混沌学浅议
混沌理论学习的总结
(1)
式中 τ 为时间延迟,m 为嵌入维数。 (2) 选取邻近点。设中心点 XM 的 K 个邻近相点为(XMi=1,2…,K) ,到中心点 XM 的欧式距 离为 d i ,设 dmin 是 d i 中最小值,定义 X Mi 的权值为 Pi ,则
di X M X Mi
判断系统是否具有混沌特征(需先求出 τ 和 m) 常用表征系统是否具有混沌特征一般有两类方法:定性方法(功率谱)和定量方法(最 大Lyapunov指数) 。利用Fourier分析法求出时间序列的功率谱,从而可以识别该时间序列表征 的动力系统的规则性态与不规则性态。若时间序列具有混沌特征,则其功率谱具有连续性、 噪声背景和宽峰特征等图形特征;若时间序列是确定性的周期系统,则其功率谱是仅包含有 基频和其谐波或分频的离散波形;若时间序列是确定性的准周期系统,则其功率谱是包括不 同层次频率的离散波形,但谱线并不像周期运动那样以某间隔的频率分离。 最大Lyapunov指数是评判和表征非线性时间序列混沌特性的重要参数,是一个非常关键 的混沌不变量。Lyapunov指数是用来描述混沌系统内部相邻相点间辐散的平均速率(其中正 Lyapunov指数值( Lyapunov指数>0)评判两个相邻轨道的平均指数分离程度,负 Lyapunov 指数值(Lyapunov指数<0)评判两个相邻轨道的平均指数靠拢程度) 。如果一个非线性系统 是离散的,那么正Lyapunov指数则是衡量系统是否混沌的一个重要指标。 (PS:Lyapunov指数 的倒数就是有效预测步数! ) 从时间序列的角度来研究混沌,我们知道对于决定系统长期演化的任一变量均包含了系 统所有变量长期演化的所有信息。因此,我们可以通过决定系统的长期演化的任一单变量时 间序列来研究系统的混沌行为,于是帕卡德(Packard)等人提出的重构相空间理论。 相空间的重构: 混沌动力学系统分析的第一步是相空间重构。由 Takens 定理可知系统中任意一个分量的 演化均是由与它相互作用的其它分量所决定的。所以,这些相关分量的数据信息隐含在任意 一分量的变化过程中,系统相空间的重构只需要考察其中的一个分量,再通过某些延时点上 的观测数值找到如 Y={x(i),x(i+τ),…,x(i+(m-1)τ},x(i+ (m-1)τ)}所示的 m 维向量,就能重构出一 个等价的相空间用于恢复原有的动力学系统。 从 Y 中可以看出, 未知参数只有 m 和 τ, 所以, 如何选择适当的嵌入维数 m 和延迟时间 τ 是相空间重构的主要研究内容。 举例: 设时间序列为 X={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20},假设算出此时间序 列的 τ=3,m=5。则相空间重构有:M=N-(m-1)τ . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
浅谈混沌理论
浅谈混沌理论《科学方法论》课程论文学院:公共管理学院专业:科技哲学指导老师 : 蒙绍荣教授学号: 1022301013姓名:朱严峰一、混沌理论的提出——由线性科学到非线性科学线性是指量与量之间的正比关系;在直角坐标系里,这是用一根直线表征的关系。
例如:v1、线性科学的成就由于人的认识的发展总是从简单事物开始的,所以在科学发展的早期,首先从线性关系来认识自然事物,较多地研究了事物间的线性相互作用,这是很自然的。
例如:经典物理学中,首先考察的是没有摩擦的理想摆,没有粘滞性的理想流体,温度梯度很小的热流等;数学家们首先研究的是线性函数、线性方程等。
理论家们在对大自然中的许多现象进行探索时,总是力求在忽略非线性因素的前提下建立起线性模型,至少是力求对非线性模型做线性化处理,用线性模型近似或局部地代替非线性原型,或者借助于对线性过程的微小扰动来讨论非线性效应。
经过长期的发展,在经典科学中就铸造出一套处理线性问题的行之有效的方法,如牛顿经典力学等;就是设计物理实验,也主要是做那些可以做线性分析的实验。
从这个特点看来,经典科学实质上是线性科学。
线性科学在理论研究和实际应用上都有十分光辉的进展,在自然科学和工程技术领域,对线性系统的研究都取得了很大的成绩。
2、线性科学的局限线性科学的长期发展,也形成了一种扭曲的认识或“科学思想”,认为线性系统才是客观世界中的常规现象和本质特征,才有普遍规律,才能建立一般原理和普适方法;而非线性系统只是例外的病态现象和非本质特征,没有普遍的规律,只能作为对线性系统的扰动或采取特殊的方法做个别处理。
由此得出结论说,线性系统才是科学探索的基本对象,线性问题才存在理论体系;所以经典科学的长期发展,都是封闭在线性现象的圈子里进行的。
3、线性科学和非线性科学的差异线性与非线性物理现象有着质的差异和不同的特征。
1)从结构上看,线性系统的基本特征是可叠加性或可还原性,部分之和等于整体,几个因素对系统联合作用的总效应,等于各个因素单独作用效应的加和;因而描述线性系统的方程遵从叠加原理,即方程的不同解加起来仍然是方程的解;分割、求和、取极限等数学操作,都是处理线性问题的有效方法;非线性则指整体不等于部分之和,叠加原理失效。
混沌学
身边的混沌学
2 大脑的混沌规律 这个过程为什么说是混沌的呢?
因为人类的大脑是最复杂的 物体,近十年来的神经生理学 的研究已经让人们更多地认识 了大脑。 大脑中神经元的工作机理也逐 步清晰:一些比较底层的神经元 (是指执行最基本任务的神经元) 从它的数千个树突上获得外界的 信号,然后这些神经元的任务就 是做出评判。
混沌也不是独立存在的科学,它与其 它各门科学互相促进、互相依靠,由此派 生出许多交叉学科,如混沌气象学、混沌 经济学、混沌数学以及混沌在学习中的奥 妙等。混沌学不仅极具研究价值,而且有 现实应用价值,能直接或间接创造财富。
混沌学的应用进展
混沌思想已被一群数学家和物理学 家,变成了一项非常有用的实用技 术,即混沌控制。
洛伦兹在计算机上用一组简化模型模拟天气的演变。 他原本的意图是利用计算机的高速运算来提高天气预 报的准确性。但是,事与愿违,多次计算表明,初始 条件的极微小差异,均会导致计算结果的很大不同。
身边ቤተ መጻሕፍቲ ባይዱ混沌学
1 混沌与学习的关系
人的学习活动从微观尺度 到宏观尺度都有混沌的潜规 则在发挥作用,这些作用甚 至可能完全改变一个人的终 身轨迹,可能会有巨大的成 功,也可能会陷入不可避免 的怪圈中。 n “不积跬步,无以至千里” n “勿以善小而不为,勿以 恶小而为之”
一则西方寓言: 丢失一个钉子,坏了一只蹄铁; 坏了一只蹄铁,折了一匹战马; 折了一匹战马,伤了一位骑士; 伤了一位骑士,输了一场战斗; 输了一场战斗,亡了一个帝国。 马蹄铁上一个钉子是否会丢失,本是初始条 件的十分微小的变化,但其“长期”效应却是 一个帝国存与亡的根本差别。 这就是军事和政治领域中所谓的"蝴蝶效应"。
人行道上 摆满自行车
浅谈混沌理论
浅谈混沌与世间种种巨大的力量相比,扇动着翅膀的蝴蝶似乎没多大力量。
然而有一句谚语却说:“中国上空的一只蝴蝶振动双翅,美国某处便下起了大雨。
”混沌理论可以证明这一谚语。
对蝴蝶力量的科学洞察始于洛伦兹的工作。
洛伦兹是一位气象学家,也被尊称为混沌理论的缔造者之一。
当时,洛伦兹正在检验一个简单的气象预测模型。
洛伦兹完成了冗长的计算后,需要对结果进行复核,他将 0. 506而不是初始的精确值 0.506127作为初值输入计算机。
他知道这样做将产生千分之一的误差,并预计在其气象预测中和原来的计算将有同等大小的差异。
然而,令他大为吃惊的是,新的天气预报和原先的结果几乎没有什么相似之处,他立即意识到了问题的症结所在:当计算机反馈出每一步的结果并作为原数据重新输入时,两组数据开始时的细微差别被迅速放大为巨大的差异。
这万分之一的误差——这种误差大约相当于多了一阵轻柔的微风——很快就使天气预报变成了一片混乱。
他用图像来模拟气候的变化 ,最后他发现,图像是混沌的,而且十分像一只蝴蝶张开的双翅。
这就是我们今天所熟知的 “蝴蝶效应“, 从科学的角度来看,蝴蝶效应反映了混沌运动的一个重要特征:系统的长期行为对初始条件的敏感依赖性。
混沌理论认为:在混沌系统中,初始条件十分微小的变化经过不断放大,对其未来状态会造成极其巨大的差别。
正所谓失之毫厘,谬以千里。
对气象工作者来说,那一天是黑暗的日子。
洛伦兹意识到:“如果大气层真是这样活动的话, 那么要想做出长期气象预报几乎是不可能了。
”但这一天的经历并非只对气象工作者有意义。
他冲破了束缚人们思想的堤坝,并为新的研究领域的开辟奠定了基石,由此引入了混沌这一理论。
我们再来看看一个简单的物理系统-单摆。
在一根不能伸缩的长度为 Z 的细线下端悬挂一个小球,微微移动后,就可以在一竖直面内来回摆动,这种装置称为单摆。
只要有一定物理常识就知道,在一定的条件下(忽略细线质量、空气阻力及系统内的摩擦力,且摆角) ,回复力 F=一k x ,单摆振动的回复力跟位移成正比而方向相反,单摆做简谐振动。
“混沌学”告诉人们未来是不可能完全预测的
“混沌学”告诉人们未来是不可能完全预测的也许你没有意识到,当有人问你:明天有雨吗?你的回答其实是在预测未来。
在生活中这样的例子屡见不鲜:如股票行情预测、奥运会金牌竞猜、足球世界杯竞猜、等等。
预测未来实际上已经成为人们的生活内容和方式之一,甚至还成为未来学家的专业。
那么,未来真的是可预测的吗?在现实生活中,人们总是习惯于由已知推测未来,由现在推测将来,虽然这种推测失误率相当高,但是人们一般不认为自己的思想方法有问题,而是觉得自己“预测”的能力和水平不够,这种观念实际上源于人们常常把事物看成简单、直线式的发展和有规则(比如周期性)运动的习惯性错误。
说其“错误”是因为,作为现代科学的前沿学科之一的混沌学研究表明,未来是不可能完全预测的。
所谓“混沌”原意指混乱、无序;未开化,不开通。
混沌现象指的是自然界中那些不确定的、随机的、模糊的、复杂的状态和行为。
混沌理论把现实世界划分为确定性和不确定性的两种事件和过程,前者的特点是其未来可预测,如日出日落、四季更替等;后者的特点是有许多偶然的、随机的和模糊的因素在事件过程中起作用,因而使得其未来不可预测,比如投掷硬币、摇奖,等。
混沌理论认为,混沌是自然界中比确定性和有序的现象更为普遍的现象,其根本特征或起源可归结为事物的运动变化对初始条件的敏感依赖性,即初始条件的任何微小的差异,可能导致完全不同的结果。
这使得人们只能预测事件系统的短期行为,而对于系统的长期行为,原则上是不可预测的,这也是为什么随着技术的进步,短期天气预报越来越准,而长期天气预报却没有多大进展的原因。
科学家们用混沌理论来说明对自然现象的变化作出预报的可能与不可能:由于大气运动存在着广泛而典型的混沌现象,所以短期天气预报是可能的,但长期预报却极其困难;由于地震、飓风、洪水、森林火灾的发生等“地球行为”是混沌运动的结果,目前人类都无法对这些自然灾害作出长期(一年或一年以上)和中期(一个月到几个星期)的预报,只有短期的预报才有一定可能。
浅谈混沌理论
目录摘要...............................................................目录............................................................... 引言...............................................................一、混沌理论的提出——由线性科学到非线性科学........................线性科学的成就..................................................... 线性科学的局限..................................................... 线性科学和非线性科学的差异.........................................二、混沌理论——无序中的有序.......................................蝴蝶效应........................................................... 蝴蝶效应与混沌学................................................... 什么是混沌呢....................................................... 混沌的特征.........................................................对初始条件的敏感依赖性...........................................极为有限的可预测性...............................................混沌的内部存在着超载的有序....................................... 混沌学的意义....................................................... 身边的混沌现象.....................................................三、混沌的应用.....................................................混沌与经济学....................................................... 混沌与艺术.........................................................四、总结........................................................... 参考文献...........................................................引言说起“混沌”这个词,我们中国人首先想到的是我国古代传说中宇宙形成以前模糊一团的景象,即古哲学中认为盘古开天辟地之前,天地处于混沌状态。
混沌的道理
混沌的道理
混沌的道理是指一种没有明确秩序或规则的状态或状态,是不确定和不可预测的。
混沌理论认为,通过非线性动力学系统的研究,可以揭示在看似不规则的混乱中存在着一定的隐含规律。
混沌理论认为,即使在一个连续演变的系统中,微小的变动也可能产生巨大的影响,从而导致系统的不可预测性。
这表明一些本质上复杂的系统,如天气模式、金融市场、心脏跳动等都可以归类为混沌系统。
混沌的道理也可以理解为一种对于事物和世界的一种思考方式。
混沌的道理认为,世界并不总是按照人们的期待和规则进行。
事物或现象是否按照规定进行,常常取决于诸多因素的复杂相互作用,而不是简单的线性或可预测的关系。
因此,我们应当接受和应对事物的不确定性和变化,而不是一味追求完美的秩序或规则。
混沌的道理也提醒我们要关注于变化、不确定性和复杂性,从中寻找新的可能性和机会。
通过适应和把握事物的不确定性,我们可以更好地应对变化和创新,提高个人和组织的适应性和竞争力。
混沌理论浅说
混沌理论浅说混沌一词原指宇宙未形成之前的混乱状态,我国及古希腊哲学家对于宇宙之源起即持混沌论,主张宇宙是由混沌之初逐渐形成现今有条不紊的世界。
在井然有序的宇宙中,西方自然科学家经过长期的探讨,逐一发现众多自然界中的规律,如大家耳熟能详的地心引力、杠杆原理、相对论等。
这些自然规律都能用单一的数学公式加以描述,并可以依据此公式准确预测物体的行径。
一·混沌学形成的背景在经典力学中,简化的力学模型人为地排除了偶然性,把必然性强烈地体现出来。
根据牛顿的动力学方程,可以从物体的初始状态准确地计算出在此之前或以后的任一时刻的运动状态,这些运动状态之间具有确定的、必然的因果联系。
拉普拉斯虽然对牛顿的一些错误观点作了尖锐的批判,但他却像牛顿一样积极宣传机械论,并把机械决定论推到了极端。
他在《概率论》引言中说:“让我们想象有个精灵,它知道在一定时刻的自然界里一切的作用力和组成这个世界的一切东西的位置;让我们又假定,这个精灵能够用数学分析来处理这些数据,由此,它能够得到这样的结果:把宇宙中最大物体的运动和最轻原子的运动都包括在同一个公式里。
对于这个精灵来说,没有不确定的东西。
过去和未来都会呈现在它的眼前。
”[1]1963年美国气象学家爱德华·诺顿·劳仑次]]提出混沌理论(Chaos),非线性系统具有的多样性和多尺度性。
混沌理论解释了决定系统可能产生[[随机]]结果。
理论的最大的贡献是用简单的模型获得明确的非周期结果。
在气象、航空及航天等领域的研究里有重大的作用二·混沌理论的基本概念混沌是指发生在确定性系统中的貌似随机的不规则运动。
一个确定性理论描述的系统,其行为却表现为不确定性——不可重复、不可预测,这就是混沌现象[2]1972年12月29日,美国麻省理工学院教授、混沌学开创人之一E.N.洛伦兹在美国科学发展学会第139次会议上发表了题为《蝴蝶效应》的论文,提出一个貌似荒谬的论断[3]:“在巴西一只蝴蝶翅膀的拍打能在美国得克萨斯州产生一个龙卷风”,并由此提出了天气的不可准确预报性。
复杂系统的统一性混沌理论解析
复杂系统的统一性混沌理论解析复杂系统是由各种相互作用的组成部分组成的系统,它们通常表现出非线性和混沌的行为。
混沌理论是研究复杂系统中不稳定性和无序性的一种方法。
本文将解析复杂系统的统一性混沌理论,探讨混沌的起源和基本原理,并讨论其在科学和工程领域的应用。
一、混沌理论的概述混沌理论起源于20世纪60年代,追溯到爱德华·洛伦兹的著名洛伦兹吸引子的研究。
混沌在数学上被定义为一个无法确定长期行为的动力系统,即微小的初始条件可能导致完全不同的结果。
混沌的行为通常表现为非周期性、不可预测性和敏感依赖性等特点。
混沌理论的出现打破了传统线性系统的框架,丰富了对自然现象和现实系统的描述。
二、混沌的产生机制混沌的产生机制可以通过动力系统和非线性系统的特性来解释。
动力系统指的是一组演化规则,描述了系统在不同时间点之间如何变化。
对于线性系统来说,初始条件和外部输入的微小变化只会产生微小的影响,系统的行为是可预测的。
然而,当系统中存在非线性的相互作用时,微小的初始条件变化可能会引起系统状态的剧烈改变,从而产生混沌。
这是非线性系统行为的重要特征之一。
三、混沌的基本原理混沌的基本原理可以用分形和自相似性来解释。
分形是指在不同尺度上具有相似性的结构或模式。
在混沌系统中,无论是时间尺度还是空间尺度,都存在这种自相似性,即小尺度上的局部行为反映了大尺度上的整体行为。
例如,曼德勃罗集合就是一个具有复杂分形结构的混沌系统。
四、混沌理论的应用混沌理论在科学和工程领域有广泛的应用。
在天气预报中,洛伦兹吸引子的发现揭示了气象系统中的不可预测性。
在物理学中,混沌理论被用于描述量子力学中的随机性和相对论中的非线性效应。
在生物学中,混沌的存在被认为是生物系统中自我组织和自适应的表现。
此外,混沌理论还在信息安全和密码学中发挥着重要的作用。
通过利用混沌系统的非周期性和不可预测性,可以设计出更安全的加密算法和随机数生成器。
五、总结混沌理论是研究复杂系统中不稳定性和无序性的一种方法。
混沌理论详解
混沌理论是对不规则而又无法预测的现象及其过程的分析。
一个混沌过程是一个确定性过程,但它看起来是无序的、随机的。
像许多其他知识一样,混沌和混沌行为的研究产生于数学和纯科学领域,之后被经济学和金融学引用。
一、什么是混沌理论混沌理论的主导思想是,宇宙本身处于混沌状态,在其中某一部分中似乎并无关联的事件间的冲突,会给宇宙的另一部分造成不可预测的后果。
混沌理论在许多科学学科中得到广泛应用,包括:数学、生物学、信息技术、经济学、工程学、金融学、哲学、物理学、政治学、人口学、心理学和机器人学。
二、混沌理论的发展背景混沌理论是对不规则而又无法预测的现象及其过程的分析。
一个混沌过程是一个确定性过程,但它看起来是无序的、随机的。
像许多其他知识一样,混沌和混沌行为的研究产生于数学和纯科学领域,之后被经济学和金融学引用。
在这些领域里,由于人们想知道在某些自然现象背后是否存在着尚未被认识的规律,因而激发了人们对于混沌的研究。
科学家已经注意到了某些现象,例如行星运动,是有稳定规律的,但其他的,比如像天气之类,则是反复无常的。
因此,关键问题在于天气现象是否是随机的。
曾经一度被认为是随机的后来又被证实是混沌的,这个问题激发了人们探索真理的热情。
如果一个变量或一个过程的演进、或时间路径看似随机的,而事实上是确定的,那么这个变量或时间路径就表现出混沌行为。
这个时间路径是由一个确定的非线性方程生成的。
在此,我们有必要介绍一下混沌理论的发展史。
人们对于混沌动态学的最初认识应当归功于Weis(1991),而Weis又是从几百年前从事天体力学的法国数学家HenryPoincare那里得到的启示。
Poincare提出,由运动的非线性方程所支配的动态系统是非线性的。
然而,由于那个时代数学工具的不足,他未能正式探究这个设想。
Poincare之后的很长一段时间,对于这个论题的研究趋于涅灭。
然而,在20世纪60-70年代间,数学家和科学家们又重新开始了对这个论题的研究。
混沌理论浅说 - 孙丽 姜小婷
学家认为,来自微观尺度的热库,来自几十亿在随机热力学舞动中的分子。再
以城市经济运动为例,信息来自成千上万个有决策权的业主的生产行为,来自 千百万个消费者的消费行为,来自系统之外的环境的变化。
2.3 混沌的内部存在着超载的有序
•
混沌内部的有序是指混沌内部有结构,而且在不同层次上其结构具有相似 性,即所谓的自相似性。 混沌内部的有序还表现为不同系统之间跨尺度的相似性,即所谓普适性。
可以说是中国最广泛的一个消费者来源区。外来购房者巨大的购买力,在一定程度
上成为了“炒楼风”的帮凶。
第五,制度上的漏洞。炒楼花在深圳早已被限制,但在沪、苏、杭
一带,早期交几千元定金就可以订个房号(后期最多就是二、三成 首期),然后价格上涨时抛出套利。后期上海、杭州、南京等地虽 然出台各种“禁炒令”,但已经属亡羊补牢。 然而,在不具备潜在力量的“风暴区域”,温州人的翅膀就无法 “兴风作浪”,比如深圳:供求基本平衡、十年来房价基本维持在 每平方米五千多元,相邻年份的涨跌幅度从未超过每平方米300元、 市民的房价收入比基本控制在六比一左右、超过九成的自住需求等。
3.2、混沌与学习
--学习的混沌法则
• “初始的微小差异可能引起巨大的结果变化” --- 《混沌动力学》
混沌系统的理论与应用研究
混沌系统的理论与应用研究混沌系统是一类非线性动力学系统,其特点是有着灵敏的初始条件依赖性、不可预测性和复杂性。
在自然界和工程实践中,很多现象可以被描述为混沌现象。
因此混沌系统的理论和应用研究已经成为了一个热点话题。
一、混沌系统的理论1.混沌现象的起源混沌现象的起源可以追溯到19世纪60年代的洛伦兹方程。
洛伦兹方程描述了三维空间中的流体运动,但是当参数取值在一定范围内时,方程的解会呈现出复杂的非周期性演化,这就是洛伦兹吸引子,也是混沌现象的一个自然表现。
2.混沌系统的行为特征混沌系统主要有三个基本特征,即灵敏性依赖初值、不可预测性和指数式的增长或衰减。
灵敏性依赖初值是指对于微小的初值扰动会导致系统演化完全不同的结果,导致系统的预测变得不可靠。
不可预测性是指混沌系统的演化严格遵循确定性方程,但是由于初值误差的影响,相邻的状态演化会趋于不同的方向。
指数式的增长或衰减则体现了混沌系统的无限扩张性和不稳定性。
3.混沌理论的基本工具混沌理论的基本工具包括相空间、特征指数和混沌分析等。
相空间是混沌理论的核心概念,它是由混沌系统状态构成的空间,反映了混沌系统状态的演化规律。
特征指数是描述混沌系统演化速率的指标,它可以用于判断混沌系统的稳定性和预测系统的行为。
混沌分析则是一种基于神经网络、小波分析、频域分析等方法对混沌时序序列的分析手段,可以提取出混沌系统中蕴含的信息。
二、混沌系统的应用1.混沌系统在密码学中的应用由于混沌系统的伪随机性和不可预测性,因此在密码学中得到了广泛运用。
混沌加密算法是一种基于混沌映射的加密方法,可以提供高强度的数据保护。
2.混沌系统在通信中的应用混沌通信是一种新兴的通信技术,它通过利用混沌系统的非周期性、高灵敏性和无规律性来实现通信系统的保密性和抗干扰性。
3.混沌系统在金融领域中的应用混沌系统在金融领域中的应用主要包括金融市场预测和金融风险控制。
混沌理论的应用可以提高预测模型的精度,在金融市场瞬息万变的环境下,提高预测准确率对于投资者和交易员来说都是至关重要的。
从哲学的角度认识混沌理论
从哲学的角度认识混沌理论混沌学是当代系统科学的重要组成部分,与相对论和量子力学的产生一样,混沌理论的出现对现代科学产生了深远的影响。
混沌运动的本质特征是系统长期行为对初值的敏感依赖性,所谓混沌的内在随机性就是系统行为敏感地依赖于初始条件所必然导致的结果。
我们可把混沌理解为:在一个非线性动力学系统中,随着非线性的增强,系统所出现的不规则的有序现象。
这些现象可以通过对初值的敏感依赖性、奇异吸引子、费根鲍姆常数、分数维、遍历性等来表征。
牛顿力学描绘的世界图景是钟表模式的世界图景:宇宙间的一切事物都象一架钟表,它们按照确定的方式运行,科学的任务就是阐明钟表的结构.揭示它的运行规律。
混沌学的研究则破坏了这种模式的科学根基,引导人们重新确定科学研究的任务。
未来科学的任务是从混沌的观点阐明客观世界这个超级巨系统的结构方式和运行机制。
混沌学从根本上打破了人类长期形成的片面的固定思维方式,不仅促进了自然科学向前发展,而且丰富了科学的唯物辩证法和方法论,具有划时代的哲学意义和科学意义。
混沌给我们带来的影响是巨大的,促进了科学思想和方法论一系列的重大革命,改变着人们的思维,促使人们在哲学上对其进行深层次的认识。
混沌学是非线性科学范畴,它认为世界的真实面目就是非线性的,经典物理学研究的线性不是自然界普遍存在的,而是相对于非线性的一个特例。
经典科学的线性观导致事物发展的简单性、确定性和还原性,而混沌理论的非线性世界观是对经典科学线性观的扬弃,它是有序与无序确定性和随机性、完全性和非完全性、自相似性和":自相似性相统一的世界,它们之间是可以互相转化、对立而统一的,遵循着辩证法的规律。
从简单到复杂,从线性到非线性,这是符合认识发展的规律的。
分叉、突变,对初值的敏感依赖性,长期行为的不可预见性,分形几何特性等是非线性的性质,分数维、费根鲍姆常数是对非线性系统作定量描述的普遍概念,所以,混沌的主要特性是可以被我们认识和描述的。
混沌理论的概念
混沌理论的概念混沌理论是一种非线性动力学理论,研究的是复杂系统的行为。
它起源于20世纪60年代末70年代初,由美国的数学家和物理学家发展而成。
混沌理论对于我们理解自然界和社会系统中的复杂现象具有重要意义。
混沌理论的核心概念是“混沌”,它指的是一种似乎没有规律可循、具有极高灵敏度的运动状态。
一个混沌系统具有以下几个特征:首先,它是非线性的,即其演化方程不是线性的。
其次,它具有灵敏依赖初值的特性,即微小的初值差别会导致系统在演化过程中产生巨大不同的结果。
最后,它具有迭代运算的性质,即某一时刻系统的状态可以通过迭代运算得到下一时刻的状态。
混沌系统的典型例子是天气系统。
天气系统是一个非线性的系统,它的演化方程非常复杂,受到许多因素的影响。
由于初始条件的微小差别,同一天气模型在不同起点的模拟结果会有很大的不同,这就是天气系统的灵敏依赖初值的特点。
天气系统的演化也具有迭代运算的性质,即通过多次迭代可以得到未来时刻的天气预报。
混沌理论的发展使我们认识到,即使在一些简单的非线性系统中,也可能出现复杂的、看似随机的行为。
混沌理论不仅仅改变了我们对于系统演化的认识,也在一些实际应用中发挥着重要的作用。
在科学研究领域,混沌理论帮助我们更好地理解和解释复杂系统的行为。
例如,在生物学中,混沌理论被用来研究生物振荡、神经网络等问题,有助于揭示生物系统内部的复杂动力学机制。
在天文学中,混沌理论被用来研究行星运动、恒星动力学等问题,深化我们对宇宙的认识。
在工程应用中,混沌理论也具有重要价值。
例如,混沌现象被应用于数据加密,如混沌加密算法可以保护敏感信息的安全。
此外,混沌现象还可以用于优化算法,如混沌搜索算法可以应用于解决复杂优化问题,提高计算效率。
此外,混沌理论还对社会科学领域的研究有着一定的启示作用。
社会系统是一个非线性、复杂的系统,混沌理论的应用可以帮助我们理解社会系统的演化规律、预测社会现象的发展趋势。
例如,混沌理论被用来研究经济系统中的波动,以及人群行为中的复杂模式。
论文----我对混沌的认识
我对混沌的认识摘要:蝴蝶效应(Butterfly Effect )是指在一个动力系统中,初始条件下微小的变化能带动整个系统的长期的巨大的连锁反应。
这是一种混沌现象。
混沌一个看似荒谬的现象,却是存在的真实的普遍的现象,给科学发展注入新的活力。
那混沌是什么?关键词:混沌理论控制发展及应用一、引言湍流现象——无序中的有序在雷诺的管流实验中,湍流是指流体中质点的运动杂乱无章,其中含有大量的无规则的三维旋涡,流体质点的动量和能量高效率的相互混合,使其平均速度在剖面中心部分平坦而边缘陡峭,造成壁面剪应力增大,从而使管流阻力增大的流体的一种流动状态。
湍流的特点之一是它的物理量无论对时间还是对空间都是随机涨落的。
湍流的实验特点在于湍流中物理量是随机脉动的。
然而湍流的实验发现:湍流并非是流体完全随机的无序运动,而是在紊乱中存在着相当有组织的有序运动。
湍流也是混沌现象之一。
混沌运动是1963 年由美国气象学家洛伦兹(E.Yorke)在研究区域小气候求解他所提出的模型方程首先发现的。
因此,洛伦兹方程在混沌学历史上也有重要地位,特别是对它的分析在了解非线性方程如何出现混沌解方面很有意义。
现代非线性理论中的混沌的概念是1975 年李天岩和约克(J.Yorke)在题为《周期3 蕴涵着混沌》的论文中首先提出,即混沌是非线性系统中的一种特殊的运动状态。
但是,论文中关于混沌的概念与通常人们(特别是过去)对混沌(chaos)一词的理解完全不一样(在古代,无论是中国还是西方,混沌都表示宇宙形成之前的元气)。
开始时(主要是20 世纪70 年代)为了把它与传统的表示无序概念加以区别,有时人们把这种具有专门含义的混沌称为“确定性混沌”(deterministic chaos)。
现在科技界已普遍接受并习惯使用“混沌”一词的专门含义了,于是一般便去掉了“确定性”这一定语。
人们已普遍认为“混沌”就是“确定性系统中出现的随机状态”(1986 年英国皇家学会举办的一次国际性专题学术会上与会者达成的共识)。
混沌理论实践心得体会
随着科学技术的不断发展,混沌理论作为一种新兴的跨学科理论,逐渐受到了广泛关注。
混沌理论起源于对复杂系统的研究,主要研究系统在非线性作用下的复杂行为。
通过实践混沌理论,我深刻体会到了其独特的魅力和广泛的应用前景。
以下是我对混沌理论实践的心得体会。
一、混沌理论的定义与特点混沌理论是研究复杂系统的一种理论,它揭示了系统在非线性作用下的复杂行为。
混沌现象具有以下几个特点:1. 敏感依赖初始条件:在混沌系统中,初始条件的微小差异会导致系统状态的巨大差异,这种现象被称为“蝴蝶效应”。
2. 非周期性:混沌系统不具有确定的周期性,其行为呈现出随机性和不可预测性。
3. 自相似性:混沌系统具有自相似结构,即系统在不同尺度上具有相似的结构和特征。
4. 非线性:混沌现象的产生与系统的非线性相互作用密切相关。
二、混沌理论的应用领域混沌理论在多个领域具有广泛的应用,以下列举几个典型应用:1. 天气预报:混沌理论揭示了天气系统在非线性作用下的复杂行为,有助于提高天气预报的准确性。
2. 金融市场:混沌理论应用于金融市场分析,可以帮助投资者捕捉市场中的非线性波动,提高投资收益。
3. 生物学:混沌理论在生物学领域的应用,如神经网络、生物钟等,有助于揭示生物体内复杂系统的运行规律。
4. 物理学:混沌理论在物理学领域的应用,如激光、流体力学等,有助于研究复杂系统的动力学行为。
三、混沌理论实践心得1. 混沌理论的实践过程在实践中,我首先了解了混沌理论的基本概念和原理,然后通过编程实现了一些简单的混沌系统,如洛伦兹系统、龙卷风系统等。
在实现过程中,我深刻体会到了混沌现象的复杂性和不确定性。
2. 混沌理论的实践感悟(1)混沌现象无处不在:通过实践,我发现混沌现象不仅存在于自然界,还存在于人类社会的各个方面。
这使我认识到,混沌理论具有广泛的应用前景。
(2)混沌理论的非线性思维:混沌理论要求我们从非线性角度思考问题,这有助于我们更好地理解复杂系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
然界 的各个部分 。从伽利 略, 到牛顿完成 , 牛顿的万有引力定律 成为近代 自然科学 的统一基础 。近代 自然科 学的世界 图景及方
法论特点便是机械唯物论 。然而 , 科学 的视野也更多甚至全部被 限制到 了 自然界 的局部和线 形 、 连续性 、 光滑性 、 有续 性问题方 面, 其典型的思维模式便是 : 首先认 为事 物一定有一个确定 的答
・
作 者 简介 : 霍
剑 , ,9 0年 出生 ,0 8 毕业于山西财经 男 18 20 年
山西科技
S A X CE C N E H O O Y H N I IN EA DT C N L G S
21 0 2年
第2 7卷
第 5期
● 问题 探 讨 混 沌 学 浅 议 Nhomakorabea霍 剑
( 山西省 科技 发展 战略 研究所 , 山西太原 , 3 0 2 0 00 )
摘 要: 通过对混沌现象的介绍, 了混沌运动的具体机制及混沌学在各个学科领域的应用。 浅议
系统中存在的一种普遍现象 ,它是非线形系统所特有 的一 种复 杂状态 , 常常是 不可积 的或者是离散性质 的动力学系统。而这也
正是经典力学没 有重视 ,无法 处理或将其简化处理 的那一 类还
包含着更深刻丰富的规律性系统 。 混 沌学的出现修 正了科学 所描述的 自然 图景 ,人们 原来限
文献 标 识 码 : A 文 章 编 号 :0 4 6 2 (0 2 0 — 0 5 0 10 — 4 9 2 1 )5 0 1 — 3
关键词 : 混沌 ; 混沌学; 浅议
中图 分 类 号 : 01 1
混沌论 在现代科 学技 术发展中起着十分重要 的作 用 ,正如 美 国科学家施策辛格所说 ,2 “O世纪科学将永远铭记的只有三件 事, 那就是相对论 、 量子论和混沌论 ” 。物理学 家福特也认为混沌
也可以说它是近似于确定 性的 , 然而却不是看起来 像确定性 的 ,
换 句话说 , 现有状态完全或几乎完全决定未来 , 但却不是 看上去
如此。
研 究混沌学及混沌理论的创建 ,不能不提 到美 国气 象学家
洛伦兹 ( d ad1 ez在这方面 的卓越贡献 。16 年 , E nr.rn ) o 9 3 洛伦兹根
混 沌 一 词 译 自英 文 “ho” “h o” 词 源 自希 腊 文 , 意 c as , c as一 原
1 混 沌 现 象 的 重视 引发 一 门新 学 科
11 近代 自然科学的方法论特点 . 到 了近代 , 自然科学开始按不 同学科靠 实验 和分析把握 自
是指先于一切事物而存在 的广袤虚无 的空 间。人 类 自古便有混 沌这一概念 ,易乾凿度》 《 上讲 :气似 质具 而未相离 , 之混沌” “ 谓 ;
性 的 行 为 ; 者 , 考 虑 它 出 在 稍 微 有 点 随 机 性 的 实 际 系统 中 , 或 若
近代 自然科 学家特别 是物理学 家在探索 自然规律 的科 学实
践 过程 中, 一直忽略无序 的存在。而存 在于大气 、 海洋湍 流、 野生 动物种群数的涨落以及心脏与大脑的振动 中的 自然界 的不规则 方面 , 不连续 、 不稳定方面 , 一直都是科 学的难题 。与近代科学不 同 ,上个世 纪 7 O年代 ,美 欧少数科学家 开始找 到了无序 的 门 径—— 开创 了混沌学 。二三十年问 , 门新 兴学科在理论概念及 这 实际应用上迅速发展 , 已渗透到各个学科和领域 。混沌是非线形
12 混 沌 开创 新 科 学 -
精致 的晶体 。数学家维纳 ( . ee) NWi r用这个单词 “ho” n cas来强调 说 明诸 如一群 随机分 布的气体分子 或云中杂乱无章 的水滴群 这 样 的系统 。可以肯定 的是 目前存在 多种 新的混沌的定义 。在这
里 ,我们试 图将 混沌 理解 为它是一 种确定的系统 中出现 的无 规 则运动 。混沌理论所研究的是非线形动力学混沌 , 目的是要揭示 貌似 随机 的现象 背后 隐藏 的简单规 律 ,以求发现一大类复杂 问 题普遍遵循 的共 同规律。洛伦兹 曾经指 出, 混沌可 以说它是确定
是2 0世纪科学上的第三次革命 。他说 :相对论消除了关于绝对 “
空间和时间的幻象 ,量子论消除了关于可控测量过程 的牛顿式 的迷梦 ,而混沌论则消除 了拉普拉斯关 于决定论 式可预测性 的
幻想。”
于简单系统 的观念发生 了革命 性的转变 ,使人们更 清楚地认识
了简单 与复杂 、 确定 与随机 的内在联系。
( Se gr) I tnes的力作《 从混沌 到有 序》 研究 了许 多无序系统 自发地 获得有序结构 的方式 ,如无定 型的液体 如何 在冷却时 固化形成
的、 简单的事物分别加 以分析研究并进而来说明大的事物。难怪 伟 大的法国数学家和 自然哲学 家拉 普拉斯曾骄傲地宣称 :只要
人们 找到一个无所不包 的宇宙方程 ,而且也知道宇宙 的一 切初 始条件和边界条件 , 那么 , 宇宙过去或将来的一切状态都会 昭然 若揭 。
据牛顿定律建立了温度压强 ,压强和风速之 间的非 线形方程并
收稿 日期 : 0 2 8 2 2 1 —0 - 5
将其运用于计算机上 , 进行模拟实验 , 因嫌那些参数 小数点后面
的位数太 多 , 输人时很烦 琐 , 便舍去 了几位 , 管舍去部分 微不 尽 足道 , 可是结果却大大 出乎 意料 : 该气象模型竟 与没有舍去几位
案 , 能 为 我 们 所 认 识 , 时 , 的 、 杂 的 事 物 可 以分 解 为 小 并 同 大 复
《 子》 庄 内篇七末尾上讲 :中央之帝 为混沌 ”《 “ ;旧约》 开卷第一句
话便是“ 起初神创造天地 。地是虚空混沌 , 渊面黑 暗; 神的灵行在
水面上” 。然而给混沌下一个确切的定义却并非一件易事 。诺 贝 尔奖获得 者 , 物理化学 家普里高津 ( Pioi ) I r gn 及其 同事斯坦格 g e