不定积分 公式大全
不定积分常用的16个基本公式
不定积分常用的16个基本公式不定积分是微积分中的一个重要概念,指的是对函数进行求导的逆过程。
基本公式在求不定积分时十分有用,可以极大地简化计算。
以下是16个常用的不定积分基本公式及其推导过程:1. $\int{x^n}dx = \frac{x^{n+1}}{n+1} + C$,其中$n$为常数,$C$为常数。
这是幂函数求积分的基本公式。
通过对$\frac{d}{dx}\left(\frac{x^{n+1}}{n+1}\right)$求导即可推导得到。
2. $\int{\frac{1}{x}}dx = ln,x, + C$。
这是倒数函数求积分的基本公式。
通过对$\frac{d}{dx}(ln,x,)$求导即可推导得到。
3. $\int{e^xdx} = e^x + C$。
这是指数函数$e^x$求积分的基本公式。
直接对$e^x$求导即可推导得到。
4. $\int{a^xdx} = \frac{a^x}{ln(a)} + C$,其中$a$为常数且$a>0$。
这是指数函数$a^x$求积分的基本公式。
通过对$\frac{d}{dx}(\frac{a^x}{ln(a)})$求导即可推导得到。
5. $\int{sinxdx} = -cosx + C$。
这是正弦函数求积分的基本公式。
对$-cosx$求导即可推导得到。
6. $\int{cosxdx} = sinx + C$。
这是余弦函数求积分的基本公式。
对$sinx$求导即可推导得到。
7. $\int{tanxdx} = -ln,cosx, + C$。
这是正切函数求积分的基本公式。
通过对$ln,cosx,$求导即可推导得到。
8. $\int{cotxdx} = ln,sinx, + C$。
这是余切函数求积分的基本公式。
通过对$ln,sinx,$求导即可推导得到。
9. $\int{secxdx} = ln,secx + tanx, + C$。
这是正割函数求积分的基本公式。
不定积分公式总结
不定积分公式总结在微积分的学习中,不定积分是一个非常重要的概念,它是求导的逆运算。
掌握不定积分公式对于解决各种积分问题至关重要。
接下来,就让我们一起系统地总结一下常见的不定积分公式。
一、基本积分公式1、常数的积分:∫C dx = Cx + C₁(其中 C 为常数,C₁为任意常数)这意味着任何常数乘以自变量 x 的积分,结果是该常数乘以 x 再加上一个任意常数。
2、幂函数的积分:∫xⁿ dx =(1/(n + 1))xⁿ⁺¹+ C (n ≠ -1)∫x⁻¹ dx = ln|x| + C3、指数函数的积分:∫eˣ dx =eˣ + C∫aˣ dx =(1 /ln a) aˣ + C (a > 0 且a ≠ 1)4、对数函数的积分:∫ln x dx = x ln x x + C5、三角函数的积分:∫sin x dx = cos x + C∫cos x dx = sin x + C∫tan x dx = ln|cos x| + C∫cot x dx = ln|sin x| + C6、反三角函数的积分:∫arcsin x dx = x arcsin x +√(1 x²) + C∫arccos x dx =x arccos x √(1 x²) + C∫arctan x dx = x arctan x (1/2) ln(1 + x²) + C二、凑微分法相关公式凑微分法是一种非常重要的积分方法,通过将被积表达式凑成某个函数的微分形式,然后进行积分。
例如:∫f(ax + b) dx =(1/a) ∫f(u) du (其中 u = ax + b)常见的凑微分形式有:1、∫cos(ax + b) dx =(1/a) sin(ax + b) + C2、∫sin(ax + b) dx =(1/a) cos(ax + b) + C三、换元积分法相关公式换元积分法分为第一类换元法(凑微分法)和第二类换元法。
不定积分公式大全
不定积分公式大全1.幂函数的不定积分公式- ∫x^n dx = (x^(n+1))/(n+1) + C (n≠-1)- ∫x^(-1) dx = ln,x, + C- ∫e^x dx = e^x + C- ∫a^x dx = (a^x)/(ln(a)) + C2.三角函数的不定积分公式- ∫sinx dx = -cosx + C- ∫cosx dx = sinx + C- ∫sec^2x dx = tanx + C- ∫csc^2x dx = -cotx + C- ∫secx tanx dx = secx + C- ∫cscx cotx dx = -cscx + C3.反三角函数的不定积分公式- ∫1/(√(1-x^2)) dx = arcsin(x) + C- ∫1/(1+x^2) dx = arctan(x) + C- ∫1/,x,(√(x^2-1)) dx = arccosh(x) + C - ∫1/,x,(√(1-x^2)) dx = arcsech(x) + C 4.指数函数和对数函数的不定积分公式- ∫e^x dx = e^x + C- ∫ln(x) d x = xln(x) - x + C- ∫1/x dx = ln,x, + C5.双曲函数的不定积分公式- ∫sinh(x) dx = cosh(x) + C- ∫cosh(x) dx = sinh(x) + C- ∫sech^2(x) dx = tanh(x) + C- ∫csch^2(x) dx = -coth(x) + C- ∫sech(x) tanh(x) dx = sech(x) + C- ∫csch(x) coth(x) dx = -csch(x) + C6.分部积分法的不定积分公式- ∫u dv = uv - ∫v du7.代换法的不定积分公式- ∫f(u) du = ∫f(g(x))g'(x) dx8.积分换元法的不定积分公式- ∫f(x) dx = ∫f(g(t)) g'(t) dt9.坐标系中的不定积分公式- ∫f(x) dx = ∫f(y(x)) y'(x) dx (极坐标系)- ∫f(x, y) dx = ∫f(r cosθ, r sinθ) r dr dθ (极坐标系)10.特殊函数的不定积分公式- ∫e^(-x^2) dx = √π * erf(x) + C (误差函数)这些不定积分公式是数学中常用的公式,通过熟练掌握和灵活运用,可以帮助我们解决各类数学问题。
不定积分公式总结
不定积分小结一、不定积分基本公式(1)∫x a dx=x a+1a+1+C(a≠−1) (2)∫1xdx=ln|x|+C(3)∫a x dx=a xln a+C(4)∫sin x dx=−cos x+C(5)∫cos x dx=sin x+C(6)∫tan x dx=−ln|cos x|+C (7)∫cot x dx=ln|sin x|+C(8)∫sec x dx=ln|sec x+tan x|+C (9)∫csc x dx=ln|csc x−cot x|+C(10)∫sec2x dx=tan x+C (11)∫csc2x dx=−cot x+C(12)∫dx1+x2=arctan x+C(13)∫dxx2+a2=1aarctan xa+C(14)∫dxx2−a2=12aln|a−xa+x|+C(15)∫dxa2−x2=12aln|a+xa−x|+C(16)∫√1−x2=arcsin x+C(17)√a2−x2=arcsin xa+C(18)√x2±a2=ln|x+√x2±a2|+C(19)∫√a2−x2dx=x2√a2−x2+a22arcsinxa+C(20)∫√x2±a2dx=x2√x2±a2±a22ln|x+√x2±a2|+C二、两个重要的递推公式(由分部积分法可得)(1)D n=∫sin n x dx(详情请查阅教材166页)则D n=−cos x sin n−1xn+n−1nD n−2(求三角函数积分)易得D n:n为奇数时,可递推至D1=∫sin x dx=−cos x+C;n为偶数时,可递推至D2=∫sin2x dx=x2−sin2x4+C;(2)I n=∫dx(x2+a2)n(详情请查阅教材173页)则I n+1=12na2x(x2+a2)n+2n−12na2I n易得I n可递推至I1=∫dxx2+a2=1aarctan xa+C(这是有理函数分解后一种形式的积分的求法,大家可以回顾课本恢复记忆)三、普遍方法(一)换元积分法:第一类换元积分法(凑微分法)这类方法需要敏锐的观察力,即观察出某个函数的导数,这就要求我们熟悉常见函数的导数。
常见的不定积分公式大全
常见的不定积分公式大全一、基本积分公式。
1. ∫ kdx = kx + C(k为常数)- 例如,∫ 3dx = 3x + C。
2. ∫ x^n dx=frac{x^n + 1}{n+1}+C(n≠ - 1)- 如∫ x^2dx=frac{x^3}{3}+C,∫ x^(1)/(2)dx=(2)/(3)x^(3)/(2)+C。
3. ∫(1)/(x)dx=lnx+C- 注意这里绝对值的作用,当x>0时,∫(1)/(x)dx=ln x + C;当x<0时,∫(1)/(x)dx=ln(-x)+C。
4. ∫ e^x dx = e^x+C- 例如,∫ 2e^x dx = 2e^x + C。
5. ∫ a^x dx=(a^x)/(ln a)+C(a>0,a≠1)- ∫ 2^x dx=(2^x)/(ln 2)+C。
6. ∫sin xdx =-cos x + C- 例如,∫ 3sin xdx=- 3cos x + C。
7. ∫cos xdx=sin x + C- 如∫ 5cos xdx = 5sin x+C。
8. ∫(1)/(cos^2)xdx=tan x + C- 因为(d)/(dx)(tan x)=sec^2x=(1)/(cos^2)x。
9. ∫(1)/(sin^2)xdx =-cot x + C- 由于(d)/(dx)(-cot x)=(1)/(sin^2)x。
二、换元积分法相关公式(凑微分法)1. ∫ f(ax + b)dx=(1)/(a)∫ f(u)du(令u = ax + b)- 例如,∫sin(2x + 1)dx,令u = 2x+1,则du=2dx,所以∫sin(2x +1)dx=(1)/(2)∫sin udu=-(1)/(2)cos u + C=-(1)/(2)cos(2x + 1)+C。
2. ∫ x^n - 1f(x^n)dx=(1)/(n)∫ f(u)du(令u = x^n)- 如∫ x^2sin(x^3)dx,令u = x^3,du = 3x^2dx,则∫ x^2sin(x^3)dx=(1)/(3)∫sin udu=-(1)/(3)cos u + C=-(1)/(3)cos(x^3)+C。
基本不定积分公式
5.反三角函数的不定积分
∫(1/√(1-x²)) dx = arcsinx + C
∫(1/√(1+x²)) dx = arctanx + C
6.双曲函数的不定积分
∫sinhxdx=coshx+C
∫coshxdx=sinhx+C
7.分式函数的不定积分
∫(1/x+a) dx = ln,x+a, + C
其中C为常数。
2.指数函数的不定积分
∫aˣ dx = (aˣ)/(logₑa) + C
其中a>0且a≠1,C为常数。
3.对数函数的不定积分
∫(1/x) dx = ln,x, + C
4.三角函数的不定积分
∫sinx dx = -cosx + C
∫cosx dx = sinx + C
∫sec²x dx = tanx + C
其中a≠0,C为常数。
8.代换法则
通过代换可以将一个复杂的不定积分转化为一个简单的不定积分,然后利用基本公式进行求解。常见的代换方法有以下几种:
(1)以变量替代法:
当不定积分中的部分表达式与一些变量的导数形式相似时,可以进行变量替代。
(2)以三角函数替代法:
当不定积分中包含三角函数且可三角函数替代。
基本不定积分公式
不定积分是微积分的重要内容,它是定积分的逆运算。通过求导可以得到原函数,而不定积分则是给定一个函数,求出它的原函数。在求解不定积分时,我们需要掌握一些基本的不定积分公式。下面我们将介绍一些常见的基本不定积分公式。
1.幂函数的不定积分
如果n不等于-1,则有:
不定积分基本公式表(经典实用)
不定积分基本公式表(经典实用)以下是一些经典的不定积分公式:1. 基本导数公式:$\int x^ndx=\frac{1}{n+1}x^{n+1}+C$, (当$n≠-1$)$\int e^xdx=e^x+C$$\int \frac{1}{x}dx=\ln|x|+C$, ($x≠0$)$\int \cos xdx=\sin x+C$$\int \sin xdx=-\cos x+C$$\int \sec^2xdx=\tan x+C$$\int \csc^2xdx=-\cot x+C$$\int \frac{1}{x^2+1}dx=\arctan x+C$$\int \frac{1}{\sqrt{1-x^2}}dx=\arcsin x+C$2. 三角函数公式:$\int \tan xdx=\ln|\sec x|+C$$\int \cot xdx=\ln|\sin x|+C$$\int \sec xdx=\ln|\sec x+\tan x|+C$$\int \csc xdx=\ln|\csc x-\cot x|+C$$\int \sin^2 xdx=\frac{1}{2}(x-\sin x\cos x)+C$$\int \cos^2 xdx=\frac{1}{2}(x+\sin x\cos x)+C$$\int \sin^3 xdx=-\frac{1}{3}\cos^3 x+\cos x+C$$\int \cos^3 xdx=\frac{1}{3}\sin^3 x+\sin x+C$3. 特殊公式:$\int e^{ax}\cos bx dx=\frac{e^{ax}}{a^2+b^2}(a\cos bx+b\sin bx)+C$$\int e^{ax}\sin bx dx=\frac{e^{ax}}{a^2+b^2}(a\sin bx-b\cos bx)+C$$\int \frac{1}{x^2-a^2}dx=\frac{1}{2a}\ln|\frac{x-a}{x+a}|+C$ $\int \frac{1}{x^2+a^2}dx=\frac{1}{a}\arctan\frac{x}{a}+C$ $\int \frac{1}{\sqrt{a^2-x^2}}dx=\arcsin\frac{x}{a}+C$其中,$C$为常数。
不定积分公式总结
不定积分公式总结不定积分是微积分中的一项重要内容,它是定积分的逆运算。
在不定积分中,我们需要找到原函数,即原函数的导函数为被积函数。
在实际运算中,我们会使用一系列的公式和方法来求解不定积分。
以下是一些常用的不定积分公式总结。
1. 线性函数:对于形如 f(x) = ax + b 的线性函数,其不定积分为F(x) = (1/2)ax^2 + bx + C,其中 a、b 和 C 为常数。
2.幂函数:不定积分的幂函数公式为F(x)=(1/(n+1))x^(n+1)+C,其中n为实数且n≠-1、例如,对于x^3的不定积分,结果为F(x)=(1/4)x^4+C。
3. 指数函数:不定积分的指数函数公式为 F(x) = (1/a^x * ln,a,) + C,其中 a 为正实数且a ≠ 1、例如,对于 2^x 的不定积分,结果为 F(x) = (1/ln2)2^x + C。
4. 对数函数:不定积分的对数函数公式为 F(x) = x * (ln,x, - 1) + C。
5. 三角函数:不定积分的三角函数公式包括正弦函数、余弦函数、正切函数和余切函数等。
例如,正弦函数的不定积分为 F(x) = -cos(x) + C,余弦函数的不定积分为 F(x) = sin(x) + C。
6. 反三角函数:不定积分的反三角函数公式为 F(x) = arcsin(x) +C 或 F(x) = arccos(x) + C。
其中,arcsin(x) 表示 x 的反正弦函数。
7. 代换法:对于一些复杂的函数,我们可以通过代换来简化积分运算。
常用的代换方法包括令 u = g(x),然后求 du/dx,并将原函数中的x 替换为 u。
8.部分分式分解法:对于一些有理函数,我们可以将其进行部分分式分解,然后再分别求不定积分。
9. 分部积分法:分部积分法是一个用于简化一些积分的方法。
其公式为∫(u * dv) = uv - ∫(v * du)。
这个公式通过不断的选取 u 和dv 来进行迭代,从而简化复杂函数的积分。
不定积分24个基本公式
不定积分24个基本公式一、原函数不定积分的概念原函数的定义:如果区间I上,可导函数F(x)的导函数为f'(x),即对任一x∈I都有 F'(x)=f(x) 或 dF(x)=f(x) dx 那么函数F(x)就称为f(x)(或 f(x) dx)在区间 I 内的一个原函数。
原函数存在定理:如果函数f(x)在区间 I 上连续,那么在区间 I 上存在可导函数F(x),使对任一x∈I都有 F'(x)=f(x).简单地说:连续函数一定有原函数。
不定积分的定义:在区间 I 上,函数f(x)的带有任意常数项的的原函数称为f(x)( f(x)dx ) 在区间 I 上的不定积分,记作∫ f(x)dx . 其中记号∫ 称为积分号,f(x)称为被积函数 f(x)dx 称为被积表达式,x 称为积分变量。
二、基本积分公式三、不定积分的性质设函数f(x)及g(x)的原函数存在,则∫ [ f(x) ± g(x)]dx= ∫ f(x) dx ± ∫ g(x) dx 。
记:合拢的加减积分可以分开加减积分2. 设函数f(x)及g(x)的原函数存在,k为非零常数,则∫ k f(x) dx=k ∫ f(x) dx记者:非零常数乘以积分,可以把常数拿出来,乘以不定积分。
四、第一类换元积分法设f(u)具有原函数,u=φ(x)可导,则有换元公式:也叫做凑微分法五、第二类换元积分法设x=ψ(t)是单调的可导函数,并且ψ'(t)≠0,又设f[ψ(t)]ψ'(t)具有原函数,则有换元公式是x=ψ(x)的反函数。
三种常见的换元公式(注:利用三角形理解去记)利用第二种换元积分法解出的常见的积分公式:六、分部积分法设函数u=u(x)及v=v(x)具有连续导数,则两个函数乘积的导数公式为 (uv)'=u'v+uv',移项,得: u v'=(u v)'-u' v对这个等式两边求积分∫ u v' dx=u v- ∫ u' v dx 称为分部积分公式按零件的集成顺序集成:反对力量指的是三,意思是从后面集成容易,先集成那个。
常见的不定积分(公式大全)
常见的不定积分(公式大全)一、基本积分公式1. $ \int x^n dx = \frac{x^{n+1}}{n+1} + C $,其中 $ n \neq 1 $。
2. $ \int dx = x + C $。
3. $ \int a dx = ax + C $,其中 $ a $ 为常数。
4. $ \int e^x dx = e^x + C $。
5. $ \int \ln x dx = x \ln x x + C $。
6. $ \int \frac{1}{x} dx = \ln |x| + C $。
7. $ \int \sin x dx = \cos x + C $。
8. $ \int \cos x dx = \sin x + C $。
9. $ \int \tan x dx = \ln |\cos x| + C $。
10. $ \int \cot x dx = \ln |\sin x| + C $。
二、换元积分法1. $ \int f(ax + b) dx = \frac{1}{a} \int f(ax + b) d(ax + b) $。
2. $ \int f(x^n) dx = \frac{1}{n} \int f(x^n) d(x^n) $。
3. $ \int f(\sqrt{ax^2 + bx + c}) dx = \frac{1}{a} \int f(\sqrt{ax^2 + bx + c}) d(\sqrt{ax^2 + bx + c}) $。
4. $ \int f(\sqrt{a^2 x^2}) dx = \frac{1}{a} \intf(\sqrt{a^2 x^2}) d(\sqrt{a^2 x^2}) $。
5. $ \int f(\sqrt{x^2 a^2}) dx = \frac{1}{a} \intf(\sqrt{x^2 a^2}) d(\sqrt{x^2 a^2}) $。
三、分部积分法1. $ \int u dv = uv \int v du $。
不定积分公式大全24个
不定积分公式大全24个不定积分,是微积分中的一个重要概念,它是定积分的逆运算。
在求不定积分的过程中,需要利用到一些常见的不定积分公式。
下面,我们将介绍24个常见的不定积分公式,希望能对大家的学习和工作有所帮助。
1. $\int k\,dx = kx + C$,其中$k$为常数,$C$为积分常数。
2. $\int x^n\,dx = \frac{x^{n+1}}{n+1} + C$,其中$n$为常数,$C$为积分常数。
3. $\int e^x\,dx = e^x + C$。
4. $\int a^x\,dx = \frac{a^x}{\ln a} + C$,其中$a$为常数且$a>0$,$a\neq 1$,$C$为积分常数。
5. $\int \sin x\,dx = -\cos x + C$。
6. $\int \cos x\,dx = \sin x + C$。
7. $\int \sec^2 x\,dx = \tan x + C$。
8. $\int \csc^2 x\,dx = -\cot x + C$。
9. $\int \sec x\tan x\,dx = \sec x + C$。
10. $\int \csc x\cot x\,dx = -\csc x + C$。
11. $\int \frac{1}{1+x^2}\,dx = \arctan x + C$。
12. $\int \frac{1}{\sqrt{1-x^2}}\,dx = \arcsin x + C$。
13. $\int \frac{1}{x\ln x}\,dx = \ln|\ln x| + C$。
14. $\int \frac{1}{x}\,dx = \ln |x| + C$。
15. $\int \frac{1}{\sqrt{x}}\,dx = 2\sqrt{x} + C$。
16. $\int \frac{1}{1-x^2}\,dx = \frac{1}{2}\ln\frac{1+x}{1-x} + C$。
不定积分公式大全
不定积分公式大全1.基本的常数不定积分公式:\[\int a dx = ax + C\](其中a为常数,C为常数,表示不定积分的任意常数项)2.幂函数不定积分公式:\[\int x^n dx = \frac{x^{n+1}}{n+1} + C\](其中n为实数,n不等于-1)3.三角函数的不定积分公式:\[\int \sin{x} dx = -\cos{x} + C\]\[\int \cos{x} dx = \sin{x} + C\]\[\int \tan{x} dx = -\ln,\cos{x}, + C\]\[\int \cot{x} dx = \ln,\sin{x}, + C\]\[\int \sec{x} dx = \ln,\sec{x} + \tan{x}, + C\]\[\int \csc{x} dx = \ln,\csc{x} - \cot{x}, + C\]4.反三角函数的不定积分公式:\[\int \arcsin{x} dx = x\arcsin{x} + \sqrt{1-x^2} + C\]\[\int \arccos{x} dx = x\arccos{x} - \sqrt{1-x^2} + C\]\[\int \arctan{x} dx = x\arctan{x} - \frac{1}{2}\ln{(1+x^2)} + C\]5.指数函数和对数函数的不定积分公式:\[\int e^x dx = e^x + C\]\[\int a^x dx = \frac{a^x}{\ln{a}} + C\](其中a为大于0且不等于1的实数)6.常用三角函数的组合不定积分公式:\[\int \sin^2{x} dx = \frac{x}{2} - \frac{\sin{2x}}{4} + C\] \[\int \cos^2{x} dx = \frac{x}{2} + \frac{\sin{2x}}{4} + C\] \[\int \sin{x}\cos{x} dx = -\frac{\cos{2x}}{2} + C\]7.双曲函数的不定积分公式:\[\int \sinh{x} dx = \cosh{x} + C\]\[\int \cosh{x} dx = \sinh{x} + C\]\[\int \tanh{x} dx = \ln,\cosh{x}, + C\]\[\int \coth{x} dx = \ln,\sinh{x}, + C\]8.基本的三角换元法不定积分公式(牛顿-莱布尼茨公式):\[\int f(g(x))g'(x) dx = F(g(x)) + C\](其中F是g的原函数)9.分部积分法的不定积分公式:\[\int u dv = uv - \int v du\](其中u和v是两个函数,du和dv分别是u和v的微分)这些是常用的不定积分公式,通过它们可以求解各种函数的原函数。
常用不定积分公式
常用不定积分公式在微积分的学习中,不定积分是一个非常重要的概念。
不定积分是对函数的原函数的求解,而在求解过程中,常常需要使用到各种各样的不定积分公式。
这些不定积分公式是数学中的基础,掌握它们对于学习微积分、解决各种数学问题都是非常必要的。
一、基础不定积分公式在学习不定积分之前,首先要掌握基本的求导公式。
因为求不定积分实际上就是对常见的函数进行反向求导。
下面是一些基础不定积分公式。
1、常数函数的不定积分公式:$$\int{k}dx = kx + C$$其中k为任意常数,C为积分常数。
2、幂函数的不定积分公式:$$\int{x^{\alpha}}dx = \frac{x^{\alpha + 1}}{\alpha + 1} + C, \qquad (\alpha \neq -1)$$其中$\alpha$为任意常数,C为积分常数。
3、指数函数的不定积分公式:$$\int{e^{x}}dx = e^{x} + C$$$$\int{\sin{x}}dx = -\cos{x} + C$$$$\int{\cos{x}}dx = \sin{x} + C$$$$\int{\tan{x}}dx = -\ln{\mid{\cos{x}}\mid} + C$$$$\int{\cot{x}}dx = \ln{\mid{\sin{x}}\mid} + C$$其中C为积分常数。
5、反三角函数的不定积分公式:$$\int{\frac{dx}{\sqrt{a^2-x^2}}} = \arcsin{\frac{x}{a}} + C$$$$\int{\frac{dx}{a^2+x^2}} = \frac{1}{a}\arctan{\frac{x}{a}} + C$$二、复合函数的不定积分公式在微积分中,我们经常会遇到要对复合函数进行求不定积分的情况,这时需要使用到复合函数的不定积分公式。
下面是一些常用的复合函数的不定积分公式。
1、多项式函数的不定积分公式:$$\int{(f(x))^n}f '(x)dx = \frac{(f(x))^{n+1}}{n+1} + C$$其中’n’表示整数,C为积分常数。
不定积分24个基本公式
不定积分24个基本公式不定积分是微积分中一个重要的概念,它对应于函数的原函数的求解。
在学习不定积分的过程中,掌握了一些基本的公式可以帮助我们更好地解题。
下面是24个常见的不定积分的基本公式:1. $$\int x^n \,dx = \frac{1}{n+1} x^{n+1} + C, \quad (n\neq -1)$$这是幂函数的不定积分公式,其中C是常数。
2. $$\int e^x \,dx = e^x + C$$这是指数函数的不定积分公式。
3. $$\int \sin x \,dx = -\cos x + C$$这是正弦函数的不定积分公式。
4. $$\int \cos x \,dx = \sin x + C$$这是余弦函数的不定积分公式。
5. $$\int \sec^2 x \,dx = \tan x + C$$这是正切函数的不定积分公式。
6. $$\int \csc^2 x \,dx = -\cot x + C$$这是余切函数的不定积分公式。
7. $$\int \frac{1}{x} \,dx = \ln,x, + C$$这是倒数函数的不定积分公式。
8. $$\int \frac{1}{1+x^2} \,dx = \arctan x + C$$这是反正切函数的不定积分公式。
9. $$\int \frac{1}{\sqrt{1-x^2}} \,dx = \arcsin x + C$$这是反正弦函数的不定积分公式。
10. $$\int \frac{1}{\sqrt{x^2+1}} \,dx = \ln(x +\sqrt{x^2+1}) + C$$这是反双曲函数的不定积分公式。
11. $$\int \frac{1}{\sqrt{x^2-1}} \,dx = \ln(x + \sqrt{x^2-1}) + C$$这是反双曲函数的不定积分公式。
12. $$\int \frac{1}{x\ln x} \,dx = \ln,\ln x, + C$$这是对数函数的不定积分公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∫u'(x)·v(x)dx 或表示成
∫u(x)dv(x)=u(x)·v(x)-∫v(x)du(x) 这一公式称为分部积分公式。
二、讲解例题
例1 求∫xexdx
解:令 u(x)=x,v'(x)=ex
则原式为∫u(x)·v'(x)dx的形式
例10
求
x4 1x2
dx
解 : 1 x4x2d x 1x 4 x1 211x2d x (x21)d x 11x2dx
1x3xarcxt aC n 3
例11 求∫3xexdx
解 : 3 xe xd x(3 e )xd x(3 e )x C 3 xe x C
ln 3 e )( 1 ln 3
这就是第二换元积分法。
例 求sinxx dx
解 :令 xt,则 xt2,d x2tdt
sx ix n d x stti2 n td 2 t stid n 2 t cto C s 2 co x C s
(1)如果被积函数含有 a2 x2 ,可以用x=asint换元。
例16 求 1 dx a2x2 解 :设 x a st,i则 n t arx ,c d s a x cito n ,d a s 2 tx 2 a cto
四、 不定积分的性质 ⑴ [∫f(x)dx]'=f(x) 该性质表明,如果函数f(x)先求不定积分再求导,
所得结果仍为f(x) ⑵ ∫F'(x)dx=F(x)+C 该性质表明,如果函数F(x)先求导再求不定积分,
所得结果与F(x)相差一个常数C ⑶ ∫kf(x)dx=k∫f(x)dx (k为常数) 该性质表明,被积函数中不为零的常数因子可以
a
a 2 1 x 2d x a a c cto to d ss td t C arc a x C sin
(2)如果被积函数含有 a2 x2,可以用x=atant换元。
例17 求 1 dx a2x2
解 :设 x a ta t,则 n d a x s2 e td ,ca 2 t x 2 a stec
⑴∵[F(X)+C]'=F'(x)+(C)'=f(x) ∴F(x)+C也是f(x)的原函数
⑵略
这说明函数f(x)如果有一个原函数F(x),那么它
就有无穷多个原函数,它们都可以表示为F(x)+C的
形式。
[定义5.2]
函数f(x)的全体原函数叫做函数f(x)的不定积分, 记作∫f(x)dx,
其中∫叫做积分号,f(x)叫做被积函数,x叫做积 分变量。
二、 不定积分的几何意义
设F(x)是函数f(x)的一个原函数,则曲线y=F(x) 称为f(x)的一条积分曲线,曲线y=F(x)+C表示把曲 线y=F(x)上下平移所得到的曲线族。因此,不定积分 的几何意义是指由f(x)的全体积分曲线组成的积分曲 线族。 例4 求斜率为2x且经过点(1,0)的曲线。 解:设所求曲线为y=f(x),则f’(x)=2x,
1 dx a2x2
ase2ctd t asetc
setcdt lnsetctan t C1
ln
a2x2 a
axC1ln
a2x2
xC
(3)如果被积 例18 求
函数
1
含有
dx
x2
a2
x2a2
,可以用x=asect换元。
解 :设 x a ste ,则 d c a x ste ta t c,d n x 2 t a 2 a ta t n
1
⑸ ∫exdx=ex+C
⑹ ∫sinxdx=-cosx+C ⑺ ∫cosxdx=sinx+C
⑻ ∫sec2xdx=tanx+C ⑼ ∫csc2xdx=-cotx+C
⑽ a2 1x2dxarca txaC n
⑾
1 dxarcxs in C
a2x2
a
例5 求 1 dx
解 : 1 d x2 xxx5 2d x2x2 3C
x2 x
3
说明:冪函数的积分结果可以这样求,先将被积函数
的指数加1,再把指数的倒数放在前面做系数。
例6
求
1 dx
1x2
解:
1 dxarcsixnC 1x2
又
1
1x2 dx(
1 )dxarccoxsC
1x2
两式都是本题的解
[注意] 不能认为 arcsinx=-arccosx,他们之间
的关系是 arcsinx=π/2-arccosx
∵(ex)'=ex ∴v(x)=ex,
由分部积分公式有
∫xexdx=x·ex-∫exdx=xex-ex+C
例2 求∫xcos2xdx
解:令 u(x)=x,v'(x)=cos2x,则v(x)= 1 sin2x
于是∫xcos2xdx= 1
xsin2x-
1
2 ∫sin2xdx
=1
2 xsin2x+
1
2 cos2x+C
这时,我们可以设被积函数的自变量为u, 如果能从被积式中分离出一个因子u’(x)来, 那么根据∫f(u)u'(x)dx=∫f(u)du=F(u)+C 就可以求出不定积分。
这种积分方法叫做凑微分法。
[讲解例题]
例2 求∫2sin2xdx
解:设u=2x,则du=2dx
∫2sin2xdx=∫sin2x·2dx=∫sinudu
4
二、第二换元积分法
例如,求
1 dx ,把其中最难处理的部分换
x 11
元,令u
x1则原式=
u
1
1
dx,再反解x=u2+1,
得dx=2udu,代入
x 1 1 1d x 2 uu 1d u 2 (1u1 1 )du
2 [ u lu n 1 ] C 2x 1 2 l|n x 1 1 | C
例1 求下列函数的一个原函数:
⑴ f(x)=2x
⑵ f(x)=cosx
解:⑴∵(x2)'=2x
∴x2是函数2x的一个原函数
⑵∵(sinx)'=cosx
∴sinx是函数cosx的一个原函数
这里为什么要强调是一个原函数呢?因为一个函数
的原函数不是唯一的。
例如在上面的⑴中,还有(x2+1)'=2x,
(x2-1)'=2x
故y=x2+C, ∵曲线过点(1,0)∴以x=1、y=0代入得0=12+C, 解得C=-1, 因此,所求曲线为y=x2-1。
三、 基本积分公式
由于积分运算是求导运算的逆运算,所以由基本
求导公式反推,可得基本积分公式
⑴ ∫dx=x+C
⑶ ⑷
1axxddxxlna| xx |CC
lna
⑵ ∫xαdx= 1 x1 C (α≠-1)
=-cosu+C=-cos2x+C
注意:最后结果中不能有u,一定要还原成x。
例3
求
(x2
x 1)4
dx
解:设u=x2+1,则du=2xdx
(x 2 x 1 )4d 1 x 2u 4 d u 1 6 u 3 C 6 (x 2 1 1 )3 C
例5 求2xex2dx
解:设u=x2,则du=2xdx
例求x x1dx
解 :xx 1 d x [x (1 )x 1 x 1 ] dx
( x 1 ) 2 3 d ( x 1 ) ( x 1 ) 1 2 d ( x 1 ) 2 ( x 1 ) 5 2 2 ( x 1 ) 2 3 C
53
例 求∫sin3xcosxdx 解:∫sin3xcosxdx=∫sin3xd(sinx)= 1 sin4x+C
5.2 不定积分的计算 一、 直接积分法
对被积函数进行简单的恒等变形后直接用 不定积分的性质和基本积分公式即可求出不定 积分的方法称为直接积分法。
运用直接积分法可以求出一些简单函数的 不定积分。
例 1 求 x12dx
解 :x12d x(x22x1)d xx2d x2xdxd x
1x3x2xC 3
x)dx
该性质表明,两个函数的和或差的不定积分等于 这两个函数的不定积分的和或差
五、 基本积分公式的应用 例7 求∫(9x2+8x)dx 解:∫(9x2+8x)dx=∫9x2dx+∫8xdx
=3∫3x2dx+4∫2xdx=3x3+4x2+C
所以 x2、x2+1、x2-1、x2+C (C为任意常数)
都是函数f(x)=2x的原函数。
[定理5.1] 设F(x)是函数f(x)在区间I上的一个原函数,
C是一个任意常数,那么, ⑴ F(x)+C也是f(x) 在该区间I上的原函数 ⑵ f(x)该在区间I上的全体原函数可以表示
为F(x)+C 证明:
2
4
有时,用分部积分法求不定积分需要连续使
用几次分部积分公式才可以求出结果。
例5:求∫x2e-2xdx
解:令u(x)=x2,v'(x)=e-2x,则v(x)= 1 e 2x
2
于是
x2 e 2xd x 1x2 e 2x2 x(1e 2x)dx
2
2
1 x 2 e 2 x x 2 x d e x 1 x 2 e 2 x ( 1 x 2 x e 1e 2 x d )x
∫x2sinxdx =-x2cosx-∫2x(-cosx)dx
[分部积分法的列表解法]
例如:求 ∫x2sinxdx
x2
sinx
求导↓ + ↓积分
-
2x
-cosx
∫x2sinxdx =-x2cosx+∫2xcosxdx
求导↓ - ↓积分
2 + -sinx
=-x2cosx+2xsinx -∫2sinxdx
2 x x 2 d e x e x 2 2 x d e u d x e u u C e x 2 C 例7 求tanxdx