⅱ)求四边形F 1MNF 2面积S 的最大值.【考点】椭圆的简单性质.【分析】(Ⅰ)将直线的方程y=kx+m 代入椭圆C 的方程中,得(4k 2+3)x 2+8kmx+4m 2﹣12=0.由直线与椭圆C 仅有一个公共点知,△=0,化简得:m 2=4k 2+3.利用点到直线的距离公式可得:d 1=|F 1M ,d 2=|F 2M|,代入d 1d 2,化简利用重要不等式的性质即可得出.(Ⅱ)当k ≠0时,设直线的倾斜角为θ,则|d 1﹣d 2|=|MN||tan θ|,代入S=|MN|•(d 1+d 2)==,由于m 2=4k 2+3,对k 分类讨论,利用基本不等式的性质即可得出.【解答】解:(Ⅰ)证明:将直线的方程y=kx+m 代入椭圆C 的方程3x 2+4y 2=12中,得(4k 2+3)x 2+8kmx+4m 2﹣12=0.由直线与椭圆C 仅有一个公共点知, △=64k 2m 2﹣4(4k 2+3)(4m 2﹣12)=0, 化简得:m 2=4k 2+3.设d 1=|F 1M=,d 2=|F 2M|=,d 1d 2=•===3,|F 1M|+|F 2M|=d 1+d 2≥=2.(Ⅱ)当k ≠0时,设直线的倾斜角为θ,则|d 1﹣d 2|=|MN||tan θ|,∴|MN|=,S=|MN|•(d 1+d 2)====,∵m 2=4k 2+3,∴当k ≠0时,|m|,∴>+=,∴S.当k=0时,四边形F 1MNF 2是矩形,.所以四边形F 1MNF 2面积S 的最大值为2.【点评】本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题、点到直线的距离公式、基本不等式的性质,考查了推理能力与计算能力,属于难题.。
2016-2017学年高二上学期数学(理)期末试题及答案
2016-2017学年高二上学期数学(理)期末试题及答案2016-2017学年度上学期期末考试高二理科数学试卷考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分,考试时间120分钟。
1.答题前,请填写姓名和准考证号码。
2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色签字笔书写,字迹清楚。
3.请在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸上答题无效。
4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀。
第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.某中学有3500名高中生和1500名初中生。
为了解学生的研究情况,从该校学生中采用分层抽样的方法抽取一个容量为n的样本。
已知从高中生中抽取了70人,则n的值为()。
A。
100B。
150C。
200D。
2502.如图所示,将图(1)中的正方体截去两个三棱锥,得到图(2)中的几何体,则该几何体的侧视图为()。
无法提供图像)3.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点为F,点F到渐近线的距离等于2a,则该双曲线的离心率等于()。
A。
2B。
3C。
5D。
3/44.已知两条直线a,b,两个平面$\alpha,\beta$,下面四个命题中不正确的是()。
A。
$a\perp\alpha,\alpha//\beta,b\parallel\beta\iff a\perp b$B。
$\alpha//\beta,a//b,a\perp\alpha\implies b\perp\beta$C。
$m//\alpha,m\perp\beta\implies\alpha\perp\beta$D。
$a//b,a//\alpha\implies b//\alpha$5.下列命题中,说法正确的是()。
2016-2017学年高二上学期期末数学试卷(文科) Word版含解析
2016-2017学年高二上学期期末试卷(文科数学)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.)1.△ABC的内角A,B,C的对边分别为a,b,c,若c=,b=,B=120°,则c等于()A.B.2 C.D.2.在△ABC中,已知a2=b2+c2+bc,则角A为()A.B.C.D.或3.在等比数列{an }中,a2=8,a5=64,则公比q为()A.2 B.3 C.4 D.84.设Sn 是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于()A.13 B.49 C.35 D.635.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.606.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是()A.B.C.D.7.如果等差数列{an }中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14 B.21 C.28 D.358.如图所示,程序据图(算法流程图)的输出结果为()A.B.C.D.9.在△ABC中,已知∠A=60°,AB:AC=8:5,面积为10,则AB=()A.8 B.6 C.5 D.1010.关于x的不等式x2+x+c>0的解集是全体实数的条件是()A.c<B.c≤C.c>D.c≥11.设变量x、y满足约束条件,则目标函数z=2x+y的最小值为()A.2 B.3 C.4 D.912.如图,测量河对岸的旗杆高AB时,选与旗杆底B在同一水平面内的两个测点C与D.测得∠BCD=75°,∠BDC=60°,CD=2米,并在点C测得旗杆顶A的仰角为60°,则旗杆高AB 为()A.10米B.2米C.米D.米二、填空题:(本大题共4小题,每小题5分,共20分.把答案填在题中横线上.)13.设集合,则A∩B= .14.在﹣1和7中间插入三个数,使得这五个数成单调递增的等差数列,则这三个数为.15.在单调递增的等比数列{an }中,a1•a9=64,a3+a7=20,求a11= .16.当x>﹣1时,函数y=x+的最小值是.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.18.已知不等式ax2+bx﹣1<0的解集为{x|﹣1<x<2}.(1)计算a、b的值;(2)求解不等式x2﹣ax+b>0的解集.19.等比数列{an }中,已知a1=2,a4=16(Ⅰ)求数列{an}的通项公式;(Ⅱ)若a3,a5分别为等差数列{bn}的第3项和第5项,试求数列{bn}的通项公式及前n项和Sn.20.为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.41.6 0.5 1.8 0.62.1 1.1 2.5 1.2 2.7 0.5(Ⅰ)分别计算两种药的平均数,从计算结果看,哪种药的疗效更好?(Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?25.动物园要建造一个长方形虎笼,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36m长网的材料,当虎笼的长、宽各设计为多少时,可使虎笼面积最大?最大面积为多少?(2)若使虎笼的面积为32m2,则虎笼的长、宽各设计为多少时,可使围成虎笼所用的钢筋网总长最小?26.电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时的间频率分布表(时间单位为:分):将日将收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?2016-2017学年高二上学期期末试卷(文科数学)参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.)1.△ABC的内角A,B,C的对边分别为a,b,c,若c=,b=,B=120°,则c等于()A.B.2 C.D.【考点】正弦定理.【分析】根据题意,由正弦定理可得=,变形可得c=•sinC,代入数据计算可得答案.【解答】解:根据题意,△ABC中,c=,b=,B=120°,由正弦定理可得: =,即c=•sinC=,即c=;故选:D.2.在△ABC中,已知a2=b2+c2+bc,则角A为()A.B.C.D.或【考点】余弦定理.【分析】根据余弦定理表示出cosA,然后把已知的等式代入即可求出cosA的值,由A的范围,根据特殊角的三角函数值即可得到A的度数.【解答】解:由a2=b2+c2+bc,则根据余弦定理得:cosA===﹣,因为A∈(0,π),所以A=.故选C3.在等比数列{an }中,a2=8,a5=64,则公比q为()A.2 B.3 C.4 D.8【考点】等比数列的通项公式.【分析】题目给出了a2=8,a5=64,直接利用等比数列的通项公式求解q.【解答】解:在等比数列{an }中,由,又a2=8,a5=64,所以,,所以,q=2.故选A.4.设Sn 是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于()A.13 B.49 C.35 D.63【考点】等差数列的前n项和.【分析】首先根据已知条件建立方程组求出首项与公差,进一步利用等差数列前n项和公式求出结果.【解答】解:等差数列{an }中,设首项为a1,公差为d,,解得:d=2,a1=1,所以:故选:B5.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.60【考点】频率分布直方图.【分析】由已知中的频率分布直方图,我们可以求出成绩低于60分的频率,结合已知中的低于60分的人数是15人,结合频数=频率×总体容量,即可得到总体容量. 【解答】解:∵成绩低于60分有第一、二组数据, 在频率分布直方图中,对应矩形的高分别为0.005,0.01, 每组数据的组距为20则成绩低于60分的频率P=(0.005+0.010)×20=0.3, 又∵低于60分的人数是15人,则该班的学生人数是=50.故选:B .6.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( )A .B .C .D .【考点】等可能事件的概率.【分析】从5个小球中选两个有C 52种方法,列举出取出的小球标注的数字之和为3或6的有{1,2},{1,5},{2,4}共3种,根据古典概型公式,代入数据,求出结果.本题也可以不用组合数而只通过列举得到事件总数和满足条件的事件数.【解答】解:随机取出2个小球得到的结果数有C 52=种取出的小球标注的数字之和为3或6的结果为{1,2},{1,5},{2,4}共3种,∴P=,故选A7.如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7=( ) A .14 B .21 C .28 D .35【考点】等差数列的性质;等差数列的前n 项和. 【分析】由等差数列的性质求解. 【解答】解:a 3+a 4+a 5=3a 4=12,a 4=4,∴a 1+a 2+…+a 7==7a 4=28故选C8.如图所示,程序据图(算法流程图)的输出结果为()A.B.C.D.【考点】程序框图.【分析】根据所给数值执行循环语句,然后判定是否满足判断框中的条件,一旦不满足条件就退出循环,从而到结论.【解答】解:由程序框图知,循环体被执行后S的值依次为:第1次S=0+,第2次S=+,第3次S=++,此时n=8不满足选择条件n<8,退出循环,故输出的结果是S=++=.故选C.9.在△ABC中,已知∠A=60°,AB:AC=8:5,面积为10,则AB=()A.8 B.6 C.5 D.10【考点】余弦定理;正弦定理.【分析】由已知可得:AC=AB,进而利用三角形面积公式即可计算得解AB的值.【解答】解:∵AB:AC=8:5,可得:AC=AB,又∵∠A=60°,面积为10=AB•AC•sinA=AB ×AB ×,∴解得:AB=8. 故选:A .10.关于x 的不等式x 2+x+c >0的解集是全体实数的条件是( )A .c <B .c ≤C .c >D .c ≥ 【考点】二次函数的性质.【分析】由判别式小于零,求得c 的范围.【解答】解:关于x 的不等式x 2+x+c >0的解集是全体实数的条件是判别式△=1﹣4c <0,解得 c >, 故选:C .11.设变量x 、y 满足约束条件,则目标函数z=2x+y 的最小值为( )A .2B .3C .4D .9【考点】简单线性规划的应用.【分析】本题主要考查线性规划的基本知识,先画出约束条件的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数Z=2x+y 的最小值.【解答】解:设变量x 、y 满足约束条件,在坐标系中画出可行域△ABC ,A (2,0),B (1,1),C (3,3), 则目标函数z=2x+y 的最小值为3, 故选B12.如图,测量河对岸的旗杆高AB时,选与旗杆底B在同一水平面内的两个测点C与D.测得∠BCD=75°,∠BDC=60°,CD=2米,并在点C测得旗杆顶A的仰角为60°,则旗杆高AB 为()A.10米B.2米C.米D.米【考点】解三角形的实际应用.【分析】在△CBD中根据三角形的内角和定理,求出∠CBD=180°﹣∠BCD﹣∠BDC=45°,从而利用正弦定理求出BC.然后在Rt△ABC中,根据三角函数的定义加以计算,可得旗杆AB的高度.【解答】解:∵△BCD中,∠BCD=75°,∠BDC=60°,∴∠CBD=180°﹣∠BCD﹣∠BDC=45°,在△CBD中,CD=2米,根据正弦定理可得BC==米,∵Rt△ABC中,∠ACB=60°,∴AB=BC•tan∠ACB=•tan60°=3,即旗杆高,3米.故选:D.二、填空题:(本大题共4小题,每小题5分,共20分.把答案填在题中横线上.)13.设集合,则A∩B= (3,4).【考点】交集及其运算.【分析】先利用解分式不等式化简集合B,再根据两个集合的交集的意义求解A∩B.【解答】解:A={x|x>3},B={x|<0}={x|1<x<4},∴A∩B=(3,4),故答案为:(3,4).14.在﹣1和7中间插入三个数,使得这五个数成单调递增的等差数列,则这三个数为1,3,5 .【考点】等差数列的通项公式.【分析】设插入的三个数为a,b,c,则﹣1,a,b,c,7五个数成单调递增的等差数列,利用等差数列的性质能求出这三个数.【解答】解:在﹣1和7中间插入三个数,使得这五个数成单调递增的等差数列,设插入的三个数为a,b,c,则﹣1,a,b,c,7五个数成单调递增的等差数列,∴a1=﹣1,a5=﹣1+4d=7,解得d=2,∴a=﹣1+2=1,b=﹣1+2×2=3,c=﹣1+2×3=5,∴这三个数为1,3,5.故答案为:1,3,5.15.在单调递增的等比数列{an }中,a1•a9=64,a3+a7=20,求a11= 64 .【考点】等比数列的通项公式.【分析】由已知得a3,a7是方程x2﹣20x+64=0的两个根,且a3<a7,从而求出a3=4,a7=16,再由等比数列通项公式列方程组求出首项和公比,由此能求出a11.【解答】解:∵单调递增的等比数列{an}中,a 1•a9=64,a3+a7=20,∴a3•a7=a1•a9=64,∴a3,a7是方程x2﹣20x+64=0的两个根,且a3<a7,解方程x2﹣20x+64=0,得a3=4,a7=16,∴,解得,∴a 11=a 1q 10=2×()10=64.故答案为:64.16.当x >﹣1时,函数y=x+的最小值是 1 .【考点】基本不等式在最值问题中的应用. 【分析】变形利用基本不等式的性质即可得出. 【解答】解:∵x >﹣1,∴函数y=x+=(x+1)+﹣1≥﹣1=1,当且仅当x+1=,且x >﹣1,即x=0时等号成立,故函数y 的最小值为1. 故答案为:1.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17.设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a=2bsinA (Ⅰ)求B 的大小;(Ⅱ)若,c=5,求b .【考点】正弦定理的应用;余弦定理的应用.【分析】(1)根据正弦定理将边的关系化为角的关系,然后即可求出角B 的正弦值,再由△ABC 为锐角三角形可得答案.(2)根据(1)中所求角B 的值,和余弦定理直接可求b 的值. 【解答】解:(Ⅰ)由a=2bsinA ,根据正弦定理得sinA=2sinBsinA ,所以,由△ABC 为锐角三角形得.(Ⅱ)根据余弦定理,得b 2=a 2+c 2﹣2accosB=27+25﹣45=7.所以,.18.已知不等式ax 2+bx ﹣1<0的解集为{x|﹣1<x <2}. (1)计算a 、b 的值;(2)求解不等式x 2﹣ax+b >0的解集. 【考点】一元二次不等式的解法.【分析】(1)根据不等式ax 2+bx ﹣1<0的解集,不等式与方程的关系求出a 、b 的值; (2)由(1)中a 、b 的值解对应不等式即可.【解答】解:(1)∵不等式ax 2+bx ﹣1<0的解集为{x|﹣1<x <2}, ∴方程ax 2+bx ﹣1=0的两个根为﹣1和2,将两个根代入方程中得,解得:a=,b=﹣;(2)由(1)得不等式为x 2﹣x ﹣>0, 即2x 2﹣x ﹣1>0,∵△=(﹣1)2﹣4×2×(﹣1)=9>0,∴方程2x 2﹣x ﹣1=0的两个实数根为:x 1=﹣,x 2=1;因而不等式x 2﹣x ﹣>0的解集是{x|x <﹣或x >1}.19.等比数列{a n }中,已知a 1=2,a 4=16 (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .【考点】等差数列与等比数列的综合.【分析】(I )由a 1=2,a 4=16直接求出公比q 再代入等比数列的通项公式即可.(Ⅱ)利用题中条件求出b 3=8,b 5=32,又由数列{b n }是等差数列求出.再代入求出通项公式及前n 项和S n .【解答】解:(I )设{a n }的公比为q 由已知得16=2q 3,解得q=2∴=2n(Ⅱ)由(I)得a3=8,a5=32,则b3=8,b5=32设{bn}的公差为d,则有解得.从而bn=﹣16+12(n﹣1)=12n﹣28所以数列{bn}的前n项和.20.为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.41.6 0.5 1.8 0.62.1 1.1 2.5 1.2 2.7 0.5(Ⅰ)分别计算两种药的平均数,从计算结果看,哪种药的疗效更好?(Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?【考点】众数、中位数、平均数;茎叶图.【分析】(Ⅰ)利用平均数的计算公式即可得出,据此即可判断出结论;(Ⅱ)利用已知数据和茎叶图的结构即可完成.【解答】解:(Ⅰ)设A药观测数据的平均数据的平均数为,设B药观测数据的平均数据的平均数为,则=×(0.6+1.2+2.7+1.5+2.8+1.8+2.2+2.3+3.2+3.5+2.5+2.6+1.2+2.7+1.5+2.9+3.0+3.1+2.3+2.4)=2.3.×(3.2+1.7+1.9+0.8+0.9+2.4+1.2+2.6+1.3+1.4+1.6+0.5+1.8+0.6+2.1+1.1+2.5+1.2+2.7+0.5)=1.6.由以上计算结果可知:.由此可看出A药的效果更好.(Ⅱ)根据两组数据得到下面茎叶图:从以上茎叶图可以看出,A药疗效的试验结果有的叶集中在2,3上.而B药疗效的试验结果由的叶集中在0,1上.由此可看出A药的疗效更好.25.动物园要建造一个长方形虎笼,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36m长网的材料,当虎笼的长、宽各设计为多少时,可使虎笼面积最大?最大面积为多少?(2)若使虎笼的面积为32m2,则虎笼的长、宽各设计为多少时,可使围成虎笼所用的钢筋网总长最小?【考点】基本不等式在最值问题中的应用.【分析】(1)设每间虎笼的长、宽,利用周长为36m,根据基本不等式,即可求得面积最大值时的长、宽;(2)设每间虎笼的长、宽,利用面积为32m2,根据周长的表达式,利用基本不等式,即可求得周长最小值时的长、宽.【解答】解:(1)设虎笼长为x m,宽为y m,则由条件,知x+2y=36.设每间虎笼的面积为S,则S=xy.由于x+2y≥2=2,∴2≤36,得xy≤162,即S≤162.当且仅当x=2y时等号成立.由解得故每间虎笼长为18 m,宽为9 m时,可使面积最大,面积最大为162m2.(2)由条件知S=xy=32.设钢筋网总长为l,则l=x+2y.∵x+2y≥2=2=16,∴l=x+2y≥48,当且仅当x=2y时,等号成立.由解得故每间虎笼长8m,宽4m时,可使钢筋网总长最小.26.电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时的间频率分布表(时间单位为:分):将日将收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?【考点】独立性检验.【分析】(I)根据所给的频率分布直方图得出数据列出列联表,再代入公式计算得出X方,与3.841比较即可得出结论;(II)由题意,列出所有的基本事件,计算出事件“任选3人,至少有1人是女性”包含的基本事件数,即可计算出概率.【解答】解:(I)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下:…3分将2×2列联表中的数据代入公式计算,得X2===≈3.03因为3.03<3.841,所以没有理由认为“体育迷”与性别有关…6分(II)由频率分布直方图知,“超级体育迷”为5人,从而一切可能结果所的基本事件空间为Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b 2),(b1,b2)}其中ai 表示男性,i=1,2,3,bi表示女性,i=1,2…9分Ω由10个基本事件组成,而且这些基本事件的出现是等可能的.用A表示事件“任选3人,至少有1人是女性”.则A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)}事件A有7个基本事件组成,因而P(A)=…12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**2016-2017学年浙江省台州市高二(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.过点A(0,1)与直线y=x﹣1平行的直线方程是()A.x+y﹣1=0 B.x﹣y﹣1=0 C.x+y+1=0 D.x﹣y+1=02.若一个球的半径为1,则它的表面积是()A.4πB.2πC.πD.3.已知圆C:x2+y2+2x﹣4y=0,则圆C的圆心坐标为()A.(1,﹣2)B.(﹣1,2)C.(1,2)D.(﹣1,﹣2)4.在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CC1所成角的大小为()A.60°B.30°C.90°D.45°5.设直线l的方向向量为(1,﹣1,1),平面α的一个法向量为(﹣1,1,﹣1),则直线l与平面α的位置关系是()A.l⊂α B.l∥α C.l⊥α D.不确定6.已知直线l在平面α内,则“l⊥β”是“α⊥β”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件7.在平面直角坐标系中,方程+=1所表示的曲线是()A.椭圆B.三角形C.菱形D.两条平行线8.已知抛物线y2=4x上一动点M(x,y),定点N(0,1),则x+|MN|的最小值是()A.B.C.﹣1 D.﹣19.已知F1和F2分别是椭圆C: +y2=1的左焦点和右焦点,点P(x0,y0)是椭圆C上一点,切满足∠F1PF2≥60°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[1,]D.[,]10.如图,在三棱柱ABC﹣A1B1C1中,E,F,E1,F1分别为棱AB,AC,AA1,CC1的中点,点G,H分别为四边形ABB1A1,BCC1B1对角线的交点,点I为△A1B1C1的外心,P,Q分别在直线EF,E1F1上运动,则在G,H,I,这三个点中,动直线PQ()A.只可能经过点I B.只可能经过点G,HC.可能经过点G,H,I D.不可能经过点G,H,I二、填空题(本大题共有6小题,多空题每小题4分,单空题每小题4分,共20分)11.直线x﹣y﹣3=0的斜率为,倾斜角为.12.在空间直角坐标系中,点A(2,1,2)到原点O的距离为,点A关于原点O对称的点的坐标为.13.如图,某三棱锥的三视图,则该三棱锥的体积为.14.已知双曲线﹣=1的一条渐近线方程为y=x,则双曲线的离心率为.15.在直线l1:ax﹣y﹣a+2=0(a∈R),过原点O的直线l2与l1垂直,垂足为M,则|OM|的最大值为.16.已知A(2,2),B(a,b),对于圆x2+y2=4,上的任意一点P都有=,则点B的坐标为.三、解答题(本大题共有5小题,共50分)17.(8分)设p:“方程x2+y2=4﹣a表示圆”,q:“方程﹣=1表示焦点在x轴上的双曲线”,如果p和q都正确,求实数a的取值范围.18.(10分)如图,在正方体ABCD﹣A1B1C1D1中,点E,F分别为BB1,B1C1的中点.(Ⅰ)求证:直线EF∥面ACD1;(Ⅱ)求二面角D1﹣AC﹣D的平面角的余弦值.19.(10分)已知抛物线C顶点在原点,关于x轴对称,且经过P(1,2).(Ⅰ)求抛物线C的标准方程及准线方程;(Ⅱ)已知不过点P且斜率为1的直线l与抛物线C交于A,B两点,若AB为直径的圆经过点P,试求直线l的方程.20.(10分)已知三棱柱ABC﹣A1B1C1的底面是边长为4的正三角形,侧棱AA1垂直于底面ABC,AA1=2,D为BC中点.(Ⅰ)若E为棱CC1的中点,求证:A1C⊥DE;(Ⅱ)若点E在棱CC1上,直线CE与平面ADE所成角为α,当s inα=时,求CE的长.21.(12分)已知椭圆C: +=1(a>b>0)的右焦点为(1,0),且右焦点到上顶点的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)过点P(2,2)的动直线交椭圆C于A,B两点,(i)若|PA||PB|=,求直线AB的斜率;(ii)点Q在线段AB上,且满足+=,求点Q的轨迹方程.2016-2017学年浙江省台州市高二(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.过点A(0,1)与直线y=x﹣1平行的直线方程是()A.x+y﹣1=0 B.x﹣y﹣1=0 C.x+y+1=0 D.x﹣y+1=0【考点】直线的一般式方程与直线的平行关系.【分析】设过点A(0,1)与直线y=x﹣1平行的直线方程是x﹣y+c=0,把点(0,1)代入,能得到所求直线方程.【解答】解:过点A(0,1)与直线y=x﹣1平行的直线方程是x﹣y+c=0,把点(0,1)代入,得0﹣1+c=0,解得c=1.∴所求直线方程为:x﹣y+1=0.故选:D【点评】本题考查直线的一般式方程与直线的平行关系的应用,是基础题.解题时要认真审题,仔细解答2.若一个球的半径为1,则它的表面积是()A.4πB.2πC.πD.【考点】球的体积和表面积.【分析】直接利用球的表面积公式,即可得出结论.【解答】解:由题意,半径为1的球的表面积是4π•12=4π.故选:A.【点评】本题考查球的表面积公式,考查学生的计算能力,比较基础.3.已知圆C:x2+y2+2x﹣4y=0,则圆C的圆心坐标为()A.(1,﹣2)B.(﹣1,2)C.(1,2)D.(﹣1,﹣2)【考点】圆的一般方程.【分析】把圆的一般方程化为标准方程,求出圆心和半径.【解答】解:圆x2+y2+2x﹣4y=0 即(x+1)2+(y﹣2)2=5,故圆心为(﹣1,2),故选B.【点评】本题主要考查把圆的一般方程化为标准方程的方法,根据圆的标准方程求圆心,属于基础题.4.在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CC1所成角的大小为()A.60°B.30°C.90°D.45°【考点】异面直线及其所成的角.【分析】将CC1平移到B1B,从而∠A1BB1为直线BA1与CC1所成角,在三角形A1BB1中求出此角即可.【解答】解:∵CC1∥B1B,∴∠A1BB1为直线BA1与CC1所成角,因为是在正方体ABCD﹣A1B1C1D1中,所以∠A1BB1=45°.故选:D.【点评】本题主要考查了异面直线及其所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.5.设直线l的方向向量为(1,﹣1,1),平面α的一个法向量为(﹣1,1,﹣1),则直线l与平面α的位置关系是()A.l⊂α B.l∥α C.l⊥α D.不确定【考点】空间中直线与直线之间的位置关系.【分析】观察到的直线l的方向向量与平面α的法向量共线,得到位置关系是垂直.【解答】解:因为直线l的方向向量为(1,﹣1,1),平面α的一个法向量为(﹣1,1,﹣1),显然它们共线,所以直线l与平面α的位置关系是垂直即l ⊥α;故选C.【点评】本题考查了利用直线的方向向量和平面的法向量的关系,判定线面关系;体现了向量的工具性;属于基础题.6.已知直线l在平面α内,则“l⊥β”是“α⊥β”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据线面垂直和面面垂直的定义和性质,结合充分条件和必要条件的定义即可的结论.【解答】解:根据面面垂直的判定定理可得,若l⊂α,l⊥β,则α⊥β成立,即充分性成立,若α⊥β,则l⊥β不一定成立,即必要性不成立.故“l⊥β”是“α⊥β”充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判定,利用线面垂直和面面垂直的关系是解决本题的关键.7.在平面直角坐标系中,方程+=1所表示的曲线是()A.椭圆B.三角形C.菱形D.两条平行线【考点】曲线与方程.【分析】去掉绝对值,可得方程+=1的曲线围成的封闭图形.【解答】解:x≥0,y≥0方程为+=1;x≥0,y≤0方程为﹣=1;x≤0,y≥0方程为﹣+=1;x≤0,y≤0方程为﹣﹣=1,∴方程+=1的曲线围成的封闭图形是一个以(0,4),(2,0),(0,﹣4),(﹣2,0)为顶点的菱形,故选:C.【点评】本题考查的知识点是曲线与方程,分析出几何体的形状是解答的关键,难度中档.8.已知抛物线y2=4x上一动点M(x,y),定点N(0,1),则x+|MN|的最小值是()A.B.C.﹣1 D.﹣1【考点】抛物线的简单性质.【分析】抛物线的焦点坐标为(1,0),M到准线的距离为d,则x+|MN|=d+|MN|﹣1=|MF|+|MN|﹣1≥|NF|﹣1=﹣1,即可得出结论.【解答】解:抛物线的焦点坐标为(1,0),M到准线的距离为d,则x+|MN|=d+|MN|﹣1=|MF|+|MN|﹣1≥|NF|﹣1=﹣1,∴x+|MN|的最小值是﹣1.故选D.【点评】本题考查抛物线的方程与性质,考查抛物线定义的运用,属于中档题.9.已知F1和F2分别是椭圆C: +y2=1的左焦点和右焦点,点P(x0,y0)是椭圆C上一点,切满足∠F1PF2≥60°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[1,]D.[,]【考点】椭圆的简单性质.【分析】设当点P在第一象限时,求出∠F1PF2=60°时,PF2的大小,由焦半径公式的PF2=a﹣ex0解得x0,根据对称性,则x0的取值范围【解答】解:∵a=,b=1,∴c=1.设当点P在第一象限时,|PF1|=t1,|PF2|=t2,则由椭圆的定义可得:t1+t2=2…①在△F1PF2中,当∠F1PF2=60°,所以t12+t22﹣2t1t2•cos60°=4…②,由①﹣②得t2=,由焦半径公式的a﹣ex0=,解得x0=,当点P向y轴靠近时,∠F1PF2增大,根据对称性,则x0的取值范围是:[﹣,]故选:B【点评】本题考查了椭圆的性质及焦点三角形的特征,属于中档题.10.如图,在三棱柱ABC﹣A1B1C1中,E,F,E1,F1分别为棱AB,AC,AA1,CC1的中点,点G,H分别为四边形ABB1A1,BCC1B1对角线的交点,点I为△A1B1C1的外心,P,Q分别在直线EF,E1F1上运动,则在G,H,I,这三个点中,动直线PQ()A.只可能经过点I B.只可能经过点G,HC.可能经过点G,H,I D.不可能经过点G,H,I【考点】平面的基本性质及推论.【分析】根据题意,得出PQ与GH是异面直线,PQ不过点G,且不过点H;当A1B1⊥B1C1时,外接圆的圆心I为斜边A1C1的中点,P与F重合,Q是E1F1的中点,PQ过点I.【解答】解:如图所示;三棱柱ABC﹣A1B1C1中,连接GH,则GH∥E1F1,∴G、H、F1、E1四点共面与平面GHF1E1;又点P∉平面GHF1E1,Q∈E1F1,∴Q∈平面GHF1E1,且Q∉GH,∴PQ与GH是异面直线,即PQ不过点G,且不过点H;又点I为△A1B1C1的外心,当A1B1⊥B1C1时,I为A1C1的中点,若P与F重合,Q是E1F1的中点,此时PQ过点I.故选:A.【点评】本题考查了空间中的两条直线位置关系,也考查了直线过某一点的应用问题,是综合性题目.二、填空题(本大题共有6小题,多空题每小题4分,单空题每小题4分,共20分)11.直线x﹣y﹣3=0的斜率为1,倾斜角为45°.【考点】直线的斜率;直线的倾斜角.【分析】直接化直线方程为斜截式得答案.【解答】解:由x﹣y﹣3=0,得y=x﹣3,∴直线x﹣y=﹣30的斜率是1,倾斜角为45°.故答案为1,45°.【点评】本题考查直线的斜率,考查直线方程的斜截式,是基础的计算题.12.在空间直角坐标系中,点A(2,1,2)到原点O的距离为3,点A关于原点O对称的点的坐标为(﹣2,﹣1,﹣2).【考点】空间中的点的坐标.【分析】利用两点间矩离公式、对称的性质直接求解.【解答】解:点A(2,1,2)到原点O的距离d==3,点A(2,1,2)关于原点O对称的点的坐标为(﹣2,﹣1,﹣2).故答案为:3,(﹣2,﹣1,﹣2).【点评】本题考查点的坐标的求法,是基础题,解题时要认真审题,注意两点间距离公式、对称性质的合理运用.13.如图,某三棱锥的三视图,则该三棱锥的体积为2.【考点】由三视图求面积、体积.【分析】由三视图可知该三棱锥的底面为等腰直角三角形,高为3.从而解得.【解答】解:该三棱锥的底面为等腰直角三角形,高为3.则其体积V==2,故答案为2.【点评】本题考查了学生的空间想象力,属于基础题.14.已知双曲线﹣=1的一条渐近线方程为y=x,则双曲线的离心率为2.【考点】双曲线的简单性质.【分析】利用双曲线的渐近线方程,推出a,b的关系,然后求解双曲线的离心率即可.【解答】解:双曲线﹣=1的一条渐近线方程为y=x,可得=,即,解得e=2.故答案为:2.【点评】本题考查双曲线的简单性质的应用,考查计算能力.15.在直线l1:ax﹣y﹣a+2=0(a∈R),过原点O的直线l2与l1垂直,垂足为M,则|OM|的最大值为.【考点】直线的一般式方程与直线的垂直关系.【分析】分a=0或a≠0两种情况讨论,设y=,根据判别式求出y的范围,即可得到|OM|的最大值【解答】解:直线l1:ax﹣y﹣a+2=0(a∈R),化为y=ax﹣a+2,则直线l1的斜率为a,当a=0时,11:y=2,∵过原点O的直线l2与l1垂直,∴直线l2的方程为x=0,∴M(0.2),∴|OM|=2,当a≠0时,则直线l2的斜率为﹣,则直线l2的方程为y=﹣x,由,解得x=,y=,∴M(,),则|OM|==,设y=,则(1﹣y)a2﹣4a+4﹣y=0,∴△=16﹣4(1﹣y)(4﹣y)≥0,解得0≤y≤5,∴|OM|的最大值为,综上所述:|OM|的最大值为,故答案为:【点评】本题考查了直线方程的垂直的关系和直线与直线的交点和函数的最值得问题,属于中档题16.已知A(2,2),B(a,b),对于圆x2+y2=4,上的任意一点P都有=,则点B的坐标为(1,1).【考点】点与圆的位置关系.【分析】设P(x,y),则(x﹣2)2+(y﹣2)2=2(x﹣a)2+2(y﹣b)2,化简可得(2﹣2a)x+(2﹣2b)y+a2+b2﹣2=0,由此可求点B的坐标.【解答】解:设P(x,y),则(x﹣2)2+(y﹣2)2=2(x﹣a)2+2(y﹣b)2,化简可得(2﹣2a)x+(2﹣2b)y+a2+b2﹣2=0,a=1,b=1时,方程恒成立,∴点B的坐标为(1,1),故答案为(1,1).【点评】本题考查点与圆的位置关系,考查恒成立问题,正确转化是关键.三、解答题(本大题共有5小题,共50分)17.设p:“方程x2+y2=4﹣a表示圆”,q:“方程﹣=1表示焦点在x轴上的双曲线”,如果p和q都正确,求实数a的取值范围.【考点】命题的真假判断与应用;双曲线的简单性质.【分析】先求出命题p真、命题q真时a的范围,由p和q都正确,得⇒实数a的取值范围.【解答】解:若命题p真:方程x2+y2=4﹣a表示圆,4﹣a>0,即a<4,若命题q真:则a+1>0,得a>﹣1,∵p和q都正确,所以⇒﹣1<a<4,实数a的取值范围:(﹣1,4)【点评】本题考查了复合命题的判断,考查圆和双曲线的性质,是一道基础题18.(10分)(2016秋•台州期末)如图,在正方体ABCD﹣A1B1C1D1中,点E,F分别为BB1,B1C1的中点.(Ⅰ)求证:直线EF∥面ACD1;(Ⅱ)求二面角D1﹣AC﹣D的平面角的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)连结BC1,则EF∥BC1,从而EF∥AD1,由此能证明直线EF∥面ACD1.(Ⅱ)连结BD,交AC于点O,连结OD1,则OD⊥AC,OD⊥AC,∠DOD1是二面角D1﹣AC﹣D的平面角,由此能求出二面角D1﹣AC﹣D的平面角的余弦值.【解答】证明:(Ⅰ)连结BC1,则EF∥BC1,∵BC1∥AD1,∴EF∥AD1,∵EF⊄面ACD1,AD1⊂面ACD1,∴直线EF∥面ACD1.解:(Ⅱ)连结BD,交AC于点O,连结OD1,则OD⊥AC,OD⊥AC,∴∠DOD1是二面角D1﹣AC﹣D的平面角,设正方体棱长为2,在Rt△D1DO中,OD=,OD1=,∴cos∠DOD1===,∴二面角D1﹣AC﹣D的平面角的余弦值为.【点评】本题考查线面垂直的判定与性质,考查利用二面角的余弦值的求法;考查逻辑推理与空间想象能力,运算求解能力;考查数形结合、化归转化思想.19.(10分)(2016秋•台州期末)已知抛物线C顶点在原点,关于x轴对称,且经过P(1,2).(Ⅰ)求抛物线C的标准方程及准线方程;(Ⅱ)已知不过点P且斜率为1的直线l与抛物线C交于A,B两点,若AB为直径的圆经过点P,试求直线l的方程.【考点】直线与抛物线的位置关系.【分析】(I)由题意可设抛物线的标准方程为:y2=2px(p>0),把点P(1,2)代入解得p.可得抛物线C的标准方程及其准线方程.(II)时直线l的方程为:y=x+b,代入抛物线方程可得:y2﹣4y+4b=0,设A(x1,y1),B(x2,y2).由题意可得:=0,可得(x1﹣1)(x2﹣1)+(y1﹣2)(y2﹣2)=x1•x2﹣(x1+x2)+1+y1•y2﹣2(y1+y2+4=0,把根与系数的关系代入即可得出.【解答】解:(I)由题意可设抛物线的标准方程为:y2=2px(p>0),把点P(1,2)代入可得:22=2p×1,解得p=2.∴抛物线C的标准方程为:y2=4x,准线方程为x=﹣1.(II)时直线l的方程为:y=x+b,代入抛物线方程可得:y2﹣4y+4b=0,△=16﹣16b>0,解得b<1.设A(x1,y1),B(x2,y2),∴y1+y2=4,y1•y2=4b,∴x1+x2=y1+y2﹣2b,x1x2= =b2.由题意可得:=0,∴(x1﹣1)(x2﹣1)+(y1﹣2)(y2﹣2)=x1•x2﹣(x1+x2)+1+y1•y2﹣2(y1+y2+4=0,∴b2﹣(4﹣2b)+1+4b﹣8+4=0,即b2+6b﹣7=0,解得b=﹣7,或b=1(舍去).∴直线l的方程为:x﹣y﹣7=0.【点评】本题考查了抛物线的标准方程及其性质、直线与抛物线相交问题、圆的性质、一元二次方程的根与系数的关系、数量积运算性质,考查了推理能力与计算能力,属于难题.20.(10分)(2016秋•台州期末)已知三棱柱ABC﹣A1B1C1的底面是边长为4的正三角形,侧棱AA1垂直于底面ABC,AA1=2,D为BC中点.(Ⅰ)若E为棱CC1的中点,求证:A1C⊥DE;(Ⅱ)若点E在棱CC1上,直线CE与平面ADE所成角为α,当sinα=时,求CE的长.【考点】直线与平面所成的角;直线与平面平行的判定.【分析】(Ⅰ)建立空间直角坐标系,利用向量法能证明DE⊥A1C.(Ⅱ)求出平面ADE的法向量,由CE与平面ADE所成角α满足sinα=,利用向量法能求出CE.【解答】(Ⅰ)证明:建立如图所示空间直角坐标系,A1(2,0,2),D (0,0,0),E(0,﹣2,),C(0,﹣2,0),=(0,﹣2,),=(﹣2,﹣2,﹣2),∴•=0+4﹣4=0,∴DE⊥A1C;(Ⅱ)解:CE=a(0),则E(0,﹣2,a),A(2,0,0),=(2,0,0),=(0,﹣2,a)设平面ADE的法向量=(x,y,z),则,取=(0,a,2),设CE与平面ADE所成角为α,满足sinα==,∴a=1,即CE=1.【点评】本题考查线线垂直的证明,考查满足条件的线段长的求法,是中档题,解题时要认真审题,注意向量法的合理运用.21.(12分)(2016秋•台州期末)已知椭圆C: +=1(a>b>0)的右焦点为(1,0),且右焦点到上顶点的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)过点P(2,2)的动直线交椭圆C于A,B两点,(i)若|PA||PB|=,求直线AB的斜率;(ii)点Q在线段AB上,且满足+=,求点Q的轨迹方程.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)根据题意求出a,c的值,从而求出b的值,求出椭圆的方程即可;(Ⅱ)(i)设出直线方程,和椭圆联立方程组,根据根与系数的关系求出直线斜率k的值即可;(ii)设出Q的坐标,根据+=,得+=,求出k 的值,带入直线方程,整理即可.【解答】解:(Ⅰ)由题意得:c=1,a=,∴b2=a2﹣c2=1,∴+y2=1;(Ⅱ)(i)设直线AB:y=k(x﹣2)+2,点A(x1,y1),B(x2,y2),由,得:(1+2k2)x2+4k(2﹣2k)x+2(2﹣2k)2﹣2=0(*),∴x1+x2=﹣,x1x2=,|PA||PB|=|2﹣x1|•|2﹣x2|=(1+k2)[4﹣2(x1+x2)+x1x2]==,解得:k2=1,即k=1或﹣1;(ii)设点Q(x0,y0),由点Q在直线AB上,得y0=k(x0﹣2)+2,(**),又+=,得+=,∵+=,∴2﹣x0=2×=2×(2+)=,∴k=,把它带入(**)式,得y0=k(x0﹣2)+2=(x0﹣2)+2=﹣x0+,即点Q的轨迹方程是:x+2y﹣1=0,(<x<).【点评】本题考查了直线和椭圆的位置关系,考查考查椭圆的性质以及直线的斜率问题,是一道综合题.免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容.声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容.声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**司将予以删。