九年级数学解直角三角形典型题型解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解直角三角形典型题型解析
一、仰角:指的是向上看时,视线与水平线的夹角。视线在水平线以上时,在视线所在的垂直平面内,视线与水平线所成的角叫做仰角。
俯角指的是向下看时,视线与水平线的夹角。1:在竖直面内的水平线与向下递降线段之间的角度(朝下看时,视线与水平面夹角为俯角) 2:从测量员的仪器到照准点所观测到的地平线以下的垂直角3:俯角范围0到180°4:视线在水平线以下时,在视线所在的垂直平面内,视线与水平线所成的角也叫俯角。
视角,视线与显示器等的垂直方向所成的角度,观察物体时,从物体两端(上、下或左、右)引出的光线在人眼光心处所成的夹角。物体的尺寸越小,离观察者越远,则视角越小。正常眼能区分物体上的两个点的最小视角约为1分。
坡度与坡角教案
二、坡面的铅直高度h和水平宽度的比叫做坡度(或叫做坡比),一般用i表示。即i=,常写成i=1:m的形式如i=1:2.5。把坡面与水平面的夹角α叫做坡角.
坡度i与坡角α之间具有什么关系?坡面水平宽度一定,铅直高度与坡度有何关系如图,铅直高度AB一定,水平宽度BC增加,α将变小,坡度减小,因为tan =,AB不变,tan 随BC增大而减小;当水平宽度BC不变,α将随铅直高度增大而增大,tanα也随之增大,因为tan = 不变时,tan 随AB的增大而增大
教师点拨:一艘海轮位于灯塔P的北偏东65 方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34 方向上的B处.这时,海轮所在的B处距离灯塔P有多远?
水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m)
练习:(1)一段坡面的坡角为60°,则坡度i=______;______,坡角______度.
2、利用土埂修筑一条渠道,在埂中间挖去深为0.6米的一块(图阴影部分是挖去部分),已知渠道内坡度为1∶1.5,渠道底面宽BC为0.5米,求:①横断面(等腰梯形)ABCD的面积;②修一条长为100米的渠道要挖去的土方数.习题:
1.一段铁路路基的横断面是等腰三角形,路基顶宽为9.8米,路基高为5.8米,斜坡的坡度i=1:1.6.求坡角.(精确到1°)计算路基下底宽度的长;(精确导0.1米)
解: 作BE⊥AD,CF⊥AD,垂足分别为E,F.由题意,可知BE=5.8米,AE=FD,EF=BC=9.8米.在Rt△ABE 中,∵i=BE/AE=1/1.6,∴AE=.6BE=1.6×5.8=9.28AD=AE+EF+FD=2AE+EF=2×9.28+9.8≈28.4(米).设坡角为a,则i=tga=1/1.6,∴a≈32°.答:路基下底宽度为28.4米,坡角为32°.
2.在△ABC中,∠C=90度,a、b、c分别为∠A、∠B、∠C的对边,a+b=2,∠B =60度,则c=(0
解:a+b=2,a=b√3(√3+1)a=2 a=2/(√3+1)c=4/(√3+1)=2(√3-1)
3.如图,小岛A在港口P的南偏西45°方向上,一艘船从港口P沿正南方向以每小时12海里的速度航行,1小时30分后到达B处,在B处测得小岛A在它的南偏西60°的方向上,小岛A离港口P有多少海里(精确到0.1海里)?
解:延长pb至c,使pc⊥ac ∵南偏西45°∴PAC为等腰直角三角形ac=pc pb=12*1.5=18
设bc=x,因为南偏西60°,所以ac=pc=(根3)x 则x+18=(根3)x x=9(根3+1)
ac=9(3+根3)
AP=根2*ac
=根2*9(3+根3)
=1.414*9*(3+1.732)
=60.2海里
4.航行中的船,在A处看到它的南偏东30°方向上有一灯塔C,船以每小时30海里速度向东南方向航行,半小时后,到达B处,看到灯塔C在船的正西方向,则这时船与灯塔的距离BC=_____海里
解1:AB=30*0.5=15 得AE=BE=15*二分之根号二(45度)EC=AE*三分之根号三(30度)BC=BE-CE
解2:设原来船就在S点,船向南行驶半小时也就是30*(1/2)=15海里后到达C点此时C在A点正西方,所以三角形ASC是直角三角形∠S=30°船航行的距离SC=30*(1/2)=15(海里)∴AC=SC*tanS=5√3(海里)即船与灯塔的距离是5√3海里
5.在高楼前点测得楼顶的仰角为,向高楼前进60米到点,又测得仰角为,则该高楼的高度大约为()解:设楼顶点为A,楼底点为B,前进60米后到点C,
因∠ABC=90°,∠ACB=45°,∠ADB=30°,所以AB=BC=1/2AD,再设楼高为H,
即AB=BC=H,
则AD=2H,
BD=BC+CD=H+60
由勾股定理,△ABD中,AB²+BD²=AD²
即H²+(H+60)²=(2H)²
解这个方程即可得H=60/(√3-1)
6.一只船自西向东航行,上午9时到一座灯塔的西南68海里,上午11时到达这座灯塔的正南,求这只船的速度. 解:A、B为船,C为灯塔因为船自西向东航行,A在C的西南方,B在C的正南方
所以角A=角C=45度,即三角形ABC为等腰直角三角形
设AB、BC为x 所以x的平方+x的平方=68的平方解得x约等于48 因为从A到B经过了2小时(11-9=2)所以速度=48/2=24
7.某大草原上有一条笔直的公路,在紧靠公路相距40千米的A,B两地,分别有甲,乙两个医疗站,如图,在A 地北偏东45°,B地北偏西60°方向上有一牧民区C.一天,甲医疗队接到牧民区的求救电话,立刻设计了两种救助方案.
方案I:从A地开车沿公路到离牧民区C最近的D处,再开车穿越草地沿DC方向到牧民区C.
方案II:从A地开车穿越草地沿AC方向到牧民区C.已知汽车在公路上行驶的速度是在草地上行驶速度的3倍.(1)求牧民区到公路的最短距离CD;
(2)你认为甲医疗队设计的两种救助方案,哪一种方案比较合理?并说明理由.(结果精确到0.1,参考数据:根号3取1.73,根号2取1.41)
解:因为AB=40,依题可得AD=CD,可设AD为x,则CD=x,DB=40-x;
I、又因为角CBD=30度;所以CD/BD=tan30
所以可得x/(40-x)=1.73/3,所以计算可得x=14.7 所以CD=14.7
II、设汽车在草地上行驶的速度为一个单位,则汽车在公路上行驶的速度为3个单位;