电路分析第11章耦合电路和理想变压器
电路分析 耦合电路和理想变压器36页PPT
6
、
露
凝
无
游
氛
,
天
高
风
景
澈
。
7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8
、
吁
嗟
身
后
名
,
于
我
若
浮
烟
。
9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
1
0
、
倚
南
窗
以
寄
傲
,
审
容
膝
之
易
安
。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
谢谢!
Hale Waihona Puke
电路分析基础第十一章耦合电感和理想变压器课件.ppt
11-27
习题1
(1)
j 10Ω
+ j 10Ω
j 20Ω
a
- 20 00V
-j5Ω
b
(2)
a
j5Ω
j 10Ω
j 15Ω
-j 20Ω
b
U ab (
)V
K=(
)
Zab (
K=(
)Ω
) 答案
习题1 答案
11-28
(1) -60 (2) j15
0.707 0.41
习题2
习题课
M R
L1
L2
C
11-29
(2 开路) 开路 1
-2'
线圈Ⅱ
1' 线圈Ⅰ
11-8
φ12
i2
2
+
φs2
N2
-2'
线圈Ⅱ
11 21 S1
22 12 S 2
当 S1、 S2 均为零时全耦合——耦合的上限,M的上限。
M N2 21 i1 M max N2
11
i1
N2 N1
L1
①
M N1 12 i2 M max N1
j20
0.707135
A
注意:区别
Z ref
Io和 I1;
的运用。
§3 理想变压器 典型电路的分析
11-16
(1)“理想”——该元件只对电压、电流、电阻、阻抗 等进行数值变换,过程中无能量损耗或储存等副作用(非 能、non-energic元件)。对实际变压器的理想追求。
i1
+
u1
i2
设变压器的匝数为N1、N2,令
I1
15
U S j10
j5Ω
李瀚荪《电路分析基础》(第4版)章节题库-第11章 耦合电感和理想变压器【圣才出品】
第11章 耦合电感和理想变压器一、选择题1.如图11-1所示是一个全耦合的耦合电感元件,其两个绕组L1=L2=1H,两绕组串联连接,通过的电流i=1 A,耦合电感元件所储磁能为()J。
图11-1A.0.5B.1C.2D.0【答案】D2.如图11-2所示耦合电感电路中,其去耦等效电路为()。
图11-2A.B.C.D.【答案】B3.如图11-3所示含理想变压器的电路中,欲使负载电阻R。
获得最大功率,则变比n和所获得的最大功率值为()。
图11-3【答案】A【解析】欲使负载电阻R。
获得最大功率,则负载电阻折算到理想变压器原边后的等效电阻应等于电源内阻,即故可求出n=2。
此时负载电阻所获得的最大功率为4.两个自感系数为L1、L2的耦合电感,其互感系数M的最大值为()。
A.L1L2B.C.D.【答案】D5.如图11-4所示含理想变压器电路的输入电阻为()Ω。
图11-4【答案】C【解析】设参考电流如图11-5所示。
由图11-5有所以 图11-5二、填空题1.如图11-6所示电路中,已知线性非时变耦合电感L1=4 H,L2=3 H,M=2 H,则从A、B端看进去的等效电感L AB为______H。
图11-6【答案】38【解析】对图11-6所示电路进行互感去耦等效,可得如图11-7所示的等效电路,有等效电感L AB=5×(-2)/5+(-2)+6=8/3H。
图11-72.如图11-8所示电路的等效电感L ab=______H。
图11-8【答案】73.如图11-9所示含耦合电感的电路中,若L=M,则电路的入端(复)阻抗为______。
图11-9【答案】三、计算题1.如图11-10所示含耦合电感电路中,互感M=30H,t=0时S闭合,试求t≥0时的一次电流i1和二次电流i2。
图11-10解:如图11-10所示电路中的耦合电感为全耦合电感,其等效电路如图11-18.1所示,其中图11-11(a )可表示成图11-11(b )所示等效电路。
电路分析第11章耦合电路和理想变压器
M
i2
2H 1
+ u1 –
1H
M 0.5 2
列回路方程
I1
I2
j2 1 + jMI1 –
jI1 j0.5 2I 2 U (1 j 2 ) I2 j0.5 2I1 0
j 1.5 2 U ( ) I1 1 j 2 U j 1.5 2 I 1 j 2
R1 I1 jM
US
+ – jL1
1 jC
I 2 R2
解:回路法
( R1 jL1 1 ) I1 jMI 2 U S jC 1 ( R2 jL2 ) I 2 jMI1 0 jC
jL2 1 jC
R1 I1
US
jL1 – – jMI 2 + +
uM 2
di1 dt
uM 2 di1 M 21 dt
4
di M 21 1 dt
2.互电感 i1
+
Φ12
i2
+
自感电压
uL 2
di2 L2 dt
dt
u1
-
Φ 22 Φ22
u2
-
互感电压 u M di2 M1 12
uM 1 M 12 di2 dt
i2 流过第二个线圈产生自感磁通Φ22, 其磁链Ψ22=L2i2且 在第一个线圈产生互感磁通Φ12, 其磁链Ψ12=M12i2 M12=M21=M
M称为互电感,单位亨利(H)
5
2.互电感 i1
+
Φ12 i2
+ +
Φ21 i1
u2
-
电路分析基础ppt第11章 耦合电感
j ( L1 L2 2 M ) I Z I jLI L
+
U
I
. . jL jL
1
jM
2
等效电感
L L1 L2 2 M
等效感抗 Z L jL
通过测量顺接串联和反接串联时的电流I ,可判别同名端。 .
第十一章 耦合电感和理想变压器
§11-1 §11-2 基本概念 耦合电感的VCR 耦合系数
电路分析基础
§11-3
§11-4
空心变压器的电路分析 反映阻抗
耦合电感的去耦等效电路
§11-5
§11-6 §11-7 §11-8
理想变压器的VCR
理想变压器的阻抗变换性质 理想变压器的实现 铁心变压器的模型
§11-2耦合电感的VCR 耦合系数 …. 电路分析基础
第十一章 耦合电感和理想变压器
§11-2耦合电感的VCR 耦合系数 …. 电路分析基础
3. 耦合系数
1 2 w L (t ) Li L (t ) 0 2 L1 L2 M 2 L 0 L1 L2 M 2 0 L1 L2 2 M
M L1 L2
M L1 L2 1
1
第十一章
耦合电感和理想变压器
电路分析基础 §11-3 空心变压器电路的分析 反映阻抗…..
二、反映阻抗法
若令
则
.. 初级自阻抗 次级自阻抗 ①
Z 11 R1 jL1 Z 22 R2 jL2 Z L jMI U Z I
11 1 2 S
+
i1
M
u1
. . L L
1
第十一章 耦合电感和理想变压器
§11-5 理想变压器的VCR
一.理想变压器的概念:实际铁心变压器的理想化模型。 1、理想变压器满足三个条件: 1)变压器本身无损耗;这意味着绕线圈的金属导线无任何电 阻,做芯的铁磁材料的磁导率μ无穷大。 2)耦合系数k=1。 3)L1,L2,M趋于无穷大,但L1/L2为常数。 2、理想变压器的电路符号:理想变压器的定义式(VCR):
作业:P183 11-8
§11-4 耦合电感的去耦等效电路
对于在一个公共端钮相连接的一对耦合电感,如图(a)所示, 可以用三个电感组成的T形网络来作等效替换,如图(b)所示。 下面来推导这种网络等效替换的关系。 1.同侧连接——同名端相连时等效的推导:
图(a)所示耦合电感,其端钮的VCR为:
而在T形等效电路中,由KVL得:
比较 值应为
前面的系数,即可求得T形等效电路中各电感
2.异侧连接-异名端相连:
La L1 M L M b L L M 2 c
小结:上述的这种等效消除了原电路中的感应耦合——互 感,称为去耦等效。替换后的电路即可作为一般无互感电路 来分析计算,但使用范围有限,需记忆公式。
故得 由此可见,把电阻RL接在理想变压器的次级,变压器初级
端的输入电阻即为RL /n2。理想变压器起着改变电阻大小的作用, 把RL变换为RL/ n2 。
正弦稳态时,若次级所接阻抗为ZL(jω),则初级的输入阻 抗,或次级ZL 对初级的折合阻抗为
因此,理想变压器有改变电阻或阻抗的性质。
二.阻抗变换性质的应用
3、掌握理想变压器的变压、变流、变阻抗的三个主要
性能,熟练求解含有理想变压器的电路。
磁耦合线圈在电子工程、通信工程和测量仪 器等方面得到了广泛应用。为了得到实际耦合线 圈的电路模型,现在介绍一种动态双口元件—— 耦合电感,并讨论含耦合电感的电路分析。 在介绍耦合电感元件以前,下面先用示波
电路课件-理想变压器和全耦合变压器
1 n2
Z1
1 n2 Z2
N
b n:1
d
由理想變壓器
c Z3
的VCR,簡化 -
成沒有變壓器 的電路。
1 n
U+S
1 n2 Z1
1 n2 Z2
N
d
理想變壓器還可由一個初級線圈與多個次級 線圈構成。
i1 n1:1 * i2 +
+
N2 u2
*
-
u1 - N1
* i3 +
n2:1 N3
u3 -
在圖示電壓,電流參考 R2方向下,有
1. 並聯阻抗可以從次級搬移到初級; 2.串聯阻抗可以從初級搬移到次級。 阻抗可以從初級與次級之間來回搬移。
1. 並聯阻抗可以從次級搬移到初級;
a I1
I2 I2 ' c
+
U1
*
*U+ 2
I2"
Z2
N
-
-
b n:1
d
a I1 I1'
I2 ' c
+
U1 n2 Z2
-
*
*
+
U 2
-
N
b
n:1 d
(a)
I2(
ZL '
cosL )
( RS
ZL'
U
2 S
ZL'
cos L
cosL )2 ( XS
ZL'
sin L )2
要使P達到最大,必須
dP d( ZL
')
0,即
Z
L
'=
ZS
這時,負載獲得最大功率。這種情況稱為 “模匹配”。模匹配時負載中電阻吸收的功 率一般比達到共軛匹配時的功率小。這時
电路分析基础11耦合电感和理想变压器
互感的测量方法: 顺接一次,反接一次,就可以测出互感:
L顺 L反 M 4
二、含耦合电感电路的一般分析
I1 +
+ M + R1 + u1 * * u2 u L1 L2 – 时域模型 如上,列写VCR方程
R1 jL1
+
I2
U
U1 jL2
+
R2
R2
–
+ -
+ - -
U2
jMI2
jMI1
-
相量模型 U1 jL1 I1 jMI 2 U 2 jMI1 jL2 I 2 U R I
对互感电压,因产生该电压的电流在另一线圈上,因 此,要确定其符号,就必须知道两个线圈的绕向及磁通方 向。这在电路分析中显得很不方便。
11
s
0
N1 i1 N2 N3
+
*
u11 –
+ u21 – + u31 –
*
di 1 u21 M 21 dt di 1 u31 M 31 dt
引入同名端可以解决这个问题。
专业基础课
电路分析基础
教师:张 荣
第十一章 耦合电感和理想变压器
耦合电感
互感 耦合电感的VCR 耦合系数 空心变压器 反映阻抗 理想变压器的VCR 理想变压器的阻抗变换
11. 1 互感和互感电压
一、 互感和互感电压
11
21
N1 i1 + u11 – + N2 u21 –
U1
–
U2
+
2. 理想变压器的功率性质: 理想变压器的特性方程为代数关系,因此无记忆作用。 i1
电路分析基础耦合电感和理想变压器
电路分析基础耦合电感和理想变压器耦合电感(mutual inductance)是指两个或多个电感器件之间由于相互作用而产生的互感现象,其中一个电感器件的磁通变化会在另一个电感器件中感应出电动势。
理想变压器(ideal transformer)是一种特殊的耦合电感,其工作原理是利用磁感应定律,将输入电压和输出电压之间按一定的变比比例转换。
在电路分析中,耦合电感和理想变压器经常被用来探讨和解决一些特定的问题。
下面将分别介绍其基本原理和应用。
1.耦合电感:耦合电感的基本原理是根据电磁感应定律,当一个电感器件中通过的电流变化时,会在另一个电感器件中感应出电动势。
考虑两个简单的线圈,分别为主线圈和副线圈。
当主线圈中的电流变化时,根据电磁感应定律,在副线圈中也会感应出一个与主线圈中电流变化相关的电动势。
这种相互作用可以由一个耦合系数k表示,取值范围为0-1,表示两个线圈之间磁通的共享程度。
耦合电感可以用于共振电路、振荡电路等。
在共振电路中,当主线圈与副线圈之间有耦合时,可以通过调整耦合系数k来改变电路的共振频率,实现频率调谐的效果。
在振荡电路中,耦合电感可以提供正反馈,增强电路的振荡效果。
2.理想变压器:理想变压器是电路分析中常用的电气元件之一,其特点是无能量损耗、无电阻、无磁滞,能够以一定的变比将输入电压转换为输出电压。
理想变压器的基本结构由两个线圈绕制在共同的磁芯上组成。
理想变压器的工作原理是利用电磁感应定律和电压平衡原理。
当输入线圈(初级线圈)中通过的电流变化时,根据电磁感应定律,在输出线圈(次级线圈)中也会感应出一个与输入电流变化相关的电动势。
由于磁通守恒,输入线圈的磁通变化与输出线圈的磁通变化成一定的比例,从而实现输入电压和输出电压之间的变比转换。
理想变压器可以用于电压调整、功率传递等电路。
在电压调整电路中,通过改变输入线圈和输出线圈的匝数比例,可以实现对输入电压和输出电压之间的调整。
在功率传递电路中,根据变压器的功率平衡原理,输入功率和输出功率之间的关系可以用变压器变比关系表示。
耦合电感和理想变压器
即,每一线圈产生的磁通全部与另一线圈相交链。
22
极限情况:Φ21 Φ11 Φ12 Φ22
此时: L1L2
N1Φ11 i1
N 2Φ22 i2
N1Φ21 N 2Φ12 i1i2
N 2Φ21 i1
N1Φ12 i2
M
2
所以:M max L1L2
耦合系数:实际的M值与全耦合时的M值之比。即:
M M k 0 k 1
关联方向取正,非关联方向取负。 3.互感电压的正负号:由承受互感的线圈的电压参考方
向与产生互感的线圈的电流参考方向共同决定(与 同名端有关)。
20
【例2】试写各耦合元件的伏安关系。
i1 • L1
M
L2
•
i2
i1
L1
u1
u2
u1
解
(a)
u1
L1
di1 dt
M
di2 dt
u2
M
di1 dt
L2
di2 dt
i1 u1 L1
i2
L2
u2
i1
0时,u1
M
di2 dt
i2
0时,u2
M
di1 dt
当施感电流由同名端流入,而它产生的互感电压选择同 名端为参考正极时,互感电压取正号,否则取负号。
13
3.判别同名端的方法
①如果知道绕法,则给定一个施感电流,根据右手螺旋 法则判定磁通方向,则使磁通加强的另一电流的输入 端与施感电流的输入端互为同名端。
代入 (3)式可得到:
u
L1L2 M 2 L1 L2 2M
di dt
Leq
di dt
Leq
L1L2 M 2 L1 L2 2M
耦合电感和理想变压器
1 L1i1 Mi2 2)电压电流的伏2 安关系M一般i1式:L2i2
u1
L1
di1 dt
M
di 2 dt
u2
M
di1 dt
L2
di2 dt
牢记:① 电流的流入端与互感电压正极性端是同名端 ② 端口电压与电流参考方向关联时,自感电压 取正,否则取负。
第18页/共60页
返回
11-2 含耦合电感电路的分析方法
.
U jL2 I2 jM I1
.. .
I I1 I2
L (L1 M)(L2 M) M L1L2 M2
L1 L2 2M
L1 L2 2M
第23页/共60页
三、去耦等效电路法——当耦合线圈有公共端时等效电路 1.同名端为公共端时:
+
M
+
i1
i2
L u1
1
L2 u2
_
i
_
U 1 jL1I1 jMI2 U 2 jL2I2 jMI1
I I1 I2
.
.
.
U1 j(L1 M) I1 jM I
.
.
.
U2 j(L2 M) I2 jM I
L1-M
L2 -M
+
i1 u1
+ i2
M
u2
_
_
第24页/共60页
2.异名端为公共端时 原电路
M
L1
L2
等效电路
L1 M L2 M M
第25页/共60页
小结: 耦合电感的等效电路(三种):
5
2 45 (5 j5)
第35页/共60页
2.副边等效电路:
I2
j10
课)第十一章 耦合电感和理想变压器
§11-1 耦合电感的VAR §11-2 耦合电感的串并联及去耦合等效 §11-3 空心变压器电路的分析 §11-4 理想变压器 §11-5 实际变压器
1
§11-1 耦合电感的VAR
11.1.1 耦合电感 11.1.2 互感系数 11.1.3 耦合系数 11.1.4 耦合电感的VAR 11.1.5 同名端
N
1
1•
N
2
2
3-
•4
u2 +
-
M di1 dt
+
u2
L2
di2 dt
M
di1 dt
i1(t) M i2 (t)
+ • •+
u1 (t )
u2 (t)
_
_
13
磁通相消情况
u1
L1
di1 dt
M
di2 dt
u2
L2
di2 dt
M
di1 dt
i1(t) M i2 (t)
+•
+
u1
(t
_
)
L1
L2u2 (t)
2
11.1.1 耦合电感
一、电感L 1、自磁通与自磁链:
由线圈本身的电流在自己线圈 中产生的磁链称自磁链。
2、自电感
L N
ii
3、自感电压
u d L di
dt
dt
3
二、耦合电感元件:指由两个或两个以上相互 有磁链联系的电感构成的耦合元件,又称互电 感元件,简称互感。
4
三、互磁链与互磁通:
M
di1 dt
1 d (10t) 10 dt
V
21
电路(第十一章 耦合电感和理想变压器)10-11(1)
1 i1
L1
2 + M d i1 - dt 2′ 2
jωL2
L2
2′
用附加电压源来表示后, 线圈1和线圈2间没有互感作用。 1 1 若电流i1是角频率为ω的 I jωL1 正弦量,则互感电压u21也是 同频率的正弦量,因此可用相 量模型来表示。
1′
1′
+ 1 jMI 2′
上一页 下一页
返 回
第十一章 耦合电感和理想变压器
26 245 0.721 56.3 A 51101 .3
i1(t ) 0.721cos(10t 56.3) A
返 回
上一页
下一页
第十一章 耦合电感和理想变压器
di di ● ● u22 L2 u11 L1 u11 u22 dt dt u21 u12 di di u1 u2 u12 M u21 M dt dt u di di di u1 u11 u12 L1 M ( L1 M ) dt dt dt di di di u2 u22 u21 L2 M ( L2 M ) dt dt dt di di u u1 u2 ( L1 L2 2M ) L dt dt
返 回 上一页 下一页
第十一章 耦合电感和理想变压器
§11-1 基本概念
耦合电感和理想变压器,与受控源一样,都属于 耦合元件。 耦合元件由一条以上的支路组成,其中一条支路 的电压、电流与其他的支路电压、电流直接有关。 但耦合电感和理想变压器是通过磁场耦合的若干 个电感的总称。
一对耦合电感是一个电路元件,其参数为两电感 的自感L1、L2和互感M。 若包含三个耦合电感时,一般就需用自感L1、L2、 L3和互感M12、M23、M31等六个参数来表征。
2023大学_电路分析基础第四版下册(李瀚荪著)课后答案下载
2023电路分析基础第四版下册(李瀚荪著)课后答案下载电路分析基础第四版下册(李瀚荪著)内容简介下册第三篇动态电路的相量分析法和s域分析法第八章阻抗和导纳8—1 变换方法的概念8—2 复数8—3 振幅相量8—4 相量的线性性质和基尔霍夫定律的相量形式8—5 三种基本电路元件VCR的相量形式8—6 VCR相量形式的统一——阻抗和导纳的引入8—7 弦稳态电路与电阻电路分析方法的类比——相量模型的引入8—8 正弦稳态混联电路的分析8—9 相量模型的网孔分析和节点分析8—10 相量模型的等效8—11 有效值有效值相量8—12 两类特殊问题相量图法习题第九章正弦稳态功率和能量三相电路 9—1 基本概念9—2 电阻的平均功率9—3 电感、电容的平均储能9—4 单口网络的`平均功率9—5 单口网络的无功功率9—6 复功率复功率守恒9—7 弦稳态最大功率传递定理9—8 三相电路习题第十章频率响应多频正弦稳态电路 10一1 基本概念10—2 再论阻抗和导纳10—3 正弦稳态网络函数10—4 正弦稳态的叠加10—5 平均功率的叠加10—6 R1C电路的谐振习题第十一章耦合电感和理想变压器11—1 基本概念11—2 耦合电感的VCR耦合系数11—3 空心变压器电路的分析反映阻抗11—4 耦合电感的去耦等效电路11—5 理想变压器的VCR11—6 理想变压器的阻抗变换性质11—7 理想变压器的实现11—8 铁心变压器的模型习题第十二章拉普拉斯变换在电路分析中的应用 12一1 拉普拉斯变换及其几个基本性质12—2 反拉普拉斯变换——赫维赛德展开定理 12—3 零状态分析12—4 网络函数和冲激响应12—5 线性时不变电路的叠加公式习题附录A 复习、检查用题附录B 复习大纲部分习题答案(下册)索引结束语电路分析基础第四版下册(李瀚荪著)目录《电路分析基础》(下高等学校教材)第4版下册讲授动态电路的相量分析法和s域分析法。
具体内容有:阻抗和导纳、正弦稳态功率和能量/三相电路、频率响应/多频正弦稳态电路、耦合电感和理想变压器、拉普拉斯变换在电路分析中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 i1
+
M i2=0
2
+
u1 L1
1´ –
L2 u2 + – 2´
u2
M
di1 dt
1 i1
+
i2=0
2 +
u1
–
L1 M di1+ L2
u2
1´
dt – – 2´
u2
M
di1 dt
1 i1
+
i2=02
+
u1
– 1´
L1 M di1 – L2 u2
dt + – 2´
u2
M
di1 dt
四. 互感电压用附加的电压源代替
L1
i2
+
L2
+
u2
–
u2
M
di1 dt
i1 M
L1
i1 M
L1
–
L2 u2 ++
u2
M di1 dt
M L1
i1
+– L2 u2
u2
M
di1 dt
+
L2
+
+
u2
–
u2
M
di1 dt
四. 互感电压用附加的电压源代替 (去耦)
1 i1
+
M i2=0
2
++
u1 L1
1´ –
L2 u2
– 2´
u2
M
di1 dt
1.回路法
I1
(R1 jL1)I&1 jMI&2 U&s jMI&1 (R2 RL jL2 )I&2 0
Us+
–
Z11I&1 Z12I&2 U&s Z21I&1 Z22I&2 0
依据克莱姆法则
Z11=R1+jL1 Z22=R2+ RL+ jL2 Z12= Z21= jM
U&s
I&1
jL2 U2
+–jMI–1 2´
U1 jL1I1 jMI2
U2 jL2I2 jMI1
一.耦合电感的VCR
相量模型
1 i1 M
+
u1 L1
1´ –
i2
2 +
L2 u2
– 2´
1 i1
+
u1
M
L1
di2
– dt
1´
i2 2
+
1 I1
+
– +
– +
L2
M
u2
di1
dt –2´
U1–´1jjMLI21+–
=j20V
= 20/—90—°V
I1 100A j3
100A
I1
j3
j2I2V
+ –
I2
a
+
j5 Uab
–b
I2
a
+
j5 +
Uab
–j2I1V– b
二、 耦合系数
i1在线圈L1产生自感磁链 Ψ11= N111= L1i1 在线圈L2产生互感磁链 Ψ21= N221= Mi1
1 i1
+
M
i2 在线圈L1产生自感磁链 Ψ22 = N222= L2i2 在线圈L1产生互感磁链 Ψ12 = N112= Mi2
eL =
N
d
dt
=
L
di
dt
u= – eL = L
di
dt
2.互电感 i1
+
u1
-
Φ21
Φ11
i2
+
u2
-
i1 流过第一个线圈产生自感磁通Φ11 , 其磁链Ψ11=L1i1 且在第二个线圈产生互感磁通Φ21 , 其磁链Ψ21=M21i1
自感电压
uL1
L1
di1 dt
互感电压
uM 2
M21
di1 dt
(1 j)I1 jI2 1
I1
1 2
j
A
I2 jI1 0
I2
2
j
A j 24
2.用反映阻抗计算
I&1
Z22U&s Z11Z22 Z12Z21
Z11=R1+jL1
Z22=R2+ RL+ jL2
Z12= Z21= jM
R1
I1
Us +
jL1
+
– jMI2 –
R2
I2
jL2
+
RL
–jMI1
10 R jL
I& 2
0 U&O C
jMI&10
1
1
将U•S置零,在开路处外加电压源,
I10
Us +
jL1
+
– jMI2 –
可等效看作初级与次级颠倒。
R1
2M 2 为初级回路在次级
Z11 回路的反映阻抗
I1 jL1
Z11=R1+jL1
Z22 R2 jL2
等效阻抗
Z0
2M2
Z11
Z22
I2
+
+ jMI2 – Z0
I2 2
+
jL2 U2
– +jMI–1 2
u1
L1
di1 dt
M
di2 dt
´
U1 jL1I1 jMI2
பைடு நூலகம்
u2
L2
di2 dt
M
di1 dt
U2 jL2I2 jMI1
例:求图示电路中的开路电压U• ab。
j2
解:
•
I2
=0
•
Uab
=
j5
I•2
+
•
j2I1
•
•
Uab = j2I1
=j2×10—/0°
+
jL2 U2
+–jMI–1 2 ´
§11-2 耦合电感的VCR 耦合系数
一. 耦合电感的VCR
1 i1 M ++ u1 L1
1´–
i2
2
++
L2 u2 – 2´
1 i1
i2 2
+
+
u1
M
L1
di2
– dt
1´
+
+
L2
M
u2
di1
– – dt –2´
u1
L1
di1 dt
M
di2 dt
u2
L2
di2 dt
L2
di dt
M
di dt
( L1
L2
2M)
di dt
uab
L
di dt
等效电感
L=L1+L2 2M
正弦稳态时,反接等效阻抗 Z=jω(L1+L2 – 2M )
例:列写图示电路的网孔电流方程。
M
M di2
dt
+
L1
L2
– +
+ L1
uS –
i1
R i2 R uS
–
i1
M di1
– dt + L2 R i2 R
L1
di1 dt
Ri1
Ri2
M
di2 dt
uS
L2
di2 dt
2Ri2
Ri1
M
di1 dt
21
§11-3 空心变压器电路的分析 反映阻抗
一.空心变压器电路模型
R1
i1 + Us L1
M
R2
L2
RL
i2
R1
I1
Us +
jL1
+
-
– jMI2 –
初级回路
次级回路
R2
I2
jL2
+
RL
–jMI1
相量模型
二.空心变压器电路的分析方法
M
di1 dt
一.耦合电感的VCR
相量模型
1 i1
M
i2
2
++
++
u1 L1 1´–
L2 u2
– 2´
1 I1 jM
++
U1 jL1
– 1´
I2 2
++
jL2 U2
– 2´
1 i1
i2 2
+
+
u1
M
L1
di2
– dt
1´
+
+
L2
M
u2
di1
– – dt –2´
1 I1
I2 2
+
+
U1
jL1
+
1–´jMI2–
0 Z11
Z21
Z12
Z22
Z22U&s
Z12 Z11Z22 Z12Z21
Z22
R1
jL1
+ jMI2 –
R2
I2
jL2
+
RL
–jMI1
Z11 U&s
I&2
Z21 Z11
0 Z12
Z21 Z22
Z21U&s