(完整word版)多元函数微分学及其应用归纳总结,推荐文档
多元函数微分法及其应用总结(K12教育文档)
多元函数微分法及其应用总结(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(多元函数微分法及其应用总结(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为多元函数微分法及其应用总结(word版可编辑修改)的全部内容。
第九章 多元函数微分法及其应用总结多元函数的概念对应规则、定义域、值域、图形二重极限()()()00,,lim ,x y x y f x y →的定义、与()0lim x x f x →的区别极限的计算(P61、P62、P63(6))二元函数的连续性()()()()0000,,lim ,,x y x y f x y f x y →=二元函数(),f x y 在区域D 连续 在有界闭区域上的连续函数(),f x y 的性质有界性、有最值、介值性多元初等函数多元初等函数在其定义域内是连续函数多元函数的偏导数(),z f x y =在点()00,x y 处对x,y的偏导数()00,x f x y ,()00,y f x y 的定义例如,计算()()00000,,lim x f x x y f x x y x ∆→+∆--∆∆(),z f x y =在点()00,x y 处对x ,y的偏导数()00,x f x y ,()00,y f x y 的几何解释(),z f x y =对x ,y 的偏导数(),x f x y ,(),y f x y 的定义算法练习(P69、1,4)多元函数的高阶偏导数(P69、6(1),7,8)多元函数的全微分(),z f x y =,()(),,x y dz f x y dx f x y dy=+推广到更多元的函数算法练习(P75、1(1),2,3)多元复合函数的求导法则树形法则(P82、1,3,8,10)隐函数求导法则若(),0F x y =,则x yF dy dx F =-若(),,0F x y z =, 则x z F z x F ∂=-∂,y z F z y F ∂=-∂算法练习(P89、1,3(补充计算dz ))多元函数求极值算法练习(P118、2,5,7,P116、例7)曲面(),z f x y =或者 (),,0F x y z =在点()000,,x y z 的切平面方程、法线方程算法练习(P99、例6,例7,P100、8,9)曲线()x x t =,()y y t =,()z z t =或者()y y x =,()z z x =在点()000,,x y z 处的切线方程、法平面方程算法练习(P94、例4,P100、4)例如,求曲线x t =,22y t =,3z t =的点,满足条件:该点切向量平行于平面1x y z ++=。
多元函数微分法及其应用总结
多元函数微分法及其应用总结多元函数微分法及其应用是高等数学中一个重要的内容。
多元函数是指自变量有两个或者多个的函数,如z=f(x,y)。
而微分法是研究函数的变化率的一种方法。
本文将对多元函数微分法及其应用进行总结。
1. 多元函数微分法的基本概念多元函数的微分可以分为偏导数和全微分两种形式。
对于多元函数z=f(x,y),其偏导数表示函数在某一自变量上的变化率,可以记作∂z/∂x,∂z/∂y。
全微分表示函数在所有自变量上的变化率,可以记作dz。
多元函数的微分法有很多性质和定理,如链式法则、高阶偏导数、隐函数定理等。
2. 多元函数的极值与最值利用多元函数微分法,我们可以求多元函数的极值与最值。
对于多元函数z=f(x,y),其极值、最值的求解步骤大致如下:(1)求函数的偏导数,得到所有的偏导数;(2)令所有的偏导数等于零,求解出关于x和y的方程;(3)求解方程组,得到x和y的解;(4)将解代回原函数,求得z的值;(5)比较求得的z值,得到最大值或最小值。
3. 多元函数的泰勒展开多元函数的泰勒展开是利用多元函数在某一点附近进行近似求解的一种方法。
对于多元函数z=f(x,y),其泰勒展开公式为:f(x+Δx,y+Δy) = f(x,y) + (∂f/∂x)Δx + (∂f/∂y)Δy + 1/2(∂²f/∂x²)(Δx)² + 1/2(∂²f/∂y²)(Δy)² + (∂²f/∂x∂y)ΔxΔy + O(Δx²,Δy²)这里的O(Δx²,Δy²)表示高阶无穷小,Δx和Δy表示自变量的增量。
4. 多元函数微分法的应用多元函数微分法广泛应用于物理学、工程学和经济学等领域。
具体应用如下:(1)在物理学中,多元函数微分法可以用于描述粒子在空间中的运动轨迹,求解最优路径等问题。
(2)在工程学中,多元函数微分法可以用于建模和优化设计,如求解最优结构、最优控制等问题。
高数多元函数微分法及其应用共24页文档
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
高数多元函数微分法及其应用
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
55、 为 中 华 之 崛起而 读书。 ——周 恩来
第9章多元函数微分法及其应用课本基础知识
本章目录第一节多元函数的基本概念第二节偏导数第三节全微分第四节多元复合函数的求导法则第五节隐函数的求导公式(第五节掌握的不是很好)第六节多元函数微分学的几何应用第七节方向导数与梯度第八节多元函数的极值及其解法第九节二元函数的泰勒公式几道比较好的题第一节多元函数基本概念1、基本了解∈,是在一条数轴上看定义域那么在二元中,一元函数()y f x=的定义域是x R就是在一个平面上看定义域,有(,)=(其中x,y互相没关系。
如果有关z f x y系,那么y就可以被x表示,那么就成了一元函数了),定义为二元函数2x y R∈(,)2、多元函数的邻域二元邻域三元函数邻域3、内点4、外点5、边界点边界点:点的邻域既存在外点又存在内点边界点可以看成内点,也可以看成外点,看你怎么定义了。
6、聚点邻域内存在内点则称为聚点。
可见,边界点一部分也含内点,因此内点,边界点都是聚点。
7、开集不包括边界点的内点;一元函数的开区间就是开集8包含了边界点的内点;一元函数的闭区间就是闭集9一元中有半开半闭的区间二元也是,如10、连通集连通集就是连在一起的区域。
定义是,在定义域内两点可以用折线连起来连通集与非连通集,如:11、开区域:连通的开集;闭区域:连通的闭集12、有界点集这个圆的半径可以有限充分大。
无界点集:找不到一个有限大的圆包含该区域。
如平面第一象限就是无界的点集13、二元函数的定义域图像二元定义域要有x,y的范围。
解出f1(x)<y<f2(x)(很多时候是y与x复合的函数,所以最好是化成y在一边看大于还是小于)14、二元函数的图像:空间曲面即z=f(x,y)15、多元函数极限的定义注意是去心的,去边界的圆域一元需要左极限等于右极限,二元就各个方向的极限 都要相等了。
趋近的方式有时候甚至是有技巧的,一般先用y=kx 趋近,再试试y=kx^2。
16、多元函数的连续性 设在定义域内,若lim (,)(,)00(,)(,)00f x y f x y x y x y =→则称二元函数(,)f x y 在(,)00x y 点处连续。
多元函数微分法及其应用
第九章 多元函数微分法及其应用§8 1 多元函数的基本概念一、平面点集n 维空间1.平面点集二元的序实数组x y 的全体 即R 2RR {x y |x y R }就表示坐标平面坐标平面上具有某种性质P 的点的集合 称为平面点集 记作E {x y | x y 具有性质P } 例如 平面上以原点为中心、r 为半径的圆内所有点的集合是C {x y | x 2y 2r 2} 如果我们以点P 表示x y 以|OP |表示点P 到原点O 的距离 那么集合C 可表成C {P | |OP |r }邻域设P 0x 0 y 0是xOy 平面上的一个点 是某一正数 与点P 0x 0 y 0距离小于的点P x y 的全体 称为点P 0的邻域 记为U P 0 即}|| |{),(00δδ<=PP P P U 或} )()( |) ,{(),(20200δδ<-+-=y y x x y x P U 邻域的几何意义 U P 0 表示xOy 平面上以点P 0x 0 y 0为中心、 >0为半径的圆的内部的点P x y 的全体 点P 0的去心邻域 记作) ,(0δP U即}||0 |{) ,(00δδ<<=P P P P U注 如果不需要强调邻域的半径 则用U P 0表示点P 0的某个邻域 点P 0的去心邻域记作)(0P U点与点集之间的关系任意一点P R 2与任意一个点集E R 2之间必有以下三种关系中的一种1内点 如果存在点P 的某一邻域UP 使得UPE 则称P 为E 的内点2外点 如果存在点P 的某个邻域UP 使得UPE 则称P 为E 的外点3边界点 如果点P 的任一邻域内既有属于E 的点 也有不属于E 的点 则称P 点为E 的边点E 的边界点的全体 称为E 的边界 记作EE 的内点必属于E E 的外点必定不属于E 而E 的边界点可能属于E 也可能不属于E 聚点如果对于任意给定的0 点P 的去心邻域),( P U内总有E 中的点 则称P 是E 的聚点由聚点的定义可知 点集E 的聚点P 本身 可以属于E 也可能不属于E例如 设平面点集E {x y |1x 2y 22}满足1x 2y 22的一切点x y 都是E 的内点 满足x 2y 21的一切点x y 都是E 的边界点 它们都不属于E 满足x 2y 22的一切点x y 也是E 的边界点 它们都属于E 点集E 以及它的界边E 上的一切点都是E 的聚点开集 如果点集E 的点都是内点 则称E 为开集闭集 如果点集的余集E c为开集 则称E 为闭集开集的例子 E {x y |1<x 2y 2<2}闭集的例子 E {x y |1x 2y 22}集合{x y |1x 2y 22}既非开集 也非闭集连通性 如果点集E 内任何两点 都可用折线连结起来 且该折线上的点都属于E 则称E 为连通集区域或开区域 连通的开集称为区域或开区域 例如E {x y |1x 2y 22}闭区域 开区域连同它的边界一起所构成的点集称为闭区域 例如E {x y |1x 2y 22}有界集 对于平面点集E 如果存在某一正数r 使得 EUO r其中O 是坐标原点 则称E 为有界点集无界集 一个集合如果不是有界集 就称这集合为无界集例如 集合{x y |1x 2y 22}是有界闭区域 集合{x y | xy 1}是无界开区域集合{x y | xy 1}是无界闭区域 2 n 维空间设n 为取定的一个自然数 我们用R n表示n 元有序数组x 1 x 2 x n 的全体所构成的集合 即R nRRR {x 1 x 2 x n | x i R i 1 2 n } R n中的元素x 1 x 2 x n 有时也用单个字母x 来表示 即x x 1 x 2 x n 当所有的x i i 1 2 n 都为零时 称这样的元素为R n 中的零元 记为0或O 在解析几何中 通过直角坐标 R 2或R 3中的元素分别与平面或空间中的点或向量建立一一对应 因而R n中的元素x x 1 x 2 x n 也称为R n 中的一个点或一个n 维向量 x i称为点x 的第i 个坐标或n 维向量x 的第i 个分量 特别地 Rn中的零元0称为R n中的坐标原点或n 维零向量为了在集合R n 中的元素之间建立联系 在R n中定义线性运算如下 设x x 1 x 2 x n y y 1 y 2 y n 为R n 中任意两个元素 R 规定xy x 1 y 1 x 2 y 2 x n y n x x 1 x 2 x n这样定义了线性运算的集合R n称为n 维空间R n中点x x 1 x 2 x n 和点 y y 1 y 2 y n 间的距离 记作x y 规定2222211)( )()(),(n n y x y x y x -+⋅⋅⋅+-+-=y x ρ显然 n 1 2 3时 上术规定与数轴上、直角坐标系下平面及空间中两点间的距离一至R n中元素x x 1 x 2 x n 与零元0之间的距离x 0记作||x ||在R 1、R 2、R 3中 通常将||x ||记作|x | 即22221 ||||n x x x ⋅⋅⋅++=x采用这一记号 结合向量的线性运算 便得),()( )()(||||2222211y x y x ρ=-+⋅⋅⋅+-+-=-n n y x y x y x 在n 维空间R n 中定义了距离以后 就可以定义R n中变元的极限设x x 1 x 2 x n a a 1 a 2 a n R n如果||xa ||0则称变元x 在R n中趋于固定元a 记作xa 显然xa x 1a 1 x 2a 2 x n a n在R n中线性运算和距离的引入 使得前面讨论过的有关平面点集的一系列概念 可以方便地引入到nn 3维空间中来 例如设a a 1 a 2 a n R n是某一正数 则n 维空间内的点集U a {x | x R nx a }就定义为R n中点a 的邻域 以邻域为基础 可以定义点集的内点、外点、边界点和聚点 以及开集、闭集、区域等一系列概念二 多元函数概念例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系V r 2h这里 当r 、h 在集合{r h | r >0 h >0}内取定一对值r h 时 V 对应的值就随之确定例2 一定量的理想气体的压强p 、体积V 和绝对温度T 之间具有关系V RTp =其中R 为常数 这里 当V 、T 在集合{V T | V >0 T >0}内取定一对值V T 时 p 的对应值就随之确定 例3 设R 是电阻R 1、R 2并联后的总电阻 由电学知道 它们之间具有关系2121R R R R R +=这里 当R 1、R 2在集合{ R 1 R 2 | R 1>0 R 2>0}内取定一对值 R 1 R 2时 R 的对应值就随之确定定义1 设D 是R 2的一个非空子集 称映射f D R 为定义在D上的二元函数通常记为zfx y x yD或zfP PD其中点集D称为该函数的定义域x y称为自变量z称为因变量上述定义中与自变量x、y的一对值x y相对应的因变量z的值也称为f在点x y处的函数值记作fx y即zfx y 值域fD{z| zfx y x yD}函数的其它符号zzx y zgx y等类似地可定义三元函数ufx y z x y zD以及三元以上的函数一般地把定义1中的平面点集D换成n维空间R n内的点集D映射f D R就称为定义在D上的n元函数通常记为ufx1x2x n x1x2x n D或简记为uf x x x1x2x n D也可记为ufP Px1x2x n D函数定义域的约定在一般地讨论用算式表达的多元函数uf x时就以使这个算式有意义的变元x的值所组成的点集为这个多元函数的自然定义域因而对这类函数它的定义域不再特别标出例如函数z ln xy的定义域为{x y|xy>0}无界开区域函数z arcsin x2y2的定义域为{x y|x2y21}有界闭区域二元函数的图形点集{x y z|zfx y x yD}称为二元函数zfx y的图形二元函数的图形是一张曲面例如zaxbyc是一张平面而函数z=x2+y2的图形是旋转抛物面三多元函数的极限与一元函数的极限概念类似如果在Px yP0x0y0的过程中对应的函数值fx y无限接近于一个确定的常数A则称A 是函数fx y当x yx0y0时的极限定义2设二元函数fPfx y 的定义域为D P 0x 0 y 0是D 的聚点 如果存在常数A 对于任意给定的正数总存在正数 使得当),(),(0δP U D y x P⋂∈时 都有|fPA ||fx yA |成立 则称常数A 为函数fx y 当x yx 0 y 0时的极限 记为 Ay x f y x y x =→),(lim ),(),(0或fx yA x yx 0 y 0也记作AP f P P =→)(lim 0或fPAPP 0上述定义的极限也称为二重极限例4. 设22221sin)(),(y x y x y x f ++= 求证0),(lim )0,0(),(=→y x f y x证 因为2222222222 |1sin ||| |01sin)(||0),(|y x y x y x y x y x y x f +≤+⋅+=-++=-可见 >0 取εδ=则当δ<-+-<22)0()0(0y x即),(),(δO U D y x P⋂∈时 总有|fx y 0|因此0),(lim )0,0(),(=→y x f y x 必须注意1二重极限存在 是指P 以任何方式趋于P 0时 函数都无限接近于A2如果当P 以两种不同方式趋于P 0时 函数趋于不同的值 则函数的极限不存在 讨论函数⎪⎩⎪⎨⎧=+≠++=0 00 ),(222222y x y x y x xy y x f 在点0 0有无极限 提示 当点Px y 沿x 轴趋于点0 0时0lim )0 ,(lim ),(lim00)0,0(),(===→→→x x y x x f y x f 当点Px y 沿y 轴趋于点0 0时0lim ) ,0(lim ),(lim 0)0,0(),(===→→→y y y x y f y x f当点P x y 沿直线ykx 有22222022 )0,0(),(1lim lim kk x k x kx y x xy x kx y y x +=+=+→=→ 因此 函数fx y 在0 0处无极限极限概念的推广 多元函数的极限多元函数的极限运算法则 与一元函数的情况类似 例5 求x xy y x )sin(lim)2,0(),(→解 y xy xy xxy y x y x ⋅=→→)sin(lim )sin(lim)2,0(),()2,0(),(y xy xy y x y x )2,0(),()2,0(),(lim )sin(lim→→⋅=122 四 多元函数的连续性定义3 设二元函数fPf x y 的定义域为D P 0x 0 y 0为D的聚点 且P 0D 如果),(),(lim00),(),(00y x f y x f y x y x =→ 则称函数f x y 在点P 0x 0 y 0连续如果函数f x y 在D 的每一点都连续 那么就称函数f x y 在D 上连续 或者称f x y 是D 上的连续函数二元函数的连续性概念可相应地推广到n 元函数fP 上去例6设fx ,y sin x 证明fx y 是R 2上的连续函数证 设P 0x 0 y 0 R 20 由于sin x 在x 0处连续 故0 当|xx 0|时 有|sin x sin x 0|以上述作P 0的邻域UP 0 则当Px yUP 0 时 显然 |fx yfx 0 y 0||sin x sin x 0|即fx y sin x 在点P 0x 0 y 0 连续 由P 0的任意性知 sin x 作为x y 的二元函数在R 2上连续证 对于任意的P 0x 0 y 0R 2因为),(sin sin lim),(lim 000),(),(),(),(0000y x f x x y x f y x y x y x y x ===→→ 所以函数fx ,y sin x 在点P 0x 0 y 0连续 由P 0的任意性知 sin x作为x y 的二元函数在R 2上连续类似的讨论可知 一元基本初等函数看成二元函数或二元以上的多元函数时 它们在各自的定义域内都是连续的 定义4设函数fx y 的定义域为D P 0x 0 y 0是D 的聚点 如果函数fx y 在点P 0x 0 y 0不连续 则称P 0x 0 y 0为函数fx y 的间断点 例如 函数⎪⎩⎪⎨⎧=+≠++=0 00 ),(222222y x y x y x xy y x f其定义域D R 2O 0 0是D 的聚点 fx y 当x y 0 0时的极限不存在 所以点O 0 0是该函数的一个间断点又如 函数11sin22-+=y x z 其定义域为D {x y |x 2y 21} 圆周C {x y |x 2y 21}上的点都是D 的聚点 而fx y 在C 上没有定义 当然fx y 在C 上各点都不连续 所以圆周C 上各点都是该函数的间断点注 间断点可能是孤立点也可能是曲线上的点可以证明 多元连续函数的和、差、积仍为连续函数 连续函数的商在分母不为零处仍连续 多元连续函数的复合函数也是连续函数多元初等函数 与一元初等函数类似 多元初等函数是指可用一个式子所表示的多元函数 这个式子是由常数及具有不同自变量的一元基本初等函数经过有限次的四则运算和复合运算而得到的例如2221y y x x +-+ sin xy 222z y xe ++都是多元初等函数一切多元初等函数在其定义区域内是连续的 所谓定义区域是指包含在定义域内的区域或闭区域由多元连续函数的连续性 如果要求多元连续函数fP 在点P 0处的极限 而该点又在此函数的定义区域内 则 )()(lim 00P f P f p p =→例7 求xy y x y x +→)2,1(),(lim解 函数xy yx y x f +=),(是初等函数 它的定义域为D {x y |x 0 y 0}P 01 2为D 的内点 故存在P 0的某一邻域UP 0D 而任何邻域都是区域 所以UP 0是fx y 的一个定义区域 因此23)2,1(),(lim)2,1(),(==→f y x f y x 一般地 求)(lim 0P f P P →时 如果fP 是初等函数 且P 0是fP 的定义域的内点 则fP 在点P 0处连续 于是)()(lim 00P f P f P P =→例8 求xy xy y x 11lim)0 ,0(),(-+→解)11()11)(11(lim11lim)0 ,0(),()0 ,0(),(++++-+=-+→→xy xy xy xy xy xy y x y x 21111lim )0 ,0(),(=++=→xy y x多元连续函数的性质性质1 有界性与最大值最小值定理在有界闭区域D 上的多元连续函数 必定在D 上有界 且能取得它的最大值和最小值性质1就是说 若fP 在有界闭区域D 上连续 则必定存在常数M 0 使得对一切PD 有|fP |M 且存在P 1、P 2D 使得 fP 1max{fP |PD } fP 2min{fP |PD }性质2 介值定理 在有界闭区域D 上的多元连续函数必取得介于最大值和最小值之间的任何值§8 2 偏导数一、偏导数的定义及其计算法对于二元函数zfx y 如果只有自变量x 变化 而自变量y 固定 这时它就是x 的一元函数 这函数对x 的导数 就称为二元函数zfx y 对于x 的偏导数定义 设函数zfx y 在点x 0 y 0的某一邻域内有定义 当y 固定在y 0而x 在x 0处有增量x 时 相应地函数有增量fx 0x y 0fx 0 y 0如果极限x y x f y x x f x ∆-∆+→∆),(),(lim00000存在 则称此极限为函数zfx y 在点x 0 y 0处对x 的偏导数 记作0y y x x x z==∂∂ 00y y x x x f ==∂∂0y y x x xz == 或),(00y x f x例如x y x f y x x f y x f x x ∆-∆+=→∆),(),(lim),(0000000类似地 函数zfx y 在点x 0 y 0处对y 的偏导数定义为y y x f y y x f y ∆-∆+→∆),(),(lim00000记作y y x x y z==∂∂y y x x y f==∂∂y y x x yz == 或f y x 0 y 0偏导函数 如果函数zfx y 在区域D 内每一点x y 处对x 的偏导数都存在 那么这个偏导数就是x 、y 的函数 它就称为函数zfx y 对自变量x 的偏导函数 记作x z ∂∂ xf ∂∂ x z 或),(y x f x偏导函数的定义式x y x f y x x f y x f x x ∆-∆+=→∆),(),(lim),(0类似地 可定义函数zfx y 对y 的偏导函数 记为y z ∂∂ yf∂∂ z y 或),(y x f y偏导函数的定义式y y x f y y x f y x f y y ∆-∆+=→∆),(),(lim),(0求xf∂∂时 只要把y 暂时看作常量而对x求导数 求yf∂∂时只要把x 暂时看作常量而对y 求导数讨论 下列求偏导数的方法是否正确),(),(00y y x x x x y x f y x f ===),(),(00y y x x y y y x f y x f ===0]),([),(000x x x y x f dx d y x f == 0]),([),(000y y y y x f dy dy x f ==偏导数的概念还可推广到二元以上的函数例如三元函数ufx y z 在点x y z 处对x 的偏导数定义为x z y x f z y x x f z y x f x x ∆-∆+=→∆),,(),,(lim),,(0其中x y z 是函数ufx y z 的定义域的内点 它们的求法也仍旧是一元函数的微分法问题例1 求zx 23xyy 2在点1 2处的偏导数解 y x x z 32+=∂∂ yx y z 23+=∂∂ 8231221=⋅+⋅=∂∂==y x xz7221321=⋅+⋅=∂∂==y x yz例2 求zx 2sin 2y 的偏导数解 y x x z 2sin 2=∂∂ yx y z 2cos 22=∂∂例3 设)1,0(≠>=x x xz y求证zy z x x z y x 2ln 1=∂∂+∂∂证 1-=∂∂y yx x z xx y z y ln =∂∂zx x x x x yx y x y z x x z y x y y y y 2ln ln 1ln 11=+=+=∂∂+∂∂-例4 求222z y x r ++=的偏导数解 r x z y x x x r =++=∂∂222 r y z y x y y r =++=∂∂222例5 已知理想气体的状态方程为pV =RTR 为常数求证 1-=∂∂⋅∂∂⋅∂∂p T T V V p证 因为V RTp = 2V RT V p-=∂∂p RT V = p RT V =∂∂RpV T =R Vp T =∂∂所以12-=-=⋅⋅-=∂∂⋅∂∂⋅∂∂pV RT R V p R V RT p T T V V p例 5 说明的问题 偏导数的记号是一个整体记号 不能看作分子分母之商二元函数zfx y 在点x 0 y 0的偏导数的几何意义f x x 0 y 0fx y 0x 是截线zfx y 0在点M 0处切线T x 对x 轴的斜率f y x 0 y 0 fx 0 y y 是截线zfx 0 y 在点M 0处切线T y 对y 轴的斜率偏导数与连续性 对于多元函数来说 即使各偏导数在某点都存在 也不能保证函数在该点连续 例如⎪⎩⎪⎨⎧=+≠++=0 00),(222222y x y x y x xy y x f在点0 0有 f x 0 00 f y 0 00 但函数在点0 0并不连续提示0)0 ,(=x f 0) ,0(=y f0)]0 ,([)0 ,0(==x f dx d f x 0)] ,0([)0 ,0(==y f dy df y当点Px y 沿x 轴趋于点0 0时 有0lim )0 ,(lim ),(lim00)0,0(),(===→→→x x y x x f y x f当点Px y 沿直线ykx 趋于点0 0时 有22222022 )0,0(),(1lim lim kk x k x kx y x xy x kx y y x +=+=+→=→因此),(lim )0,0(),(y x f y x →不存在 故函数fx y 在0 0处不连续类似地 可定义函数zfx y 对y 的偏导函数 记为y z ∂∂ yf∂∂ z y 或),(y x f y偏导函数的定义式y y x f y y x f y x f y y ∆-∆+=→∆),(),(lim),(0二 高阶偏导数设函数zfx y 在区域D 内具有偏导数),(y x f x z x =∂∂ ),(y x f y z y=∂∂那么在D 内f x x y 、f y x y 都是x y 的函数 如果这两个函数的偏导数也存在 则称它们是函数zfx y 的二偏导数 按照对变量求导次序的为同有下列四个二阶偏导数如果函数zfx y 在区域D 内的偏导数f x x y 、f y x y 也具有偏导数则它们的偏导数称为函数zfx y 的二阶偏导数 按照对变量求导次序的不同有下列四个二阶偏导数),()(22y x f x z x z x xx =∂∂=∂∂∂∂ ),()(2y x f y x z x z y xy=∂∂∂=∂∂∂∂),()(2y x f x y z y z x yx =∂∂∂=∂∂∂∂ ),()(22y x f y z y z y yy =∂∂=∂∂∂∂其中),()(2y x f y x z x z y xy =∂∂∂=∂∂∂∂ ),()(2y x f x y z y z x yx=∂∂∂=∂∂∂∂称为混合偏导数22)(x z x z x ∂∂=∂∂∂∂ yx z x z y ∂∂∂=∂∂∂∂2)( x y z y z x ∂∂∂=∂∂∂∂2)( 22)(y zy z y ∂∂=∂∂∂∂同样可得三阶、四阶、以及n 阶偏导数二阶及二阶以上的偏导数统称为高阶偏导数例6 设zx 3y 23xy 3xy 1 求22x z ∂∂、33x z∂∂、x y z ∂∂∂2和y x z∂∂∂2解 y y y x x z --=∂∂32233 xxy y x y z --=∂∂23922226xy x z =∂∂ 2336y x z =∂∂196222--=∂∂∂y y x y x z 196222--=∂∂∂y y x x y z由例6观察到的问题 y x zx y z ∂∂∂=∂∂∂22定理 如果函数zfx y 的两个二阶混合偏导数x y z ∂∂∂2及yx z∂∂∂2在区域D 内连续 那么在该区域内这两个二阶混合偏导数必相等类似地可定义二元以上函数的高阶偏导数例7 验证函数22ln y x z +=满足方程02222=∂∂+∂∂y z x z证 因为)ln(21ln 2222y x y x z +=+= 所以22y x xx z +=∂∂22y x y y z +=∂∂222222222222)()(2)(y x x y y x x x y x xz +-=+⋅-+=∂∂222222222222)()(2)(y x y x y x y y y x yz +-=+⋅-+=∂∂因此 0)()(22222222222222=+-++-=∂∂+∂∂y x x y y x y x y z x z例8.证明函数r u 1=满足方程0222222=∂∂+∂∂+∂∂z u y u x u其中222z y x r ++=证 32211r xr x r x r r x u -=⋅-=∂∂⋅-=∂∂52343223131r x r x r r x r x u +-=∂∂⋅+-=∂∂同理5232231r y r y u +-=∂∂ 5232231r z r z u +-=∂∂因此)31()31()31(523523523222222r z r r y r r x r zu y u x u +-++-++-=∂∂+∂∂+∂∂33)(3352352223=+-=+++-=r r r r z y x r提示 6236333223)()(r x rr x r r r x x r rx x x u ∂∂⋅--=∂∂⋅--=-∂∂=∂∂§8 3全微分及其应用 一、全微分的定义根据一元函数微分学中增量与微分的关系有 偏增量与偏微分fxx yfx yf x x yxfxx yfx y 为函数对x 的偏增量 f x x yx 为函数对x 的偏微分fx yyfx yf y x yyfx yyfx y 为函数对y 的偏增量 f y x yy 为函数对y 的偏微分全增量 z fxx yyfx y计算全增量比较复杂 我们希望用x 、y 的线性函数来近似代替之定义 如果函数zfx y 在点x y 的全增量 z fxx yyfx y 可表示为) )()(( )(22y x o y B x A z ∆+∆=+∆+∆=∆ρρ 其中A 、B 不依赖于x 、y 而仅与x 、y 有关 则称函数zfx y 在点x y 可微分 而称AxBy 为函数zfx y 在点x y 的全微分 记作dz 即dzAxBy如果函数在区域D 内各点处都可微分 那么称这函数在D 内可微分可微与连续 可微必连续 但偏导数存在不一定连续 这是因为 如果zfx y 在点x y 可微则 z fxx yyfx yAxByo 于是 0lim 0=∆→z ρ从而),(]),([lim ),(lim)0,0(),(y x f z y x f y y x x f y x =∆+=∆+∆+→→∆∆ρ因此函数zfx y 在点x y 处连续 可微条件定理1必要条件如果函数zfx y 在点x y 可微分 则函数在该点的偏导数x z∂∂、y z ∂∂必定存在 且函数zfx y 在点x y 的全微分为yy z x xz dz ∆∂∂+∆∂∂= 证 设函数zfx y 在点Px y 可微分 于是 对于点P 的某个邻域内的任意一点P xx yy 有zAxByo 特别当y 0时有f xx yfx yAxo |x |上式两边各除以x 再令x 0而取极限 就得Ax y x f y x x f x =∆-∆+→∆),(),(lim从而偏导数x z ∂∂存在 且Ax z =∂∂同理可证偏导数y z ∂∂存在 且B y z =∂∂所以yy z x xz dz ∆∂∂+∆∂∂= 简要证明设函数zfx y 在点x y 可微分 于是有zAxByo 特别当y 0时有f xx yfx yAxo |x |上式两边各除以x 再令x 0而取极限 就得Ax x o A x y x f y x x f x x =∆∆+=∆-∆+→∆→∆]|)(|[lim ),(),(lim00从而x z ∂∂存在 且A x z =∂∂同理y z ∂∂存在 且B y z =∂∂ 所以yy z x xz dz ∆∂∂+∆∂∂= 偏导数x z∂∂、y z ∂∂存在是可微分的必要条件 但不是充分条件例如函数⎪⎩⎪⎨⎧=+≠++=0 00 ),(222222y x y x y x xy y x f 在点00处虽然有f x 0 00及f y 0 00但函数在00不可微分即zf x 0 0xf y 0 0y 不是较高阶的无穷小这是因为当x y 沿直线yx 趋于0 0时ρ])0 ,0()0 ,0([y f x f z y x ∆⋅+∆⋅-∆021)()()()(2222≠=∆+∆∆⋅∆=∆+∆∆⋅∆=x x x x y x y x定理2充分条件 如果函数zfx y 的偏导数x z∂∂、y z ∂∂在点x y 连续 则函数在该点可微分定理1和定理2的结论可推广到三元及三元以上函数 按着习惯x 、y 分别记作dx 、dy 并分别称为自变量的微分则函数zfx y 的全微分可写作dyy z dx x z dz ∂∂+∂∂=二元函数的全微分等于它的两个偏微分之和这件事称为二元函数的微分符合叠加原理 叠加原理也适用于二元以上的函数 例如函数uf x y z 的全微分为dzz u dy y u dx x u du ∂∂+∂∂+∂∂= 例1 计算函数zx 2y y 2的全微分解 因为xy x z 2=∂∂ yx y z 22+=∂∂所以dz 2xydxx 22ydy例2 计算函数ze xy在点2 1处的全微分解 因为xy ye x z =∂∂ xyxe y z =∂∂ 212e x z y x =∂∂== 2122ey z y x =∂∂==所以 dze 2dx 2e 2dy 例3 计算函数yze yx u ++=2sin 的全微分解 因为1=∂∂x u yz ze y y u +=∂∂2cos 21 yzye z u =∂∂ 所以 dzye dy ze ydx du yz yz +++=)2cos 21(二、全微分在近似计算中的应用当二元函数zf x y 在点P x y 的两个偏导数f x x y fyx y 连续 并且|x | |y |都较小时 有近似等式z dz f x x yxf y x yy即 f xx yy fx yf x x yxf y x yy我们可以利用上述近似等式对二元函数作近似计算 例4 有一圆柱体 受压后发生形变 它的半径由20cm 增大到20 05cm 高度由100cu 减少到99cm 求此圆柱体体积变化的近似值解 设圆柱体的半径、高和体积依次为r 、h 和V 则有V r 2h已知r 20 h 100 r 0 05 h 1 根据近似公式 有VdVV r rV h h 2rhrr 2h2201000 052021200 cm 3即此圆柱体在受压后体积约减少了200 cm 3例5 计算1 04202的近似值解 设函数f x yx y显然 要计算的值就是函数在x 104y 202时的函数值f 104 202 取x 1 y 2 x 004 y 002 由于f xx yy fx yf x x yxf y x yyx y yx y 1xx yln x y所以10420212212100412ln1002108例6 利用单摆摆动测定重力加速度g 的公式是224T lg π=现测得单摆摆长l 与振动周期T 分别为l =100±、T =2±.问由于测定l 与T 的误差而引起g 的绝对误差和相对误差各为多少解 如果把测量l 与T 所产生的误差当作|Δl |与|ΔT |,则利用上述计算公式所产生的误差就是二元函数224T lg π=的全增量的绝对值|Δg |.由于|Δl ||ΔT |都很小因此我们可以用dg 来近似地代替Δg 这样就得到g 的误差为||||||T T g l l g dg g ∆∂∂+∆∂∂=≈∆T l T g l g δδ⋅∂∂+⋅∂∂≤||||)21(4322Tl T l T δδπ+=其中l 与T 为l 与T 的绝对误差 把l =100 T =2, l =, δT =代入上式 得g 的绝对误差约为)004.02100221.0(4322⨯⨯+=πδg)/(93.45.022s cm ==π.02225.0210045.0=⨯=ππδg g从上面的例子可以看到对于一般的二元函数z =fx, y , 如果自变量x 、y 的绝对误差分别为x 、y , 即|Δx |x , |Δy |y , 则z 的误差||||||y y z x x z dz z ∆∂∂+∆∂∂=≈∆ ||||||||y y z x x z ∆⋅∂∂+∆⋅∂∂≤ y x y z x z δδ⋅∂∂+⋅∂∂≤||||从而得到z 的绝对误差约为yx z yz xz δδδ⋅∂∂+⋅∂∂=||||z 的相对误差约为yx z z y z z x zz δδδ∂∂+∂∂=||§8 4 多元复合函数的求导法则 设zfu v 而ut vt 如何求dt dz设zfu v 而ux y vx y 如何求x z∂∂和y z ∂∂1 复合函数的中间变量均为一元函数的情形定理1 如果函数ut 及vt 都在点t 可导 函数zfu v 在对应点u v 具有连续偏导数 则复合函数zft t 在点t 可导 且有dt dv v z dt du u z dt dz ⋅∂∂+⋅∂∂=简要证明1 因为zfu v 具有连续的偏导数 所以它是可微的 即有dvv z du uz dz ∂∂+∂∂=又因为ut 及vt 都可导 因而可微 即有dt dt du du = dtdt dv dv = 代入上式得dt dtdv v z dt dt du u z dz ⋅∂∂+⋅∂∂=dtdt dv v z dt du u z )(⋅∂∂+⋅∂∂= 从而 dt dvv z dt du u z dt dz ⋅∂∂+⋅∂∂=简要证明2 当t 取得增量t 时 u 、v 及z 相应地也取得增量u 、v 及z 由zfu v 、ut 及vt 的可微性 有)(ρo v v z u u z z +∆∂∂+∆∂∂=∆)()]([)]([ρo t o t dt dv v z t o t dt du u z +∆+∆∂∂+∆+∆∂∂=)()()()(ρo t o v z u z t dt dv v z dt du u z +∆∂∂+∂∂+∆⋅∂∂+⋅∂∂= t o t t o v z u z dt dv v z dt du u z t z ∆+∆∆∂∂+∂∂+⋅∂∂+⋅∂∂=∆∆)()()(ρ令t 0 上式两边取极限 即得dt dvv z dt du u z dt dz ⋅∂∂+⋅∂∂=注0)()(0)()()(lim )(lim 222200=+⋅=∆∆+∆⋅=∆→∆→∆dt dv dt du t v u o t o t t ρρρ推广 设zf u v w u t vt wt 则zf t t t 对t 的导数为dt dww z dt dv v z dt du u z dt dz ∂∂+∂∂+∂∂=上述dt dz称为全导数2 复合函数的中间变量均为多元函数的情形定理2 如果函数ux y vx y 都在点x y 具有对x 及y 的偏导数 函数zfu v 在对应点u v 具有连续偏导数 则复合函数zf x y x y 在点x y 的两个偏导数存在 且有x v v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂ y vv z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂推广 设zfu v w ux y vx y wx y 则x w w z x v v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂ y ww z y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂讨论 1设zfu v ux y vy 则=∂∂x z =∂∂y z提示 x u u z x z ∂∂⋅∂∂=∂∂ dy dvv z y u u z y z ⋅∂∂+∂∂⋅∂∂=∂∂2设zfu x y 且ux y 则=∂∂x z =∂∂y z提示 x f x u u f x z ∂∂+∂∂∂∂=∂∂ y fy u u f y z ∂∂+∂∂∂∂=∂∂ 这里x z∂∂与xf ∂∂是不同的 x z∂∂是把复合函数zfx y x y 中的y 看作不变而对x 的偏导数 xf∂∂是把fu x y 中的u 及y 看作不变而 对x 的偏导数 y z∂∂与yf ∂∂也有类似的区别3.复合函数的中间变量既有一元函数 又有多元函数的情形定理3 如果函数ux y 在点x y 具有对x 及对y 的偏导数 函数vy 在点y 可导 函数zfu v 在对应点u v 具有连续偏导数 则复合函数zfx y y 在点x y 的两个偏导数存在 且有x u u z x z ∂∂⋅∂∂=∂∂ dy dvv z y u u z y z ⋅∂∂+∂∂⋅∂∂=∂∂例1 设ze u sin v uxy vxy 求x z∂∂和y z ∂∂解 x vv z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂e u sin vye ucos v 1 e x yy sin xy cos xyy vv z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂e u sin vxe ucos v 1 e xyx sin xy cos xy 例2 设222),,(z y x ez y x f u ++== 而y x z sin 2= 求x u∂∂和y u ∂∂解 x zz f x f x u ∂∂⋅∂∂+∂∂=∂∂y x ze xez y xz y xsin 222222222⋅+=++++yx y xey x x 2422sin 22)sin 21(2++++=y zz f y f y u ∂∂⋅∂∂+∂∂=∂∂y x ze yez y xz y xcos 222222222⋅+=++++yx y xey y x y 2422sin 4)cos sin (2+++=例3 设zuv sin t 而uetv cos t 求全导数dt dz解 t zdt dv v z dt du u z dt dz ∂∂+⋅∂∂+⋅∂∂=ve tu sin t cos t e tcos te tsin t cos t e t cos t sin t cos t 例4 设wfxyz xyz f具有二阶连续偏导数 求x w∂∂及z x w ∂∂∂2解 令uxyz vxyz 则wfu v 引入记号u v u f f ∂∂='),(1 v u v u f f ∂∂∂='),(12同理有2f '11f ''22f ''等 21f yz f x v v f x u u f x w '+'=∂∂⋅∂∂+∂∂⋅∂∂=∂∂z f yz f y z f f yz f z z x w ∂'∂+'+∂'∂='+'∂∂=∂∂∂221212)(2222121211f z xy f yz f y f xy f ''+''+'+''+''= 22221211)(f z xy f y f z x y f ''+'+''++''= 注 1211111f xy f z v v f z u u f z f ''+''=∂∂⋅∂'∂+∂∂⋅∂'∂=∂'∂ 2221222f xy f z v v f z u u f z f ''+''=∂∂⋅∂'∂+∂∂⋅∂'∂=∂'∂例5 设ufx y 的所有二阶偏导数连续 把下列表达式转换成极坐标系中的形式122)()(y u xu ∂∂+∂∂ 22222y u x u ∂∂+∂∂ 解 由直角坐标与极坐标间的关系式得 ufx yf cos θ sin θF θ 其中x cos θ y sin θ 22yx +=ρx yarctan=θ应用复合函数求导法则 得x u x u x u ∂∂∂∂+∂∂∂∂=∂∂θθρρ2ρθρρy u x u ∂∂-∂∂=ρθθθρsin cos y u u ∂∂-∂∂=y u y u y u ∂∂∂∂+∂∂∂∂=∂∂θθρρ2ρθρρx u y u ∂∂+∂∂=ρθθθρcos sin ∂∂+∂∂=u u两式平方后相加 得22222)(1)()()(θρρ∂∂+∂∂=∂∂+∂∂u u yu x u 再求二阶偏导数 得x x u x x u x u ∂∂⋅∂∂∂∂+∂∂⋅∂∂∂∂=∂∂θθρρ)()(22θρθθθρρcos )sin cos (⋅∂∂-∂∂∂∂=u u ρθρθθθρθsin )sin cos (⋅∂∂-∂∂∂∂-u u 22222222sin cos sin 2cos ρθθρθθθρθρ∂∂+∂∂∂-∂∂=u u u ρθρρθθθ22sin cos sin 2∂∂+∂∂+u u同理可得2222222222cos cos sin 2sin ρθθρθθθρθρ∂∂+∂∂∂+∂∂=∂∂u u u y u ρθρρθθθ22cos cos sin 2∂∂+∂∂-u u两式相加 得22222222211θρρρρ∂∂++∂∂=∂∂+∂∂u u y u x u])([1222θρρρρρ∂∂+∂∂∂∂=u u全微分形式不变性 设zfu v 具有连续偏导数 则有全微分dvv z du uz dz ∂∂+∂∂= 如果zfu v 具有连续偏导数 而ux y vx y 也具有连续偏导数 则dyy z dx x z dz ∂∂+∂∂=dyy v v z y u u z dx x v v z x u u z )()(∂∂∂∂+∂∂∂∂+∂∂∂∂+∂∂∂∂=)()(dy y v dx x v v z dy y u dx x u u z ∂∂+∂∂∂∂+∂∂+∂∂∂∂= dv v z du uz ∂∂+∂∂= 由此可见 无论z 是自变量u 、v 的函数或中间变量u 、v 的函数 它的全微分形式是一样的 这个性质叫做全微分形式不变性例6 设ze usin v ux y vxy 利用全微分形式不变性求全微分解 dv v z du uz dz ∂∂+∂∂= e u sin vdu e ucos v dv e u sin vy dxx dy e u cos vdxdy ye u sin v e u cos vdxxe u sin v e ucos v dye xy y sin xy cos xydx e xyx sin xy cos xydy§8 5 隐函数的求导法则一、一个方程的情形 隐函数存在定理1设函数Fx y 在点Px 0 y 0的某一邻域内具有连续偏导数Fx 0 y 00 F y x 0 y 00 则方程Fx y 0在点x 0 y 0的某一邻域内恒能唯一确定一个连续且具有连续导数的函数yfx 它满足条件y 0fx 0 并有yx F F dx dy-= 求导公式证明 将yfx 代入Fx y 0 得恒等式 Fx fx 0 等式两边对x 求导得=⋅∂∂+∂∂dx dy y F x F由于F y 连续 且F y x 0 y 00 所以存在x 0 y 0的一个邻域 在这个邻域同F y 0 于是得yx F F dx dy-=例1 验证方程x 2y 210在点0 1的某一邻域内能唯一确定一个有连续导数、当x 0时y 1的隐函数yfx 并求这函数的一阶与二阶导数在x 0的值解 设Fx yx 2y 21 则F x 2x F y 2y F 0 10 F y 0 120 因此由定理1可知 方程x 2y 210在点0 1的某一邻域内能唯一确定一个有连续导数、当x 0时y 1的隐函数yfx yx F F dx dyy x -=-= 00==x dx dy332222221)(y y x y y y x x y y y x y dx y d -=+-=---='--=1022-==x dx yd隐函数存在定理还可以推广到多元函数 一个二元方程Fx y 0可以确定一个一元隐函数 一个三元方程Fx y z 0可以确定一个二元隐函数 隐函数存在定理2设函数Fx y z 在点Px 0 y 0 z 0的某一邻域内具有连续的偏导数 且Fx 0 y 0 z 00 F z x 0 y 0 z 00 则方程Fx y z 0在点x 0 y 0z 0的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数zfx y 它满足条件z 0fx 0 y 0 并有zxF F x z -=∂∂ zyF F y z -=∂∂公式的证明 将zfx y 代入Fx y z 0 得Fx y fx y 0 将上式两端分别对x 和y 求导 得0=∂∂⋅+x z F F z x 0=∂∂⋅+y zF F z y因为F z 连续且F z x 0 y 0 z 00 所以存在点x 0 y 0 z 0的一个邻域 使F z 0 于是得zx F F x z -=∂∂ zy F F y z -=∂∂例2. 设x 2y 2z 24z 0 求22x z∂∂解 设Fx y z x 2y 2z 24z 则F x 2x F y 2z 4 z x z x F F x z z x -=--=-=∂∂24223222222)2()2()2()2()2()2()2(z x x z z x x x z x z x x x z -+-=--+-=-∂∂+-=∂∂二、方程组的情形在一定条件下 由个方程组Fx y u v 0 Gx y u v 0可以确定一对二元函数uux y vvx y 例如方程xuyv 0和yuxv 1可以确定两个二元函数22y x y u +=22y x x v +=事实上 xuyv 0 u yx v =1=⋅+u y x x yu 22y x yu += 2222yx x y x yy x v +=+⋅=如何根据原方程组求u v 的偏导数 隐函数存在定理3 隐函数存在定理3设Fx y u v 、Gx y u v 在点Px 0 y 0 u 0 v 0的某一邻域内具有对各个变量的连续偏导数 又Fx 0 y 0 u 0 v 00 Gx 0 y 0 u 0 v 00 且偏导数所组成的函数行列式v G u Gv Fu Fv u G F J ∂∂∂∂∂∂∂∂=∂∂=),(),(在点Px 0 y 0 u 0 v 0不等于零 则方程组Fx y u v 0 Gx y u v 0在点Px 0 y 0 u 0 v 0的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数uux y vvx y 它们满足条件u 0ux 0 y 0 v 0vx 0y 0 并有v uv uv x v xG G F F G G F F v x G F J x u -=∂∂-=∂∂),(),(1vuv ux u x uG G F F G G F F x u G F J x v -=∂∂-=∂∂),(),(1vu vu vy v y G G F F G G F F v y G F J y u -=∂∂-=∂∂),(),(1vu vu yu y u G G F F G G F F y u G F J y v -=∂∂-=∂∂),(),(1隐函数的偏导数:设方程组Fx y u v 0 Gx y u v 0确定一对具有连续偏导数的二元函数uux y vvx y 则偏导数x u ∂∂ x v ∂∂由方程组⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂+∂∂+.0,0x v G x u G G x v F x u F F v u x v u x 确定偏导数y u ∂∂ y v ∂∂由方程组⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂+∂∂+.0,0y v G y u G G y v F y u F F v u y v u y 确定例3 设xuyv 0 yuxv 1 求x u ∂∂ x v ∂∂ y u∂∂和y v ∂∂解 两个方程两边分别对x 求偏导 得x u ∂∂和x v∂∂的方程组⎪⎩⎪⎨⎧=∂∂++∂∂=∂∂-∂∂+00x v x v x u y x v y x u x u当x 2y 2时 解之得22y x yv xu x u ++-=∂∂ 22y x xvyu x v +-=∂∂两个方程两边分别对x 求偏导 得y u∂∂和y v∂∂的方程组⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂--∂∂00y v x y u y u y v y v y u x 当x 2y 2时 解之得22y x yu xv y u +-=∂∂ 22y x yvxu y v ++-=∂∂另解 将两个方程的两边微分得⎩⎨⎧=+++=--+00xdv vdx ydu udy ydv vdy xdu udx 即⎩⎨⎧--=+-=-vdx udy xdv ydu udxvdy ydv xdu解之得dy y x yuxv dx y x yv xu du 2222+-+++-=dy y x yvxu dx y x xv yu dv 2222++-+-=于是 22y x yv xu x u ++-=∂∂ 22yx yu xv y u +-=∂∂22y x xv yu x v +-=∂∂ 22y x yv xu y v ++-=∂∂例 设函数xxu v yyu v 在点u v 的某一领域内连续且有连续偏导数 又0),(),(≠∂∂v u y x1证明方程组⎩⎨⎧==),(),(v u y y v u x x在点x y u v 的某一领域内唯一确定一组单值连续且有连续偏导数的反函数uux y vvx y2求反函数uux y vvx y 对x y 的偏导数 解 1将方程组改写成下面的形式⎩⎨⎧=-≡=-≡0),(),,,(0),(),,,(v u y y v u y x G v u x x v u y x F则按假设.0),(),(),(),(≠∂∂=∂∂=v u y x v u G F J由隐函数存在定理3 即得所要证的结论2将方程组7所确定的反函数uux yvvx y 代入7 即得⎩⎨⎧≡≡)],(),,([)],(),,([y x v y x u y y y x v y x u x x将上述恒等式两边分别对x 求偏导数得⎪⎩⎪⎨⎧∂∂⋅∂∂+∂∂⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=x v v y x u u y x vv x x u u x 01由于J 0 故可解得v y J x u ∂∂=∂∂1 u yJ x v ∂∂-=∂∂1同理 可得v x J y u ∂∂-=∂∂1 u xJ y v ∂∂=∂∂1§8 6多元函数微分学的几何应用一 空间曲线的切线与法平面 设空间曲线的参数方程为 xt yt zt 这里假定t t t 都在 上可导在曲线上取对应于tt 0的一点M 0x 0 y 0 z 0及对应于tt 0t 的邻近一点Mx 0+x y 0+y z 0+z 作曲线的割线MM 0 其方程为z z z y y y x x x ∆-=∆-=∆-000当点M 沿着趋于点M 0时割线MM 0的极限位置就是曲线在点M 0处的切线 考虑t z z z ty y y t x x x ∆∆-=∆∆-=∆∆-000 当MM 0 即t 0时 得曲线在点M 0处的切线方程为)()()(000000t z z t y y t x x ωψϕ'-='-='- 曲线的切向量 切线的方向向量称为曲线的切向量 向量T t 0 t 0 t 0就是曲线在点M 0处的一个切向量法平面 通过点M 0而与切线垂直的平面称为曲线在点M 0 处的法平面 其法平面方程为 t 0xx 0t 0yy 0t 0zz 00例1 求曲线xt yt 2zt 3在点1 1 1处的切线及法平面方程解 因为x t 1 y t 2t z t 3t 2而点1 1 1所对应的参数t 1 所以T 1 2 3 于是 切线方程为 312111-=-=-z y x法平面方程为x 12y 13z 10 即x 2y 3z 6讨论1 若曲线的方程为 yx zx问其切线和法平面方程是什么形式提示 曲线方程可看作参数方程 xx yx zx 切向量为T 1 x x2 若曲线的方程为Fx y z 0 Gx y z 0 问其切线和法平面方程又是什么形式提示 两方程确定了两个隐函数 yx zx 曲线的参数方程为xx yx zx由方程组⎪⎩⎪⎨⎧=++=++00dx dz G dx dy G G dxdz F dx dy F F z y x z y x 可解得dx dy 和dx dz 切向量为) ,,1(dx dz dx dy =T例2 求曲线x 2y 2z 26 xyz 0在点1 2 1处的切线及法平面方程解 为求切向量 将所给方程的两边对x 求导数 得⎪⎩⎪⎨⎧=++=++010222dx dz dx dydxdz z dx dy y x解方程组得z y xz dx dy --= z y yx dx dz --=在点1 2 1处 0=dx dy 1-=dx dz从而T 1 0 1 所求切线方程为 110211--=+=-z y x法平面方程为x 10y 2z 10 即xz 0解 为求切向量 将所给方程的两边对x 求导数 得⎪⎩⎪⎨⎧=++=++010222dx dz dx dydx dz z dx dy y x方程组在点1 2 1处化为⎪⎩⎪⎨⎧-=+=-112dx dz dx dydx dz dx dy 解方程组得0=dx dy 1-=dx dz从而T 1 0 1 所求切线方程为 110211--=+=-z y x法平面方程为x 10y 2z 10 即xz 0。
多元函数微分知识点总结
多元函数微分知识点总结一、多元函数的梯度在多元函数微分学中,梯度是一个非常重要的概念。
梯度是一个向量,表示函数在某一点的变化率最快的方向。
对于一个二元函数f(x, y),梯度可以表示为:∇f = (∂f/∂x, ∂f/∂y)其中,∂f/∂x和∂f/∂y分别表示函数f对x和y的偏导数。
梯度的方向即为函数在该点变化率最快的方向,而梯度的模即为函数在该点的变化率。
因此,梯度可以帮助我们确定函数在某一点的最大变化率和变化的方向。
在实际应用中,梯度可以帮助我们求解多元函数的最值问题。
通过求解梯度为0的点,可以找到函数的极值点。
梯度的方向还可以告诉我们函数在某一点的最快下降方向,从而帮助我们优化函数的取值。
二、多元函数的链式法则链式法则是多元函数微分学中的一个重要概念。
链式法则是用来计算复合函数的导数的方法。
对于一个复合函数f(g(x)), 链式法则可以表示为:(d(f(g))/dx) = (dg/dx)*(df/dg)链式法则的应用十分广泛。
在实际问题中,我们经常会遇到复合函数,通过链式法则,我们可以求解复合函数的导数,从而解决实际问题。
三、多元函数的偏导数多元函数的偏导数是多元函数微分学中的一个基本概念。
对于一个二元函数f(x, y),其关于变量x的偏导数可以表示为∂f/∂x,而关于变量y的偏导数可以表示为∂f/∂y。
偏导数表示了函数在某一点的变化率。
通过偏导数,我们可以确定函数在某一点的变化率和变化的方向,从而帮助我们解决实际问题。
四、多元函数的泰勒展开泰勒展开是多元函数微分学中的一个重要概念。
泰勒展开可以将一个函数在某一点处展开为一个无穷级数。
对于一个n次可导的函数f(x),它在点a处的泰勒展开可以表示为:f(x) = f(a) + f'(a)*(x-a) + f''(a)*(x-a)^2/2! + ... + f^(n)(a)*(x-a)^n/n!泰勒展开的应用非常广泛。
通过泰勒展开,我们可以将一个函数在某一点处近似为一个多项式,从而方便我们进行数值计算和求解。
多元微积分知识点总结
一、多元函数的微分学二元函数的定义设有两个独立的变量*与y在其给定的变域中D中,任取一组数值时,第三个变量z就以*一确定的法则有唯一确定的值与其对应,那末变量z称为变量*与y的二元函数。
记作:z=f(*,y). 其中*与y称为自变量,函数z也叫做因变量,自变量*与y的变域D称为函数的定义域。
关于二元函数的定义域的问题我们知道一元函数的定义域一般来说是一个或几个区间.二元函数的定义域通常是由平面上一条或几段光滑曲线所围成的连通的局部平面.这样的局部在平面称为区域.围成区域的曲线称为区域的边界,边界上的点称为边界点,包括边界在的区域称为闭域,不包括边界在的区域称为开域。
如果一个区域D(开域或闭域)中任意两点之间的距离都不超过*一常数M,则称D为有界区域;否则称D为无界区域。
常见的区域有矩形域和圆形域。
如以以下图所示:例题:求的定义域.解答:该函数的定义域为:*≥,y≥0.二元函数的几何表示把自变量*、y及因变量z当作空间点的直角坐标,先在*Oy平面作出函数z=f(*,y)的定义域D;再过D域中得任一点M(*,y)作垂直于*Oy平面的有向线段MP,使其值为与(*,y)对应的函数值z;当M点在D中变动时,对应的P点的轨迹就是函数z=f(*,y)的几何图形.它通常是一曲面,其定义域D就是此曲面在*Oy平面上的投影。
二元函数的极限及其连续性在一元函数中,我们曾学习过当自变量趋向于有限值时函数的极限。
对于二元函数z=f(*,y)我们同样可以学习当自变量*与y 趋向于有限值ξ与η时,函数z的变化状态。
在平面*Oy上,(*,y)趋向(ξ,η)的方式可以时多种多样的,因此二元函数的情况要比一元函数复杂得多。
如果当点(*,y)以任意方式趋向点(ξ,η)时,f(*,y)总是趋向于一个确定的常数A,那末就称A是二元函数f(*,y)当(*,y)→(ξ,η)时的极限。
这种极限通常称为二重极限。
下面我们用ε-δ语言给出二重极限的严格定义:二重极限的定义如果定义于(ξ,η)的*一去心邻域的一个二元函数f(*,y)跟一个确定的常数A有如下关系:对于任意给定的正数ε,无论怎样小,相应的必有另一个正数δ,但凡满足的一切(*,y)都使不等式成立,那末常数A称为函数f(*,y)当(*,y)→(ξ,η)时的二重极限。
多元函数微分学总结
`第八章 多元函数微分学8.1基本知识点要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。
3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必 要条件和充分条件,了解全微分形式的不变性。
4.理解方向导数与梯度的概念,并掌握其计算方法.5.熟练掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。
8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。
8.2基本题型及解题思路分析题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题1. 二元函数的极限与连续的概念及二元函数极限的计算。
(1)基本概念①二元函数极限的定义:设()(,)f P f xy =的定义域为D ,000(,)P x y 是D 的聚点.若∃常数A ,对于∀0ε>,总∃0δ>,使得当0(,)(,)P x y D U P δ∈时,都有()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记作000(,)(,)lim (,)lim ()x y x y P P f x y A f P A →→==或。
②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且0P D ∈.若0000(,)(,)lim(,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。
多元函数微分学及其应用归纳总结
多元函数微分学及其应用归纳总结一、多元函数的微分与偏导数1. 多元函数的微分定义为函数在其中一点上的线性逼近。
对于二元函数,微分为 dz=f_x*dx+f_y*dy,其中 f_x 和 f_y 分别为函数的偏导数。
对于一般的 n 元函数也可类似定义。
2.多元函数的偏导数表示函数沿着其中一个变量的变化率。
对于二元函数f(x,y),其偏导数f_x表示x方向上的变化率,f_y表示y方向上的变化率。
一般而言,当存在偏导数且连续时,函数在该点可微分。
3.偏导数的计算方法与一元函数相似,利用极限的定义求出偏导数表达式,对于高阶偏导数,可以反复求导。
4.混合偏导数表示函数在二个或二个以上变量上求偏导数后再对另外一个或另外几个变量求偏导数,其次序不影响结果。
二、多元函数的求导法则1. 多元函数的和、差、常数倍法则:设函数 f 和 g 在其中一点连续可导,则(f±g)'=f'±g',(kf)'=kf'。
2.多元函数的乘积法则:设函数f和g在其中一点连续可导,则(f·g)'=f'·g+g'·f。
3.多元函数的商法则:设函数f和g在其中一点连续可导且g不为零,则(f/g)'=(f'·g-g'·f)/g^24. 复合函数求导法则:设函数 y=f(u) 和 u=g(x) 在其中一点可导,则复合函数 y=f(g(x)) 的导数为dy/dx=f'(u)·g'(x),其中 x 和 u 为中间变量。
三、多元函数的极值与梯度1.多元函数的极值包括极大值和极小值。
在二元函数中,极值的必要条件为偏导数为零,充分条件为偏导数存在且满足一定条件。
2.多元函数的梯度是一个向量,其方向与函数在其中一点上变化最快的方向一致,大小表示变化率的大小。
梯度为零的点可能为极值点。
第8章多元函数微分法及其应用
在讨论实际问题中也常使用方邻域, 因为方邻域与圆 邻域可以互相包含.
。P0
平面上的方邻域为
U(P0,δ ) (x, y)
2020/8/23
5
机动 目录 上页 下页 返回 结束
2. 区域
(1) 内点、外点、边界点
E
设有点集 E 及一点 P :
• 若存在点 P 的某邻域 U(P) E ,
则称 P 为 E 的内点;
• 若存在点 P 的某邻域 U(P)∩ E = ,
则称 P 为 E 的外点;
• 若对点 P 的任一邻域 U(P) 既含 E中的内点也含 E
的外点 , 则称 P 为 E 的边界点.
显然, E 的内点必属于 E , E 的外点必不属于 E , E 的
边界点可能属于 E, 也可能不属于 E .
整个平面 是最大的开域 , 也是最大的闭域;
点集 (x, y) x 1是开集,
但非区域 .
y
1o 1 x
• 对区域 D , 若存在正数 K , 使一切点 PD 与某定点 A 的距离 AP K , 则称 D 为有界域 , 否则称为无 界域 .
2020/8/23
10
上页 下页 返回
3. n 维空间
2020/8/23
6
机动 目录 上页 下页 返回 结束
(2) 聚点
若对任意给定的 , 点P 的去心
E
邻域
内总有E 中的点 , 则
称 P 是 E 的聚点.
聚点可以属于 E , 也可以不属于 E (因为聚点可以为
E 的边界点 )
所有聚点所成的点集成为 E 的导集 .
2020/8/23
7
机动 目录 上页 下页 返回 结束
高等数学第9章多元函数微分学及其应用(全)
f ( x, y ) A 或 f x, y A( x x0,y y0 ).
31
二、二元函数的极限
定义 9.3
设二元函数z f ( P) f ( x, y ) 的定义域为D ,P0 ( x0 , y0 )
是D 的一个聚点,A 为常数.若对任给的正数 ,总存在 0 ,当
0 当 P( x, y) D 且 0 P0 P ( x x0 )2 ( y y0 ) 2 总有
f ( P) A , 则称A为 P P0 时的(二重)极限.
4
01
极限与连续
注意 只有当 P 以任何方式趋近于 P0 相应的 f ( P )
都趋近于同一常数A时才称A为 f ( P ) P P0 时的极限
P为E 的内点,如图9.2所示.
②边界点:如果在点P的任何邻域内,既有属于E 的点,也有不
属于E的点,则称点P 为E 的边界点.E 的边界点的集合称为E 的边
界,如图9.3所示.
P
E
图 9.2
P
E
图 9.3
16
一、多元函数的概念
③开集:如果点集E 的每一点都是E 的内点,则称E 为开集.
④连通集:设E 是平面点集,如果对于E 中的任何两点,都可用
高等数学(下册)(慕课版)
第九章 多元函数微分学及其应用
导学
主讲教师 | 张天德 教授
第九章
多元函数微分学及其应用
在自然科学、工程技术和社会生活中很多实际问题的解决需要引进多元
函数. 本章将在一元函数微分学的基础上讨论多元函数微分学及其应用.
本章主要内容包括:
多元函数的基本概念
偏导数与全微分
多元复合函数和隐函数求偏导
(完整版)多元函数微分学复习(精简版)
高等数学下册复习提纲第八章 多元函数微分学本章知识点(按历年考试出现次数从高到低排列):复合函数求导(☆☆☆☆☆)条件极值-——拉格朗日乘数法(☆☆☆☆) 无条件极值(☆☆☆☆)曲面切平面、曲线切线(☆☆☆☆) 隐函数(组)求导(☆☆☆)一阶偏导数、全微分计算(☆☆☆) 方向导数、梯度计算(☆☆) 重极限、累次极限计算(☆☆) 函数定义域求法(☆)1. 多元复合函数高阶导数例 设),,cos ,(sin yx e y x f z +=其中f 具有二阶连续偏导数,求xy zx z ∂∂∂∂∂2及。
解y x e f x f xz+⋅'+⋅'=∂∂31cos , y x y x y x y x e e f y f f e x e f y f y x zx y z ++++⋅''+-⋅''+'+⋅''+-⋅''=∂∂∂=∂∂∂])sin ([cos ])sin ([33323131222析 1)明确函数的结构(树形图)这里yx e w y v x u +===,cos ,sin ,那么复合之后z 是关于y x ,的二元函数.根据结构图,可以知道:对x的导数,有几条线通到“树梢”上的x ,结果中就应该有几项,而每一项都是一条线上的函数对变量的导数或偏导数的乘积.简单的说就是,“按线相乘,分线相加”.2)31,f f ''是),cos ,(sin ),,cos ,(sin 31yx y x e y x f e y x f ++''的简写形式,它们与z 的结构相同,仍然是y x e y x +,cos ,sin 的函数。
所以1f '对y 求导数为zu vwxx y yy x e f y f yf +⋅''+-⋅''=∂'∂13121)sin (。
多元函数微分学及其应用归纳总结
第八章 多元函数微分法及其应用一、多元函数的基本概念1平面点集,平面点集的内点、外点、边界点、聚点,多元函数的定义等概 念 2、多元函数的极限lim f(x, y)=A (或 lim f(x,y)=A )的;-' 定义(x,y)「(x °,y o)P「P )掌握判定多元函数极限不存在的方法:(1) 令P(x, y)沿y 二kx 趋向P(x o ,y o ),若极限值与k 有关,则可断言 函数极限不存在;(2) 找两种不同趋近方式,若 lim f (x, y)存在,但两者不相等,(x,y )Tx o ,y o )此时也可断言极限不存在。
多元函数的极限的运算法则(包括和差积商,连续函数的和差积商, 等价无穷小替换,夹逼法则等)与一元类似:例1•用…定义证明(侧0,0)(x 2+y 2)sin 击=02 + 2例2(03年期末考试三、15 分当X>0,y >0时,函数x2;(;2_y)2的极限是否存在?证明你的结论。
xy 2 2 2 2 , x y = 0x y ,讨论 lim f (x, y)是否存在?(x,y )T(0,0)3卫, x 2+ y 2=0(JiH ,。
)f (X,y )是否存在?例 3 设 f (x, y) =2 例4(07年期末考试 一、2,3分)设f(x, y)=Q2 xy2 .4x y2 2小,x y =0 ,讨论x 2y 2二 0x3、多元函数的连续性台(Jim )f (x, y)= f (X o ,y o )(x,y) --- (X 0,y 0 )一切多元初等函数在其定义区域内都是连续的,定义区域是指包含 在定义域内的区域或闭区域。
在定义区域内的连续点求极限可用“代入法”点(0,0)不连续,但存在一阶偏导数。
4、了解闭区域上商连续函数的性质:有界性,最值定理,介值定理二、多元函数的偏导数 1、二元函数z = f (x, y)关于x, y 的一阶偏导数的定义(二元以上类似定义)f(X0pX,y 0)— f(X 0,y 0)存在,则有y 看成常数!所以求偏导数本质是求一元函数的导数。
多元函数微分学总结
多元函数微分学总结多元函数微分学是微积分的一个重要分支,主要研究多元函数的导数和微分。
在实际中,我们经常遇到的函数都是多元函数,如物体的速度、加速度、市场需求曲线等都是多元函数。
因此,研究多元函数微分学对于理解和解决实际问题具有重要意义。
多元函数微分学的基本概念包括偏导数、全微分、总微分和梯度。
偏导数是多元函数对于其中其中一个自变量的导数,表示了函数在该自变量上的变化率。
全微分是多元函数在其中一点上的局部线性逼近,可以准确描述函数在该点附近的变化情况。
总微分是将全微分与自变量的改变量相乘得到的函数值的改变量,表示了函数在其中一点上的整体变化情况。
梯度是偏导数向量,由多个偏导数组成,表示了函数在每个自变量上的变化速率和变化方向,是多元函数微分学中非常重要的概念。
多元函数微分学的重要应用之一是最优化问题的求解。
在实际问题中,我们经常需要求解一个函数在一定约束条件下的最大值或最小值。
通过求解函数的偏导数,并将其等于零得到的一组方程,可以找到函数的驻点。
然后通过二阶偏导数的判定准则判断驻点的性质,从而确定函数的最大值或最小值。
多元函数微分学还涉及到复合函数的求导,链式法则是求解复合函数导数的重要工具。
链式法则告诉我们,复合函数的导数等于外函数对于内函数的导数乘以内函数对于自变量的导数。
通过链式法则,我们可以将复杂的多元函数求导问题转化为简单的一元函数求导问题。
在高维空间中,我们常常需要研究函数在其中一个曲面上的变化情况,这就引出了偏导数的几何意义。
偏导数实际上是函数在其中一变量方向上的变化速率,可以表示曲面在该方向上的斜率。
通过偏导数的几何意义,我们可以得到曲面在各个方向上的切线方程和法线方程,从而更加深入地理解函数在高维空间中的行为。
最后,多元函数微分学还与微分方程的研究相关。
微分方程是描述自然现象中变量之间关系的数学模型,而多元函数微分学是求解微分方程的重要工具之一、通过将微分方程转化为多元函数的问题,并利用多元函数微分学的知识求解,可以得到微分方程的解析解。
多元函数微分学及其应用归纳总结
多元函数微分学及其应用归纳总结第八章多元函数微分法及其应用一、多元函数的基本概念1平面点集,平面点集的内点、外点、边界点、聚点,多元函数的定义等概念 2、多元函数的极限lim f(x, y)=A (或 lim f(x,y)=A )的;-' 定义(x,y)「(x °,y o)P「P )掌握判定多元函数极限不存在的方法:(1) 令P(x, y)沿y 二kx 趋向P(x o ,y o ),若极限值与k 有关,则可断言函数极限不存在;(2) 找两种不同趋近方式,若 lim f (x, y)存在,但两者不相等,(x,y )Tx o ,y o )此时也可断言极限不存在。
多元函数的极限的运算法则(包括和差积商,连续函数的和差积商,等价无穷小替换,夹逼法则等)与一元类似:例1?用…定义证明(侧0,0)(x 2+y 2)sin 击=02 + 2例2(03年期末考试三、15 分当X>0,y >0时,函数x2;(;2_y)2的极限是否存在?证明你的结论。
xy 2 2 2 2 , x y = 0x y ,讨论 lim f (x, y)是否存在?(x,y )T(0,0)3卫, x 2+ y 2=0(JiH ,。
)f (X,y )是否存在?例 3 设 f (x, y) =2 例4(07年期末考试一、2,3分)设f(x, y)= Q2 xy2 .4x y2 2小,x y =0 ,讨论x 2y 2二 0x3、多元函数的连续性台(Jim )f (x, y)= f (X o ,y o )(x,y) --- (X 0,y 0 )一切多元初等函数在其定义区域内都是连续的,定义区域是指包含在定义域内的区域或闭区域。
在定义区域内的连续点求极限可用“代入法”点(0,0)不连续,但存在一阶偏导数。
4、了解闭区域上商连续函数的性质:有界性,最值定理,介值定理二、多元函数的偏导数 1、二元函数z = f (x, y)关于x, y 的一阶偏导数的定义(二元以上类似定义)f(X0pX,y 0)— f(X 0,y 0)存在,则有y 看成常数!所以求偏导数本质是求一元函数的导数。
多元函数微分法及其应用
多元函数微分法及其应用设函数y = f(x)在x0的邻域内有定义,x0及x0 + Δx在此区间内。
如果函数的增量Δy = f(x0 + Δx) - f(x0)可表示为Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小(注:o读作奥密克戎,希腊字母)那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = AΔx。
如sinx的微分可写作为dsinx=cosxdx设有二元函数z=f(x,y),点(x0,y0)是其定义域D内一点.把y固定在y0而让x在x0有增量△x,相应地偏导数函数z=f(x,y)有增量(称为对x的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
如z=sinxy对x的偏导数为dz/dx=y*cosxy前者是微分,后者是偏微分。
求微分原则一样的,后者一般会出现在二元函数或者以上的函数求微分中1.偏导数不存在,全微分就不存在2.全微分若存在,偏导数必须存在3.有偏导数存在,全微分不一定存在微分是函数改变量的线性主要部分,导数是微积分中的重要基础概念。
当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数。
导数:一般指一元函数而言,对只有一个自变量x的函数y,则对函数y求导得到导数y',称之为函数y的导数。
偏导数:一般是针对多元函数而言,例如对有两个自变量x,y的函数z,则求z对y的导数,即为z对y的偏导数,书写为:z'y。
微分:存在一元微分和偏微分两种类型,与导数和偏导数的区别,只是书写的不同。
例如,对一元函数而言,y的微分书写为:dy=y'dx;对有两个自变量x,y的函数z,则求z对y的导数,z对y的偏微分,书写为:のz=z'yのy。
二元函数的微分与导数区别是什么呢?_作业帮微分一般指全微分或者全导数,在这个方面就没有区别,如果是偏导数就有区别了.例如u=x^2y他的全微分或者全导数一般写成:du=2ydx+x^2dy但对x 的偏导数=2y,对y的偏导数=x^2.多元函数微积分里,那两个的区别,不懂,求大神指导定积分的几何意义是曲边梯形的面积.而情形2中阴影部分面积正好是两个曲边梯形面积之差,加上绝对值就是看哪条曲线在上面,总是用上面的曲边梯形减去下面的曲边梯形才能保证结果是面积.否则积分值可能为负.【二元函数与一元函数求微分的区别是多求一个变量的导数?】大概可以这样说,但表述不同,一元中,我们称为求微分,二元中,我们称为求偏微分而且一元中中微分存在,原函数就可以说明连续了,但二元中是不能这样说的,必须偏微分存在且连续.不知道我的表述你可不可以接受,而且,你的问题有点大,如果可以具体点,我也可以更具体的告诉你.高数,一元函数微分,这两个式子区别在哪? 意思是上面个求的极限在下面个式子的无穷小的位置,如果函数连续,两个式子的值是相等的【多元函数:偏导数存在、可微分、连续!请一定用通俗的话给我讲讲:1、多元函数可微分到底是什么意思?可微分代表什么?2.偏导数存在、可微分、连续他们的关系是什么?为什么什么是这样的】1.一元函数可微分与可求导比较接近二元函数的话,你想象一张平面,在上面任何一个方向都可以求导,就接近可微分了; 而偏导数存在仅仅是某几个方向可以求导2.可微分->偏导数存在可微分->连续偏导数存在(比如x、y方向可偏导)->x、y方向函数连续,其他方向不一定。
第9章多元函数微分学知识点总结
第9章多元函数微分学知识点总结1.多元函数的偏导数:-定义:对于多元函数来说,当变量除了要考虑沿着自变量方向变化外,还要考虑其他自变量是否保持不变,用偏导数来表示。
-计算方法:求各个偏微分时,将其他自变量视为常数,只对需要求的变量求导即可。
2.全微分:-定义:全微分是多元函数在其中一点上沿各个偏导数方向的和所对应的微分形式。
-计算方法:使用偏导数对各个自变量求导数,并乘以相应的变化量,再相加得到全微分。
3.方向导数:-定义:方向导数是函数在其中一点上沿着指定方向的变化率,表征了函数沿着该方向上变化的快慢程度。
-计算方法:先对多元函数求偏导数,然后将其与方向向量进行点积运算,再乘以方向向量的模长。
4.梯度:-定义:梯度是一个向量,其方向是函数在其中一点增大最快的方向,大小表示函数在该点变化率的大小。
-计算方法:求多元函数在其中一点的各个偏导数,并写成一个向量,即为该点的梯度。
5.方向导数与梯度的关系:-定理:函数在其中一点上的方向导数等于该点的梯度向量与方向向量的点积。
6.极值点:-定义:多元函数的极值点是指函数取得极大值或极小值的点。
-判定方法:通过求偏导数等于零的点,再利用二阶导数进行判定。
7.拉格朗日乘数法:-定义:拉格朗日乘数法是求解给定条件下多元函数的极值问题的一种方法。
-使用方法:通过构造拉格朗日函数,利用偏导数为零和给定条件进行求解。
8.海森矩阵:-定义:海森矩阵是多元函数的二次导数在其中一点上的矩阵形式。
-计算方法:对多元函数的各个偏导数再次求偏导数,并按照顺序组成矩阵。
9.二次型:-定义:二次型是多元函数二阶偏导数在其中一点上的二次齐次多项式。
-判定方法:通过海森矩阵的特征值进行判别,判断其正负来决定函数在该点上的行为。
以上是第9章多元函数微分学的主要知识点总结。
掌握了这些知识点,我们可以更好地理解多元函数的变化规律,求解问题时也能够更有效地运用微分学的方法进行分析和计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 多元函数微分法及其应用一、多元函数的基本概念1、平面点集,平面点集的内点、外点、边界点、聚点,多元函数的定义等概念2、多元函数的极限✧00(,)(,)lim (,)x y x y f x y A →=(或0lim (,)P P f x y A →=)的εδ-定义✧ 掌握判定多元函数极限不存在的方法:(1)令(,)P x y 沿y kx =趋向00(,)P x y ,若极限值与k 有关,则可断言函数极限不存在;(2)找两种不同趋近方式,若00(,)(,)lim (,)x y x y f x y →存在,但两者不相等,此时也可断言极限不存在。
✧ 多元函数的极限的运算法则(包括和差积商,连续函数的和差积商,等价无穷小替换,夹逼法则等)与一元类似:例1.用εδ-定义证明2222(,)(0,0)1lim ()sin0x y x y x y →+=+例2(03年期末考试 三、1,5分)当0,0→→x y 时,函数222222()+++-x y x y x y 的极限是否存在?证明你的结论。
例3 设222222,0(,)0,0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩ ,讨论(,)(0,0)lim (,)x y f x y →是否存在?例4(07年期末考试 一、2,3分)设2222422,0(,)0,0⎧+≠⎪+=⎨⎪+=⎩xy x y x y f x y x y ,讨论(,)(0,0)lim (,)→x y f x y 是否存在?例5.求222(,)(0,0)sin()lim x y x y x y →+3、多元函数的连续性0000(,)(,)lim(,)(,)x y x y f x y f x y →⇔=✧ 一切多元初等函数在其定义区域内都是连续的,定义区域是指包含在定义域内的区域或闭区域。
✧ 在定义区域内的连续点求极限可用“代入法”例1. 讨论函数33222222,0(,)0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩ 在(0,0)处的连续性。
例2. (06年期末考试 十一,4分)试证2222422,0(,)0,0⎧+≠⎪+=⎨⎪+=⎩xy x y x y f x y x y 在点(0,0)不连续,但存在一阶偏导数。
例3.求(,)(1,2)limx y x yxy →+ 例4.(,)(0,0)lim x y →4、了解闭区域上商连续函数的性质:有界性,最值定理,介值定理二、多元函数的偏导数1、 二元函数(,)z f x y =关于,x y 的一阶偏导数的定义(二元以上类似定义)如果极限00000(,)(,)limx f x x y f x y x ∆→+∆-∆存在,则有000000000000(,)(,)(,)limx x xx x y y x x x x y y y y f x x y f x y z f z f x y xxx=∆→=====+∆-∂∂====∂∂∆(相当于把y 看成常数!所以求偏导数本质是求一元函数的导数。
)如果极限00000(,)(,)limy f x y y f x y y ∆→+∆-∆存在,则有000000000000(,)(,)(,)limx x yy y y y x x x x y y y y f x y y f x y z f z f x y yyy=∆→=====+∆-∂∂====∂∂∆对于分段函数,在分界点的偏导数要用定义求。
例1(08年期末考试 一、3,4分)已知22222222(),0(,)0,0⎧-+≠⎪+=⎨⎪+=⎩x y xy x y x y f x y x y ,则(0,)=x f y例2 (06年期末考试 十一,4分)试证2222422,0(,)0,0⎧+≠⎪+=⎨⎪+=⎩xy x y x y f x y x y 在点(0,0)不连续,但存在一阶偏导数。
例3 设222222221()sin ,0(,)0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩,求(,),(,)x y f x y f x y 。
例4 设y x z =,求y x z z ,。
例5(03年期末考试,一、2,3分) 设(1)arcsin x u x y y =+-,则ux∂∂在(1,2)的值为( )。
2、 二元函数(,)z f x y =关于,x y 的高阶偏导数(二元以上类似定义), 22(,)xx z z f x y x x x ∂∂∂⎛⎫== ⎪∂∂∂⎝⎭ 2(,)xy z zf x y y x x y∂∂∂⎛⎫== ⎪∂∂∂∂⎝⎭ 22(,)yy z z f x y y y y ⎛⎫∂∂∂== ⎪∂∂∂⎝⎭ 2(,)yx z zf x y x y y x⎛⎫∂∂∂== ⎪∂∂∂∂⎝⎭定理:若两个混合二阶偏导数22,z z x y y x ∂∂∂∂∂∂在区域D 内连续,则有22z zx y y x∂∂=∂∂∂∂。
例1.设,1ru =222)()()(c z b y a x r -+-+-=,其中c b a ,,为常数,求:222222zuy u x u ∂∂+∂∂∂∂+。
例2.设xyarctge y x z -+=)(22,求yx z ∂∂∂2。
3、(,)z f x y =在点(,)P x y偏导数存在⇒(,)z f x y =在点(,)P x y 连续(07年,04年,02年等)4、偏导数的几何意义:00(,)x f x y 表示曲线0(,)z f x y y y =⎧⎨=⎩在点000(,,)P x y z 处的切线与x 轴正向的夹角。
三、全微分1、(,)z f x y =在点00(,)P x y 可微分的判定方法 若(,)(,)(,)lim0x y z f x y x f x y y∆∆→∆-∆-∆=,则可判定(,)z f x y =在点00(,)P x y 可微分。
其中00(,)(,)z f x x y y f x y ∆=+∆+∆-例1.(08年期末考试 十二、6分)证明函数222222()sin 0(,)0,0⎧++≠⎪=⎨⎪+=⎩x y x y f x y x y 在(0,0)处可微,但偏导数(,)x f x y 在(0,0)处不连续。
例2 (07年期末考试 七、6分)22220(,)0,0+≠=+=⎩x y f x y x y ,证明:(1)函数在(0,0)处偏导数存在;(2)函数在(0,0)处不可微。
2、全微分的计算方法若(,)z f x y =在00(,)P x y 可微,则有0000(,)(,)x y dz f x y dx f x y dy =+ 其中0000(,),(,)x y f x y f x y 的求法可以结合复合函数或者隐函数求导。
例1(08年期末考试,一,1,4分) 设432=+z x y x ,则(1,2)=dz 例2(07,04年期末考试,二,1,3分)设arctan(0),=≠yz x x求dz 。
例3 (06年期末考试,二、2,3分)设2=y u x ,则=du例4 (03年期末考试,二、2,3分)函数22ln()=++u x y z 在点(1,0,1)处的全微分为例5.设w uy z arcsin +=,x e u =,22yx x w +=,求函数:对变量y x ,的全微分dz 。
3、多元函数的全微分与连续,可偏导之间的关系(07年,04年,02年等) ✧ 一阶偏导数,x y f f 在00(,)P x y 连续⇒(,)z f x y =在00(,)P x y 可微⇒(,)z f x y =在00(,)P x y 连续⇒(,)z f x y =在00(,)P x y 有极限✧ (,)z f x y =在00(,)P x y 可微⇒在00(,)P x y 的一阶偏导数,x y f f 存在 ✧ (,)z f x y =在00(,)P x y 可微⇒在00(,)P x y 的方向导数,x y f f 存在四、多元复合函数求导法则1、链式求导法则:变量树状图 法则 (1)(,),(),()z f u v u t v t ϕψ=== dz z du z dv dt u dt v dt∂∂=+∂∂dz z du z dv z d dt u dt v dt dtωω∂∂∂=++∂∂∂ (2)(,),(,),(,)z f u v u x y v x y ϕψ===,z z u z v z z u z v x u x v x y u y v y∂∂∂∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂∂∂∂(3) z f u x y u x y (,,),(,)ϕ==,z f u f z f u fx u x x y u y f∂∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂∂例1. (08年期末考试,七,7分)设(,)xz f x y =,f 具有连续二阶偏导数,求2,z z x x y∂∂∂∂∂。
例2. (08年期末考试,十一,6分)设(,)z z x y =是由方程22()x y z x y z ϕ+-=++所确定的函数,其中()x ϕ可导,求dz 。
z u xy x y例3. (07年期末考试,八,7分)设(,)yz xf xy x =,f 具有连续二阶偏导数,求2,z zy y x∂∂∂∂∂。
例4. (06年期末考试,一、1,3分)设()yz xyf x =,()f u 可导,则z z xy x y∂∂+=∂∂( )。
例5. (04年期末考试,三、1,8分)设(,)G u v 可微,方程(,)0G u v =,其中22,u x yz v y xz =+=+确定了z 是,x y 的二元可微隐函数,试证明222(2)(2)4.z zy xz x yz z xy x y∂∂-+-=-∂∂。
例6. (03年期末考试,三、2,5分)设(,)u v φ具有连续偏导数,证明方程(,)0x yz y xz φ--=所确定的函数(,)z f x y =满足2()()1.z zy xz x yz z x y∂∂+++=-∂∂。
例7 记22(,)t u f x t x =+,f 具有连续二阶偏导数,求,u u x t ∂∂∂∂,222,u ux x t ∂∂∂∂∂。
例8 设y x z ln 2=,而v u x =,v u y -=3,求u z ∂∂和vz∂∂。
例9 设22)(b a z y e u ax ++=,而x a y sin =,xb z cos =,则du dx。
例10. 设22(,)xyz f x y e =-,又f 具有连续的二阶偏导数,求2,,z z zx y x y∂∂∂∂∂∂∂。
2.一阶全微分形式不变性:设(,)z f u v =,则不管,u v 是自变量还是中间变量,都有''u v dz f du f dv =+✧ 通过全微分求所有的一阶偏导数,有时比链式求导法则显得灵活。