双功能化手性相转移催化剂的合成及其在不对称反应中的应用
有机化学中的手性催化剂应用于不对称合成
![有机化学中的手性催化剂应用于不对称合成](https://img.taocdn.com/s3/m/94175823974bcf84b9d528ea81c758f5f61f29c7.png)
有机化学中的手性催化剂应用于不对称合成手性催化剂是有机合成中一种重要的工具,它们能够有效地促进不对称合成反应,合成出具有高立体选择性的手性化合物。
手性化合物在药物、农药、香料等领域具有广泛的应用价值,因此手性催化剂的研究和应用一直备受关注。
手性催化剂的研究可以追溯到20世纪初,当时的研究主要集中在金属有机化合物的催化反应上。
然而,随着有机合成的发展和对手性化合物需求的增加,研究者们开始寻找新的手性催化剂,并发现了许多有效的有机催化剂。
不对称合成是有机合成中的一种重要反应类型,它能够合成出具有高立体选择性的手性化合物。
手性催化剂在不对称合成中起到了至关重要的作用。
它们能够选择性地催化反应的一个立体异构体,从而合成出具有高立体选择性的手性化合物。
手性催化剂的应用范围非常广泛。
例如,铂族金属配合物是一类常用的手性催化剂。
它们能够催化氢化、氢甲酰化、氢化醛等反应,合成出具有高立体选择性的手性醇、醛等化合物。
此外,手性有机分子也被广泛应用于不对称合成中。
例如,手性配体能够与金属形成配位键,催化不对称氢化、不对称氧化等反应,合成出具有高立体选择性的手性化合物。
手性催化剂的应用还可以拓展到不对称催化反应中。
不对称催化是一种能够合成具有高立体选择性的手性化合物的重要手段。
手性催化剂能够选择性地催化反应的一个立体异构体,从而合成出具有高立体选择性的手性化合物。
不对称催化反应广泛应用于有机合成中,例如,不对称氢化、不对称氧化、不对称亲核取代等反应。
手性催化剂的应用还可以拓展到不对称合成中的其他领域。
例如,手性催化剂可以应用于合成手性药物。
手性药物具有高立体选择性,能够更好地与生物体相互作用,因此具有更好的药效和更低的副作用。
手性催化剂能够选择性地合成出具有高立体选择性的手性药物,从而提高药物的疗效。
手性催化剂的应用在有机化学中具有重要的意义。
它们能够有效地促进不对称合成反应,合成出具有高立体选择性的手性化合物。
手性化合物在药物、农药、香料等领域具有广泛的应用价值。
手性相转移催化剂及其在不对称催化反应中的应用
![手性相转移催化剂及其在不对称催化反应中的应用](https://img.taocdn.com/s3/m/f0bd9f557ed5360cba1aa8114431b90d6c858910.png)
手性相转移催化剂及其在不对称催化反应中的应用
曾莎莎;唐瑞仁;Artem Melman;黄可龙
【期刊名称】《化学进展》
【年(卷),期】2006(018)006
【摘要】综述了手性季铵盐、手性冠醚以及其它新型手性相转移催化剂的制备及其在各种不对称相转移催化反应如烷基化反应、Michael加成反应、Aldol反应、Mannich反应、氧化反应及还原反应中应用的最新进展.
【总页数】9页(P743-751)
【作者】曾莎莎;唐瑞仁;Artem Melman;黄可龙
【作者单位】中南大学化学化工学院,长沙,410083;中南大学化学化工学院,长沙,410083;Department of Organic Chemistry,Hebrew University of Jerusalem, Jerusalem 91904, Israel;中南大学化学化工学院,长沙,410083
【正文语种】中文
【中图分类】O621.25;O643.3
【相关文献】
1.手性相转移催化剂及其不对称催化反应 [J], 宓爱巧;楼荣良;蒋耀忠
2.手性pybox-金属络合物及其在不对称催化反应中的应用 [J], 钟丽琴;唐瑞仁;杨青
3.手性双金属催化剂及其在不对称催化反应中的应用 [J], 马磊;陈晴
4.手性螺环配体及催化剂在不对称催化反应中的应用研究进展 [J], 许聪;胡文浩
5.官能团化的手性联芳基单齿膦配体在不对称均相金催化反应中的应用 [J], 赵可;洪志;张立明
因版权原因,仅展示原文概要,查看原文内容请购买。
有机合成中的不对称催化反应研究
![有机合成中的不对称催化反应研究](https://img.taocdn.com/s3/m/064295d5b9f67c1cfad6195f312b3169a451eab6.png)
有机合成中的不对称催化反应研究不对称催化反应是有机合成领域中一项重要的研究内容,它可以用来合成具有手性的化合物。
近年来,不对称催化反应的研究取得了显著的进展,成为有机化学中不可忽视的一部分。
本文将探讨不对称催化反应的原理和应用,以及目前的研究热点。
一、不对称催化反应的原理不对称催化反应是在催化剂的作用下,由手性试剂参与反应,生成手性产物的化学反应。
手性催化剂是引起手性诱导的关键因素,它们可以选择性地催化一个手性基团与官能团之间的反应,从而控制产物的手性。
目前常用的催化剂包括金属配合物、酶类、有机催化剂等。
手性催化反应的实质是通过手性催化剂的选择性诱导,使得反应底物只与特定手性的活性位点发生作用,从而选择性地生成手性产物。
二、不对称催化反应的应用1. 药物合成不对称催化反应在药物合成领域中具有重要的应用价值。
由于手性分子对于药物的活性和副作用具有重要影响,因此制备手性药物成为了一个重要的课题。
不对称催化反应可以高效地合成手性分子,从而为药物合成提供了重要的途径。
2. 化学合成不对称催化反应在有机化学中也得到广泛应用。
它可以有效地构建手性中心,合成手性杂环、手性酮、手性醇等化合物。
这些化合物在化学领域中具有广泛的应用,例如合成液晶材料、功能材料等。
三、不对称催化反应的研究热点1. 新型催化剂的设计与合成随着对不对称催化反应的需求不断增加,研究人员致力于开发新型高效的手性催化剂。
设计和合成新型催化剂是不对称催化反应研究的一个重要方向。
研究人员通过合理设计催化剂结构,调控其立体化学和反应活性,以提高反应的催化效率和产物的选择性。
2. 机理研究对不对称催化反应机理的研究可以帮助人们更好地理解反应过程和作用机制。
通过探索催化剂与底物之间的相互作用,人们可以了解催化剂的催化机理,并为优化反应条件提供理论指导。
3. 应用拓展寻找新的反应类型和应用领域是不对称催化反应研究的一个重要方向。
目前,研究人员正在努力开发新的催化反应体系,用于合成更加复杂和多样化的手性化合物,并拓展其在药物合成、材料科学等领域的应用。
新型手性相转移催化剂的合成及其应用
![新型手性相转移催化剂的合成及其应用](https://img.taocdn.com/s3/m/0edcb7fc6394dd88d0d233d4b14e852458fb3977.png)
中国药科大学学报~Jou rna l of Ch ina Pha rm aceu t ica l U n iversity 2000 31 3 : 163 168 163 新型手性相转移催化剂的合成及其应用Ξ 陈继俊徐明华1 倪沛洲施欣忠施耀曾2 中国药科大学有机化学教研室南京210009 江苏农用化学有限公司南京210024 2 南京大学化学系南京210093 1 摘要合成了两个新型含1 32亚乙氧基链手性双季铵盐相转移催化剂碘化1 82双N 2苄基2 3S 4S 23 42二羟基四氢吡咯23 62二氧辛烷PTC 和碘化 1 112双N 2苄基2 3S 4S 23 42二羟基四氢吡咯23 6 92三氧十一烷PTC 并用于12 3 42亚甲二氧苯基222丙酮的不对称烃基化反应合成了六个手性苯丙酮衍生物。
研究了在手性双季铵盐相转移催化剂PTC 存在下二苯亚甲氨基乙酸乙酯的不对称烃基化反应合成了 5 个光学活性的Α2氨基酸。
关键词相转移催化不对称烃基化手性双季铵盐氨基酸相转移催化是近二十年来应用在有机合成的多缩乙二醇与三甲胺反应得1 32亚乙氧基链双季新技术而手性相转移催化则是不对称合成中一个铵盐用碘代多缩乙二醇与N N 2二甲基十八碳胺较新的领域1 。
由于利用手性相转移催化剂可以充反应得到胶束1 32亚乙氧基链双季铵盐7 。
该类新分利用手性源且反应具有一般相转移催化快速、型相转移催化剂可催化反常R eim er 2T iem ann 反简便、后处理简单、产率高等特点因而这方面的研应。
随后我们以N 2甲基麻黄素为原料合成了新究颇引人注目。
2 手性季铵盐是进行不对称诱导的催化剂 1 32亚乙氧基链手性双季铵盐并报道了有效催化剂之一 3 已被广泛地用于不对称取在其诱导下硝基甲烷与查尔酮的M ichael 加成反代4 、环氧化5 及M ichael 加成6 等反应。
随着非应8 。
结果表明采用手性双季铵盐催化剂所取得均相有机合成的发展活性高功能多用量少的相的诱导效果比单季铵盐好。
手性有机催化剂在不对称合成中的应用
![手性有机催化剂在不对称合成中的应用](https://img.taocdn.com/s3/m/38bb8516bc64783e0912a21614791711cc797909.png)
手性有机催化剂在不对称合成中的应用导言:不对称合成是有机合成领域中的重要分支,通过构建手性化合物(分子)来合成具有特定活性和药理学效应的化合物。
手性有机催化剂作为一种重要的工具,已经在不对称合成中发挥了重要的作用。
本文将介绍手性有机催化剂的定义和分类、应用领域以及未来的发展前景。
一、手性有机催化剂的定义与分类1. 手性有机催化剂定义手性有机催化剂是能够引发不对称转化的有机分子,具有手性结构,能够通过催化作用加速反应速率,并且在反应过程中保持手性不变。
2. 手性有机催化剂的分类根据功能团的不同,手性有机催化剂可以分为酸碱型、氧化还原型、配位催化型等。
酸碱型手性有机催化剂通过质子转移、亲电或核负电子云的机制实现不对称催化。
氧化还原型手性有机催化剂通过电子转移实现不对称催化。
配位催化型手性有机催化剂通过形成物种激活催化的底物。
二、手性有机催化剂的应用领域1. 不对称氢化反应不对称氢化反应是手性有机催化剂的重要应用领域之一。
通过手性有机催化剂的催化作用,可以将不对称亲核试剂与不对称元素试剂在氢化反应中进行底物的选择性催化还原,从而产生优选手性的产物。
2. 不对称酯化反应手性有机催化剂在不对称酯化反应中也有广泛的应用。
通过手性有机催化剂的作用,使酸和醇的酯化反应具有高选择性,得到具有高催化效率和高产率的手性酯产物。
3. 不对称亲核试剂与不对称叔亲试剂反应不对称亲核试剂与不对称叔亲试剂反应是手性有机催化剂的另一个重要应用领域。
通过手性有机催化剂的引导,亲核试剂和叔亲试剂可以进行高度对映选择性的反应,生成手性中心。
4. 不对称氧化反应手性有机催化剂在不对称氧化反应中具有重要的应用价值。
通过手性有机催化剂的作用,可以选择性氧化底物,产生手性醇、醛和酮等有机化合物。
三、手性有机催化剂的发展前景手性有机催化剂在不对称合成中的应用已经取得了令人瞩目的成果,但仍然有许多挑战和机遇等待我们探索和发现。
未来的发展趋势包括拓宽应用领域,发展更高效的催化剂,优化合成方法,提高催化效率等方面。
不对称催化技术
![不对称催化技术](https://img.taocdn.com/s3/m/6f71f6ee85254b35eefdc8d376eeaeaad1f316ef.png)
不对称催化技术不对称催化技术是一种重要的化学合成方法,可以有效地合成具有高立体选择性的有机分子。
本文将介绍不对称催化技术的原理、应用以及未来的发展趋势。
不对称催化技术是一种利用手性催化剂催化的化学反应方法,可以在不改变反应物的对称性的情况下合成手性化合物。
手性化合物是指具有非对称碳原子或其他手性中心的有机分子,它们在生物学、药物学和材料科学等领域具有重要的应用价值。
而不对称催化技术的发展使得手性化合物的合成更加高效、具有高立体选择性和环境友好。
不对称催化技术的核心是手性催化剂。
手性催化剂是一种具有手性结构的化合物,它可以选择性地催化反应物中的一个对映异构体,从而合成手性化合物。
手性催化剂可以通过配体和金属离子之间的配位作用实现对反应的控制。
通常情况下,手性催化剂可以通过手性配体与金属离子形成配位键,从而形成活性催化剂。
活性催化剂可以与反应物发生反应,并在反应过程中控制反应物的立体构型。
不对称催化技术在有机合成中具有广泛的应用。
它可以用于合成药物、农药、天然产物和功能材料等重要化合物。
通过选择不同的手性催化剂和反应条件,可以实现多种不同类型的不对称催化反应。
例如,不对称氢化、不对称酰胺合成、不对称亲核取代等。
这些反应具有高立体选择性和高效率,可以大大简化合成路线,提高产率,减少废物产生。
不对称催化技术的发展还面临一些挑战。
首先,手性催化剂的设计和合成是一个复杂而繁琐的过程。
需要考虑催化剂的活性、选择性、稳定性等因素,同时还要考虑合成的成本和环境影响。
其次,催化剂的寿命和稳定性也是一个重要的问题。
在催化反应中,催化剂可能会失活或被污染,导致反应效果下降。
因此,研究如何提高催化剂的稳定性和寿命是一个重要的方向。
此外,不对称催化技术还需要更加深入的理论研究,以揭示反应机理和催化剂的作用方式。
随着化学合成的不断发展,不对称催化技术在有机合成中的应用前景非常广阔。
未来的发展方向包括开发更加高效、选择性和环境友好的手性催化剂,研究新的不对称催化反应,探索更加复杂的催化体系等。
有机合成中的不对称催化
![有机合成中的不对称催化](https://img.taocdn.com/s3/m/e90e789085254b35eefdc8d376eeaeaad1f31610.png)
有机合成中的不对称催化不对称催化是有机合成领域中的一项重要技术,该技术通过使用手性催化剂,使得具有对称结构的底物在反应中进行不对称转化,从而得到具有手性的有机化合物。
本文将介绍不对称催化的基本原理、应用和发展趋势。
一、不对称催化的基本原理不对称催化是利用手性催化剂介导的化学反应,使得反应生成的产物具有手性。
手性催化剂是指分子具有手性结构并且可以选择性地催化反应的物质。
不对称催化的基本原理是在反应过程中,手性催化剂与底物形成一个手性催化剂-底物复合物,通过催化剂与底物之间的相互作用使得底物选择性发生反应。
催化剂与底物之间的相互作用包括氢键、π-π相互作用、静电相互作用等。
二、不对称催化的应用不对称催化在有机合成中具有广泛的应用。
其中,不对称催化反应被广泛应用于制备手性药物、农药和天然产物合成等领域。
通过不对称催化反应,可以有效地控制反应反应的立体选择性,提高反应产物的纯度和产率。
不对称催化的应用还可以降低反应底物的用量,减少环境污染。
三、不对称催化的发展趋势随着有机合成领域的发展,不对称催化技术也在不断演进和改进。
目前,新型手性催化剂的设计和合成成为不对称催化的研究热点。
研究人员通过调节手性催化剂的结构和配体,设计出更加高效的手性催化剂,提高反应的立体选择性和催化活性。
此外,开展反应底物的扩展研究,拓展不对称催化反应的适用范围也是当前不对称催化研究的方向之一。
总结:不对称催化在有机合成中起着重要的作用。
通过使用手性催化剂,不对称转化使得底物具有手性的有机化合物,广泛应用于制备手性药物、农药和天然产物合成等领域。
当前的研究趋势是设计和合成高效的手性催化剂,拓展不对称催化反应的底物范围,以进一步提高反应的效率和立体选择性。
随着对不对称催化的深入研究,相信在有机合成领域将有更多新的突破和进展。
有机合成中的不对称催化
![有机合成中的不对称催化](https://img.taocdn.com/s3/m/8b58db08bf1e650e52ea551810a6f524ccbfcbf2.png)
有机合成中的不对称催化不对称催化是一种在有机合成中广泛应用的重要方法。
它通过引入手性配体,使得对称的反应转化为具有手性产物的反应。
在这篇文章中,将介绍不对称催化的原理、应用以及发展趋势。
一、不对称催化的原理不对称催化的原理基于手性配体和手性催化剂的应用。
手性配体是具有手性结构的有机化合物,可以与金属离子配位形成手性配位化合物。
这些手性配体能够通过选择性吸附、空间位阻等方式影响反应的立体选择性,从而实现对称反应的不对称性转化。
而手性催化剂则是由手性金属配合物和手性有机分子组成的复合物,能够通过催化作用使反应产生手性产物。
二、不对称催化的应用1. 不对称还原反应不对称还原反应是不对称催化中的一种重要应用。
通过引入手性配体和催化剂,可以实现对不对称有机物的还原,得到具有手性的醇、胺等化合物。
这种方法在医药、农药、香料等领域中有广泛的应用。
2. 不对称氧化反应不对称氧化反应是不对称催化的另一种重要应用。
通过引入手性配体和催化剂,可以使对称的氧化反应转化为不对称的氧化反应,得到手性醛、酮等化合物。
这种方法在合成有机中间体和天然产物的过程中起着重要的作用。
3. 不对称烯烃化反应不对称烯烃化反应是一种在不对称催化中较具挑战性的应用。
通过引入手性配体和催化剂,可以实现对不对称烯烃化反应的控制,得到具有手性的烯醇、烯醛等化合物。
这种方法在生物活性分子的合成中具有广阔的应用前景。
三、不对称催化的发展趋势随着合成化学的发展,不对称催化在有机合成中的应用越来越重要。
未来,不对称催化的发展趋势主要体现在以下几个方面:1. 发展更多的手性配体和催化剂为了提高不对称催化的效率和选择性,需要开发更多的手性配体和催化剂。
这些新型配体和催化剂能够应对更广泛的反应类型,提高催化剂的稳定性和反应活性。
2. 开发新的反应类型目前,大多数不对称催化反应都是针对特定的反应类型。
未来,需要发展更多新的反应类型,探索更广泛的不对称催化反应。
这将有助于拓宽不对称催化的应用范围,并提供更多的合成路线。
手性二胺的合成及其在催化不对称反应中的应用_艾林
![手性二胺的合成及其在催化不对称反应中的应用_艾林](https://img.taocdn.com/s3/m/a6cf63e20975f46527d3e16d.png)
2005年第25卷有机化学V ol. 25, 2005第11期, 1319~1333 Chinese Journal of Organic Chemistry No. 11, 1319~1333*E-mail:czhang@Received August 31, 2004; revised February 11, 2005; accepted March 24, 2005.国家自然科学基金(No. 20172008)资助项目.Chart 1此外, 近几年来, 在手性二胺化合物研究领域里又有一些新型的手性二胺及其衍生物被合成出来,有代表性的二胺见Chart 2.这不仅是因为这类化合物能够被广泛地应用于多种催化不对称反应并取得很好的反应结果, 而且还因以它们为母体能够衍生出许许多多具有良好催化活1320有机化学V ol. 25, 2005Chart 2的合成有了较快的发展. 这类化合物及其衍生物的合成和应用, 已经成为许多化学研究小组和化学研究者们十分感兴趣的研究领域之一.1 手性二胺的合成及其在催化不对称反应中的应用1.1 1,2-二苯基-1,2-二氨基乙烷及衍生物的合成及在催化不对称反应中的应用Corey等[9]合成了(±)-1,2-二氨基-1,2-二苯基乙烷化合物及其衍生物. 他们用二苯基乙二酮(7)和环己酮(8)在醋酸铵和醋酸存在的条件下, 在120 ℃时加热反应1 h, 以97%的产率得到环二亚胺类化合物9, 再将其在-78 ℃下, 用四氢呋喃-氨基锂(液氨和金属锂)进行还原, 以95%的产率得到咪唑烷基类化合物10, 再将10的二氯甲烷溶液分别用2 mol•L-1的盐酸和碱液处理后, 经纯化便可得(±)-1,2-二氨基-1,2-苯基乙烷. 最后用酒石酸进行拆分, 得到了光学纯的(R,R)-和(S,S)-1,2-二氨基-1,2-苯基乙烷(1). 进一步将1生成其衍生物11, 12和13, 将化合物11再进一步转化可以生成其衍生物14和15, 化合物12和13分别与BBr3作用可以得到其衍生物16和17 (Scheme 1).Corey等首次将化合物(S,S)-15用于Diels-Alder反应, 并得到了很好的反应结果, 产率为88%~94%, ee值达到了91%~95% (Eq. 1).Corey等将化合物(R,R)-16用于催化Aldol反应, 也得到了很好的反应结果, 产率为85%~95%, ee值最高达到了98%以上(Eq. 2).Corey等[16]又用类似的合成方法, 以二苯基乙二酮的衍生物24为底物, 合成了一系列具有C2对称轴的二胺类化合物(Scheme 2).Alexakis等[17]用金属锌和氯甲基硅烷进行亚胺的还原性偶联, 合成了具有C2对称轴的手性邻二胺类化合物(Eq. 3).实验证明, 这是一种行之有效的合成二胺类化合物的方法, 适合较大量地合成, 而且成本低廉. Scheme 1No. 11艾林等:手性二胺的合成及其在催化不对称反应中的应用1321Scheme 2Lemaire 等[18]用下面的方法合成了具有C 2对称轴的手性二胺配体(Scheme 3).Scheme 3Lemaire 等用合成出来的手性二胺配体45和[Ir(COD)2]BF 4作催化剂, 分别对苯甲酰甲酸甲酯和苯乙酮进行还原, 分别得到了产率为73%~100%, ee 值为15%~80%和产率为44%~100%, ee 值为24%~61%的反应结果(Scheme 4).Scheme 4Raimondi 等[19]在室温下, 用SmI 2将亚胺通过还原性偶联, 以syn 高于或等于anti 的比例得到了相对应的二胺(Eq. 4), 并且在这个反应中, 过量金属镁的使用,能够进一步催化反应的发生. 另外, 如果由对映体纯的胺所生成的亚胺进行偶联反应时, 能够得到立体化学控制的产物.1322有 机 化 学 V ol. 25, 2005从以上的反应中,可以初步得出这样的结论, 亚胺进行还原性偶联是合成1,2-二胺类化合物最便捷的方法之一[2,20,21].Raimondi 研究小组[22]对上述这种合成方法又进行了进一步的研究. 当以不同的醛和苄胺反应生成亚胺后, 再进行还原性偶联反应, 得到了以syn 占优势的产物(Eq. 5).当用苯甲醛和不同的胺反应生成亚胺后, 再进行还原性偶联反应, 同样也得到了以syn 占优势的产物(Eq. 6).以上实验是通过变换反应底物醛和胺, 分别进行的分子间偶联反应, 并且得到了以syn 占优势的产物.下面的反应是发生在亚胺分子内的还原性偶联反应, 用两种不同的亚胺分别进行了反应(Eqs. 7, 8).以上实验结果表明, 把亚胺的还原性偶联进一步深化, 使其反应不仅能够在分子间发生, 而且还能够使其反应在分子内发生, 得到了具有C 2对称轴的手性二胺.中国科学院成都有机化学研究所的邓金根等[23]合成了新的1,2-二苯基-1,2-二氨基乙烷衍生物, 并用于酮的催化不对称还原反应的研究, ee 值最高能够达到95%, 取得了很好的反应结果(Scheme 5).Scheme 5Kobayashi 等[24]报道了将1,2-二苯基-1,2-二氨基乙烷衍生物62用于催化Mannich 类型反应, 得到了具有高对应选择性的反应结果, ee 值均在90%以上(Eq. 9, Table 1).No. 11艾林等:手性二胺的合成及其在催化不对称反应中的应用1323表1 催化不对称Mannich 型反应的改进Table 1 Improvement of asymmetric Mannich-type reaction Entry Diamine Time/h Yield/% ee /% 1 62a 72 9392 2 62a 72 55 95 362b 20 86 93 4 62c 20 95 96 562c20 91 95这是2004年的研究成果,它充分表明了1,2-二苯基-1,2-二氨基乙烷及其衍生物在催化不对称应用方面的发展前景. 目前, 1,2-二苯基-1,2-二氨基乙烷及其衍生物的合成及应用也正处在不断发展之中.1.2 1,2-二氨基环己烷及衍生物的手性合成及在催化不对称反应中的应用反-1,2-二氨基环己烷及衍生物在催化不对称反应中是一类有效的手性试剂和手性配体[25]. 1926年, Wieland 及其合作者们[26]首次报道了用环己烷邻二甲酸和酰肼通过Curtius 反应合成出了trans -1,2-二氨基环己烷. 从那以后, 一些关于1,2-二氨基环己烷的合成方法也有过报道[27]. 现在, 这种具有C 2对称轴的二胺能够以相对低的价格就可以获得, 因为它是Nylon 66 (尼龙66)生产中所用1,6-己二胺纯化过程中的副产品[28,29]. 在水溶液中, 用D -或L -酒石酸拆分就能够得到对映体(R ,R )-1,2-二氨基环己烷和(S ,S )-1,2-二氨基环己烷[30](Eq. 10).尽管1,2-二氨基环己烷很容易获得, 但是, 多年来,在有机不对称合成方面, 它的应用仍然处于一种待开发和利用阶段. 直到20世纪80年代, Fujita 及其合作者[31]在α-酰基氨基丙烯酸不对称氢化反应和Hanessian 及合作者[32]在形成C —C 键的反应中进行研究报道后, 这种手性配体在许多催化不对称反应中的应用才开始逐渐发展起来[25].Lemaire 等[33]利用(1R ,2R )-1,2-二氨基-环己烷和(1R ,2R )-(+)-N ,N'-二甲基-1,2-二苯基-1,2-二氨基乙烷及其衍生出来的新二胺配体, 将其和Ir 和Rh 的金属化合物做催化剂, 催化还原含有羰基的化合物(Scheme 6).Lemaire 等用手性二胺2, 45b , 64和65分别与[Ir(COD)Cl]2, [Ir(COD)2]BF 4和[Rh(COD)Cl]2, [Rh- (NBD)2]BF 4作催化剂, 催化苯甲酰甲酸甲酯得到如Eq. 11的反应结果.Scheme 6Lemaire 等[34]对这一反应又进行了进一步的研究,合成了一系列的类似物, 并将其和[Ir(COD)Cl]2等作用, 对苯乙酮及衍生物进行了催化不对称还原反应(Eq. 12).Mohar 等[35]将合成的N -(N ,N -二烷基氨基)氨磺酰- 1,2-二胺类型的配体分别和Ru(II), Ru(III)的化合物作用, 对含有酮羰基的化合物41, 43, 70和71进行了催化还原反应(Chart 3), 得到了很好的对映选择性结果(ee 值除了一个33%外, 其余均在65%~99%之间).Chart 31324有 机 化 学 V ol. 25, 2005中国科学院上海有机化学研究所的施敏等[36]通过合成二胺及其新的衍生物配体, 并与RuCl 2(PPh 3)3作用, 对酮羰基进行不对称氢化还原反应, 也得到了很好的反应结果, ee 值达到了44%~93% (Eq. 13).Alexakis 等[37]利用(1R ,2R )-二氨基环己烷合成了一系列的具有C 2对称轴N ,N'-二取代的手性二胺配体84~98 (Scheme 7). 这一系列二胺类化合物的合成, 为其今后在催化不对称反应的研究提供了大量可供选择的新配体. 同时, 也为合成新的二胺类配体衍生物提供了合成方法方面的借鉴和参考.实际上, (1R ,2R )-(-)-1,2-二氨基环己烷, (1R ,2R )- (+)-1,2-二苯基-1,2-二氨基乙烷和(R )-(+)-1,1'-二萘基- 2,2'-二胺在催化不对称方面都是有着很重要作用的典型配体. 施敏等[38]利用上述三种典型的配体合成了一些新的二胺衍生物97, 98和99 (Scheme 8), 并将其用于二乙基锌对醛的催化不对称加成反应, 取得了较好的反应结果, ee 值最高达到了73%.事实上, 这三种典型配体及其衍生物的合成与应用正处于不断研究和发展之中, 新的合成方法和应用领域也在不断出现. 特别是从近些年来的文献报道中, 可以看到这一领域的研究工作正在引起人们更多的关注. 1.3 1,1'-二萘基-2,2'-二胺及衍生物的合成及在催化不对称反应中的应用从以上对1,2-二苯基-1,2-二氨基乙烷和1,2-二氨基环己烷这两种重要的二胺及衍生物的研究中可以看出, 1,1'-二萘基-2,2'-二胺及衍生物, 与上述两种配体及衍生Scheme 7Scheme 8No. 11艾林等:手性二胺的合成及其在催化不对称反应中的应用1325物的合成以及对催化不对称反应的应用, 经常是相互渗透和交织在一起的.Van't Hoff 在轴手性[39]方面的预言[39,40]为立体化学奠定了基础[41]. 众所周知, 最具代表性的轴手性分子BINOL 在1873年以外消旋酒石酸盐的形式首次被制备出来[42], 但作为具有光学活性的化合物[43,44], 其绝对构型在1971年才被确定[41]. 直到上世纪八十年代后期,二萘基衍生物如BINAM 才开始被合成出来, 并作为手性配体在一些金属催化的反应中进行研究[45,46].BINAM 能够直接地用温和的氧化剂[例如Cu(II)]将β-氨基萘进行偶联即可生成(Eq. 14)[47,48].BINAM 与酮进行还原胺化反应后, 就能够得到单取代和双取代的BINAM 的衍生物, 而且随着被引入基团体积的增大, 单取代产物的产率不断增多, 双取代产物的产率则随之下降(Eq. 15)[49,50].BINAM 和戊二醛等在NaBH 3CN 作用下进行还原胺化反应, 能够得到单一的在一个氨基上进行二元取代的二胺新配体(Eq. 16)[51].但是, 如果在戊二醛过量的情况下, 就能够以98%的产率得到相应两个氨基上二元取代的二胺新配体(Eq. 17)[49].如果BINAM 的氨基上, 各有一个氢被甲基取代后的衍生物107与环氧乙烷在醋酸作用下, 在不同温度时分别得到了单取代和双取代二胺新配体108, 109(Scheme 9)[52].Scheme 9如果用Pd/C 作催化剂还原(R )-1,1'-二萘基-2,2'-二胺(3), 就能够使其以97%的产率转化生成其衍生物110 (Eq. 18)[53].施敏等[38]在这方面做了许多工作. 他们在合成配体99后, 又报道了用1,1'-二萘基-2,2'-二胺合成的一些新二胺配体(Eq. 19), 并进行了烯丙基三丁基锡对苯甲醛的加成反应的研究 [54].随后, 施敏等[52,55]又连续合成了一系列1,1'-二萘 基-2,2'-二胺衍生物(Schemes 10, 11).他们将所合成的113, 117和119新配体用于二乙基锌对亚胺的催化不对称加成反应的研究, 取得了产率最高为96%, ee 值为16%~90%的反应结果(Eq. 20).1326有 机 化 学 V ol. 25, 2005Scheme 10Scheme 111,1'-二萘基-2,2'-二胺及其衍生物的合成和应用, 在前面第二部分也有一些表述. 通过以上所述, 可以看出, 虽然这一方面的研究工作起步较晚, 但发展却比较快. 1.4 以α-苯乙胺为起始原料合成的二胺及在催化不对称反应中的应用目前, 以α-苯乙胺为底物合成的手性二胺虽然有一些报道[56], 但其种类、数量及其合成方法都很有限, 另外, 在催化不对称方面的应用也不是很多.Simpkins 等[56]利用手性亚胺与Grignard 试剂反应,得到了有C 2对称轴的手性邻二胺, 他们以乙醚为溶剂, 用PhMgCl 或MeMgBr 与邻二亚胺进行Grignard 反应, 分别以47%和35%的产率得到了邻二胺(Eq. 21).但是, 对于下面的反应却要使用THF 为溶剂方可获得较好的反应结果. 由此看来, 溶剂对这一反应的结果有着比较重要的影响(Eq. 22).No. 11艾林等:手性二胺的合成及其在催化不对称反应中的应用1327Savoia 等[57]用不同的醛和(S )-α-苯乙胺反应生成的亚胺, 再与Grignard 试剂或金属锂试剂反应, 最后得到了(S ,S )-和(S ,R )-两种非对映异构体的仲胺(Eq. 23).Parrodi 等[58]利用环己烯的环氧化产物和(S )-α-苯乙胺进行氨解, 得到非对映体129和130后, 与甲磺酰氯作用, 进一步得到了(S )-α-苯乙胺氮丙啶环己烷衍生物131,过开环, 就能够最终得到(1R ,2R ,1'S ,1''S )-N ,N'-二(α-苯基乙基)-1,2-环己基二胺(132)和(1S ,2S ,1'S , 1''S )-N ,N'-二(α-苯基乙基)-1,2-环己基二胺(133) (Scheme 12).中国科学院上海有机化学研究所马大为等[59]利用(R )-α-苯乙胺和1,2-二溴乙烷反应得到了具有C 2对称轴的手性邻二胺(Eq. 24).Savoia 等[60]用金属锂试剂和手性邻二亚胺反应成功地得到了具有C 2对称轴的邻二胺, 主要产物是(R ,R )- 137, 而(R ,S )-138, (S ,S )-139产率很低(Eq. 25).Juaristi 等[61]利用α-苯乙胺所合成的配体在二乙基锌对醛的加成反应进行了研究, 得到了较好的反应结果, ee 值最高达到66% (Eq. 26, 表2).Scheme 121328有 机 化 学 V ol. 25, 2005表2 在手性配体144~150存在的条件下二乙基锌对苯甲醛对映选择性加成Table 2 Enantioselecitive addition of Et 2Zn to benzaldehyde in the presence of chiral ligand 144~150Entry L* (5 mol%) Yield/% ee /% Config. of major enantiomer 1 (S ,S )-144 72 29 (R ) 2 (S ,S )-145 88 42 (S ) 3 (S ,S )-14673 65(R ) 4 (S )-147 79 27 (S ) 5 (S )-148 72 58 (R ) 6 (S ,S )-149 84 45 (S ) 7(S ,S )-15081 66(R )用α-苯乙胺合成新的手性配体, 这是利用已有的手性源合成新的手性化合物最便捷的合成方法之一. 但是, 其合成方法及合成出来的手性二胺配体在催化不对称反应中的应用还有待于进一步的发展.1.5 其它重要二胺配体及衍生物的合成及在催化不对称反应中的应用尽管上述二胺类化合物的合成和在催化不对称反应中的应用取得了令人注目的成就, 形成了比较完整的体系. 但是, 对其它二胺类配体的研究工作也从未停止过, 并且随着研究工作的不断深入, 已经合成了具有很好催化活性和对映选择性的新型二胺类配体.20世纪90年代初期, Tomioka 等[62]利用苄胺和(3R ,4R )-二甲磺酸酯(151)进行环化反应得到吡咯烷类化合物152, 用Pd/C 进行还原后, 用甲酸进行处理, 得到(3R ,4R )-二苯基-四氢吡咯烷(153), 再将其和草酰氯反应, 就得到了邻二酰胺类化合物154, 最后用LiAlH 4进行还原, 得到了目标化合物trans -3,4-二取代吡咯烷类配体155(Scheme 13).Scheme 13Tomioka 等[63,64]随后用手性二胺和四氧化锇作为催化剂, 利用烯烃合成了具有高效对映选择性的二羟基类化合物, 得到了ee 值最高为99%的反应结果(Eq. 27).O'Hagan 等[65]报道了以L -脯氨酸(159)为初始反应物以95%的产率得到160. 但对于大量合成而言, 粗产物可以直接和Grignard 试剂反应生成161, 用乙酸乙酯重结晶可以得到固体161, 然后用Pd/C 做催化剂还原161就可得到162. 化合物162既可以与草酰氯在一定条件下反应后直接用LiAlH 4进行还原, 得到具有C 2对称轴的二胺类化合物163; 也可以与1,3-二碘丙烷在一定条件下反应得到具有C 2对称轴的二胺类化合物164(Scheme 14).Scheme 14在20世纪90年代初期, Mukaiyama 等[66~68]用手性二胺168和Sn(OTf)2形成的Lewis 酸作为催化剂, 得到了具有很好对映选择性的催化不对成羟醛缩合产物, ee 值最高达到了98%以上(Eq. 28).Kobayashi 等[68,69]报道了使用化学量的二胺配体172~174和Sn(OTf)2形成的Lewis 酸作为催化剂, 得到了具有较高对映选择性的Mukaiyama 羟醛缩合产物, 产物的ee 值达到了91%~98% (Eq. 29).No. 11艾林等:手性二胺的合成及其在催化不对称反应中的应用1329Oriyama 等[70]将手性二胺172和SnX 2用于催化外消旋仲醇的对映选择性酰化反应, 得到了176和177, 其ee 值最高分别达到了97%和84% (Eq. 30).Oriyama 等[71]在手性二胺172存在的条件下, 将内消旋的二醇和氯苄进行不对称酰化反应, 得到了化合物179和180, 这里得到了一种主要产物, 而且ee 值最高达到了96% (Eq. 31).Asami 等[72]利用手性二胺181和182和硼烷对酮进行还原反应, 取得了产率为84%~90%和ee 值最高为87%的反应结果(Eq. 32).Alexakis 等[73]通过手性二胺183对硝基烯烃进行了不对称Michael 加成反应, 产物ee 值高达98.6% (Eq. 33).用新颖的合成方法来合成新的手性二胺配体的研究工作仍在不断探索和发展之中. Singh 等[74]就是以(S )-扁桃酸为原料, 经过几步反应得到了一系列手性二胺191和192, 并将其用于二乙基锌对芳香醛的催化不对称加成反应(Scheme 15).Scheme 15以下是Singh 等合成出来的不同取代基取代的二胺配体191a ~191m (Chart 4).Singh 等首先在相同的反应条件下, 用同一种二胺配体191a 催化二乙基锌和不同的芳醛193进行加成反应, 得到了如 Eq. 34, Table 3所示结果.同时, Singh 等又在相同的反应条件下, 使用不同的催化剂, 使二乙基锌对同一种底物195进行加成反应,1330有 机 化 学 V ol. 25, 2005Chart 4表3 由(R )-191a 催化二乙基锌对醛的对映选择性加成反应 Table 3 Enantioselective addition of Et 2Zn to aldehydes by (R )-191a EntrySubstrate Yield/% ee /%1 Benzaldehyde84 47 2 2,4,6-Trimethylbenzaldehyde 67 46 3 4-Methoxybenzaldehyde 92 37 4 4-Methylzaldehyde 76 38 5 4-Chlorobenzaldehyde 88 53 6 4-Flurobenzaldehyde 77 54 7 Ferrocenealdehyde65 71得到了如下的反应结果(Eq. 35, Table 4).表4 由(R )-或(S )-191催化二乙基锌对氯苯甲醛的对映选择性加成反应Table 4 Enantioselective addition of Et 2Zn to 4-chloroalde- hydes by (R )- or (S )-191Entry Damine Yield/% ee /%1 (R )-191a 88 53 (S )2 (R )-191b 92 66 (S )3 (R )-191c 81 65 (S )4 (S )-191e 82 6 (R )5 (S )-191f 94 50 (R )6 (S )-191g 74 2 (S )7 (S )-191h 87 68 (S ) 8 (S )-191j 95 58 (S )9 (S )-191l 80 4 (S ) 10 (S )-191m 83 44 (R )同时, Singh 等将手性二胺在二乙基锌和醛的催化不对称加成反应中对产物构型的影响进行了分析和研究. 二乙基锌的不对称诱导加成反应可以通过图1中的优势过渡态进行解释. 如果二胺结构中的R 基团是甲基时, R 基团相对于手性中心来讲与苯基同位于一侧, 这样便有利于二乙基锌在与苯基相反的方向和氮原子进行配位, 结果, 醛以Si 面和金属锌接近, 从而得到了与配体的立体化学相反的立体构型产物. 但当R 基团大于甲基时, 相对于手性中心碳原子来讲, R 基团主要朝向利于进行加成反应, 于是, 就得到了和配体构型相同的和苯基方向相反的一侧, 在这种情况下, 醛的Re 面更有加成产物.图1 二乙基锌对醛的对映选择性加成反应中优势过度态模型 Figure 1 Favourable transition state models in enantioselective addition of Et 2Zn to aldehydesSingh 等[75]把所合成的二胺配体与丁基锂作用形成氨基锂, 在对环己烯的环氧化物进行对映选择性去质子化反应的研究中, 也得到了比较好的反应结果(Eq. 36).No. 11艾林等:手性二胺的合成及其在催化不对称反应中的应用1331Asami 等[76]将手性氨基锂用于催化内消旋环氧化物的对映选择性去对称化反应的研究, 也得到了较好的反应结果(Eq. 37).Andersson 等[77]在应用氨基锂对外消旋化合物进行动力学拆分和去质子化反应的研究中, 取得了很好的研究结果(Eq. 38).这些实验结果表明, 新的手性二胺配体的合成以及它们在催化不对称反应中的应用, 是对手性二胺化学研究进行的重要补充. 总之, 它们所具有的良好催化活性和对映选择性, 也必将进一步促进新型手性二胺配体及其衍生物的合成及其在多种催化不对称反应中的广泛应用.2 结束语手性二胺配体1,2-二氨基环己烷及其衍生物, 1,2-二氨基-1,2-二苯基乙烷及其衍生物和1,1'-二萘基-2,2'-二胺及其衍生物, 对他们进行研究的重点除了在合成新的衍生物以外, 更重要的可能会在寻找新的应用领域方面会有所作为. 而利用α-苯乙胺进行手性二胺的合成以及其它新型手性二胺的合成, 则将成为人们今后更主要的研究目标, 其应用也会处于不断探索和拓展之中. 总之, 手性二胺类化合物的合成和应用, 在催化不对称合成化学里是一个十分重要的研究领域. 新颖, 便捷的合成方法会不断涌现. 同时, 具有高效催化活性和对映选择性的手性二胺配体, 在诸多方面, 特别是在不对称合成化学研究领域里的应用必将更加广泛和深入. 手性二胺化学的发展必定会对不对称合成化学的发展做出其应有的贡献.References1 (a) Michalson, E. T.; Szmuszkovicz, J. Prog . Drug . Res .1989, 33, 135.(b) Chang, A.-C.; Takemori, A. E.; Ojala, W. H.; Gleason, W. B.; Portoghese, P. S. J . Med . Chem . 1994, 37, 4490. (c) Weerawarna, S. A.; Davis, R. D.; Nelson, W. L. J . Med . Chem . 1994, 37, 2856.(d) Reedijk, J. J . Chem . Soc ., Chem . Commun . 1996, 801. 2 Lucet, D.; Gall, T. L.; Mioskowski, C. Angew . Chem ., Int .Ed . Engl . 1998, 37, 2580.3 (a) Whitsell, J. K. Chem . Rev . 1989, 89, 1581.(b) Ojima, I. Catalytic Asymmetric Synthesis , VCH, New York, 1993.(c) Togni, A.; Venanzi, L. M. Angew . Chem ., Int . Ed . Engl . 1994, 33, 497.(d) Tomioka, K. Synthesis 1990, 541.4 Cox, P. J.; Simpkins, N. S. Tetrahedron : Asymmetry 1991,2, 1.5 (a) Uragami, M.; Tomioka, K.; Koga, K. Tetrahedron :Asymmetry 1995, 6, 701.(b) Kobayashi, S.; Hayashi, T. J . Org . Chem . 1995, 60, 1098.6 Yasuda, K.; Shindo, M.; Koga, K. Tetrahedron Lett . 1996,37, 6343.7 (a) Kubota, H.; Nakajima, M.; Koga, K. Tetrahedron Lett .1993, 34, 8135.(b) Hanessian, S.; Meffre, P.; Girard, M.; Beaudoin, S.; Sancéau, Y.-J.; Bennani, Y. J . Org . Chem . 1993, 58, 1991. 8 Corey, E. J.; DaSilva Jardine, P.; Virgil, S.; Yuen, P-W.;Connell, R. D. J . Am . Chem . Soc . 1989, 111, 9243.9 Corey, E. J.; Imwinkelried, R.; Pikul, S.; Xiang, Y. B. J .Am . Chem . Soc . 1989, 111, 5493.10 Oriyama, T.; Hori, Y.; Imai, K.; Sasaki, R. Tetrahedron1332有机化学V ol. 25, 2005Lett. 1996, 37, 8543.11 Martin, J.; Lanse, M.-C.; Plaquevent, J.-C.; Duhamel, L.Tetrahedron Lett. 1997, 38, 7181.12 (a) Rossiter, B. E.; Eguchi, M.; Miao, G.; Swingle, N. M.;Hernandez, A. E.; Vickers, D.; Fluckiger, E.; Patterson, R.G.; Reddy, K. V. Tetrahedron1993, 49, 965.(b) Miao, G.; Rossiter, B. E. J. Org. Chem. 1995, 60, 8424.13 (a) Asami, M.; Inoue, S. Tetrahedron1995, 51, 11725.(b) Leonard, J.; Bennett, L.; Mahmood, A. TetrahedronLett. 1999, 40, 3965.14 (a) Shirai, R.; Tanaka, M.; Koga, K. J. Am. Chem. Soc.1986, 108, 544.(b) Imai, M.; Hagihara, A.; Kawasaki, H.; Manabe, K.;Koga, K. J. Am. Chem. Soc. 1994, 116, 8829.(c) Yamashita, T.; Sato, D.; Kiyoto, T.; Kumar, A.; Koga,K. Tetrahedron Lett. 1996, 37, 8195.(d) Shirai, K.; Sato, D.; Aoki, K.; Tanaka, M.; Kawasaki,H.; Koga, K. Tetrahedron 1997, 53, 5963.(e) Magnus, P.; Sebhat, I. K. J. Am. Chem. Soc. 1998, 120,5341.15 (a) Nakajima, M.; Tomioka, K.; Koga, K. Tetrahedron1993, 49, 9735.(b) Liu, X. D.; Ding, M. X.; Gao, L. X. Chin. J. Org. Chem.2004, 24, 728 (in Chinese).(刘旭东, 丁孟贤, 高连勋, 有机化学, 2004, 24, 728.)16 Corey, E. J.; Lee, D.-K.; Sarshar, S. Tetrahedron: Asymme-try1995, 6, 3.17 Alexakis, A.; Aujard, I.; Mangeney, P. Synlett1998, 873.18 Ferrand, A.; Bruno, M.; Tommasino, M. L.; Lemaire, M.Tetrahedron: Asymmetry2002, 13, 1379.19 Annunziata, R.; Benaglia, M.; Cinquini, M.; Cozzi, F.;Raimondi, L. Tetrahedron Lett. 1998, 39, 3333.20 Robertson, G. M. In Comprehensive Organic Synthesis,Pinacol Coupling Reactionsin, Eds.: Trosi, B. M.; Fleming,I., Pergamon Press, Oxford, 1991, (3), 563.21 Benaglia, M.; Raimondi, L. In Seminars in Organic Synthe-sis, Stereoselection in Pinacol Coupling Reactions of C=O and C=N Double Bonds, Ed.: Cozzi, F., Società Chimica, Italiana, 1998, 225.22 Annunziata, R.; Benaglia, M.; Caporale, M.; Raimondi, L.Tetrahedron:Asymmetry2002, 13, 2727.23 Ma, Y.-P.; Liu, H.; Chen, L.; Cui, X.; Zhu, J.; Deng, J.-G.Org. Lett. 2003, 5, 2103.24 Hamada, T.; Manabe, K.; Kobayashi, S. J. Am. Chem. Soc.2004, 126, 7768.25 Bennani, Y. L.; Hanessian, S. Chem. Rev. 1997, 97, 3161.26 Wieland, H.; Schlichtung, O.; Langsdorf, W. V. Z. Phys.Chem. 1926, 161, 74.27 Swift, G.; Swern, D. J. Org. Chem. 1967, 32, 511.28 Whitney, T. A. US 4085138, 1978 [Chem. Abstr. 1978, 89,108356x].29 Whitney, T. A. J. Org. Chem. 1980, 45, 4214.30 Glasbol, F.; Steenbol, P.; Sorenson, S. B. Acta Chem.Scand. 1980, 26, 3605. 31 Hanaki, K.; Kashiwabara, K.; Fujita, J. Chem. Lett. 1978,489.32 Hanessian, S.; Delorme, D.; Beaudoin, S.; Leblanc, Y. J.Am. Chem. Soc. 1984, 106, 5754.33 Tommasino, M. L.; Thomazeau, C.; Touchard, F.; Lemaire,M. Tetrahedron: Asymmetry1999, 10, 1813.34 Karamé, I.; Tommasino, M. L.; Lemaire, M. J. Mol. Catal.A: Chem.2003, 196, 137.35 Šterk, D.; Stephan, M. S.; Mohar, B. Tetrahedron: Asym-metry 2002, 13, 2605.36 Kim, G.-J.; Kim, S.-H.; Chong, P.-H.; Kwon, M.-A. Tetra-hedron Lett. 2002, 43, 8059.37 Alexakis, A.; Chauvin, A.-S.; Stouvenel, R.; Vrancken, E.;Mutti, S.; Mangeney, P. Tetrahedron:Asymmetry2001, 12,1171.38 Shi, M.; Sui, W.-S. Tetrahedron:Asymmetry 2000, 11, 835.39 Eliel, E. L.; Wilen, S.; Mander, L. N. Stereochemistry ofOrganic Compounds, John Wiley & Sons, New York, 1994.40 (a) Van’t Hoff, J. H. Arch. Neerl. Sci. Exactes Nat.1874, 9,445.(b) Bull. Soc. Chim. Fr. 1975, 23, 295.41 Christie, G. H.; Kenner, J. H. J. Chem. Soc. 1922, 614.42 (a) von Richer, V. Chem. Ber. 1873, 6, 1252.(b) Pummerer, R.; Prell, E.; Rieche, A. Chem. Ber. 1926,59, 2159.43 (a) Jacques, J.; Fouquey, C. Tetrahedron Lett. 1971, 4617.(b) Kyba, E. P.; Gokel, G. H.; de Jong, F.; Koga, K.; Sousa,L. R.; Siegel, M. G.; Kaplan, L.; Sogah, G. D. Y.; Cram, J.D. J. Org. Chem. 1977, 42, 4173.44 (a) Brusse, J.; Jansen, A. C. A. Tetrahedron Lett. 1983, 24,3261.(b) Brusse, J.; Groenendijk, J. L. G.; te Koppele, J. M.;Jansen, A. C. A. Tetrahedron 1985, 41, 3313.45 (a) Noyori, R. Asymmetric Catalysis in Organic Synthesis;John Wiley & Sons, New York, 1994.(b) Ojima, I. Catalytic Asymmetric Synthesis, Wiley-VCH,New York, 2000.(c) Noyori, R. Adv. Synth. Cat. 2001, 345, 15.46 Rosini, C.; Franzini, L.; Raffaelli, A.; Salvadori, P. Synthe-sis1992, 503.47 Smrčina, M.; Lorenc, M.; Hanuš, V.; Kočovský, P. Synlett1991, 231.48 Smrčina, M.; Poláková, J.; Vyskočil, Š.; Kočovský, P. J.Org. Chem. 1993, 58, 4534.49 Vyskočil, Š.; Jaracz, S.; Smrčina, M.; Štícha, M.; Hanuš, V.;J. Org. Chem. 1998, 63, 7727.50 Vyskočil, Š.; Smrčina, M.; Kočovský, P. Collect. Czech.Chem. Commun. 1998, 63, 515.51 Kawakami, Y.; Hiratake, J.; Yamamoto, Y.; Oda, J. J.Chem. Soc., Chem. Commun. 1984, 779.52 Shi, M.; Wang, C.-J. Tetrahedron: Asymmetry2002, 13,2161.53 Korostylev, A.; Tararov, V. I.; Fischer, C.; Monsees, A.;Börner, A. J. Org. Chem. 2004, 69, 3220.No. 11 艾林等:手性二胺的合成及其在催化不对称反应中的应用133354 Shi, M.; Sui, W.-S. Tetrahedron: Asymmetry2000, 11, 773.55 Wang, C.-J.; Shi, M. J. Org. Chem. 2003, 68, 6229.56 (a) Bambridge, K.; Begley, M. J.; Simpkins, N. S. Tetrahe-dron Lett. 1994, 35, 3391.(b) Neumann, W. L.; Rogic, M. M.; Dunn, T. J. Tetrahe-dron Lett. 1991, 32, 5865.(c) Juaristi, E.; Escalante, J.; León-Romo, J. L.; Reyes, A.Tetrahedron: Asymmetry1998, 9, 715.57 Alvaro, G.; Savoia, D.; Valentinetti, M. R. Tetrahedron1996, 52, 12571.58 Parrodi, C. A. D.; Moreno, G. E.; Quintero, L.; Juaristi, E.Tetrahedron: Asymmetry1998, 9, 2093.59 Ma, D.-W.; Cheng, K.-J. Tetrahedron: Asymmetry 1999, 10,713.60 Martelli, G.; Morri, S.; Savoia, D. Tetrahedron2000, 56,8367.61 Muñoz-Muñiz, O.; Juaristi, E. J. Org. Chem. 2003, 68,3781.62 Nakajima, M.; Tomioka, K.; Koga, K. Tetrahedron 1993,49, 9735.63 Nakajima, M.; Tomioka, K.; Iitaka, Y.; Koga, K. Tetrahe-dron1993, 49, 10793.64 Nakajima, M.; Tomioka, K.; Koga, K. Tetrahedron1993,49, 10807.65 Bailey, D. J.; O’Hagan, D.; Tavasli, M. Tetrahedroh:Asymmetry1997, 8, 149.66 Kobayashi, S.; Fujishita, Y.; Mukaiyama, T. Chem. Lett.1990, 1453.67 Kobayashi, S.; Uchiro, H.; Shiina, I.; Mukaiyama, T. Tet-rahedron1993, 49, 1761.68 Mahrwald, R. Chem. Rev. 1999, 99, 1095. 69 (a) Kobayashi, S.; Hayashhi, T. J. Org. Chem. 1995, 60,1098.(b) Kobayashi, S.; Uchiro, H.; Fujishita, Y.; Shiina, I.; Mu-kaiyama, T. J. Am. Chem. Soc. 1991, 113, 4247.(c) Kobayashi, S.; Horibe, M.; Matsumura, M. Synlett1995,675.(d) Kobayashi, S.; Horibe, M. Tetrahedron: Asymmetry1995, 6, 2565.(e) Kobayashi, S.; Mukaiyama, T. Chem. Lett. 1989, 1001.(f) Kobayashi, S.; Sano, T.; Mukaiyama, T. Chem. Lett.1989, 1319.(g) Kobayashi, S.; Kawasuji, T.; Mori, N. Chem. Lett. 1994,217.(h) Mukaiyama, T.; Shiina, I.; Sakata, K.; Emura, T.; Deto,K.; Saitoh, M. Chem. Lett. 1995, 179.70 Oriyama, T.; Hori, Y.; Imai, K.; Sasaki, R. TetrahedronLett. 1996, 37, 8543.71 Oriyama, T.; Imai, K.; Hosoya, T.; Sano, T. TetrahedronLett. 1998, 39, 397.72 Sato, S.; Watanabe, H.; Asami, M. Tetrahedron: Asymmetry2000, 11, 4329.73 Andrey, O.; Alexakis, A.; Bernardinelli, G. O rg. Lett.2003,5, 2559.74 Saravanan, P.; Bisai, A.; Baktharaman, S.; Chandrasekhar,M.; Singh, V. K. Tetrahedron2002, 58, 4693.75 Bhuniya, D.; DattaGupta, A.; Singh, V. K. J. Org.Chem.1996, 61, 6108.76 Asami, M.; Ishizaki, T.; Inoue, S. Tetrahedron: Asymmetry1994, 5, 793.77 Gayet, A.; Bertilsson, S.; Andersson, P. G. Org. Lett. 2002,4, 3777.(Y0408314 ZHAO, C. H.)CHINESE JOURNAL OF ORGANIC CHEMISTRYV olume 25, Number 11 (YOUJI HUAXUE )November 2005CONTENTSSynthesis of Chiral Diamines with C 2 Symmetry and Their Applications to Catalytic Asymmetric ReactionsAI, Lin; XIAO, Ji-Chuan; SHEN, Xiu-Min; ZHANG, Cong *Chin. J. Org. Chem. 2005, 25(11), 1319Optically active diamines have been extensively used as chiral ligands in a variety of asymmetric transformations. This review describes recent advances in design and syn-thesis of chiral diamines and their application to asymmetric synthesis.Olefin Cross-Metathesis Reactions and Their Applications to Organic SynthesisGUO, Ying-Cen; XIAO, Wen-Jing * Chin. J. Org. Chem. 2005, 25(11), 1334The olefin cross-metathesis reaction is one of the most efficient methods for the con-struction of C =C bonds. In this paper, the recent progress of olefin cross-metathesis reaction and their applications to organic synthesis is reviewed.Recent Advances on Application of Low Valent Titanium to Organic SynthesisYANG, Zhong-Shun; LI, Ying *Chin. J. Org. Chem. 2005, 25(11), 1342McMurry reaction has displayed much significance in organic synthesis since it was discovered in 1970’s. Recent developments on application of low valent titanium toorganic synthesis including those of (non)natural products and their analogs, novel sub-strates as well as the extended/improved McMurry reaction are reviewed.Progress in the Chemical Reactions of Chlorophyll-a Derivatives and Synthesis of Polysubstituted Chlorin or PorphyrinWANG , Jin-JunChin. J. Org. Chem. 2005, 25(11), 1353The activity of chemical reaction and application of chlorophyll-a derivatives depend on their special physicochemical properties and asymmetrical skeleton structure bearing many active substituted groups. This review deals with the recent progress in the syn-thesis of polysubstituted chlorin or porphyrin based on the chemical reaction and struc-tural modification of chlorophyll-a derivatives.。
有机合成中的不对称催化方法
![有机合成中的不对称催化方法](https://img.taocdn.com/s3/m/6ecaf5297f21af45b307e87101f69e314332fa9e.png)
有机合成中的不对称催化方法不对称合成方法是有机合成领域中的重要研究方向之一。
在有机合成过程中,不对称催化方法能够有效地构建手性分子,为合成具有生物活性的化合物提供了重要的途径。
本文将对不对称催化方法在有机合成中的应用进行探讨。
一、不对称催化方法概述不对称合成是指利用手性催化剂,在化学反应中控制手性的生成。
目前,广泛应用的不对称催化方法包括手性配体催化、酶催化和有机小分子催化等。
手性配体催化是最常见的不对称催化方法之一。
手性配体与金属催化剂形成配合物,通过控制手性环境,实现对反应中的手性诱导。
这种方法应用广泛,不仅适用于碳碳键的构建,还适用于不对称氢化、不对称氧化和不对称复分解等反应。
酶催化是生物催化中一种重要的不对称合成方法。
酶具有高催化活性和良好的立体选择性,对于合成手性分子具有独特的优势。
目前,已经发现了许多催化活性高且具有不对称催化作用的酶。
有机小分子催化是近年来崛起的一种不对称催化方法。
有机小分子催化剂通过与底物形成非共价作用,实现对手性分子的合成。
这种方法不依赖于金属催化剂,具有较高的催化活性和立体选择性。
二、不对称催化方法的应用1. 酮的不对称加成反应不对称酮的加成反应是不对称合成中一类重要的反应。
利用手性配体催化剂,可以将有机酮与亲核试剂反应,构建手性α-羟基酮化合物。
这种反应广泛应用于天然产物的合成和药物合成中。
2. 不对称氢化反应不对称氢化反应是一种高效的不对称催化方法。
通过合成具有手性配体的均相催化剂,可以将不对称双键氢化为手性化合物。
此反应广泛应用于制药工业和天然产物的合成中。
3. 不对称烯烃复分解反应不对称烯烃复分解反应是一类重要的不对称合成方法。
通过合成具有手性配体的金属催化剂,可以将烯烃分解成手性化合物。
这种方法可以构建具有多个手性中心的化合物,是不对称合成中的关键方法。
4. 不对称氧化反应不对称氧化反应是一种重要的不对称合成方法。
通过合成具有手性配体的金属催化剂,可以将有机化合物氧化为手性化合物。
不对称反应及应用—手性合成前沿研究
![不对称反应及应用—手性合成前沿研究](https://img.taocdn.com/s3/m/1609d5694a35eefdc8d376eeaeaad1f347931175.png)
不对称反应及应用—手性合成前沿研究不对称合成是有机化学领域中一种重要的合成方法,通过该方法可以制备手性分子,即具有手性空间结构的有机分子。
手性分子在药物、农药、材料等领域具有广泛的应用价值,因此手性合成一直是有机化学研究的热点之一、不对称反应是实现手性合成的核心技术之一,其优势在于可以选择性地控制产物的手性结构,提高产品的立体选择性和产率。
本文将重点介绍不对称反应及其在手性合成前沿研究中的应用。
不对称反应是指在反应中产生手性产物,同时控制产物手性结构的过程。
不对称反应主要包括催化剂不对称反应和合成不对称反应两大类。
催化剂不对称反应是通过手性催化剂促进反应进行,如不对称氢化、不对称氨基化、不对称烯基化等。
合成不对称反应是通过手性试剂实现反应不对称性,如不对称亲核取代、不对称环化等。
不对称反应在有机合成中起着重要的作用,可以用于制备手性有机分子、手性药物等。
手性合成是有机化学研究的重要方向之一,目前在手性合成领域中,不对称反应的研究是一个热点。
一些新型不对称反应的开发和应用正在成为手性合成领域的前沿研究。
例如,最近几年来,金属催化的不对称反应得到了广泛关注。
金属催化的不对称反应具有底物范围广、反应条件温和等优点,因此在手性合成中具有广阔的应用前景。
目前,已经有许多金属催化的不对称反应已经成功开发,例如不对称氢化、不对称羟基化、不对称氨基化等。
此外,还有一些其他新型的不对称反应也在手性合成领域中得到了应用。
例如,不对称有机催化反应、不对称电化学反应等。
不对称有机催化是利用手性有机分子作为催化剂促进反应的进行,该方法具有催化条件温和、底物范围广等优点,因此在手性合成中具有很大的应用潜力。
不对称电化学反应是通过电化学手性诱导实现反应的手性选择性,该方法具有可控性强等优点,可以用于制备手性分子。
总的来说,不对称反应及其在手性合成领域的应用是有机化学研究的热点之一,不同类型的不对称反应各有特点,可以根据具体的需求选择合适的方法。
不对称有机催化剂的设计与应用
![不对称有机催化剂的设计与应用](https://img.taocdn.com/s3/m/362947d5541810a6f524ccbff121dd36a32dc437.png)
不对称有机催化剂的设计与应用催化剂在有机合成中起着至关重要的作用,通过它们的作用可以促进反应的进行并提高反应的立体选择性。
而不对称有机催化剂作为一类特殊的催化剂,能够选择性地催化手性有机物的合成,具有广泛的应用前景。
本文将重点探讨不对称有机催化剂的设计原理以及在有机合成中的应用。
一、不对称有机催化剂的设计原理不对称有机催化剂的设计原理基于手性诱导效应(chirality induction effect)。
手性诱导效应是指催化剂分子的手性结构能够传递到反应物分子中,从而在反应过程中产生手性产物。
为了实现这一效应,催化剂的分子结构需要满足一定的条件:首先,催化剂本身需要具备手性结构,可以是手性配体(chiral ligand)或手性基团(chiral auxiliary)。
其次,催化剂分子必须能够与反应物进行紧密的相互作用,通过各种相互作用力(如氢键、范德华力等)实现手性诱导效应。
二、不对称有机催化剂的应用领域1. 不对称催化合成手性有机物不对称有机催化剂在手性有机物的合成中具有广泛的应用。
其中,不对称氢化反应是最常见的应用之一。
通过选择合适的不对称有机催化剂,可以将不对称酮或不对称醛还原为手性醇。
此外,不对称有机催化剂还可以催化其他多种反应,如不对称亲核取代、不对称氧化等,从而合成具有高立体选择性的手性有机物。
2. 不对称催化制备药物不对称有机催化剂在制备药物中扮演着重要角色。
药物通常需要具备一定的手性结构,因为具有手性的药物分子往往在体内具有更好的活性和选择性。
通过不对称有机催化剂的催化作用,可以实现药物的高立体选择性合成,从而提高药物的活性和药效。
3. 不对称催化合成功能性小分子不对称有机催化剂在合成功能性小分子方面也有着重要的应用。
功能性小分子广泛存在于化学领域的各个分支中,具有着广泛的应用前景。
通过不对称有机催化剂的催化作用,可以高效合成具有特定功能的小分子化合物,如荧光探针、生物传感器等,为进一步研究和应用提供了重要工具。
化学合成中的不对称合成技术
![化学合成中的不对称合成技术](https://img.taocdn.com/s3/m/040f2359a200a6c30c22590102020740be1ecdfd.png)
化学合成中的不对称合成技术在有机化学领域中,合成手段的发展一直是研究的重要方向之一。
不对称合成技术是一种能够合成具有立体异构体的有机分子的方法,被广泛应用于药物、农药、天然产物合成等领域。
本文将探讨不对称合成技术的原理、应用以及未来的发展方向。
一、不对称合成技术的原理不对称合成技术是指通过引入具有手性性质的试剂或催化剂,使得反应只生成一种立体异构体的合成方法。
其中,手性试剂或催化剂是实现不对称合成的关键。
这些手性试剂或催化剂能够选择性地与底物发生反应,产生具有特定立体结构的产物。
主要的不对称合成技术包括手性配体催化、手性分子催化、手性荧光探针和手性相系统。
手性配体催化是最常见的不对称合成技术之一,其中金属催化剂与手性配体配对,通过底物与催化剂之间的相互作用,实现对立体构型的选择性催化。
手性分子催化是一种最近兴起的不对称合成技术,它利用手性有机小分子作为催化剂,实现对底物的不对称催化。
手性荧光探针和手性相系统则利用手性小分子的发光性质或手性结构对底物进行选择性响应,实现不对称合成。
二、不对称合成技术的应用不对称合成技术在有机合成中有着广泛的应用。
它不仅可以用于合成具有特定立体构型的有机分子,还可以用于解决合成中的对映体纯度和产物选择性的问题。
在药物合成中,不对称合成技术被广泛应用于合成具有药效活性的手性药物。
通过选择合适的手性试剂或催化剂,可以选择性地合成单一对映体,从而提高药物的治疗效果和减少副作用。
例如,利巴韦林和普鲁卡因就是应用不对称合成技术合成的手性药物。
在农药合成中,不对称合成技术可以用于合成具有高效杀虫活性的手性农药。
不对称催化反应和手性分子催化反应是常用的合成手段。
利用不对称合成技术,可以合成出对映体纯度高的农药,提高农作物保护的效果。
在天然产物合成领域,不对称合成技术可以用于合成复杂天然产物的手性中间体。
许多天然产物具有复杂的结构和多种生物活性,合成难度很大。
不对称合成技术的应用可以大大提高合成效率,并获得对映体纯度高的天然产物。
催化不对称合成法在手性药物合成中的应用
![催化不对称合成法在手性药物合成中的应用](https://img.taocdn.com/s3/m/1de4f06927d3240c8447ef98.png)
Asymmetric Catalysis in Synthesis of Chiral Drugs
WANG Jun, XU Ka-i jun* , WANG L-i chen
( Department of Basic Science, China Pharmaceutical University , Nanjing 210038, China)
2 2 氧化反应 酶催化的氧化反应可以使分子内非活泼的碳氢
键立体选择性氧化, 产生特定构型 的羟基化合物。 卡托普利属于血管紧张素转化酶抑制剂类药物, 用
于治疗高血压。采用化学- 酶合成法, 用皱落假丝 酵母将异丁酸立体选择性氧化为( R)- - 甲基- - 羟基 丙酸, 后者 与 L- 脯氨 酸 缩合, 再 经巯 基化 可 得到 ( S)- 卡托普利, 合成路线如下[ 18] :
2 4 转移与裂合反应 转移裂合酶可以立体选择性地催化 C- C 键的形
成或断裂, 在手性合成中有很好的应用前景。利巴
韦林是一种抗病毒核苷类似物, 运用嘌呤核苷磷酸 化酶和嘧啶核苷磷酸化酶可实现利巴韦林的酶不对 称催化合成, 合成路线如下[ 20] :
综述与专论
110 2005, Vol . 29, No. 3
不对称催化在有机化学中的应用-推荐下载
![不对称催化在有机化学中的应用-推荐下载](https://img.taocdn.com/s3/m/cf08ae1f915f804d2a16c107.png)
不对称催化在有机化学中的应用1110712胡景皓不对称催化反应是使用非外消旋手性催化剂进行反应的,仅用少量手性催化剂,可将大量前手性底物对映选择性地的转化为手性产物,具有催化效率高、选择性高、催化剂用量少、对环境污染小、成本低等优点。
经过40年的研究,不对称催化已发展成合成手性物质最经济有效的一种方法。
不对称催化领域最关键的技术是高效手性催化剂的开发,因为手性催化剂是催化反应产生不对称诱导和控制作用的源泉。
美国孟山都公司的Knowles和德国的Homer在1968年分别发现了使用手性麟一锗催化剂的不对称催化氢化反应,从此不对称催化反应迅速发展。
近几十年来手性配体的开发是不对称催化领域最为关注的焦点,并已合成出上千种手性配体,其中BINAP和(DHQD)2PHAL等已实现工业化应用,对映选择性已达到或接近100%,在氢化、环氧化、环丙烷化、烯烃异构化、氢氰化、氢硅烷化、双烯加成、烯丙基烷基化等几十种反应中取得成功,同时在均相催化剂负载化、水溶性配体固载化等研究中也取得了突出成果。
以下是不对称催化研究的一些实例。
一、脯胺酸及其衍生物催化的不对称Michael加成反应Listd、组在2001年首次用脯氨酸作催化剂研究了不对称Michael成反应。
以DMSO为溶剂进行催化反应,获得了较好的收率,但是选择性却很差。
这与之前报道的脯氨酸催化的不对称Aldol反应相比,e.e值明显降低。
随后,2002年Endersd、组对该反应进行了进一步的探索。
在筛选L.脯氨酸用量时,发现反应中实际起催化作用的是溶解于溶剂DMSO中的L.脯氨酸,为此于体系中加入一定量甲醇或以甲醇为溶剂来增大L.脯氨酸的溶解度,同时加大催化剂的用量,该反应的e.e.能够提高到57%,但是反应时间大大延长。
Leyd小组用脯氨酸衍生的四氮唑为催化剂17进行的不对称Michael反应,不仅克服了脯氨酸需要使用大极性的DMSO溶剂,而且还使e.e.值明显提高。
手性催化剂的合成与应用研究
![手性催化剂的合成与应用研究](https://img.taocdn.com/s3/m/2c577b7832687e21af45b307e87101f69e31fb09.png)
手性催化剂的合成与应用研究手性催化剂是化学领域中一类重要的化合物,它们具有两个非对称碳原子,从而使得它们可以选择性地催化产生手性分子。
本文将介绍手性催化剂的合成方法以及它在有机合成中的应用研究。
一、手性催化剂的合成方法手性催化剂的合成方法多种多样,下面将介绍其中几种常见的方法。
1.1 共价催化剂的合成共价催化剂合成的关键步骤是构建手性碳原子。
常见的方法包括通过不对称合成、手性配体配体和手性切割等方式实现。
通过这些方法可以制备出一系列不同结构和手性的共价催化剂。
1.2 离子催化剂的合成离子催化剂的合成主要通过合成手性配体和手性配合物实现。
常用的合成方法包括手性拆分、不对称合成、对映选择性合成等。
这些方法都可以在合成过程中引入手性元素,从而实现离子催化剂的合成。
1.3 基于金属催化剂的合成基于金属催化剂的合成方法主要通过合成手性配体和过渡金属催化剂实现。
手性配体可以通过手性诱导合成、非对称合成等方法合成得到。
而过渡金属催化剂则可以通过过渡金属硕士产品,手性高的过渡金属络合物等多种方法得到。
二、手性催化剂的应用研究手性催化剂在有机合成中具有广泛的应用价值,以下将介绍几个典型的应用领域。
2.1 不对称合成不对称合成是手性催化剂最为重要的应用领域之一。
手性催化剂可以选择性地催化不对称的反应,从而合成手性分子。
这对于药物合成、农药合成等领域具有重要的应用价值。
2.2 氢化反应氢化反应是将不饱和化合物加氢还原成饱和化合物的反应。
手性催化剂在氢化反应中可以选择性地催化产生手性产物,从而实现对手性的控制。
2.3 不对称氧化反应不对称氧化反应是将有机化合物中的不对称碳原子氧化为手性醇、醚等化合物的反应。
手性催化剂在不对称氧化反应中可以催化选择性氧化,得到手性的产物。
2.4 不对称加成反应不对称加成反应是将手性催化剂催化的底物与另一个底物进行加成反应,得到手性产物。
这种反应在有机合成中具有重要的应用价值,可以用于合成手性药物、手性精细化工品等。
不对称催化在药物合成工业中的应用
![不对称催化在药物合成工业中的应用](https://img.taocdn.com/s3/m/474e1361dc36a32d7375a417866fb84ae55cc363.png)
不对称催化在药物合成工业中的应用不对称催化在药物合成工业中的应用1. 引言不对称催化是一种重要的有机化学方法,它在药物合成工业中发挥着至关重要的作用。
通过引入ir分子配体,不对称催化可以实现手性化合物的合成,这对于药物研发和合成具有极大的影响力。
本文将探讨不对称催化在药物合成工业中的应用,并分析其优点和挑战。
2. 不对称催化的基本原理不对称催化的基本原理是通过引入手性配体使催化剂具有手性,从而实现对手性分子的选择性催化。
利用选择性催化反应可以有效地合成手性分子,如手性药物。
3. 不对称催化在药物合成中的应用不对称催化在药物合成中有着广泛的应用。
举例来说,不对称氢化反应是一种常用的不对称催化反应,可以用于合成手性醇和手性氨基醇等化合物,这些化合物是药物研发中的重要中间体。
还有不对称Michael反应、不对称烯烃加成反应等催化反应可以用于合成药物中的手性分子。
这些不对称催化反应提供了高效、高选择性和经济可行的方法来合成手性药物。
4. 不对称催化的优势不对称催化在药物合成中有着显著的优势。
不对称催化可以实现对手性分子的高选择性催化,避免了对手性化合物的分离和纯化过程,提高了合成效率。
不对称催化反应的底物范围广泛,可以适用于各种不同结构的化合物。
不对称催化反应通常使用金属催化剂,具有良好的催化活性和催化效果。
5. 不对称催化的挑战不对称催化在药物合成中也面临着一些挑战。
催化剂的选择是一个重要的问题。
不同的反应需要不同的手性配体,因此要根据具体反应的要求选择合适的配体。
合成手性配体的方法也是一个关键问题。
目前,人们正在积极研究和开发新的手性配体,以满足不同反应的需求。
不对称催化反应的条件和反应性质也需要进一步优化和改进。
6. 总结回顾不对称催化在药物合成工业中的应用是至关重要的。
通过引入手性配体,不对称催化可以实现对手性分子的高选择性催化,为药物研发和合成提供了高效、高选择性和经济可行的方法。
不过,不对称催化还面临着一些挑战,包括催化剂的选择、合成手性配体的方法以及反应条件的优化。
不对称催化制备手性药物的研究及应用
![不对称催化制备手性药物的研究及应用](https://img.taocdn.com/s3/m/a886fd3778563c1ec5da50e2524de518964bd32b.png)
不对称催化制备手性药物的研究及应用手性药物是治疗疾病的重要药物之一,它们具有具有对称性的立体异构体,其中至少存在一个手性中心。
手性药物的药效、代谢以及副作用往往会因为它们的对映异构体而产生差异。
因此,对手性药物的合成制备研究具有重要意义。
在手性药物制备中,不对称催化成为目前最为有效的制备手性药物的手段之一。
一、不对称催化的概念与分类不对称催化是指在反应体系中加入具有手性催化剂促进对映异构体产率不同的催化反应。
不对称催化可以被分为金属催化和非金属催化两类。
金属催化是通过一系列匹配的金属离子和手性配体组成复杂体系,使得金属催化剂得到对映异构体产率不同的结果。
非金属催化则主要依靠有机小分子催化剂,通过空间位阻等效应催化反应进行不对称反应,实现对手性药物的制备。
二、不对称催化在手性药物制备中的应用1. 脯氨酸和异亮氨酸的不对称合成脯氨酸和异亮氨酸是人体必需氨基酸,被广泛使用在医药和日用化工等行业。
对于脯氨酸和异亮氨酸的不对称合成,钯催化在手性Cbz谷氨酰胺上(DmsL)与戊烯的羰基重排反应中,将不对称催化转化为了一种非对称环合成方法,成功合成了手性脯氨酸和异亮氨酸类似物。
2. 不对称羟醛合成不对称羟醛的制备是合成手性化合物的一种重要方式。
其一般是通过催化剂诱导的不对称重排反应或不对称醛缩合反应性(如错合反应)形成。
在不对称羟醛合成中,黄教授组提出的新的手性罗丹明催化剂分子是根据原子转移催化(ATC)理论设计的,在非常优异的对映选择性和接受性下,优化反应条件使得合成产率提高到80%以上。
三、不对称催化面临的挑战尽管不对称催化可以推动手性药物制备的进步,但这项技术还是面临着一些挑战。
1. 反应缺陷不对称催化由于催化剂选择性差,容易受到其他反应物影响,导致反应失效。
2. 催化剂的研究尽管已经有许多有效的催化剂,但因催化剂选择性有限或副反应严重,仍需要更有效、更选择性的催化剂。
3. 抗酸碱性钯催化剂在反应中很容易受到酸碱催化剂的影响,进而导致催化剂失去活性,因此需要选择稳定的催化剂或优化反应条件,来提高催化剂的抗酸碱性。
新型相转移催化剂的合成及其在不对称合成中的应用
![新型相转移催化剂的合成及其在不对称合成中的应用](https://img.taocdn.com/s3/m/47268215b7360b4c2e3f64d8.png)
第2 8卷 第 2期
V012 .8
NO 2 .
西 华 师 范 大 学 学 报 (自 然 科 学 版 )
Jun l f hn s N r l nvr t N trl cecs ora o i Wet oma U ie i C a s y( a a S i e) u n
4
上
@
2 3
,
5
H
a r O, yiie H C2 :Me,K O ,ae n ;C :f P r n ,C 2 I;b 2 d I C 3 ct e :Me g ,N C2 d p ) te;d B ,A B o M I iI( p p ,e r :N S I N,bn h e‘
选择性.
关 键 词 : 苯甲酮亚胺甘 氨酸叔丁酯 ; 二 相转移催化剂 ; 不对称烷基 化
中图分 类号 : 6 6 1 0 2 .
文献 标识码 : B
相 转移催 化剂 以其 独特 的优 点被广 泛应 用 于有机 合成 中 ¨ . 9 9年 OD n el 18 ’on l首次 报道 了金 鸡纳碱 衍
生 的相 转移催 化剂 催化 二苯 甲酮 亚胺 甘 氨酸 叔 丁酯 的烷 基 化 反应 , 此 , 从 开辟 了一 条 合 成 手 性 氨基 酸 的 重要方 法 , 型高 效相 转 移催化 剂 的合 成也 变得 越来 越重 要 . yo和 C r 新 Lg oe 别用 9一亚 甲基蒽 取代 第 一代 y分
相转移 催化 剂 中的苄基 合成 的第 三代相 转 移催化 剂显 示 出较 高 的立 体控 制 能力
ቤተ መጻሕፍቲ ባይዱ
, 而 , 类 催化 剂 的用 然 该
量较 大 (0 o% ) Mau k 小 组合 成 了一类新 型具有 c 1 m 1 ; ro a 对称 轴 的联二 萘酚 衍生 的手性 季 铵 盐催 化 剂 ,e e 值 最高 > 9 ( m 1 9 % 1 o%催 化剂 用量 ) . 我们 设想 , 利用 联 二萘 酚和 生物 碱 两者 的优 良性 能 , 其 两 个结 构 片段 将 结合 在 同一 个分 子 中 , 如果 构型 匹配 有可能 获得 较好 的结 果 . 于此 设想 , 基 我们 以光 学 纯 的联 二萘 酚 为 原料 合成 了一类 新 的手性 催化 剂 , 考察 了其催 化 活性. 并 催化剂 合成 路线 如下 :
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双功能化手性相转移催化剂的合成及其在不对称反应中的应用本论文基于金鸡纳碱骨架合成了三类新型的双功能化相转移催化剂和部分
文献已知的催化剂,并将这些催化剂应用于β-羰基酯的不对称氟代和nitroMannich反应中去。
具体分为以下三部分内容。
(1)合成了首例以金鸡纳碱、氨基酸和反式环己二胺为手性骨架含有方酰胺的季铵盐类相转移催化剂,并将这些催化剂应用于β-羰基酯的不对称氟代反应,其中,金鸡纳碱衍生的催化剂显示出了最好的催化效果,所得产物具有很高的收
率以及中等到良好的对映选择性(56-76%ee)。
控制实验证明了方酰胺部分和季铵化部分对反应取得中等到良好的对映选择性都是很重要的,表明该催化体系是双功能化催化体系。
(2)从金鸡纳碱和手性氨基醇出发合成了首例的含有多重氢键给体的季铵盐类相转移催化剂。
其中奎宁、L-苯甘氨醇组合和奎尼丁、D-苯甘氨醇组合衍生的催化剂在α-氨基砜的不对称nitro-Mannich反应中显示出非常高效的催化性能。
我们发现这两种催化剂在催化反应中都给出了很广的底物范围,另外也证明了引入多重氢键可以减少金鸡纳碱假对映异构的不利影响,两种对映体都可以以很高的对映选择性和非对映选择性获得(90-99%ee,13:1-99:1 dr)。
控制实验证明该催化剂中多重氢键部分和季铵化部分对反应取得高的选择性都是非常重要的,表明该催化体系是双功能化催化体系。
(3)合成了4个已知的奎宁衍生的相转移催化剂,合成了7个新型的含有脲基团的相转移催化剂和1个含有硫脲基团的相转移催化剂。
从2-巯基吡啶出发经
两步反应合成了吡啶-2-亚磺酰胺,从甲基取代的2-溴吡啶出发经三步反应合成
了另外四个甲基取代的吡啶-2-亚磺酰胺,从2-氯喹啉出发经三步反应合成了喹
啉-2-亚磺酰胺,使用这六个新颖的亚磺酰胺和苯乙酮先缩合后氧化合成了六个新型的酮亚胺底物。
我们分别考察了这六个底物在nitro-Mannich反应中的效果,通过控制实验条件,发现6-甲基-2-巯基吡啶衍生的酮亚胺底物为最优底物,之后对该反应进行了一系列条件的优化,详细考察了催化剂,碱,浓度,温度和溶剂。
在催化剂的优化过程中发现催化剂中的脲氢键给体和季铵化部分对于反应获得高的对映选择性都是至关重要的,表明该催化体系是双功能化催化体系。
发现带有硫脲基团的催化剂和相应的带有脲基团的催化剂相比可以给出更好的催化效果,反应在-30℃下反应48 h,可以取得95%的收率和93%的ee值。