几种递推数列通项公式的求法

合集下载

递推公式求通项公式的几种方

递推公式求通项公式的几种方

由递推公式求通项公式的常用方法由数列的递推公式求通项公式是高中数学的重点问题,也是难点问题,它是历年高考命题的热点题。

对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。

方法一:累加法形如a n+1-a n=f(n)(n=2,3,4,…),且f(1)+f(2)+…+f(n-1)可求,则用累加法求a n。

有时若不能直接用,可变形成这种形式,然后利用这种方法求解。

例1a1,a2,a3(1(2(2又a形如例2由(n得(a n+1n n+1n因为a n>0,则a n+1+a n≠0,所以=,将n=1,2,…,n-1,分别代入得==……=将上面n-1个式子相乘得,=××…×又a1=1,则a n=点评:本题先由已知求出递推公式,化成了=g(n)的类型,再利用累乘法求通项公式。

方法三:构造新数列法构造新数列法:将递推关系经过适当的恒等变形转化为特殊数列的递推关系(等差数列、等比数列、常数列或等差数列和等比数列的求和形式),以下类型均采用这种解法。

类型一:a n+1=A a n+B(A,B∈R,A≠0)线性递推关系当A≠0,B=0时,a n+1=A a n是以A为公比的等比数列;当Aa1+例3a n}的通项公式。

a n-a n+cq n 待入得p,而数列{a n+·例4解:由n=n+·可变形为n=(n+),则数列{n}是以为1=首项以为公比的等比数列,根据等比数列的通项公式得a n+=()n因此a n=-类型三:a n+2=p a n+1+q a n(其中p,q均为常数)方法:先把原递推公式转化为a n+2-s a n+1=t(a n+1-s a n),其中s,t满足,再利用等比数列来求解。

例5:已知数列{a n}中,a1=1,a2=2,a n+2=a n+1+a n,求{a n}的通项公式。

最全的递推数列求通项公式方法

最全的递推数列求通项公式方法

最全的递推数列求通项公式方法递推数列是指数列中的每一项都由前一项通过其中一种规律得出。

求递推数列的通项公式是数学中的重要问题,可以通过多种方法实现。

下面将介绍最常用的几种方法。

1.等差数列通项公式等差数列是指数列中的每一项与前一项之差都相等的数列。

设等差数列的第一项为a1,公差为d,则第n项为an=a1+(n-1)d。

这是等差数列的通项公式。

2.等比数列通项公式等比数列是指数列中的每一项与前一项之比都相等的数列。

设等比数列的第一项为a1,公比为r,则第n项为an=a1*r^(n-1)。

这是等比数列的通项公式。

3.斐波那契数列通项公式斐波那契数列是指数列中的每一项都是前两项之和。

设斐波那契数列的第一项为a1,第二项为a2,则第n项为an=a(n-1)+a(n-2)。

但通常情况下,我们将斐波那契数列的第一项设为0,第二项设为1,此时的通项公式为an=F(n-1),其中F(n-1)表示第n-1个斐波那契数。

4.龙贝尔数列通项公式龙贝尔数列是指数列中的每一项都是前一项与当前项索引之和。

设龙贝尔数列的第一项为a1,则第n项为an=a(n-1)+n。

这是龙贝尔数列的通项公式。

5.通项公式的递推法有些数列并没有明确的通项公式,但可以通过递推法求得通项公式。

递推法的核心思想是找到数列中的其中一种规律,通过前面的项得出后面的项。

这种方法比较灵活,可以适用于各种类型的数列。

总结起来,以上是求递推数列通项公式的几种常见方法。

在实际中,我们可以观察数列的规律,推测出通项公式,然后通过数学推导证明其正确性。

对于复杂的递推数列,我们可能需要运用更多的数学知识和技巧,如离散数学、线性代数等。

常见递推数列通项的九种求解方法

常见递推数列通项的九种求解方法

常见递推数列通项的九种求解方法(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--常见递推数列通项的九种求解方法高考中的递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考的热点之一。

是一类考查思维能力的好题。

要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方法。

类型一:1()n na a f n +=+(()f n 可以求和)−−−−→解决方法累加法 例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。

解析:121(2)n n a a n n --=-≥∴213243113521n n a a a a a a a a n --=⎧⎪-=⎪⎪-=⎨⎪⎪-=-⎪⎩ 上述1n -个等式相加可得: ∴211n a a n -=- 2n a n ∴=评注:一般情况下,累加法里只有n-1个等式相加。

【类型一专项练习题】1、已知11a =,1n n a a n -=+(2≥n ),求n a 。

2、已知数列{}n a ,1a =2,1n a +=n a +3n +2,求n a 。

3、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。

4、已知}{n a 中,n n n a a a 2,311+==+,求n a 。

5、已知112a =,112nn n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式.6、 已知数列{}n a 满足11,a =()1132,n n n a a n --=+≥求通项公式n a7、若数列的递推公式为1*113,23()n n n a a a n N ++==-⋅∈,则求这个数列的通项公式 8、 已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。

九类常见递推数列求通项公式方法

九类常见递推数列求通项公式方法

九类常见递推数列求通项公式方法递推数列通项求解方法类型一:an1panq(p1)思路1(递推法):anpan1qp(pan2q)qpppan3qqq……pn1a1q(1pp2…pn2qqn1。

)a1pp11p思路2(构造法):设an1pan,即p1q得qp1,数列an是以a1为首项、p为公比的等比数列,则anqn1qana1pp11pqn1a1p,即p1p1q例1已知数列an满足an2an13且a11,求数列an的通项公式。

解:方法1(递推法):an2an132(2an23)3222an3333……2n13(122…22n23n13n1)1223。

2112方法2(构造法):设an12an,即3,数列an3是以a134n1n1n1为首项、2为公比的等比数列,则an3422,即an23。

类型二:an1an思路1(递推法):f(n)anan1f(n1)an2f(n2)f(n1)an3f(n3)f(n2)f(n1)…a1f(n)。

i1n1思路2(叠加法):anan1f(n1),依次类推有:an1an2f(n2)、n1an2an3f(n3)、…、a2a1f(1),将各式叠加并整理得ana1i1f(n),即n1ana1i1f(n)。

例2已知a11,anan1n,求an。

解:方法1(递推法):anan1nan2(n1)nan3(n2)(n1)nn……a1[23…(n2)(n1)n]i1nn(n1)2。

方法2(叠加法):anan1n,依次类推有:an1an2n1、an2an3n2、…、nnna2a12,将各式叠加并整理得ana1i2n,ana1i2ni1nn(n1)2。

类型三:an1f(n)an思路1(递推法):anf(n1)an1f(n1)f(n2)an2f(n1)f(n2)f(n3)an3…f(1)f(2)f(3)…f(n2)f(n1)a1。

anan1a2a1an1an2ana1思路2(叠乘法):f(n1),依次类推有:f(n2)、an2an3f(n3)、…、f(1),将各式叠乘并整理得f(1)f(2)f(3)…f(n2)f(n1),即anf(1)f(2)f(3)…f(n2)f(n1)a1。

根据递推关系求数列通项公式的几种方法

根据递推关系求数列通项公式的几种方法

根据递推关系求数列通项公式的几种方法要求根据递推关系求解数列的通项公式,其实是要求找到一个能将数列的每一项都表示为n(项数)的函数的公式。

在数学中,有几种方法可以求解这类问题。

一、代数方法:对于一些简单的递推关系,可以尝试使用代数方法来求解数列的通项公式。

这种方法通过观察数列中的模式,尝试将递推关系转化为代数方程,然后解方程得到通项公式。

例如,我们考虑求解斐波那契数列的通项公式。

斐波那契数列的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1我们假设通项公式为Fn=k1a^n+k2b^n,其中k1、k2为常数,a、b为待定数。

k1a^n+k2b^n=k1a^(n-1)+k2b^(n-1)+k1a^(n-2)+k2b^(n-2)整理得:k1a^2-k1a-k2=0。

解这个方程,可以得到a和b的值,然后将a和b的值代入通项公式中,即可求解斐波那契数列的通项公式。

二、特征根法:特征根法是求解一阶线性递推关系(如Fn=aFn-1+b)的通项公式的常用方法。

该方法的基本思想是,将递推关系转化为一个一阶线性常微分方程,然后解方程得到通项公式。

例如,我们考虑求解斐波那契数列的通项公式。

斐波那契数列满足的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1将递推关系转化为一阶线性常微分方程得到:y''-y'-y=0其中y=Fn。

解这个方程得到的特征根为α1=(1+√5)/2,α2=(1-√5)/2通项公式可以表示为:Fn=k1(α1)^n+k2(α2)^n其中k1、k2为常数。

利用初始条件F1=1,F2=1,可以求解出k1和k2的值,进而求解出斐波那契数列的通项公式。

三、母函数法:母函数法是一种求解递推关系的高效方法,尤其适用于求解求和问题。

该方法的基本思想是,将数列视为一个幂级数的系数列,通过构造母函数来解决递推关系。

例如,我们考虑求解斐波那契数列的通项公式。

斐波那契数列的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1我们假设母函数为F(x)=F0+F1x+F2x^2+F3x^3+...F(x)=x(F(x)-F0)+x^2F(x)整理得:F(x)=F0+xF(x)+x^2F(x)移项得:F(x)=F0/(1-x-x^2)。

递推数列求通项公式

递推数列求通项公式

递推数列求通项公式递推数列是一种数学序列,其中每一项都是通过对前一项应用一个递推关系得到的。

求递推数列的通项公式是指找出一种依赖于自变量的表达式,用于计算数列中任意一项的值。

求递推数列的通项公式的方法主要有两种,一种是通过推导和观察数列的特点,找出合适的数学模型;另一种是利用已知的数学工具和技巧,通过数学推理和计算来找到通项公式。

下面以一些常见的递推数列为例,详细介绍如何求其通项公式。

1.等差数列:等差数列是最简单的一种递推数列,每一项与前一项的差值都相等。

设数列的首项为a,公差为d,则第n项可以表示为an = a + (n-1)d。

这是等差数列的通项公式。

2.等比数列:等比数列是一种每一项与前一项的比值都相等的递推数列。

设数列的首项为a,公比为r,则第n项可以表示为an = ar^(n-1)。

这是等比数列的通项公式。

3. 斐波那契数列:斐波那契数列是一种特殊的递推数列,前两项为1,后面每一项都是前两项之和。

即an = an-1 + an-2、通过观察数列的特点可以得知,斐波那契数列的通项公式是an = (1/sqrt(5)) *( ((1+sqrt(5))/2)^n - ((1-sqrt(5))/2)^n )。

4.等差-等比混合数列:等差-等比混合数列是一种先等差递推,然后再等比递推的数列。

设数列的首项为a,等差为d,公比为r,则第n项可以表示为an = (a + (n-1)d) * r^(n-1)。

5. 将递推数列转化为代数方程求解:对于一些复杂的递推数列,可以通过将数列的前几项转化为代数方程的解,并找到通项公式。

例如,如果递推数列的第n项为an = n^2 - 3n + 2,我们可以将数列的前几项代入an的表达式,然后求解方程组,找到通项公式。

总结起来,求递推数列的通项公式需要运用数学推导和观察、数学工具和技巧、将数列转化为代数方程等方法。

十类递推数列的通项公式的求法

十类递推数列的通项公式的求法
十类递推数列的通项公式的求法
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&
文!黄爱民
一、an+1= an+ f(n)型 这类递推数列可通过累加法求得其通项公式.当 f(n)
为常数时,通过累加法可求得等差数列的通项公式;当
f(n)为等差数列形式时,an+1= an+ f(n)为二阶等差数列, 它的通项公式的形式为 an=an2+bn+c.同时要注意它与等 差数列求和公式的一般形式的区别,后者是 Sn=an2+bn, 它的常数项一定为 0.
对数,得 lgan=lg2an4- 1 ,则有 lgan=4lgan-1+lg2.
∴lgan+
1 3
lg2=4(lgan-
1+
1 3
lg2).从而知{lgan+
1 3
lg2}是
首项为 1 lg2,公比为 4 的等比数列. 3
∴lgan=
(4n-1- 1)lg2 3
=(4n-1- 1)lg#3 2
,即
高中生·高考指导 13
×(3 2
)n- 1=(3 2
)n,即
an=
2n 3n- 2n

九、a n+1=
Aan+B Can+D
(A,B,C,D 为非零常数)型
这类递推数列的通项公式是利用函数的不动点来
求的.尽管这个知识点高考不作要求,但考题往往就从
这些地方出,只需增加一些铺垫.
例 9 若 f(x0)=x0,则称 x0 为 f(x)的不动点.已知函 数 f(x)= 2x+3 .
+1 2
.令
bn=
an 2n
,则有
bn+1=
3 2
bn+

递推数列求通项公式的常见类型及方法

递推数列求通项公式的常见类型及方法

递推数列求通项公式的常见类型及方法递推数列求通项即依据给出数列中相邻两项或几项的关系式,n a 与n S 的关系式等,求出通项公式,是数列中的重要内容,是高考中常见的题目.本文给出常见的类型和方法.1. )(1n f a a n n +=+.方法:叠加法. 令1,2,1-=n n,得21321(1)(2)(1)n n a a f a a f a a f n -=+=+=+-以上1-n 个式子相加,得111().n ni a a f i -==+∑ 例1.数列{}n a 中,)2(1,1211≥-+==-n n n a a a n n ,求数列{}n a 的通项. 解: 令n n ,,3,2 =,得212322121221331n n a a a a a a n n -=+-=+-=+-n n a a n -++-+-+=∴22211331221 11111223(1)111111(1)()()223112.a n n n n n =+++⨯⨯-=+-+-++--=- 2. )(1n f a a n n =+. 方法:累积法. 令1,2,1-=n n,得21321(1)(2)(1).n n a a f a a f a a f n -===-以上1-n 个式子求积,得)(111i f a a n i n-=∏+=. 例2. 数列{}n a 中,)2()11(,2121≥⋅-==-n a na a n n ,求数列{}n a 的通项.解: 由题1212)1)(1()11(--+-=-=n n n a nn n a n a ,令1,2,1-=n n ,得 21232212132243(1)(1)n n a a a a n n a a n -⨯=⨯=-+= 2221)1)(1(342231n n n a a n +-⋅⋅⨯⋅⨯⋅=∴ 11121.n a n n n +=⋅⋅+= 3. )0,1(1≠≠+=+q p q pa a n n . 方法一:配凑法.1().n n a p a λλ+-=-方法二:待定系数法.令)(1λλ-=-+n n a p a 比较已知得,.1q p q pλλλ-==- λ是方程q px x +=的根. q px x +=是特征方程.方程三: 两根同除以1+n p ,得111++++=n n n n n p q p a p a 转化为类型1. 例3(07.全国) 数列{}n a 中, ,3,2,1),2)(12(,21=+-==n a a a n n ,求数列{}n a 的通项. 解法一: )2)(12(1+-=+n n a a {}为公比的等比数列为首项,是以数列122222)2)(12(211--=--∴--=-∴+a a a a n n nn n na )12(2)12)(22(21-⨯=--=-∴- 故 2)12(2+-⨯=n n a解法二:令))(12(1λλ--=-+n n a a)12(2)12(-=--∴λλ 解得2=λ下同解法一.解法三:)12(2)12()2)(12(1-+-=+-=+n n n a a a两边同除以1)12(+-n ,得nn n n n a a )12(2)12()12(11-+-=-++ 令n n n n n a a b )12()12(+=-= 则n n n b b )12(21++=+.令.1,2,1-=n n 得11223112)12(2)12(2)12(2--++=++=++=n n n b b b b b b1211)12(2)12(2)12(2-+++++++=∴n n b b2)12(2)12(1])12(1)[12(2)12(21++=+-+-+⋅++=-n nn n n n b a )12(22)12(-⨯+=-=∴.4. )0,1(,1≠≠+=+q p q pa a n n n .方法一:两边同除以1+n p ,得111++++=n nn n n n p q p a p a 转化为类型一.方法二:待定系数法.令)(11-+-=-n n n n q a p q a λλ比较已知得p q q -=λ. 例4.数列{}n a 中,)1(,23,111≥+==+n a a a n n n ,求数列{}n a 的通项. 解法一:两边同除以13+n ,得1113233++++=n nn n n n a a . 令n n n a b 3=,则1132+++=n nn n b b . 令.1,2,1-=n n 得n n n n b b b b b b 323232113223212--+=+=+= n n n b b 32323213221-++++=∴ nn n n )32(1321])32(1[31323232311322-=--=++++=- n n n a 23-=∴.解法二:令)2(3211-+⋅-=-n n n n a a λλn n n 22321=-⋅∴-λλ解得2-=λ.即)2(3211n n n n a a +=+++,所以数列{}n n a2+是以321=+a 为首项,3为公比的等比数列. .23,32n n n n n n a a -==+∴故5. )1).((1≠+=+p n f pa a n n .方法:两边同除以1+n p ,得111)(++++=n n n n n pn f p a p a 转化为类型一. 例5. 数列{}n a 中,)1(,223,111≥-+==+n n a a a n n ,求数列{}n a 的通项.解: 两边同除以13+n ,得11132233+++-+=n n n n n n a a 令n nn a b 3=,得11322++-+=n n n n b b . 利用叠加法及错位相减法,以求得2123+-=n a n n . 6.)()(1n g a n f a n n +=+.方法: 两边同除以)()2()1(n f f f ,得)()2()1()()()2()1()()2()1(1n f f f n g n f f f a n f f f a n n +=+转化为类型一 例6. (2008年河南省普通高中毕业班教学质量调研考试)数列{}n a 中,)1(2)1(22,111≥++++==+n n n a n n a a n n ,求数列{}n a 的通项. 解: 令,2)(+=n n n f 则)2)(1(2211534231)()2()1(++=+⨯+-⨯⨯⨯⨯=n n n n n n n f f f 两边同除以)()2()1(n f f f ,得)2)(1(22)1(2)1(2)2)(1(21++++++=+++n n n n n n a n n a n n 即21)1(2)1()1)(2(+++=+++n na n a n n n n 令n n na n b )1(+=,则21)1(2++=+n b b n n令.1,2,1-=n n 得2122321223222n b b b b b b n n +=⨯+=⨯+=-)32(22221n b b n +++⨯+=∴3)12)(1(]16)12)(1([212++=-++⨯+⨯=n n n n n n 312+=∴n a n . 7. )(1n f a a n n =+. 方法: 由已知)1(12+=++n f a a n n ,两式相除,得)()1(2n f n f a a n n +=+. 例7. 数列{}n a 中,)1(,)31(,211≥==+n a a a n nn ,求数列{}n a 的通项. 解: 由题2,31121==a a a ,得612=a n n n a a )31(1=+ ………..① 112)31(+++=n n n a a ……...② ②÷①得 312=+n n a a k k a a a a a a 2421231,,,,,,和+∴都是以31为公比的等比数列 当n 为奇数时,21211)31(2--⋅==n n n q a a 当n 为偶数时,22222)31(61--⋅==n n n q a a ⎪⎪⎩⎪⎪⎨⎧⋅⋅=∴--为偶数,为奇数n n a n nn 2221)31(61,)31(2. 8.n n n qa pa a +=++12. 方法一: 配凑法.)(112n n n n a a a a αβα-=-+++方法二: 待定系数法. 令)(112n n n n a a a a αβα-=-+++,比较已知得 ⎩⎨⎧==+q p αββα 得出βα, 其中βα,是方程q px x +=2的两根,方程q px x +=2是特征方程.例8. 数列{}n a 中,)1(,65,5,11221≥-===++n a a a a a n n n ,求数列{}n a 的通项.解: 令)(112n n n n a a a a αβα-=-+++比较已知得⎩⎨⎧==+65αββα 得出2,3==βα )3(23112n n n n a a a a -=-∴+++数列{}n n a a 31-+是以2312=-a a 为首项,2为公比的等比数列.则n n n a a 231=-+,即n n n a a 231+=+.下同例4. 9.)0(,1≠++=+ac b aa d ca a n n n . 方法: 不动点法. 令bax d cx x ++=………(*) 若(*)有两重根,021x x x ==,则⎭⎬⎫⎩⎨⎧-01x a n为等差数列. 若(*)有两根,21x x ≠,则⎭⎬⎫⎩⎨⎧--21x a x a nn 为等比数列. 例9.(08,洛阳三练)数列{}n a 中,n n a a a -==+21,2111,求数列{}n a 的通项. 解:令xx -=21,得1=x . 111121111111-=----=---+n n n n a a a a , 为公差的等差数列为首项,是以1-2121111111-=-=-⎭⎬⎫⎩⎨⎧-∴a a n . 1)1()1(211--=-⨯-+-=-∴n n a n 1+=∴n n a n . 例10.(07.全国)数列{}n b 中,)1(3243,211≥++==+n b b b b n nn ,求数列{}n b 的通项. 解: 令3243++=x x x ,解得2,221=-=x x , 则411)12(2223243232432222+=-+-+++++=-+-+++n n n n n n n n n n b b b b b b b b b b 数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-+22n n b b 是以22222211-+=-+b b 为首项,4)12(+为公比的等比数列. 24)1(4)12()12(222222--+=+⋅-+=-+∴n n n nb b故1)12(1)12(22424-+++⋅=--n n nb .10. n n S a 与的关系.方法: ⎩⎨⎧-=-,,1n nn n S S S a 21≥=n n 可以向n a 转化,也可以向n S 转化.例11. 数列{}n a 的前n 项和,)1(12≥+=n a a S nn n ,求数列{}n a 的通项公式. 解法一: 1=n 时,1111212a a a S =+=,解得11=a )2(,1212111≥+=∴+=---n a a S a a S n n n nn n 两式相减得 11112---+-=n n n n n a a a a a ,)1(111--+-=-n n n n a a a a . 平方得 4)1()1(212122=+-+--n n n n a a a a . 数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+221n n a a 是以212121=+a a 为首项,4为公差的等差数列。

由递推关系求数列通项公式的几种方法

由递推关系求数列通项公式的几种方法
∴ an +1 = 3an + 2 x与已知an +1 = 3an + 1 比较得
1 1 解:Qan+1 = 3an +1 ∴an+1 + =(an + ) 3 2 21 an+1 + 1 2 =3 Qan + ≠ 0 ∴ 1 2 1 an + ∴{an + }是等比数列 , 2 2 1 1 n−1 3n −1 ∴an + = (a1 + ) ⋅ 3 ∴an = (n ∈N*) 2 2 2
然后用数学归纳法证明
小结: 小结
到了什么? 1.这节课我学 2.我还有哪些疑问? 3.我有什么新 想法 新发现? ,
作业:1.复习 作业 复习 2.进行等差数列 等比数列的知识梳理 进行等差数列,等比数列的知识梳理 3.做卷子 其中例 做卷子.其中例 其中例1(3)(8)选做 选做
1.形如an+1 − an = d(d为常数) 等差型
a2 2 解: = a1 1 a3 3 = a2 2 a4 4 = a3 3
5 .形 an+1 = f( ) n 如 n ⋅a
迭乘法
an 2 3 4 n −1 n ∴ = ⋅ ⋅ L ⋅ a1 1 2 3 n − 2 n −1
Mn an × a = n − 1 (n ≥ 2) ∴an = n (n ∈N*) n −1
2.形如an+1 = q ⋅ an (q为常数)
等比型
5 2 课课练P 44 / 12同学们做到 an = an −1 (n ≥ 2) 3 3
an 2 Q an −1 ≠ 0 ∴ = ( n ≥ 2) an −1 5
3 2 ∴{an }是等比数列, 首项a1 = , 公比q = 5 5

递推数列的通项公式的几种求法

递推数列的通项公式的几种求法

递推数列的通项公式的几种求法递推公式是给出数列的重要方法,对于递推公式确定的数列的求解,是近几年高考中的热点问题. 通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列. 本文介绍求递推数列的通项公式的几种常见方法.一、累加相消法利用恒等式112211)()()(a a a a a a a a n n n n n +-+-+-=---Λ求通项公式的方法称为累加相消法. 累加相消法是求形如)(1n f a a n n =--(数列{()f n }的前n 项和可求)的递推数列通项公式的基本方法.例1 已知}{n a 中,nn n a a a 2,311+==+,求n a 。

解:由12n n n a a +=+,得112n n n a a --=+ ∴112n n n a a ---= 2122n n n a a ----=……………… 2322a a -=212a a -=∴ 以上各式相加得112212(12)22222212n n n n n a a -----=⋅⋅==--L∴ 12221n nn a a =-+=-二、累乘相消法 利用恒等式112211a a aa a a a a n n n n n ⋅⋅⋅=---Λ求通项公式的方法称为累乘相消法. 累乘相消法是求形如)(1n g a a n n=-(数列{()}g n 的前n 项积可求)的递推数列通项公式的基本方法. 例2 已知}{n a 中,12n n na a n +=+,且12a =,求数列}{n a 的通项公式.解:由12n n na a n +=+,得12n na n a n +=+ ∴2113a a =,3224a a =,4335a a =,5446a a =,……,122n n a n a n---=,111n n a n a n --=+ ∴以上各式相乘,得11232123451(1)n a n n a n n n n --=⋅⋅⋅=++L ∴ 4(1)n a n n =+ 例3 已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(2n …),则{a n }的通项 1,1_______,2n n a n =⎧=⎨⎩…解:由1321)1(32--+++=n n a n a a a a Λ ,得23211)2(32---+++=n n a n a a a a Λ(3n …)两式相减得:11)1(---=-n n n a n a a ,即n a a n n=-1(3n …) 用累乘相消法可得132122n n n n n a a a a a a a a ---=⋅⋅⋅L !2n = 三、迭代法通过对递推关系进行适当变形后,用下标较小的项替代下标较大的项,通过累次运算,最终得出通项公式.例4 已知数列{}n a 的各项都是正数,且满足:*1111,(4),2n n n a a a a n N +==⋅-∈. 求数列{}n a 的通项公式a n .解:2111(4)[(2)4]22n n n n a a a a +=-=--+,所以211(2)(2)2n n a a +-=-- 令2n n b a =-,则212222212221211111111()()()222222n nn n n n b b b b b -+++---=-=--=-⋅==-L L 又11b =-,所以211()2nn b -=-,即21122()2nn n a b -=+=-四、转化法通过变换递推关系,将非等差、等比数列转化为与等差、等比有关的数列而求得通项公式的方法称为转化法. 常用的转化途径有:1.配凑变换——将递推公式1n n a ca b -=+ (b 、c 是常数,且c ≠1)通过配凑变成1()11n n b b a c a c c -+=+--。

常见递推数列通项公式的求法

常见递推数列通项公式的求法

(5)累乘法:
an1 an

f (n) ( f (1) f (2)
i 1
f (n)可求)
(6)构造法 an1 kan b
(7)作商法( a1a2 an cn 型);
(8)数学归纳法.
类型1 an1 an f (n)
类型1 an1 an f (n)
求法:累加法
类型3 an1 pan q( p 0, p 1)
求法 : 待定系数法.令an1 p(an ), 其中为待定系数,化为等比数列 {an }求通项.
例3 已知数列{an }中,若a1 1, an1 2an 3(n 1),求数列{an }的通项公式.
为首项, 公比为
(1)n1. 2
1 2
的等比数列.

an

1 2
an1

1,
an 2 21n.
【1】设数列{an}的前 n 项和为 Sn , 已知 a1 5 ,且 nSn1 2n(n 1) (n 1)Sn (n N ) , 则数列 an 的通项公式 是( A)
1 3 (an1 2an2 )(n 3,4, ) (1)求证 : 数列{an1 an }是等比数列; (2)求数列{an }的通项公式an .
【1】已知数列 {an} 中,
a1=1,
an+1=
1 2
an+1 (nN*),
则an =___2___2__1_n____.
Q
an1
类型6
an1

pan qan
r
(
p, q,
r均不为零)
类型6
an1

六类递推数列通项公式的求解方法

六类递推数列通项公式的求解方法

六类递推数列通项公式的求解方法一、an-1=an+f(n)型利用叠加法.a2=a1+f(1),a3=a2+f(2),…,an=an-1+f(n-1),an=a1+∑n-1k=1f(k).【例1】数列{an}满足a1=1,an=an-1+1n2-n(n≥2) ,求数列{an}的通项公式.解:由an+1=an+1(n+1)2-(n+1) 得an=a1+∑n-1k=11(k+1)2-(k+1) =1+∑n-1k=1(1k-1k+1)=1+1-1n =2-1n.二、an+1=anf(n)型利用叠代法.a2=a1f(1),a3=a2f(2),…,an=an-1f(n-1).an=a1∏n-1k=1f(k).【例2】数列{an}中a1=2,且an=(1-1n2)an-1 ,求数列{an}的通项.解:因为an+1=[1-1(n+1)2 ]an,所以an=a1∏n-1k=1f(k)=2∏n-1k=1[1-1(k+1)2 ]=2∏n-1k=1[kk+1 ×k+2k+1 ]=n+1n .三、an+1=pan+q,其中p,q为常数,且p≠1,q≠0当出现an+1=pan+q(n∈n*)型时可利用叠代法求通项公式,即由an+1=pan+q得an=pan-1+q=p(pan-2+q)+q=…=pn-1a1+(pn-2+pn-3+…+p2+p+1)q=a1pn-1+q(pn-1-1)p-1 (p≠1).或者利用待定系数法,构造一个公比为p的等比数列,令an+1+λ=p(an+λ),则(p-1)λ=q,即λ=qp-1 ,从而{an+qp+1 }是一个公比为p的等比数列.【例3】设数列{an}的首项a1=12 ,an=3-an-12 ,n=2,3,4,…,求数列{an}的通项公式.解:令an+k=-12(an-1+k) ,又∵an=3-an-12=-12an-1+32 ,n=2,3,4,…,∴k=-1,∴an-1=-12(an-1-1) ,又a1=12,∴{an-1} 是首项为-12,公比为-12 的等比数列,即an-1=(a1-1)(-12)n-1 ,即an=(-12)n+1 .四、an+1=pan+qan-1(n≥2),p,q为常数可用下面的定理求解:令α,β为相应的二次方程x2-px-q=0的两根(此方程又称为特征方程),则当α≠β时,an=aαn+bβn;当α=β时,an=(a+bn)αn-1,其中a、b分别由初始条件a1、a2所得的方程组aα+bβ=a1,aα2+bβ2=a2和 a+b=a1,(a+2b)α=a2唯一确定.【例4】数列{an},{bn}满足:an+1=-an-2bn①,bn+1=6an+6bn ②,且a1=2,b1=4,求an,bn.解:由②得an=16bn+1-bn,∴an+1=16bn+2-bn+1 ,代入①到式中,有bn+2=5bn+1-6bn,由特征方程可得bn=-12×2n+283×3n ,代入②式中,可得an=8×2n-143×3n .五、an+1=pan+f(n)型,这里p为常数,且p≠1【例5】在数列{an}中,a1=2,an+1=λan+λn+1+(2-λ)2n(n ∈n*),其中λ>0,求数列{an}的通项公式.解:由 a1=2,an+1=λan+λn+1+(2-λ)2n(n∈n*),λ>0,可得,an+1λn+1-(2λ )n+1=anλn -(2λ )n+1,所以{anλn-(2λ)n}为等差数列,其公差为1,首项为0.故anλn-(2λ )n=n-1,所以数列{an}的通项公式为an=(n-1)λn+2n.六、an+1=makn(m>0,k∈q,k≠0,k≠1)一般地,若正项数列{an}中,a1=a,an+1=makn(m>0,k∈q,k≠0,k≠1),则有lgan+1=klgan+lgm,令lgan+1+a=k(lgan+a)(a为常数),则有a=1k-1lgm.数列{lgan+1k-1lgm }为等比数列,于是lgan+1k-1lgm=(lga+1k-1lgm)kn-1 ,从而可得an=akn-1?mkn-1-1k-1 .【例6】已知各项都是正数的数列{an}满足a1=32,an+1=12an(4-an) ,求数列{an}的通项公式.解:由已知得an+1=-12(an-2)2,令2-an=bn,则有b1=12,bn+1=12b2n .∵an>0,∴0<an+1<2,又0<a1<2,∴0<an<2,从而bn>0.取对数得lgbn+1=2lgbn-lg2,即lgbn+1-lg2=2(lgbn-lg2).∴{lgbn-lg2}是首项为-2lg2,公比为2的等比数列,∴lgbn-lg2=-2nlg2,∴bn=21-2n,∴an=2-21-2n.(责任编辑金铃)。

由递推公式求通项的9种方法经典总结

由递推公式求通项的9种方法经典总结

由递推公式求通项的9种方法1.a n +1=a n +f (n )型把原递推公式转化为a n +1-a n =f (n ),再利用累加法(逐差相加法)求解,即a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+f (1)+f (2)+f (3)+…+f (n -1).[例1] 已知数列{a n }满足a 1=12,a n +1=a n +1n 2+n,求a n . [解] 由条件,知a n +1-a n =1n 2+n =1n (n +1)=1n -1n +1,则(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n , 所以a n -a 1=1-1n. 因为a 1=12,所以a n =12+1-1n =32-1n. 2.a n +1=f (n )a n 型把原递推公式转化为a n +1a n=f (n ),再利用累乘法(逐商相乘法)求解,即由a 2a 1=f (1),a 3a 2=f (2),…,a n a n -1=f (n -1),累乘可得a n a 1=f (1)f (2)…f (n -1).[例2] 已知数列{a n }满足a 1=23,a n +1=n n +1·a n,求a n . [解] 由a n +1=n n +1·a n ,得a n +1a n =n n +1, 故a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n -1n ×n -2n -1×…×12×23=23n .即a n =23n . 3.a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0)型对于此类问题,通常采用换元法进行转化,假设将递推公式改写为a n +1+t =p (a n +t ),比较系数可知t =q p -1,可令a n +1+t=b n +1换元即可转化为等比数列来解决.[例3] 已知数列{a n }中,a 1=1,a n +1=2a n +3,求a n .[解] 设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ),即a n +1=2a n -t ,则t =-3.故递推公式为a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2. 所以{b n }是以b 1=4为首项,2为公比的等比数列.所以b n =4×2n -1=2n +1,即a n =2n +1-3. 4.a n +1=pa n +q n (其中p ,q 均为常数,pq (p -1)≠0)型(1)一般地,要先在递推公式两边同除以q n +1,得a n +1qn +1=p q ·a n q n +1q ,引入辅助数列{b n }⎝⎛⎭⎪⎫其中b n =a n q n ,得b n +1=p q ·b n +1q ,再用待定系数法解决;(2)也可以在原递推公式两边同除以pn +1,得a n +1p n +1=a n p n +1p ·⎝ ⎛⎭⎪⎫q p n ,引入辅助数列{b n }⎝ ⎛⎭⎪⎫其中b n =a n p n ,得b n +1-b n =1p ⎝ ⎛⎭⎪⎫q p n ,再利用叠加法(逐差相加法)求解.[例4] 已知数列{a n }中,a 1=56,a n +1=13a n +⎝⎛⎭⎫12n +1,求a n . [解] 法一:在a n +1=13a n +⎝⎛⎭⎫12n +1两边乘以2n +1,得2n +1·a n +1=23(2n ·a n )+1. 令b n =2n ·a n ,则b n +1=23b n +1, 根据待定系数法,得b n +1-3=23(b n -3). 所以数列{b n -3}是以b 1-3=2×56-3=-43为首项, 以23为公比的等比数列. 所以b n -3=-43·⎝⎛⎭⎫23n -1,即b n =3-2⎝⎛⎭⎫23n .于是,a n =b n 2n =3⎝⎛⎭⎫12n -2⎝⎛⎭⎫13n . 法二:在a n +1=13a n +⎝⎛⎭⎫12n +1两边乘以3n +1,得 3n +1a n +1=3n a n +⎝⎛⎭⎫32n +1.令b n =3n ·a n ,则b n +1=b n +⎝⎛⎭⎫32n +1.所以b n -b n -1=⎝⎛⎭⎫32n ,b n -1-b n -2=⎝⎛⎭⎫32n -1,…, b 2-b 1=⎝⎛⎭⎫322.将以上各式叠加,得b n -b 1=⎝⎛⎭⎫322+…+⎝⎛⎭⎫32n -1+⎝⎛⎭⎫32n . 又b 1=3a 1=3×56=52=1+32, 所以b n =1+32+⎝⎛⎭⎫322+…+⎝⎛⎭⎫32n -1+⎝⎛⎭⎫32n =1·⎣⎡⎦⎤1-⎝⎛⎭⎫32n +11-32=2⎝⎛⎭⎫32n +1-2, 即b n =2⎝⎛⎭⎫32n +1-2.故a n =b n 3n =3⎝⎛⎭⎫12n -2⎝⎛⎭⎫13n . 5.a n +1=pa n +an +b (p ≠1,p ≠0,a ≠0)型这种类型一般利用待定系数法构造等比数列,即令a n +1+x (n +1)+y =p (a n +xn +y ),与已知递推式比较,解出x ,y ,从而转化为{a n +xn +y }是公比为p 的等比数列.[例5] 设数列{a n }满足a 1=4,a n =3a n -1+2n -1(n ≥2),求a n .[解] 设递推公式可以转化为a n +An +B =3[a n -1+A (n -1)+B ],化简后与原递推式比较,得⎩⎪⎨⎪⎧2A =2,2B -3A =-1,解得⎩⎪⎨⎪⎧A =1,B =1. 令b n =a n +n +1.(*)则b n =3b n -1,又b 1=6,故b n =6·3n -1=2·3n , 代入(*)式,得a n =2·3n -n -1.6.a n +1=pa r n (p >0,a n >0)型这种类型一般是等式两边取对数后转化为a n +1=pa n +q 型数列,再利用待定系数法求解.[例6] 已知数列{a n }中,a 1=1,a n +1=1a ·a 2n(a >0),求数列{a n }的通项公式. [解] 对a n +1=1a ·a 2n的两边取对数, 得lg a n +1=2lg a n +lg 1a. 令b n =lg a n ,则b n +1=2b n +lg 1a. 由此得b n +1+lg 1a =2⎝⎛⎭⎫b n +lg 1a ,记c n =b n +lg 1a,则c n +1=2c n , 所以数列{c n }是以c 1=b 1+lg 1a =lg 1a为首项,2为公比的等比数列. 所以c n =2n -1·lg 1a. 所以b n =c n -lg 1a =2n -1·lg 1a -lg 1a=lg ⎣⎡⎦⎤a ·⎝⎛⎭⎫1a 2n -1=lg a 1-2n , 即lg a n =lg a 1-2n ,所以a n =a 1-2n .7.a n +1=Aa n Ba n +C(A ,B ,C 为常数)型 对于此类递推数列,可通过两边同时取倒数的方法得出关系式[例7] 已知数列{a n }的首项a 1=35,a n +1=3a n 2a n +1,n =1,2,3,…,求{a n }的通项公式. [解] ∵a n +1=3a n 2a n +1,∴1a n +1=23+13a n,∴1a n +1-1=13⎝⎛⎭⎫1a n -1. 又1a 1-1=23, ∴⎩⎨⎧⎭⎬⎫1a n -1是以23为首项,13为公比的等比数列, ∴1a n -1=23·13n -1=23n , ∴a n =3n 3n +2. 8.)(1n f a a n n =++型 由原递推关系改写成),()1(2n f n f a a n n -+=-+然后再按奇偶分类讨论即可例8.已知数列{}n a 中,,11=a .21n a a n n =++求n a 解析:.21n a a n n =++2212+=+++n a a n n ,故22=-+n n a a 即数列{}n a 是奇数项和偶数项都是公差为2的等差数列,⎩⎨⎧∈≥-=∴*,1,1,N n n n n n n a n 且,为偶数为奇数 9.)(1n f a a n n =⋅+型将原递推关系改写成)1(12+=+⋅+n f a a n n ,两式作商可得,)()1(2n f n f a a n n +=+然后分奇数、偶数讨论即可 例9.已知数列{}n a 中,,2,311n n n a a a =⋅=+求{}n a 解析:⎪⎩⎪⎨⎧∈≥⋅⋅=+-N n n n n a n n n ,1,231,23221,为偶数为奇数。

根据递推关系求数列通项公式的几种方法

根据递推关系求数列通项公式的几种方法
根据递推关系数列通项公式的几种求法
一、定义法 例 1、已知数列an 的递推公式,求an
1)a1 3, an1 an 2
1 2)a1 2, an 1 an 3
等差数列
等比数列
二、累加相消法(累加法)
形如:a1 a, an1 an f n
当所给数列每依次相邻两项之间的差 组成等差或等比数列时,就可用累加 法进行消元。
p 1 , 求a n ?
构造等比数列an , 使an 1 p(an ),
an 2 1
n
则q (p 1 ) ,
q 即 p1
4)a1 2, an1 2an 3
an 2
n1
an1 3 2(an 3)
2 an 5 4n
例6、已知数列an 的递推关系为: an 1 a ,a1 3,求an
2 n
两边同取常用对数
an 3
2 n1
当一个数列每依次相邻两项之商构成 一个等比数列或其它数列时,就可用 累乘法进行消元。
例3、已知数列an 的递推公式,求an
1)a1 2, an1 3 an
n
an 2 3
n n 1 2
n 2)a1 1, an 1 an n 1
1 an n
四、换元法
通过“换元”,构造一个等差或等比的 新数列,利用等差或等比的知识解决 问题。
3
1 5)a1 1, an 1 an 6 2
1 an 1 4 (an 4) 2
1 an 5 2
n 1
4
例5、已知数列an 的递推关系为: an 1 an 2an 1an,a1 2,an 0, 求an

递推数列通项公式的求法

递推数列通项公式的求法

递推数列通项公式的求法递推数列是指通过前一项或前几项推导出后一项的数列。

通项公式是指通过数列中的任意一项可以直接计算出该项的数值的公式。

在求递推数列的通项公式时,可以使用多种方法,包括直接法、联立方程法、差分法、母函数法等。

下面将详细介绍这些方法。

一、直接法二、联立方程法联立方程法适用于一些复杂的递推数列,通过联立多个方程来求出通项公式。

该方法需要已知的一些数列值,然后根据这些值建立方程组,通过解方程组来求得通项公式。

例如,对于数列1,3,7,13,21,...,我们可以通过观察得到an = a(n-1) + 2n-1、然后,我们可以通过已知项确定初始值,如a1 = 1、通过逐一代入这些值,可以得到如下的方程组:a2 = a1 + 2(2) - 1,a3 = a2 + 2(3) - 1,...,以此类推。

然后我们可以通过求解这个方程组来得到数列的通项公式。

三、差分法差分法是通过求解数列项之间的差分来求得通项公式。

该方法常用于递推数列的高阶通项公式的求解。

对于数列an,我们可以通过计算an+1- an的值,然后继续计算相邻项之间的差分,直到得到一个关于n的表达式。

例如,对于数列1,3,6,10,15,...,我们可以计算出相邻项之间的差分:2,3,4,5,...。

我们发现这个差分数列是一个等差数列,其通项公式为an = n(n+1)/2、通过这个通项公式,我们可以进一步求得原数列的通项公式。

四、母函数法母函数法是一种重要的数学工具,适用于一些复杂的递推数列。

该方法通过构造一个函数来表示数列的各项,然后通过求解函数的表达式来得到数列的通项公式。

例如,对于数列1,1,2,3,5,...,我们可以构造一个函数F(x)=1+x+x^2+x^3+x^4+...。

我们可以通过求解这个函数关于x的表达式来得到数列的通项公式。

这个函数有一个特点,即F(x)=xF(x)+1,通过求解这个方程我们可以得到F(x)=1/(1-x)。

求递推数列的通项公式的十一种方法

求递推数列的通项公式的十一种方法

求递推数列的通项公式的十一种方法
递推数列是一种数学数列,其中每一项都是由前一项推算出来的。


项公式则是通过已知的数列项之间的关系,找出数列的整体规律,从而可
以直接计算任意一项的值。

下面将介绍11种方法来推导递推数列的通项公式。

1.递归定义法
递归定义法是通过规定数列的首项以及前面项与后面项之间的关系,
来表达出数列的通项公式。

2.直接求和法
直接求和法是通过将数列的前n项求和,并将结果化简得出通项公式。

3.递推关系法
递推关系法是通过规定数列前两项之间的关系,并将该关系推广到前
n项之间的关系,从而求出通项公式。

4.变量代换法
变量代换法是通过引入新的变量,将原数列表示成一个新的数列,从
而得到新数列的通项公式。

5.假设公式法
假设公式法是通过猜测数列的通项公式,并验证猜测的公式是否符合
已知项的规律。

6.拆项法
拆项法是通过拆解数列的项,将数列表示成两个或多个部分,再求和得出通项公式。

7.枚举法
枚举法是通过穷举数列的前几项,找出数列项之间的规律,推算出通项公式。

8.差分法
差分法是通过计算数列项之间的差值,找出数列项之间的规律,从而得到通项公式。

9.生成函数法
生成函数法是通过将数列视为多项式的系数,构造一个生成函数,再通过求导、积分等运算得到通项公式。

10.求和公式法
求和公式法是通过利用已知的数列求和公式,计算数列的前n项和,并化简得出通项公式。

11.对称性法
对称性法是通过观察数列的对称性,推断出数列的通项公式。

数列递推公式的九种方法

数列递推公式的九种方法

求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一. 一、作差求和法例1 在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n 则,211112-+=a a 312123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=.二、作商求和法例2 设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题)解:原递推式可化为:)]()1[(11n n n n a a na a n +-+++=0 ∵n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,n n a a n n 11-=- 逐项相乘得:na a n 11=,即n a =n 1. 三、换元法例3 已知数列{n a },其中913,3421==a a ,且当n ≥3时,)(31211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编).解:设11---=n n n a a b ,原递推式可化为:}{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31.故n n n n b b )31()31(91)31(2211==⋅=---.故n n n a a )31(1=--.由逐差法可得:nn a )31(2123-=.例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几种递推数列通项公式的求法递推数列常常是高考命题的热点之一.所谓递推数列,是指由递推公式所确定的数列.由相邻两项的关系给出的递推公式称为一阶递推公式,由相邻三项的关系给出的递推公式称为二阶递推公式,依次类推.等差数列和等比数列是最基本的递推数列.递推数列基本问题之一是由递推关系求通项公式.下面是常见的递推数列及其通项公式的求法. 1 一阶线性递推数列求通项问题一阶线性递推数列主要有如下几种形式: (1)1()n n x x f n +=+这类递推数列可通过累加法而求得其通项公式(数列{f(n)}可求前n 项和).当()f n 为常数时,通过累加法可求得等差数列的通项公式.而当()f n 为等差数列时,则1()n n x x f n +=+为二阶等差数列,其通项公式应当为2n x an bn c =++形式,注意与等差数列求和公式一般形式的区别,后者是2n S an bn =+,其常数项一定为0. (2)1()n n x g n x +=这类递推数列可通过累乘法而求得其通项公式(数列{g(n)}可求前n 项积). 当()g n 为常数时,用累乘法可求得等比数列的通项公式.(3)1(,0,1)n+n x =qx +d q,d q q ≠≠为常数;这类数列通常可转化为1()n n x p q x p ++=+,或消去常数转化为二阶递推式211()n n n n x x q x x +++-=-.[例1]已知数列n x {}中,11121(2)n n x x x n -==+≥,,求n x {}的通项公式.[解析]解法一.转化为1()n n x p q x p ++=+型递推数列.∵121(2)n n x x n -=+≥,∴112(1)(2)n n x x n -+=+≥,又112x +=,故数列{1n x +}是首项为2,公比为2的等比数列.∴12nn x +=,即21nn x =-.解法二.转化为211()n n n n x x q x x +++-=-型递推数列. ∵n x =2x n-1+1(n ≥2) ① ∴1n x +=2x n +1 ②②-①,得112()n n n n x x x x +--=-(n ≥2),故{1n n x x +-}是首项为x 2-x 1=2,公比为2的等比数列,即11222n n n n x x -+-==,再用累加法得21n n x =-.解法三.用迭代法.21231221212(21)12212222121n n n n n n n n x x x x x ------=+=++=++=++++=- .当然,此题也可用归纳猜想法求之,但要用数学归纳法证明.[例2]已知函数1()22(1)2f x x x =-+≤≤的反函数为121(),1,()yg x x x g x ===,321(),,(),,n n x g x x g x -== 求数列n x {}的通项公式. [解析]由已知得1()1(01)2g x x x =-+≤≤,则1111,1(2)2n n x x x n -==-+≥. 令11()2n n x p x p -+=-+=,则11322n n x x p -=--.比较系数,得23p =-.即有1212()(2)323n n x x n --=--≥.∴数列{23n x -}是以12133x -=为首项,12-为公比的等比数列,∴1211()332n n x --=-,故1112()323n n x -=-+.[评析]此题亦可采用归纳猜想得出通项公式,而后用数学归纳法证明之. (4)1(,nn n cx x c d x d+=+为非零常数); 若取倒数,得1111n n d x c x c+=+ ,令1n n y x =,从而转化为(1)型而求之.(5)1(,1,1)nn+n x =qx +d q,d q d ≠≠为非零常数; 这类数列可变换成111n n n n x x q d d d d ++=+ ,令n nnx y d =,则转化为(1)型一阶线性递推公式. [例3]设数列11132(*)nn n n x x x x n N +==+∈.{}满足:,求数列n x {}的通项公式.[解析]∵132nn n x x +=+,两边同除以12n +,得11312222n n n nx x ++=+ .令322nn n x y = ,则有13122n n y y +=+ .于是,得131(1)2n n y y ++=+,∴数列1n y +{}是以首项为37144+=,公比为32的等比数列,故1731()42n n y -+= ,即173()142n n y -=- ,从而2117323n n n x -+=- .[例4]设10132(*)n n n x x x n N --=-∈为常数,且,求数列n x {}的通项公式.[解析]设1132(3)nn n n x p x p --+=-+,用1132n n n x x --=-代入,可解出15p =-.∴35n n x -{}是以公比为-2,首项为00332122555x x x -=--=-1的等比数列. ∴1032(2)(2)55n n n x x --=--,即1023(2)(2)55n n n x x -=--+03(1)2(1)2(*)5n n n n n x n N --=+-∈ .(6)1(00,0,1)pn+n n x =cx x ,c p p >>>≠这类数列可取对数得1lg lg lg n n x x c +=+,从而转化为等差数列型递推数列. 2 可转化为等差、等比数列或一些特殊数列的二阶递推数列[例5]设数列12215521(*)333n n n n x x x x x x n N ++===-∈.{}满足:,,求数列n x {}的通项公式. [解析]由2152(*)33n n n x x x n N ++=-∈,可得 2111222()(*)333n n n n n n x x x x x x n N ++++=-=-∈.-设11212521333n n n n y x x y y x x +=-=-=-=,则{}是公比为的等比数列,且,故2(*)3n y n N =∈n ().即12(2)3n n x x n --=≥n-1().用累加法得 12111221222()()()()()333n n n n n n n x x x x x x x x ------=-+-++-=+++ ,或 11221112()()()222()()1333n n n n n n n x x x x x x x x -----=-+-++-+=++++21()233[1()]2313nn -==--). [例6]在数列12211(*)n n n n x x x x x x n N ++===+∈{}中,已知,,求数列n x {}的通项公式.[解析]可用换元法将其转化为一阶线性递推数列.令11n n n y x a x +=-,使数列n y {}是以2a 为公比的等比数列(1,a a 2待定).即211211()n n n n x a x a x a x +++-=-,∴212112()n n n x a a x a a x ++=+-.对照已给递推式,有121211a a a a +==-,,即21210a a x x --=、是方程的两个实根.从而121211112222a a a a -====∴211111222n n n n x x x x ++++-=-) ①或211111222n n n n x x x x +++--=-) ②由式①得111(22n n n x x ++-=;由式②得111(22nn n x x +--=.消去111()(22n nn n x x ++=-1,得].[例7]在数列12211(*)n n n n x x x x x x n N ++===-∈{}中,已知,,求100x .[解析]由21n n n x x x ++=- ①,得321n n n x x x +++=- ②.式②+式①,得3n n x x +=-,从而有63n n n x x x ++=-=.∴数列n x {}是以6为其周期.故100x =4x =-1.3 特殊的n 阶递推数列[例8]已知数列n x {}满足11231123(1)(2)n n x x x x x n x n -==++++-≥ ,,求n x {}的通项公式.[解析]∵123123(1)(2)n n x x x x n x n -=++++-≥ ①∴1123223(2)(3)n n x x x x n x n --=++++-≥ ② ②-①,得1(3)n n x nx n -=≥.∴1(3)nn x n n x -=≥,故有 1312213n n n n x x x n n x x x ---==-=. ,, 将这几个式子累乘,得22(1)(2)3(1)(2)3nn x n n n x n n n x x =--==--. ,或 又1211(1),11,!(2)2n n x x x x n n =⎧⎪====⎨≥⎪⎩ ,故 .[例9]数列{n x }满足21121,2n n x x x x n x =+++= ,求数列{n x }的同项公式.[解析]由212n n x x x n x +++= ①,得21211(1)(2)n n x x x n x n --+++=-≥ ②. 式①-式②,得221(1)n n n x n x n x -=--,或2221(1)(1)n n n n n x n x x n x --=-=-,故有11(2)1n n x n n x n --=≥+ . ∴12312341234,,,,112n n n n n n n n x x x x n n n n x n x n x n x n -----------====+-- ,322121,43x x x x ==. 将上面几个式子累乘,得121(1)n x x n n =+ ,即1211(2)(1)(1)n x x n n n n n==≥++ .∵112x =也满足上式,∴1211(*)(1)(1)n x x n N n n n n ==∈++ .以上就是常见的一些递推数列及其通项公式的一般求法.这些知识是拓展性的,超出了课本的要求范围,但它们在高考题中时常会见到,有时是以证明题形式出现,如果比较系统地掌握了这些知识,解答这类题目就容易把握.。

相关文档
最新文档