数学分析PPT课件第四版华东师大研制 第3章 函数极限

合集下载

高等数学第3章第1节函数极限的概念.

高等数学第3章第1节函数极限的概念.

第三章函数极限§1函数极限的概念引言在《数学分析》中,所讨论的极限基本上分两部分,第一部分是“数列的极限”,第二部分是“函数的极限”.二者的关系到是“特殊”与“一般”的关系;数列极限是函数极限的特例.通过数列极限的学习.应有一种基本的观念:“极限是研究变量的变化趋势的”或说:“极限是研究变量的变化过程,并通过变化的过程来把握变化的结果”.例如,数列这种变量即是研究当时,的变化趋势.我们知道,从函数角度看,数列可视为一种特殊的函数,其定义域为,值域是,即; 或或.研究数列的极限,即是研究当自变量时,函数变化趋势.此处函数的自变量n只能取正整数!因此自变量的可能变化趋势只有一种,即.但是,如果代之正整数变量n而考虑一般的变量为,那么情况又如何呢?具体地说,此时自变量x可能的变化趋势是否了仅限于一种呢?为此,考虑下列函数:类似于数列,可考虑自变量时,的变化趋势;除此而外,也可考虑自变量时,的变化趋势;还可考虑自变量时,的变化趋势;还可考虑自变量时,的变化趋势,由此可见,函数的极限较之数列的极限要复杂得多,其根源在于自变量性质的变化.但同时我们将看到,这种复杂仅仅表现在极限定义的叙述有所不同.而在各类极限的性质、运算、证明方法上都类似于数列的极限.下面,我们就依次讨论这些极限.一、时函数的极限1.引言设函数定义在上,类似于数列情形,我们研究当自变量时,对应的函数值能否无限地接近于某个定数A.这种情形能否出现呢?回答是可能出现,但不是对所有的函数都具此性质.例如无限增大时,无限地接近于0;无限增大时,无限地接近于;无限增大时,与任何数都不能无限地接近.正因为如此,所以才有必要考虑时,的变化趋势.我们把象,这样当时,对应函数值无限地接近于某个定数A的函数称为“当时有极限A”.[问题]如何给出它的精确定义呢? 类似于数列,当时函数极限的精确定义如下.2.时函数极限的定义定义1设为定义在上的函数,A为实数.若对任给的,存在正数M,使得当时有, 则称函数当时以A为极限.记作或.3.几点注记(1)定义1中作用与数列极限中作用相同,衡量与A的接近程度,正数M的作用与数列极限定义中N相类似,表明充分大的程度;但这里所考虑的是比M大的所有实数,而不仅仅是正整数n.(2)的邻域描述:当时,(3)的几何意义:对,就有和两条直线,形成以A为中心线,以为宽的带形区域.“当时有”表示:在直线的右方,曲线全部落在这个带形区域内.如果给得小一点,即带形区域更窄一点,那么直线一般往右移;但无论带形区域如何窄,总存在正数M,使得曲线在的右边的全部落在这个更窄的带形区域内.(4)现记为定义在或上的函数,当或时,若函数值能无限地接近于常数A,则称当或时时以A为极限,分别记作,或,或.这两种函数极限的精确定义与定义1相仿,简写如下:当时,,当时,.(5)推论:设为定义在上的函数,则.4.利用=A的定义验证极限等式举例例1证明.例2证明1);2).二、时函数的极限1.引言上节讨论的函数当时的极限,是假定为定义在上的函数,这事实上是,即为定义在上,考虑时是否趋于某个定数A.本节假定为定义在点的某个空心邻域内的函数,.现在讨论当时,对应的函数值能否趋于某个定数A数列.先看下面几个例子:例1.(是定义在上的函数,当时,)例2.(是定义在上的函数,当时,)例3.(是定义在上的函数,当时,)由上述例子可见,对有些函数,当时,对应的函数值能趋于某个定数A;但对有些函数却无此性质.所以有必要来研究当时,的变化趋势.我们称上述的第一类函数为当时以A为极限,记作.和数列极限的描述性说法一样,这是一种描述性的说法.不是严格的数学定义.那么如何给出这类函数极限的精确定义呢?作如下分析:“当自变量越来越接近于时,函数值越来越接近于一个定数A”只要充分接近,函数值和A的相差就会相当小欲使相当小,只要充分接近就可以了.即对,当时,都有.此即.2.时函数极限的定义定义2设函数在点的某个空心邻域内有定义,A为定数,若对任给的,使得当时有,则称函数当趋于时以A为极限(或称A为时的极限),记作或(.3.说明如何用定义来验证这种类型的函数极限4.函数极限的定义的几点说明:(1)是结论,是条件,即由推出.(2)是表示函数与A的接近程度的.为了说明函数在的过程中,能够任意地接近于A,必须是任意的.这即的第一个特性——任意性,即是变量;但一经给定之后,暂时就把看作是不变的了.以便通过寻找,使得当时成立.这即的第二特性——暂时固定性.即在寻找的过程中是常量;另外,若是任意正数,则均为任意正数,均可扮演的角色.也即的第三个特性——多值性;()(3 是表示与的接近程度,它相当于数列极限的定义中的N.它的第一个特性是相应性.即对给定的,都有一个与之对应,所以是依赖于而适当选取的,为此记之为;一般说来,越小,越小.但是,定义中是要求由推出即可,故若满足此要求,则等等比还小的正数均可满足要求,因此不是唯一的.这即的第二个特性——多值性.(4)在定义中,只要求函数在的某空心邻域内有定义,而一般不要求在处的函数值是否存在,或者取什么样的值.这是因为,对于函数极限我们所研究的是当趋于的过程中函数的变化趋势,与函数在该处的函数值无关.所以可以不考虑在点a的函数值是否存在,或取何值,因而限定“”.(5)定义中的不等式;.从而定义2,当时,都有,使得.(6)定义的几何意义.例1.设,证明.例2.证明1);2).例3.证明.例4.证明.练习:1)证明; 2)证明.三、单侧极限1.引言有些函数在其定义域上某些点左侧与右侧的解析式不同,如或函数在某些点仅在其一侧有定义,如.这时,如何讨论这类函数在上述各点处的极限呢?此时,不能再用前面的定义(讨论方法),而要从这些点的某一侧来讨论.如讨论在时的极限.要在的左右两侧分别讨论.即当而趋于0时,应按来考察函数值的变化趋势;当而趋于0时,应按来考察函数值的变化趋势;而对,只能在点的右侧,即而趋于0时来考察.为此,引进“单侧极限”的概念.2.单侧极限的定义定义3设函数在内有定义,A为定数.若对任给的,使得当时有, 则称数A为函数当趋于时的右极限,记作或或.类似可给出左极限定义(,,或或).注:右极限与左极限统称为单侧极限.3.例子例5讨论在的左、右极限.例6讨论函数在处的单侧极限.4.函数极限与的关系.定理3.1.注:1)利用此可验证函数极限的存在,如由定理3.1知:.还可说明某些函数极限不存在,如由例2知不存在.2),,可能毫无关系,如例2.作业:P47. 1(3), (5), 3,7。

数学分析3-3函数极限存在的条件

数学分析3-3函数极限存在的条件

x1 , x2 , 使得
, xn ,
, xn U ( x0 , n ),
| f ( xn ) A | 0 , n 1, 2, .
另一方面,
0|
xn
x0
| n
n
,
所以
lim
n
xn
x0 .
这与
lim
n
f
( xn )
A
矛盾.
前页 后页 返回
注: 1、 若 lim f (x) A 存在, x x0
f
为定义在U
(
x0
)上的单调有界函数,
则右极限 lim f ( x) 存在 . x x0
(相信大家也能够写出关于 lim f ( x) , lim f ( x) ,
x x0
x
lim f ( x) 的单调有界定理 .)
x
y y f (x)
几何意义
f (x0)

o a x0 b
x 前页 后页 返回

从而 f ( x) f ( xN1 ) A . 因此 A f (x) A .
即 lim f ( x) A. x x0
前页 后页 返回
三、柯西收敛准则
这里 仅给出 lim f ( x) 的柯西收敛准则, 请大家自 x
行写出其他五种极限类型的柯西收敛准则,并证
明之.
定理3.12 设 f (x) 在 的某个邻域{x | x M }上 有定义, 则极限 lim f ( x) 存在的充要条件是:
不妨设
f

U
(
x0
)
递减
.
因为 f (x) 有界, 故 sup f ( x) 存在, 设为A .
xU

§3.2-函数极限的性质-数学分析(华师大-四版)课件-高教社ppt-华东师大教材配套课件

§3.2-函数极限的性质-数学分析(华师大-四版)课件-高教社ppt-华东师大教材配套课件

lim()x xf x A→= *点击以上标题可直接前往对应内容定理3.2(唯一性)证 不妨设以及 A x f x x =→)(lim 0.)(lim 0B x f x x =→由极限的定义,对于任意的正数 ,1δ存在正数,||010时当δ<-<x x (1),2|)(|ε<-A x f ,||020时当δ<-<x x )(lim 0x f x x →存在, 则此极限唯一.若 的基本性质 A x f xx =→)(lim 0,2δ,ε后退 前进 目录 退出(2) 式均成立,.|)(||)(|||ε<-+-≤-B x f x f A B A 由ε 的任意性,推得 A = B. 这就证明了极限是唯一的.12min{,},δδδ=令(1) 式与.2|)(|ε<-B x f (2)(1),2|)(|ε<-A x f 00||,x x δ<-<当时所以定理3.3(局部有界性)证 ,1=ε取.1|)(|<-A x f .1|||)(|+<A x f 由此得,)(lim 0A x f x x =→若上在)()(0x U x f,)(0x U则存在有界.这就证明了 在某个空心邻域 上有界.),(0δx U)(x f ,0>δ存在00x x δ<-<当时,注(1) 试与数列极限的有界性定理(定理 2.3)作一 (2) 有界函数不一定存在极限; 这上并不是有界的在但.)2,0(1,11lim )3(1xx x =→说明定理中 “局部” 这两个字是关键性的.比较;定理3.4(局部保号性)则对任何正数)(A r A r -<<或使得存在,)(,0x U.)0)((0)(<-<>>r x f r x f 或.|)(|ε<-A x f .)(r A x f >->ε由此证得 有对一切,)(0x U x∈有时,当δ<-<||00x x 证 不妨设 0.A >,)0(0)(lim 0<>=→或A x f x x 若 ,0>δ存在,r A -=ε取 (0,),r A ∈对于任何定理3.5(保不等式性))(lim )(lim 0x g x f x x x x →→与设则内有且在某邻域,)()()(0x g x f x U ≤).(lim )(lim 0x g x f x x x x →→≤证 0lim (),lim (),x x x x f x A g x B →→==设;)(ε->A x f 有时而当,||020δ<-<x x .)(ε+<B x g 分别存在正数 12,,δδ有 都存在,0,ε>则对于任意使当 010||x x δ<-<时, 满足时则当令,||0,},min{021δδδδ<-<=x x ,)()(εε+<≤<-B x g x f A所以证得是任意正数因为从而有,.2εε+<B A .B A ≤定理3.6(迫敛性)lim ()lim (),x x x x f x g x A →→==设0x 且在的某个空心).()()(x g x h x f ≤≤.)(lim 0A x h x x =→那么证 因为 00lim ()lim (),x x x x f x g x A →→==有时当,||00δ<-<x x (),A f x A εε-<<+().A g x A εε-<<+.)()()(εε+<≤≤<-A x g x h x f A 再由定理的条件,又得这就证明了 0)(x x h 在点的极限存在,并且就是 A .0,ε>所以对于任意,0>δ存在0()U x 邻域内有定理3.7(四则运算法则);)(lim )(lim )]()([lim )1(0x g x f x g x f x x x x x x →→→±=±;)(lim )(lim )()(lim )2(000x g x f x g x f x x x x x x →→→⋅=g f g f ⋅±,在点 x 0 的极限也存在, 且都存在, ,0)(lim )3(0≠→x g x x 又若在点 x 0 的极限也存在,g f则.)(lim )(lim )()(lim 00x g x f x g x f x x x x x x →→→=并有,)(lim 0x f x x →若)(lim 0x g xx → 则§2 函数极限概的性质A x f x x =→)(lim 0范例这个定理的证明类似于数列极限中的相应定理, 这就可以知道这些定理是显然的.里将证明留给读者. 在下一节学过归结原则之后, 的基本性质 A x f xx =→)(lim 0的基本性质 §2 函数极限概的性质A x f xx =→)(lim 0范例arctan lim x x x→+∞πlim arctan ,2x x →+∞=因解为例1 .arctan limxxx ∞+→求002=⋅=π范例1lim 0,x x →∞=所以1=lim arctan lim x x x x →+∞→+∞⋅例 2 .1lim 0⎥⎦⎤⎢⎣⎡→x x x 求有时又当,0<x 0>x 当,11lim )1(lim 00==-++→→x x x 由于,111x x x -≤⎥⎦⎤⎢⎣⎡<于是求得.11lim 0=⎥⎦⎤⎢⎣⎡→x x x 解 由取整函数的性质, .1111xx x ≤⎥⎦⎤⎢⎣⎡<-时, 有 ,111≤⎥⎦⎤⎢⎣⎡<-x x x 因此由迫敛性得 ;11lim 0=⎥⎦⎤⎢⎣⎡+→x x x 同理得 .11lim 0=⎥⎦⎤⎢⎣⎡-→x x x例 3 求极限 π4lim(tan 1).x x x →-π4lim tan tan1,4x x π→==解 因为所以π4ππlim(tan 1)11 1.44x x x →-=⋅-=-例4 .)1(1lim 0>=→a a xx 求证特别又有.1111εε+<<<--NNa a ,1N=δ取,|0|0时当δ<-<x ,1111εε+<<<<--NxNa a a .1lim 0得证即=→xx a 证 ,11lim ,1lim ==∞→∞→n n nn aa 因为所以 ,,0N ∃>∀ε有时当,N n ≥,1111εε+<<<--nna a复习思考题1. lim (), lim (),x x x x f x a g x →→=设存在不存在试问02. lim (),lim (),x x u u g x u f u A →→==设这时是否必有lim (())?x x f g x A →=0lim ()()?x x f x g x →极限是否必定不存在。

3.3函数极限存在的条件华师大版数学分析第三章函数的极限ppt

3.3函数极限存在的条件华师大版数学分析第三章函数的极限ppt

注: 1、归结原则可简述为:
f(x)=A对任何xn→x0(n→∞)有
f(xn)=A.
注: 2、若有以x0为极限的数列{xn},使 f(xn)不存在, 或两个以x0为极限的数列{x’n}与{x”n},使
f(x’n)与 f(x”n)都存在但不相等,则 f(x)也不存在.
1、证明极限
不存在.
证:设x’n= , x”n=
f(x) =A,∀ε>0,有正数δ,
当x0<x<x0+δ时,有|f(x)-A|<ε.设递减数列 {xn}⊂U⁰+(x0)趋于x0,则对δ,存在N,使当n>N时, 有0<xn-x0<δ,即x0<xn<x0+δ,从而有|f(xn)-A|<ε. ∴ f(xn)=A.
3.9:设函数f在点x0的某空心右邻域U⁰+(x0)
(n=1,2,…),则
x’n→0,x”n→0(n→∞), 又sin →0,sin →1(n→∞),
由归结原则可知
不存在.
3.9:设函数f在点x0的某空心右邻域U⁰+(x0)
有定义.
f(x)=A的充要条件是:对任何以x0为
极限的递减数列{xn}⊂U⁰+(x0),有 f(xn) =A.
证: [必要性]若
有|f(x1)-A|≥ε0,对δ2=min{ ,x1-x0},有x2使0<x2-x0<δ2,
有|f(x1)-A|≥ε0, x2< x1,…依此类推…
取δn=min{ ,xn-1-x0},存在xn,使0<xn-x0<δn,
有|f(xn)-A|≥ε0,xn< xn-1<…< x2< x1,即{xn}满足:

数学分析(华东师范版)PPT

数学分析(华东师范版)PPT

二、利用函数极限的性质计算某些函数的极限 已证明过以下几个极限:
x x0
lim C = C ,
x x0
lim x = x0 ,
x x0
lim sin x = sin x0 ,
1 lim = 0, x x
x
lim arctan x =

2
x x0
lim cos x = cos x0 ;
$d 2 > 0,当0 < x - x0 < d 2时有 f ( x) - B < e ,
A - B = ( f ( x) - A) - ( f ( x) - B) f ( x) - A + f ( x) - B < 2e .
(2)
取d = min(d1 , d 2 ), 则当0 < x - x0 < d时(1), (2)同时成立,故有
0
0
1) 2)
x x0
lim f ( x) g ( x) = A B

x x0
lim f ( x) g ( x) = A B :
f ( x) A lim = x x0 g ( x ) B
3) B 0,
定理3.7之3)的证明 1 = 只要证 xlim x
0
lim g ( x ) = B , $ d 1 > 0 使得当 0 < x - x0 < d 1 x x
.
( 注意前四个极限中极限就是函数值 ) 这些极限可作为公式用.
.
.
利用“迫敛性”和“四则运算”,可以从一些 “简单函数极限”出发,计算较复杂函数的极限。
例1 例2 ( 利用极限
.

3.1函数极限概念华师大版数学分析第三章函数的极限ppt

3.1函数极限概念华师大版数学分析第三章函数的极限ppt

注:
4、定义2中的不等式0<|x- x0|<δ等价于x∈U⁰(x0;δ), 而不等式|f(x)-A|<ε等价于f(x)∈U(A;ε). 所以, ε-δ定义可以写成:任给ε>0,存在δ>0, 使得对一切x∈U⁰(x0;δ),有f(x)∈U(A;ε). 或任给ε>0,存在δ>0,使得f(U⁰(x0;δ))⊂U(A;ε).
又 f(x)=A,则∀ε>0,∃δ2>0,使得
当x0-δ2< x< x0,即0<x0-x<δ2时,就有|f(x)-A|<ε;
∴对∀ε>0,δ=min{δ1,δ2},则当0<|x-x0|<δ时,有
0<x-x0≤|x-x0|<δ≤δ1或0<x0-x≤|x-x0|<δ≤δ2,且
有|f(x)-A|<ε;∴ f(x)=A.
三、函数的极限
1.函数极限的概念
1:设f为定义在[a,+∞)上的函数,A为定数. 若对任给的ε>0,存在正数M(≥a),使得当x>M时, 有|f(x)-A|<ε,则称函数f当x趋于+∞时以A为极限, 记作: f(x)=A或f(x)→A(x→+∞).
几何意义如图: 正数ε越小时,一般M越大; f(x)的图象右边落在x=M与 y=A+ε和y=A-ε围成的带形区域里.
<ε.
∴只要取δ= ,则当0<1-x<δ,即1-δ<x<1时,
就有
<ε.∴
=0. 同理,
1-x2≤2(1+x),∀ε>0,当2(1+x)<ε2时,就有
<ε.
∴只要取δ= ,则当0<1+x<δ,即-1<x<-1+δ时,

数学分析之函数极限PPT课件

数学分析之函数极限PPT课件
同理l可 im 1证 x20. x 1
由定义3.4和定义3.5,我们不难得到:
定理 3.1´ 设f(x)在U( x0)有定义,则
limf(x)A的充要条 : 件是
xx0
lif m (x ) lif m (x ) A .
x x 0
x x 0
注 试比较定理 3.1 与定理 3.1´.
这就证明了 lim x121. x 1 x1 22
例7
证明
limx2
xx0
x02.
分析 要使
x 2 x 0 2 x x 0 x x 0 ,
可以先限制 xx01, 因为此时有
x x 0 x x 0 2 x 0 x x 0 2 x 0
12 x0 ,
数学分析之函数极 限
教学目标:
1.理解函数极限的“ε-δ”定义及单侧极限概念; 2.掌握函数极限的基本性质、极限存在的条件及两个
重要极限; 3.理解无穷大量及无穷小量概念; 4.会求渐进线.
§1 函数极限概念
作为数列极限的推广,函数极限与数列极 限之间有着密切的联系,它们之间的纽带就 是归结原理.
则称函数 f(x)当 x趋 于 时A 以 为极限. 记为
limf(x)A或者 f(x ) A (x ) .
x
lim f( x ) A 的 几 何 意 义
x
y
A
A
A
①任意给定
0
Oa
M
②存在 Ma
④ 有 A f(x ) A
x
x
③ 使 当 xM 时
其目的就是为了更简洁地求出 , 或许所求出的
不是“最佳”的, 但这不影响我们解题的有效性.

数学分析第三章极限与函数的连续性01

数学分析第三章极限与函数的连续性01

a (1 n )n 1 nn ... nn nn
因此
n
a
1
n

a n
对任意给定的 0 ,不妨设 n N 时,有 n a 1 a
1
,取
N

a

,则当
最后设
n 0 a 1 。这时存在
b 1
使
a

1 b
,因此
n a 1 n 1 1 1 n b 1 n b
2.定义中 必须具有任意性:这样才能保证 xn 与 a 的无限接近,
但为表明渐近过程的不同阶段, 又具有相对固定性。即 的任意性
是通过无限多个相对固定性表现出来的。 这就是任意与固定的辨证关系。
3. 的某个函数也可有同样作用。
4. 定义中,自然数 N 不是唯一的。若存在 N0 满足要求, 则比 N0 大的

b 1

这就证明了
lim
n

xn
yn


ab
iii)

lim
n
yn
b0
,根据推论3.2,存在 N1 ,当 n N1时,有
b yn 2 0 从而当 n N1 时,有
xn a bxn ayn b xn a a yn b
yn b
yn b
1 b2
“当 n 无限增大时,xn 无限接近于a ”是什么意思?
以数列
1

n

为例:当 n
1
无限增大时,
n
无限接近于0
只要n足够大
(充分大)
1
与0可以任意接近,要多近有多近
n

数学分析之函数极限

数学分析之函数极限
好的问题.
2. 是不惟一的, 一旦求出了, 那么比它更小的正
数都可以充当这个角色.
3. 正数 是任意的,一旦给出,它就是确定的常数.
4. 函数极限的几何意义如图, 任给 0,对于坐标
平面上以 y =A为中心线, 宽为2 的窄带,可以找到
0, 使得曲线段
y
yf(x )x , U (x 0 , )
可以先限制 xx0 1, 因为此时有
x x 0 x x 0 2 x 0 x x 0 2 x 0
12 x0 ,
所以 x 2 x 0 2 (1 2 x 0)x x 0,故只要
xx0
12 x0
.
证 0,取min1,12x0,当 0xx0
时, 有 x2x02 .
这就证明了
limx2
limf(x)A 或者 f(x ) A (x ) .
x
lim f(x ) A 的 几 何 意 义
x
y
A
A
A
①任意给定
0
Oa
M
②存在 Ma
④ 有 A f(x ) A
x
x
③ 使 当 xM时
注 1.xl im f(x)A与 n l i m xna定 义 比 较
函数 定义域 自变量变化趋势 函数值变化趋势 定义
一、x 趋于时的函数极限 二、x 趋于x0时的函数极限
三、单侧极限
观察函 sin x数 当x时的变.化趋 x
一、x趋于时的函数极限
设函数 f (x)定义在 a, y
上,当 x 沿着 x 轴的正向 A 无限远离原点时,函数f (x)
也无限地接近A,我们就称
f (x)当 x 趋于 时以A为
O
极限.
f (x)

华东师范大学数学系《数学分析》讲义函数极限【圣才出品】

华东师范大学数学系《数学分析》讲义函数极限【圣才出品】

圣才电子书

存在正数
十万种考研考证电子书、题库视频学习平台
,使得对任何


四、两个重要的极限
五、无穷小量与无穷大量
1.无穷小量
(1)定义

f
在某
U0(x0)上有定义,若
lim
x® x0
f
(x)
=
0 ,则称
f
为当
x→x0 时的无穷小量.若函
数 g 在某 U0(x0)上有界,则称 g 为当 x→x0 时的有界量.
. .
5 / 11
圣才电子书 十万种考研考证电子书、题库视频学习平台

则称 f 与 g 为当 x→x0 时的同阶无穷小量,特别当
时,f 与 g 必为
同阶无穷小量.
(3)若
,则称 f 与 g 是当 x→x0 时的等价无穷小量,记作
(4)常用等价无穷小






(5)定理 设函数 f,g,h 在 U0(x0)上有定义,且有
①若
,则

②若
,则

3.无穷大量 (1)定义 ①设函数 f 在某 U0(x0)上有定义,若对任给的 G>0,存在δf 当 x→x0 时有非正常极限∞,记作

若式(3-1)换成

6 / 11
,则分别称 f 当 x→x0 时有非正常极
圣才电子书

(2)性质
①两个(相同类型的)无穷小量之和、差、积仍为无穷小量.
②无穷小量与有界量的乘积为无穷小量.
2.无穷小量阶的比较
设当 x→x0 时,f 与 g 均为无穷小量.
(1)若
,则称当 x→x0 时 f 为 g 的高阶无穷小量,或称 g 为 f 的

数学分析(华东师大)第三章函数极限

数学分析(华东师大)第三章函数极限

第 三 章 函 数 极 限§1 函数极限概念一 x 趋于∞时函数的极限设函数 f 定义在 [ a , + ∞ ) 上 , 类 似于 数列情 形 , 我们 研究 当自变 量 x 趋 于 + ∞时 , 对应的函数值能否无 限地 接近 于某 个定 数 A .例如 , 对 于 函数 f ( x ) =1x, 从图象上可见 , 当 x 无限增大时 , 函数值无限 地接近 于 0; 而对 于函 数 g ( x) = arctan x , 则当 x 趋于 + ∞时函数值无限地接近于 π2 .我们称这 两个函数 当 x趋于 + ∞时有极限 .一般地 , 当 x 趋于 + ∞时函数极限的精确定义如下 :定义 1 设 f 为定义在 [ a , + ∞ ) 上的函数 , A 为定数 .若对任给的 ε> 0 , 存 在正数 M ( ≥ a) , 使得当 x > M 时有f ( x ) - A < ε,则称函数 f 当 x 趋于 + ∞时以 A 为极限 , 记作lim x → + ∞f ( x ) = A 或 f ( x ) → A ( x → + ∞ ) .在定义 1 中正数 M 的作用与数列 极限 定义 中的 N 相类似 , 表 明 x 充分 大 的程度 ; 但这里所考虑的是比 M 大的所有 实 数 x , 而不仅仅是正 整数 n .因 此 , 当 x → + ∞ 时函数 f 以 A 为极限意 味着 : A 的任 意小 邻 域内必含有 f 在 + ∞的某邻 域内的全 部函 数 值 .定义 1 的几何意义如图 3 - 1 所示 , 对 任 给的 ε> 0 , 在坐标平面上平行于 x 轴的两 条 直线 y = A + ε与 y = A - ε, 围成 以直 线 y =图 3 - 1A 为中心线、宽为 2ε的带形区域 ; 定义中的“当 x > M 时 有 | f ( x ) - A | < ε”表 示 : 在直线 x = M 的右方 , 曲线 y = f ( x) 全部落在这个带形区域之内 .如果正数 ε给得小一点 , 即当带形区域更窄一点 , 那么 直线 x = M 一般 要往 右平移 ; 但 无 论带形区域如何窄 , 总存在这样的正数 M , 使得曲线 y = f ( x ) 在直线 x = M 的§1 函数极限概念 43右边部分全部落在这更窄的带形区域内 .现设 f 为定义在 U( - ∞ ) 或 U ( ∞ ) 上的 函数 , 当 x → - ∞ 或 x →∞ 时 , 若 函数值 f ( x ) 能无限地接近某定数 A , 则称 f 当 x → - ∞或 x → ∞时 以 A 为 极 限 , 分别记作lim x → - ∞ lim x → ∞f ( x ) = A 或 f ( x ) → A ( x → - ∞ ) ;f ( x) = A 或 f ( x) → A ( x → ∞ ) .这两种函数极限的精确定义与 定义 1 相 仿 , 只 须把 定义 1 中 的“ x > M ”分别 改 为“ x < - M ”或“ | x | > M ”即可 .读者不难证明 : 若 f 为定义在 U ( ∞ ) 上的函数 , 则lim x → ∞f ( x) = A ! lim x → + ∞f ( x ) = lim x → - ∞f ( x ) = A .( 1)例 1 证明 lim 1= 0 .x → ∞x证 任给 ε> 0 , 取 M = 1ε, 则当 | x | > M 时有所以 l im 1= 0 .1 1 x - 0 =x<1 M= ε, x → ∞x例 2 证明 : 1) limarctan x = - π; 2) lim arctan x = π. x → - ∞证 任给 ε> 0 , 由于2x → + ∞2arctan x --π 2< ε( 2)等价于 - ε-π < arctan x < ε- π, 而此不等式的左半部分对任 何 x 都 成立 , 所 2 2以只要考察其右半部分 x 的变化范围 .为此 , 先限制 ε< π, 则有2x < tan ε - π 2 = - tan π2 - ε .故对任给的正数 ε <π 2 , 只须 取 M = tan π- ε , 则 当 x < - M 时 便有 ( 2) 2式成立 .这就证明了 1 ) .类似地可证 2 ) .注 由结论 (1 ) 可知 , 当 x →∞时 arctan x 不存在极限 .二 x 趋于 x 0 时函数的极限设 f 为定义在点x0 的某个空心邻域U°( x0 ) 内的函数.现在讨论当x 趋于x0 ( x≠x0 ) 时, 对应的函数值能否趋于某个定数 A .这类函数极限的精确定义如下:2 044第三章 函 数 极 限定义 2 ( 函 数 极 限 的 ε - δ 定 义 ) 设 函 数 f 在 点 x 0 的 某 个 空 心 邻 域 U °( x 0 ;δ′) 内有定义 , A 为定数 .若对任给 的 ε> 0 , 存在正数 δ( < δ′) , 使得当 0 < | x - x 0 | < δ时有f ( x ) - A < ε, 则称函数 f 当 x 趋于 x 0 时以 A 为极限 , 记作lim x → xf ( x) = A 或 f ( x) → A ( x → x 0 ) .下面我们举例说明如何应 用 ε- δ定义 来验 证 这种 类型 的函 数极 限 .请 读 者特别注意以下各例中 δ的值是怎样确定的 .例 3 设 f ( x) = x- 4 , 证明lim f ( x) = 4 .x - 2证 由于当 x ≠ 2 时 ,2x → 2 f ( x) - 4 =x - 4x - 2- 4 = x + 2 - 4 = x - 2 ,故对给定的 ε> 0 , 只要取 δ= ε, 则当 0 < | x - 2 | < δ时 有 | f ( x ) - 4 | < ε .这 就 证明了lim f ( x ) = 4 .x → 2例 4 证明 : 1) lim sin x = sin x 0 ; 2 ) lim cos x = cos x 0 .x → xx → x证 先建立一个不等式 : 当 0 < x < π时有2sin x < x < tan x . ( 3)事实上 , 在如图 3 - 2 的单位圆内 , 当 0 < x < π时 , 显 然2有S △ O A D < S 扇 形 O A D < S △ O AB ,1 2 sin x < 12 x < 1 2 tan x , 由此立得(3 ) 式 . 图 3 - 2又当 x ≥π时有 sin x ≤1 < x , 故对一切 x > 0 都有2sin x < x; 当 x < 0 时 , 由 sin ( - x) < - x 得 - sin x < - x .综上 , 我 们又得到 不 等式sin x ≤ x , x ∈ R ,( 4)其中等号仅当 x = 0 时成立 .现证 1) . 由 ( 4) 式得sin x - sin x 0 = 2 cosx + x 02sinx - x 0≤ x - x .2对任给的 ε> 0 , 只要取 δ= ε, 则当 0 < | x - x 0 | < δ时 , 就有sin x - sin x 0< ε .即0 1 - x 2 -1 - x 0 2或 等 § 1 函数极限概念 45所以 lim sin x = sin x 0 . 2) 的证明留给读者作为练习。

华东师大第四版数学分析上册课件

华东师大第四版数学分析上册课件

数学分析的发展历程
总结词
数学分析的发展经历了初创期、经典时期和现代发展阶段。
详细描述
数学分析的初创期可以追溯到17世纪,当时的数学家开始系统地研究微积分。经典时期则是在18世纪 和19世纪,数学分析得到了全面的发展和完善,产生了许多重要的定理和公式。进入20世纪后,数学 分析继续发展并逐渐与其他数学分支相互融合,形成了现代数学分析的体系。
换元积分法的应用
主要用于处理被积函数为复合函数或具有特定形式的情况,通过换元将问题转化为更易 于处理的形式。
06
定积分
Chapter
定积分的定义与性质
定积分的定义
定积分是积分的一种,是函数在某个区间上的积分和的 极限。
定积分的性质
定积分具有线性性质、可加性、区间可加性、积分中值 定理等性质。
定积分的计算方法
华东师大第四版数学分析上册课件
目录
• 绪论 • 极限论 • 连续性 • 导数与微分 • 不定积分 • 定积分
01
绪论
Chapter
数学分析的起源和定义
总结词
数学分析起源于古希腊,是研究实数、极限、连续性和可微 性的科学。
详细描述
数学分析的起源可以追溯到公元前7世纪古希腊的数学家,他 们开始研究连续性和无穷小的问题。经过几个世纪的探索和 发展,数学分析逐渐形成了以实数、极限、连续性和可微性 为核心的理论体系。
数学分析的特性与重要性
总结词
数学分析具有严密性、连续性和广泛应用性的特点,是数学和自然科学的重要基础。
详细描述
数学分析的特性表现在其严密的逻辑推理和证明上,它强调对概念和定理的精确表述。此外,数学分析还具有连 续性的特点,它研究的是实数域上的连续函数。最后,由于数学分析是许多学科的基础,如物理、工程、经济等 ,它具有广泛的应用价值。

§3.4 两个重要的极限 数学分析(华师大 四版)课件 高教社ppt 华东师大教材配套课件

§3.4 两个重要的极限 数学分析(华师大 四版)课件 高教社ppt 华东师大教材配套课件

0sin lim 1x x x →=1lim 1e xx x →∞⎛⎫+= ⎪⎝⎭*点击以上标题可直接前往对应内容)1(.cos 1sin 1xx x <<不等式中的三个表达式均是偶函数, 证πsin tan 0,2x x x x ⎛⎫<<<< ⎪⎝⎭因为所以命题1π0||12x <<时,()式仍成立.后退前进目录退出x 故当sin lim 1x xx →=001lim =1=lim =1cos x x x →→=因为,0lim 1,sin x xx →=所以0sin lim 1.x xx →=即πsin lim πx x x →-解π,t x =-令所以例1 求πsin lim .πx xx →-()sin sin πsin ,x t t =+=-则0sin lim 1.t t t→-==-例2.arctan lim 0x xx →求x x x arctan lim 0→arctan ,tan ,t x x t ==令解.cos 1lim 20xxx -→求例3解2202sin 2lim xx x →=.21=20cos 1lim x x x -→2022sin 21lim ⎪⎪⎪⎭⎫ ⎝⎛=→x x x t t t tan lim 0→=t t tt t cos lim sin lim 00→→⋅=1=则命题2e 11lim =⎪⎭⎫ ⎝⎛++∞→xx x .e 11lim =⎪⎭⎫ ⎝⎛+∞-→xx x 和证我们只需证明:();,2,1,1,111 =+<≤⎪⎭⎫ ⎝⎛++=n n x n n x f n 设两个分段函数分别为1lim 1exx x →∞⎛⎫+= ⎪⎝⎭().,2,1,1,111=+<≤⎪⎭⎫ ⎝⎛+=+n n x n n x g n显然有()().),1[,11∞+∈≤⎪⎭⎫⎝⎛+≤x x g x x f x因为(),e 111lim lim =⎪⎭⎫ ⎝⎛++=∞→+∞→nn x n x f (),e 11lim lim 1=⎪⎭⎫ ⎝⎛+=+∞→+∞→n n x n x g 所以由函数极限的迫敛性,得到1x§4 两个重要的极限sin lim 1x x x →=.e 11lim =⎪⎭⎫ ⎝⎛+∞→xx x 这就证明了())3(.e 1lim 1=+→t t t 注,1xt =若令由此可得在实际应用中,公式(2)与(3)具有相同作用..e 111111lim 11lim 1=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛+-+∞→-∞→y y x y y xx .0,→∞→t x 时则1lim 1e xx x →∞⎛⎫+= ⎪⎝⎭.1111111xy y x ⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+所以时,因为当,+∞→-∞→y x解),3(由公式例4xx x 1)21(lim +→求()10lim 12xx x →+()2120=lim 12xx x →⎡⎤+⎢⎥⎣⎦2e .=例51lim(1)xx x →-求解()10lim 1xx x →-()110=lim 1xx x --→⎡⎤-⎢⎥⎣⎦1e .-=,01,e 11lim 2→-⎪⎭⎫ ⎝⎛+∞→n n n nn =而.e 11lim 122=⎪⎭⎫ ⎝⎛-+-∞→n n n n n 所以由归结原则,.111lim 2nn n n ⎪⎭⎫ ⎝⎛-+∞→求例6解因为2111nn n ⎛⎫+- ⎪⎝⎭1122211111---⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+n nn n nn n n n .112122--⎪⎭⎫ ⎝⎛-+≥n n n n 11e,nn ⎛⎫<+→ ⎪⎝⎭.e 111lim 2=⎪⎭⎫ ⎝⎛-+∞→nn n n 再由迫敛性, 求得。

函数极限运算法则课件

函数极限运算法则课件
于该点的纵坐标。
函数极限的性 质
唯一性
一个函数的极限值是唯一的。
有界性
函数在某点的极限存在时,该点的函数值必定有界。
局部保号性
如果lim(x→x0)f(x)=A,且A>0,则在x0的 某个邻域内,f(x)>0。
函数极限的存在性
函数极限存在定理
如果对于任意ε>0,存在δ>0,当|x−x0|<δ时, |f(x)−A|<ε,则lim(x→x0)f(x)=A。
对未来学习的展望
学习更复杂的极限问题
在掌握了基本的函数极限运算法则后,可以进一步学习更复杂的极限问题,例如,无穷大与无穷小的 关系、洛必达法则等。
实际应用
函数极限运算法则不仅在数学中有广泛的应用,也可以应用于实际问题的解决中,例如,金融、物理 等领域的问题。通过深入学习函数极限运算法则,可以更好地理解和应用这些知识。
存在性二
若函数$f(x)$在点$a$处的极限不存在,且函数$g(x)$在点$a$处的值域不包含 常数$L$,则复合函数$f(g(x))$在点$a$处的极限不存在。
04
函数极限的应用
利用函数极限求函数 值
总结词
利用函数极限的性质,通过已知的函数极限值来求解未知的 函数值。
详细描述
在数学分析中,函数极限的性质是重要的工具。通过利用函 数极限的性质,我们可以求解一些未知的函数值。例如,如 果已知函数在某点的极限值,我们可以利用这个极限值来求 解该点处的函数值。
函数极限运算法则课 件
xx年xx月xx日
目录
01
函数极限的基本概念
函数极限的定 义
函数极限的定义
函数在某点的极限是指当自变量趋近于该 点时,函数值的趋近值。

数学分析PPT课件第四版华东师大研制--第3章-函数极限可编辑全文

数学分析PPT课件第四版华东师大研制--第3章-函数极限可编辑全文
其目的就是为了更简洁地求出 , 或许所求出的
不是“最佳”的, 但这不影响我们解题的有效性. 例7 求证:
(1)
lim
x x0
sin
x
sin
x0;
(2)
lim
x x0
cos
x
cos
x0 .
前页 后页 返回
证 首先,在右图所示的单位圆内,
当0 x π时, 显然有 2
SOAD S扇形OAD SOAB , 即
解 因为 | x | 1, 1 x2 (1 x) (1 x) 2 (1 x),
所以
0,

2
2,
当1
x 1 时, 有
| 1 x2 0 | .
这就证明了 lim 1 x2 0. x1
同理可证 lim 1 x2 0. x 1
前页 后页 返回
由定义3.4和定义3.5,我们不难得到:
证 任给正数 , 取 , 当 0 x x0 时,
前页 后页 返回
x1 2 1 x1 ,
x1 2 2
这就证明了
lim x 1 2 1 .
x1 x 1
22
前页 后页 返回
例6
证明
lim
x x0
x2
x02 .
分析 要使
x2 x02 x x0 x x0 ,
可以先限制 x x0 1, 因为此时有 x x0 x x0 2x0 x x0 2 x0
lim f ( x) A 的充要条件是:
x
lim f ( x) lim f ( x) A.
x
x
π
π
例如 lim arctan x , lim arctan x ,
x
2 x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前页 后页 返回
注 数列可视为定义在正整数集上的函数. 请大家
比较数列极限定义与函数极限定义之间的相同点
与不同点. 例1 证明 lim 1 0.
x x
证 任给 0, 取 M 1 ,当 x M 时,
f (x) 0 1 ,
x 所以(由定义1),
lim 1 0. x x
前页 后页 返回
1 2 x0 ,
所以 x2 x02 ( 1 2 x0 ) x x0 , 故只要
x x0
1 2
x0
.
前页 后页 返回

0,

min
1,
1
2
x0
,当 0
x
x0
时, 有
x2 x02 .
这就证明了
lim
x x0
x2
x02 .
前页 后页 返回
注 在例5、例6中, 我们将所考虑的式子适当放大,
x1 x 1
22
分析 对于任意正数 ,要找到 0, 当 0 | x 1 |
时, 使
前页 后页 返回
x1 2 1
1
1
x1 2 2
x1 2 2 2
x1 2
x1
2 2(
x1
2) 2 2(
x1
2 )2
.
()
因 x 1 x1 ,
2 2( x 1 2)2
只要 x 1 , () 式就能成立, 故取 即可.
§1 函数极限概念
在本章,我们将讨论函数极限的基本
概念和重要性质.作为数列极限的推广, 函数极限与数列极限之间有着密切的 联系,它们之间的纽带就是归结原理.
一、x趋于时的函数极限 二、x趋于x0 时的函数极限 三、单侧极限
前页 后页 返回
一、x趋于时的函数极限
设函数 f ( x)定义在 a, y
上,当 x 沿着 x 轴的正向 A 无限远离原点时,函数f (x)
也无限地接近A,我们就称
f (x)当 x 趋于 时以A为
O
极限.
f (x)
x
前页 后页 返回
例如 函数 y arctan x, 当 x 趋于 时, arctan x 以 π为极限.
2
y
π 2
1 0.5
O
10 20 30 40 x
前页 后页 返回
定义1 设 f 为定义在 a, 上的一个函数 . A 为
定数, 若对于任意正数 0,存在 M( a),使得
当x M 时,
f (x) A ,
则称函数 f ( x) 当 x 趋于 时以 A 为极限. 记为
lim f ( x) A 或者 f ( x) A ( x ).
x
前页 后页 返回
例2 证明 lim arctan x .
x
2
证 任给 0 ( ), 取 M tan( ).
2
2
因为 arctan x 严格增,当 x M 时,
f ( x) π π arctan x 22
π (π ).
22
这就是说 lim arctan x π .
x
2
前页 后页 返回
lim f ( x) A 的充要条件是:
x
lim f ( x) lim f ( x) A.
x
x
π
π
例如 lim arctan x , lim arctan x ,
x
2 x
2
则由定理 3.1,lim arctan x 不存在. x
前页 后页 返回
二、x趋于x0 时的函数极限
设函数 f (x) 在点 x0 的某空心邻域 U ( x0 ) 内有定义. 下面我们直接给出函数 f (x)当 x x0 时以常数 A 为极限的定义. 定义4 设 f ( x) 在点 x0 的某空心邻域U ( x) 内有
证 任给正数 , 取 , 当 0 x x0 时,
前页 后页 返回
x1 2 1 x1 ,
x1 2 2
这就证明了
lim x 1 2 1 .
x1 x 1
22
前页 后页 返回
例6
证明
lim
x x0
x2
x02 .
分析 要使
x2 x02 x x0 x x0 ,
可以先限制 x x0 1, 因为此时有 x x0 x x0 2x0 x x0 2 x0
当 x ln 时
ex 0 ex .
这就是说
lim ex 0.
x
前页 后页 返回
例4
求证
lim
x
1
1 x
2
0.
证 对于任意正数 , 可取 M 1 , 当 x M 时, 有
1 1 x2
0
1 x2
,
所以结论成立.
前页 后页 返回
从定义1、2 、3 不难得到:
定理 3.1 f ( x) 定义在 的一个邻域内,则
其目的就是为了更简洁地求出 , 或许所求出的
不是“最佳”的, 但这不影响我们解题的有效性. 例7 求证:
(1)
lim
x x0
sin
x
sin
x0;
(2)
lim
x x0
cos
x
cos
x0 .
前页 后页 返回
证 首先,在右图所示的单位圆内,
当0 x π时, 显然有 2
为一个常数. 若对于任意 0, 存在 M 0,当
x M时
f (x) A ,
则称 f ( x) 当 x 时以 A 为极限,记为 lim f ( x) A 或 f ( x) A ( x ).
x
前页 后页 返回
例3 求证 lim ex 0. x
证 对于任意正数 (0 1), 取 M ln ,
lim f ( x) A的几何意义
x
y
A AA①任Fra bibliotek给定0
④有 A f (x) A
Oa
M
②存在 M a
x
x
③ 使当 x M 时
前页 后页 返回
lim f ( x) A的几何意义
x
y
A A
A
①任意给定
0
Oa
M
②存在 M a
④有 A f (x) A
x
x
③ 使当 x M 时
定义,A是一个常数. 如果对于任意正数 , 存在正 数 , 当 x U ( x, ) U ( x0 ) 时,
f (x) A ,
前页 后页 返回
则称 f ( x) 当 x x0 时以 A 为极限 . 记为
或者
lim f ( x) A
x x0
f ( x) A ( x x0 ).
例5 证明 lim x 1 2 1 .
定义2 设 f ( x)定义在 ,b 上, A是一个常数.
若对于任意 0 , 存在 M 0, 当 x M ( b) 时 f (x) A ,
则称 f ( x) 当 x 时以 A 为极限, 记为 lim f ( x) A 或 f ( x) A ( x ).
x
前页 后页 返回
定义3 设 f ( x)定义在的某个邻域 U () 内, A
相关文档
最新文档