大一高数课件第一章 1-2-1

合集下载

高数1第一章课件

高数1第一章课件
首页 上页 返回 下页 结束 铃
2.逆映射与复合映射 逆映射 设f是X到Y的单射, 则由定义, 对每个yRf , 有唯一的 xX, 适合f(x)y, 于是, 我们可定义一个从Rf 到X的新映射 g, 即 g : Rf X, 对每个yRf , 规定g(y)x, 这x满足f(x)y. 这个映射g称为f 的逆映射, 记作f -1, 其定义域为Rf , 值域为X . 讨论: 下述三个映射是否存在逆映射? (3) f :[- , ] [-1, 1], 对每个 x[- , ] , f(x)sin x . 2 2 2 2
X 1
2 3
g
a
Y1 Y2 b c d
f
α β γ
Z
4
fog
首页 上页 返回 下页 结束 铃
2.逆映射与复合映射 复合映射 设有两个映射g : XY1, f : Y2Z, 其中Y1Y2. 则由映 射g和f可以定出一个从X到Z的对应法则, 它将每个xX映 射成f[g(x)]Z. 显然, 这个对应法则确定了一个从X到Z的 映射, 这个映射称为映射g和f构成的复合映射, 记作f o g, 即 f o g: XZ, (f o g)(x)f[g(x)], xX .
X 1
2 3
f
a
Y b c d
X 1
2 3
g
a
Y b c d
4
4
首页
上页
返回
下页
结束

满射、单射和双射 设f是从集合X到集合Y的映射. •若Rf Y, 即Y中任一元素y都是X中某元素的像, 则称f为X 到Y上的映射或满射; •若对X中任意两个不同元素x1x2, 它们的像f(x1)f(x2), 则 称f为X到Y的单射; •若映射f既是单射, 又是满射, 则称f为一一映射(或双射).

《高等数学》 课件 高等数学第一章

《高等数学》 课件 高等数学第一章
2 函数的极限
高等数学 第一章. 第二节
第 22 页
定义1 给定一个数列xn ,如果当n无限增大时,xn 无限接近于某一
个确定常数A,则称当n趋于无穷时,数列xn 的极限为A,记作
lim
n∞
xn
A?或xn
A(n
∞).
此时也称数列xn 收敛.如果当n无限增大时,xn 无限接近的常数A不存在,
则称数列xn 发散,此时也称数列xn 的极限不存在.
称为中间变量.
1)复合函数的复合原则:前一个函数的定义域与后一个函数的值域
的交集非空,即中间变量有意义.
1 函数
高等数学 第一章. 第一节
第 16 页
例1 将y表示成x的复合函数.
(1)y eu,u sin v,v 3 x;(2)y ln u,u 2 v, 2 v sec x; (3)y arcsin u,u 2 x.2
四、基本初等函数
基本初等函数:幂函数、指数函数、对数函数、三角函数和反三角函数. 1.幂函数y x ( R)?
幂函数y x 的定义域和值域随的取值不同而不同,但是无论 取何值,幂
函数在x (0, ∞)内总有定义.常见的幂函数的图像如图所示.
1 函数
高等数学 第一章. 第一节
2.指数函数y a x (a 0,a 1)
指数函数y a( x a 0,a 1)的定义域 为(∞, ∞,) 值域为(0, ∞.) 指数函数的 图像如图所示.
第 11 页
1 函数
高等数学 第一章. 第一节
3.对数函数y loga x (a 0,a 1)
对数函数y loga x(a 0,a 1)的定义域为(0, ∞, ) 值域为(∞, ∞.) 对数函数y loga x是指数函数y ax的 反函数,其图像如图所示.

《高等数学第一章》PPT课件

《高等数学第一章》PPT课件

若函数f ( x)在[ x0 , b)内有定义,且f ( x0 0) f ( x0 ),

称f
(
x
)在
点x
处右
0
连续.
定理 函数 f ( x)在 x0 处连续 是函数 f ( x)在 x0
处既左连续又右连续.
例2
讨论函数
f
(x)
x 2,

x

2,
x 0, x 0,
一、函数的连续性
1.函数的增量
设函数 f ( x)在U ( x0 )内有定义, x U ( x0 ), x x x0 , 称为自变量在点 x0的增量.
y f ( x) f ( x0 ),称为函数 f ( x)相应于x的增量.
y
y
y f (x)
y f (x)

f
(
x)

1, 1,
当x是有理数时, 当x是无理数时,
在定义域 R内每一点处都间断, 但其绝对值处 处连续.
判断下列间断点类型:
y
y f x
x1 o
x2
x3
x
例8 当a取何值时,
函数
f
(x)

cos a
x, x,
x 0, 在 x 0处连续. x 0,
解 f (0) a,
y
解 f (0 0) 0, f (0 0) ,
x 1为函数的第二类间断点.
o
x
这种情况称为无穷间 断点.
例7 讨论函数 f ( x) sin 1 在 x 0处的连续性. x
解 在x 0处没有定义,
且 lim sin 1 不存在. x0 x

高等数学第一章的总结-PPT

高等数学第一章的总结-PPT

n
1
lim
n
n2 n2
lim n1
1
n2
1
lim n
n
1
n2
n2
1
2
n2
1
n
1
例:
lim
1
1
(e n
2
en
n
en
)
n n
1
e
x
d
x
e 1
0
1
n
1
解:原式
lim
n
1 n
e
n
(1
e
1
n
)
(1
e) lim
n
n
1
1en
1en
1
(1 e) lim ln(1 u) (1 e) lim ln(1 u) u e 1.
)x
e
两个重要极限
(1) lim sin 1
0
(2) lim ( 1 1 ) e
1
或 lim(1 ) e
0
注: 代表相同的表达式
思考与练习
填空题 ( 1~4 )
1. lim sin x __0___ ;
x x
3. lim xsin 1 _0___ ;
x0
x
2. lim xsin 1 __1__ ;
从此时刻以后 0 x x0 0 x x0
f (x)
f (x) A
x x0
x x0 0
思考题
x
sin
1 x
,
试问函数 f ( x) 10,
5
x2,
x0 x 0在x 0处
x0
的左、右极限是否存在?当 x 0 时, f ( x) 的

高等数学第三版第一章课件(每页16张幻灯片)

高等数学第三版第一章课件(每页16张幻灯片)

第一章 函数与极限§1 函数 §2 初等函数 §3 数列的极限 §4 函数的极限 §5 无穷小与无穷大 §6 极限运算法则 §7 极限存在准则 两个重要极限 §8 无穷小的比较 §9 函数的连续性与间断 §10连续函数的运算与性质第一节 函数一、实数与区间 二、领域 三、函数的概念 四、函数的特性一、实数与区间1.集合: 具有某种特定性质的事物的总体. 组成这个集合的事物称为该集合的元素.2.区间: 是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.∀ a , b ∈ , 且a < b.a∈ M, a∉ M, A = { a1 , a 2 , , a n }有限集{ x a < x < b} 称为开区间, 记作 (a , b )o a x b { x a ≤ x ≤ b} 称为闭区间, 记作 [a , b] o aM = { x x所具有的特征 } 无限集数集分类: N----自然数集 Q----有理数集 数集间的关系: Z----整数集 R----实数集N ⊂ Z, Z ⊂ Q, Q ⊂ R.bx{ x a ≤ x < b} 称为半开区间, 记作 [a , b ) { x a < x ≤ b} 称为半开区间, 记作 (a , b] [a ,+∞ ) = { x a ≤ x } ( −∞ , b ) = { x x < b}o a o x x二、邻域有限区间常量与变量: 在某过程中数值保持不变的量称为常量, 而数值变化的量称为变量. 注意 常量与变量是相对“过程”而言的. 常量与变量的表示方法: 通常用字母 a, b, c 等表示常量, 用字母 x, y, t 等表示变量. 例三、函数的概念圆内接正多边形的周长设a与δ是两个实数 , 且δ > 0.数集{ x x − a < δ }称为点 a的δ邻域 ,点a叫做这邻域的中心 , δ 叫做这邻域的半径 .b ( −∞ , +∞ ) = { x −∞ < x < +∞ } =U δ (a ) = { x a − δ < x < a + δ }. δ δ无限区间区间长度的定义: 两端点间的距离(线段的长度)称为区间的长度.a a−δ a+δ o x 点a的去心δ 邻域 , 记作U δ0 (a ), 或 U (a , δ ).π S n = 2 nr sin n n = 3 ,4 ,5 ,S3S4S5圆内接正n 边形S6Oπ nr)Uδ (a ) = { x 0 < x − a < δ }.o定义:设 x 和 y 是两个变量, D 是给定的数集,如果对于每个数 x ∈ D , 变量 y 按照一定法则总函数的两要素: 定义域与对应法则.有唯一的数值和它对应,则称 y 是 x 的函数, 记作因变量x ((D对应法则fx0 )f ( x0 )y = f ( x)自变量数集D叫做这个函数的定义域 自变量Wy)因变量看右图: 如果自变量在定义域 内任取一个数值时,对应 的函数值总是只有一个, 这种函数叫做单值函数, 否则叫做多值函数.y分段函数:在自变量的不同变化范围中, 对应法则用不同的Wy⋅ ( x, y)x式子来表示的函数。

高等数学-第1章课件

高等数学-第1章课件
x x0
三、函数极限的性质
第三节 极限的运算
一、极限的运算法则
法则1 法则2
x x0
lim[ f ( x) g ( x)] lim f ( x) lim g ( x) A B
x x0 x x0 x x0 x x0
x x0
lim[ f ( x ) g ( x )] lim f ( x ) lim g ( x ) A B
第 一 章 函 数 ︑ 极 限 与 连 续
目录
第一节 函数
第二节 极限
第三节 极限的运算 第四节 无穷小与无穷大 第五节 函数的间断性与连续点 第六节 初等函数的连续性
第一节 函数
一、集合、区间与邻域
1.集合
集合(简称集)是具有某种共同性质的事物的全 体,组成集合的单一事物称为该集合的元素。
有限集合 有限个元素构成 北京户籍人口
° a
• a •
a°Leabharlann a3.邻域设 x0, δ R, 其中δ > 0,以 x0为中心,以δ 为半径,长为 2δ的
开区间. 即
( x0 , x0 ) { x x x0 , 0}
称为点 x0 的 δ 邻域 , 记为U(x0 , δ ).
2
x0
x0
x0
集合的运算及关系
由所有属于集合A或属于集合B的元 并集 素所组成的集合,称为集合A与B的 并集 交集 差集 由属于集合A且属于集合B的所有元 素组成的集合,称为A与B的交集
由所有属于集合A 而不属于集合B 的 元素组成的集合
A∪B A∪B={x|x∈A,或 x∈B}
A∩B A-B
A∩B={x|x∈A,且 x∈B} A-B={x|x∈A,且 xB}

大学高数第一章函数和极限ppt课件

大学高数第一章函数和极限ppt课件

lim 3x
x
28
2、当 x x0 时函数极限
定义 1.6 设函数在点 x0 附近有定义(但在这一点可以没有
定义),若 x ( x x0 )无论以怎样的方式趋近于 x0 ,函
数 f (x) 都无限趋近于一个常数 A ,就称当 x 趋近于 x0 时,
函数以 A 为极限,记为:
lim f (x) A 或
解:由于函数表达式中带有| x | ,
y
所以要分别求函数的左右极限。
因为: lim | x | lim x 1,
x x0
x x0
lim | x | lim x 1,
x
x x0
x x0
左右极限不相等,所以, lim | x | 不存在. x0 x
也可以从函数的图像上明确地看出该函数的极限不存在
变量 u 称为中间变量。
如:y sin3 x 可视为 y u3,u sin x 复合而成的 复合函数。 类似地,可以定义多于两重复合关系的复合函数。
11
例 已知 y arcsin[ln(x 1)]
(1)分析 y 的复合结构;(2)求 y 的定义域.
解:(1) y arcsinu , u ln v , v x 1
常见的周期函数有:sin x 、cos x 、tan x ,cot x
前两者周期为 2 ,后两者周期为 。
9
5.函数的有界性
若存在某个正数 M ,使得不等式 f (x) M
对于函数 f (x) 的定义域 D 内的一切 x 值都成立,则称函数 f (x) 在定义域内是有界函数; 如果这样的正数 M 不存在,则称函数 f (x) 在定义域 D 内是

大一高数上_PPT课件_第一章

大一高数上_PPT课件_第一章

几个数集:
R表示所有实数构成的集合,称为实数集。
Q表示所有有理数构成的集合,称为有理集。 Z表示所有整数构成的集合,称为整数集。 N表示所有自然数构成的集合, 称为自然数集。 子集: 若xA,则必有xB,则称A是B 的子集, 记 为AB(读作A包含于B)。 显然,N Z ,Z Q ,Q R 。
的上方。
y y=f(x) O x
y=K2
如果存在数 M,使对任一 xX,有 | f(x) |M, 则称函数f(x)在X上有界;如果这样的M不存在, 则称函数f(x)在X上是无界函数,就是说对任何M ,总存在 x1X,使|f(x)|>M。 有界函数的图形特点: 函数y = f(x)的图形在直线y = - M和y = M y 的之间。
高等数学研究的主要对象是函数,主要研 究函数的分析性质(连续、可导、可积等)和 分析运算(极限运算、微分法、积分法等)。 那么高等数学用什么方法研究函数呢?这个方 法就是极限方法,也称为无穷小分析法。从方 法论的观点来看,这是高等数学区别于初等数 学的一个显著标志。 由于高等数学的研究对象和研究方法与初 等数学有很大的不同,因此高等数学呈现出 以下显著特点:
周期函数的图形特点:
y
y=f(x)
-2l
-l
O
l
2l
x
四、反函数与复合函数
1. 反函数 设函数y=f(x)的定义域为D,值域为W。 对于任一数值 yW,D上可以确定唯一数值 x 与 y 对应,这个数值 x 适合关系 f(x)=y。
如果把 y看作自变量,x 看作因变量,按 照函数的定义就得到一个新的函数,这个 新函数称为函数y=f(x)的反函数,记作 x=f -1(y)。
什么样的函数存在反函数?

《高等数学》PPT课件-第一章极限

《高等数学》PPT课件-第一章极限
②逆命题不成立:有界列不一定收敛. ③数列有界是收敛的必要条件(不充分).
2.1.2 函数极限 【数列极限】
【函数的极限】 有
—— 整标函数 两大类情形
【直观定义】在x→∞时,函数值f (x)无限接近于一 个确定的常数A ,称A为f (x)当x→∞时的极限. 记作
[两种特殊情况]
[定理] [例如]
注意 无穷多个无穷小的代数和未必是无穷小.
定理3 有界函数与无穷小的乘积是无穷小. 推论1 在同一过程中,有极限的变量与无穷小的乘 积是无穷小. 推论2 常数与无穷小的乘积是无穷小. 推论3 有限个无穷小的乘积也是无穷小.
都是无穷小
2.3.2无穷大
绝对值无限增大的变量称为无穷大.
特殊情形:正无穷大,负无穷大.
[极限存在定理] [例1] [证]
左右极限存在但不相等, [注] 一般而言, 分段函数的极限要分左右极限考察.
2.1.3函数极限的性质
1.[唯一性]
2.[ 局部有界性]
[定理2]
3.[ 保号性] [定理3]
2.2 极限运算法则
定理
推论1
常数因子可以提到极限记号外面. 推论2
2.3 无穷小量与无穷大量
注意 (1)无穷大是变量,不能与很大的数混淆;
(3)无穷大是一种特殊的无界变量,但是无 界变量未必是无穷大.
2.3.3无穷小与无穷大的关系
定理4 在同一过程中,无穷大的倒数为无穷小; 恒不为零的无穷小的倒数为无穷大.
意义 关于无穷大的讨论,都可归结为关于无穷小 的讨论.
2.3.4 无穷小量的比较
二、极限
2.1 极限的定义
2.1.1 数列极限
截丈问题: “一尺之棰,日截其半,万世不竭”

高数课件1-2-初等函数

高数课件1-2-初等函数

单调性是指函数在某点或某区间 上的增减性
单调性可以通过函数的导数来判 断
添加标题
添加标题添加标题添 Nhomakorabea标题单调性是初等函数的基本性质之 一
单调性在解决实际问题中具有重 要意义
周期函数的定义:对于任意x, f(x+T)=f(x)
周期函数的应用:在信号处理、 物理、工程等领域有广泛应用
添加标题
添加标题
旋转变换:将函 数图像绕原点旋 转一定角度
对称变换:将函 数图像沿x轴或y 轴翻转,形成对 称图形
轴对称:函数图像关于y轴对称 中心对称:函数图像关于原点对称 奇偶性:函数图像关于y轴对称,且关于原点对称 单调性:函数图像在某点处具有单调性,即函数值随自变量变化而变化
初等函数的图像是函数值的集合 图像的形状和位置由函数的解析式决定 图像的斜率表示函数的变化率 图像的拐点表示函数的极值点
微分性质:线性性、保号性、 可加性、可减性
微分定义:函数在某一点的 切线斜率
微分公式: d(f(x))=f'(x)dx
微分应用:求极限、求导数、 求积分、求极值等
求极限:通过导数可以求解函数的极限 求导数:通过微分可以求解函数的导数 求最大值和最小值:通过导数可以求解函数的最大值和最小值 求积分:通过微分可以求解函数的积分
极限的定义:函数在某点处的极限是指函数在该点附近的变化趋势
极限的性质:极限具有唯一性、局部性、保号性、有界性等性质
极限的存在性:函数在某点处的极限存在,当且仅当函数在该点附近的变化趋势趋于一个 确定的值
极限的应用:极限在微积分、函数分析、概率论等领域有着广泛的应用
连续性定义: 函数在某点处 连续,是指在 该点处有极限, 且极限值等于

大一高数 第一章ppt课件

大一高数 第一章ppt课件
在区间 [a , b] 中任意插入 n –1 个分点 a x x x x x b 0 1 2 n 1 n 用直线 x xi 将曲边梯形分成 n 个小曲边梯形; 在第 i 个窄曲边梯形上任取 y 作以 [xi 1, x i ]为底 , f (i ) 为高的小矩形, 并以此小 梯形面积近似代替相应 窄曲边梯形面积 Ai , 得
f ( x x ) f ( x ) f ( x ) x 0 0 0
由此可知微分的一个重要应用是:近似计算。
2、定积分问题举例
矩形面积 ah
h
a a
h 梯形面积 (a b) 2
曲边梯形的面积如何求? 设曲边梯形是由连续曲线
b
h
y f ( x ) ( f ( x ) 0 )
大一高数 第一 章教学


一、什么是高等数学 ?
初等数学 — 研究对象为常量, 以静止观点研究问题. 高等数学 — 研究对象为变量, 运动和辩证法进入了数学.
数学中的转折点是笛卡儿的变数. 有了变数 , 运动进入了数学, 有了变数,辩证法进入了数学 ,
恩格斯
有了变数 , 微分和积分也就立刻成 为必要的了.
2) 近似.
[ x ,x i i 1 i]
xi 1 x i b x i A f ( ) x x x x ) ,i 1 , 2 , , n ) i i i( i i i 1

o a x1
3) 求和.
A A i f (i )xi
i 1
半开区间
[ a , b ] xa x b
[ a , b ) x a x b ( a , b ] x a x b

高数一章123节2ppt课件

高数一章123节2ppt课件
y D( x) 0 当x是无理数时
y
1


o
x
无理数点
有理数点
11
在自变量的不同变化范围中, 对应法则用不同的 式子来表示的函数,称为分段函数.
例11
y
f
(x)
2
x,
0 x1
1 x, x 1
定义域D [0, ),值域W [0, )
当x [0,1]时, 对应的
y
函数值f ( x) 2 x
几点注意:
(1)符号y f ( x)表示两个数集间的一种对应关 系, f 只是一种记号,表示一个对应法则.因此,也可
以用 y ( x), y ( x), y g( x)等表示函数.因变量
y与自变量x之间的这种依赖关系称为函数关系.
(2)定义域和对应法则是确定函数的两个要素, 缺一不可,因此,两个函数相等是指:1)定义域相同; 2)对应法则相同. 例如 f ( x) sin x, g( x) cos( x ),则f ( x) g( x).
x0
o
X
x
-M 有界
-M
无界
14
例如, y sin2 x, y cos x在(, )上有界.而 y x在(, )上无界.y x2在(, )上有下界 但无上界.
显然,函数f ( x)在X 上有界 f ( x)在X 上既有 上界又有下界.
函数f ( x)在X 上无界也可如下描述:
如果对任何正数M ,总存在x1 X , 使得 | f ( x1 )| M
y 1 x
当x (1, )时,对应的
y2 x
函数值f ( x) 1 x.
O1
x
12
2. 函数的几种特性
(1) 函数的有界性 设D是函数f ( x)的定义域 , 数集X D,若存在

大学高数第一章 PPT课件

大学高数第一章 PPT课件
数集间的关系: N Z, Z Q, Q R. 若A B,且B A,就称集合A与B相等. ( A B) 例如 A {1,2},
C { x x2 3x 2 0}, 则 A C. 不含任何元素的集合称为空集. (记作 ) 例如, { x x R, x2 1 0}
2.有界不是绝对的,是相对于所给定的D而言的。 3.有界函数的界不唯一。
25
二 初等函数
基本初等函数
1.幂函数
y x (是常数)
y
y x
y x2
1
y x
(1,1)
y 1 x
o1
x
26
2.指数函数 y a x (a 0, a 1)
y ex
y (1)x a
(0,1)
x
6
{x a x b} 称为半开区间, 记作 [a,b)
{x a x b} 称为半开区间, 记作 (a,b]
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
7
3.常量与变量:
证明:
∵ f(x+2c)=f((x+c)+c)=-f(x+c)=f(x)
∴f(x)为周期为2c的函数.
2233
4.函数的有界性: 设D是f ( x)的定义域, 若M 0,x D,有 f ( x) M ,
则称函数f (x)在D上有界.否则称无界.
y M
y=f(x)
x
o
D
y M
x0
o

高等数学第一章-课件2.ppt

高等数学第一章-课件2.ppt
一 函数的连续性
1.函数在点x0的连续性
函数连续的概念源于对几何曲线的直观分析,粗略地 说,如果函数是连续的,那么它的图像是一条连绵不断的曲 线,当然我们不能满足于这种直观的认识,我们需要用数学 的语言给出它的精确定义。
第四节
考察如图1-21所示的函数图像。
图1-21
第四节
故函数f(x)在点 x=0处连续,如图 1-22所示。
图1-20
第二节 极
四 无穷小量与无穷大量
1.无穷小量
定义1-9 若函数f(x)在自变量的某一变化过程中 的极限为零,则称该函数为自变量在此变化过程中的无 穷小量,简称无穷小。通常函数极限有x→+∞,x→- ∞, x→∞,x→x0 + ,x→x0 -,x→x0这六种情形。因此,只简 单地说函数是无穷小量是不确切的,还必须指出x的趋近 方式。
fξ=0。 该推论表明方程fx=0在 a,b内有实根。其几何解释如 图1-26所示。
图1-26
Thank You!
第一章 函数、极限与连续
第一节 函数
第二节 极限
第三节
极限的运算
第四节
初等函数的连续性Leabharlann 第五节 闭区间上连续函数的性质
第一节 函数
一 函数
1.函数的概念
定义1-1 给定两个实数集D和E,若有一个对应法则f,使 得对每个x∈D,都有唯一确定的值y∈E与之对应,则称f是定义 在数集D上的函数,记作y=f(x) ,x∈D。其中,x称为自变量,y 称为因变量,D称为函数fx的定义域,全体函数值的集合E称为函 数的值域.如果在D中任取某一个数值x0,与之对应的y的数值y0, 称为函数f(x)在点x0处的函数值,记作y0=f(x)0 。

《高等数学》课件第1章

《高等数学》课件第1章
2
(3) y e2sin3 x2 解 (1) y是由y=sinu与u=2x (2) y是由y=u2、u=tanv及 v x
(3) 表格法.变量间的函数关系通过列表形式反映出来. 例 如,火车时刻表就是利用列表的方法,把进(出)站火车的车 次与时间的函数关系表示出来.这种表示方法使得自变量 与因变量的对应关系一目了然.
4. 某市电话局规定市话的收费标准为:当月所打电话次数 不超过30次时,只收月租费10元;超过30次时,每次加收 0.20元.则电话费y和用户当月所打电话次数x的关系可用下面 的形式给出:
有arccos(-x)=π-arccosx成立.
图 1-8
图 1-9
反正切函数y=arctanx的图形如图1-10所示,其定义域是
x∈(-∞,+∞),值域是
y
π 2
,
π 2
,该函数是单调增加
的,是奇函数,即arctan(-x)=-arctanx.
图 1-10
反余切函数y=arccotx的图形如图1-11所示,其定义域是 x∈(-∞,+∞),值域是y∈(0,π),该函数是单调减少的, 且有arccot(-x)=π-arccotx成立.
第一章 函数的极限与连续
1.1 函数及其性质 1.2 初等函数 1.3 数学模型方法概述 1.4 极限的概念 1.5 极限的运算 1.6 函数的连续性 本章小结
1.1 函数及其性质
1.1.1 函数
函数是微积分学研究的对象.虽然在中学已经学习了函数 的概念, 但是在以后的学习中我们不再是进行简单的重复, 而是要从全新的视角对函数进行描述并重新分类.
邻域是一个经常应用到的概念. 以点x0为中心的任何开 区间称为点x0的邻域,记作N(x0).

《高等数学(上册)》课件 第一章

《高等数学(上册)》课件 第一章

图 1-1
图 1-2
高等数学
01 函数 02 极限 03 无穷小与无穷大 04 极限的运算 05 两个重要极限 06 无穷小的比较 07 函数的连续与
间断点
08 初等函数的连 续性
高等数学
01 函数 02 极限 03 无穷小与无穷大 04 极限的运算 05 两个重要极限 06 无穷小的比较 07 函数的连续与
间断点
08 初等函数的连 续性
例1 判断函数 ylg(x x2 1)的奇偶性. 解 因为函数的定义域为〔-∞,+ ∞ 〕,且
f( x ) l g ( x ( x ) 2 1 ) l g ( x x 2 1 ) l g ( x x 2 1 ) ( x x 2 1 ) x x 2 1
高等数学
01 函数 02 极限 03 无穷小与无穷大 04 极限的运算 05 两个重要极限 06 无穷小的比较 07 函数的连续与
间断点
08 初等函数的连 续性
高等数学
01 函数 02 极限 03 无穷小与无穷大 04 极限的运算 05 两个重要极限 06 无穷小的比较 07 函数的连续与
间断点
高等数学
01 函数 02 极限 03 无穷小与无穷大 04 极限的运算 05 两个重要极限 06 无穷小的比较 07 函数的连续与
间断点
08 初等函数的连 续性
一、数列极限
定义1 在某一法那么下,当n〔n∈N+〕依次取1,2,3,…, n,…时,对应的实数排成一列数
x1, x2, x3, , xn,
函数的对应法那么和函数的定义域称为函数的两
个要素.两个函数相等的充分必要条件是函数的定义 域和对应法那么均相同.
高等数学
01 函数 02 极限 03 无穷小与无穷大 04 极限的运算 05 两个重要极限 06 无穷小的比较 07 函数的连续与
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y cos x
sin x 正切函数 y tan x cos x
y tan x
余切函数 y cot x
cos x sin x
y cot x
正割函数 y sec x
1 cos x
y sec x
余割函数 y csc x 1 sin x
y csc x
x 自变量,
u 中间变量,
y 因变量,
注意: 1.不是任何两个函数都可以复合成一个复合函数的;
例如 y arcsinu,
u 2 x ;
2
y arcsin( 2 x )
2
2.复合函数可以由两个以上的函数经过复合构成.
x 例如 y cot , 2
y u,
x u cot v , v . 2
练习题答案
一、1、基本初等函数; 2、[e , e 3 ]; x2 3、 y e ; 4、 y sin u, u ln v , v 2 x ; 5、[-1,1],[ 2k , 2k ],[ a ,1 a ], 1 [a ,1 a ] 0 a 2 . 1 a 2
g ( x )的值域与 f (u) 的定义域之交集是空集.
练 习 题
一、填空题: 1、幂函数,指数函数, 对数函数,三角函数和
反三角函数统称_________. 2、函数 f ( x ) 的定义域为[ 1 , ] ,则函数 f (ln x ) 3 的定义域为__________.
3、由函数 y e u,u x 2 复合而成的函数为______ .
统称为基本初等函数.
二、复合函数 1、复合函数
定义:
设函数 y
初等函数
2
设 y u, u 1 x ,
y 1 x
2
f (u)的定义域 D f , 而函数 u ( x ) f [( x )]为 x 的
的值域为 Z , 若 Z D f , 则称函数 y 复合函数.
1 x y e 2 1 x y e 2
y shx
D : ( , ), 偶函数.
shx e x e x 双曲正切 thx x chx e e x D : ( , ) 奇函数, 有界函数,
思考题 下列函数能否复合为函数 y f [ g ( x )],若 能,写出其解析式、定义域、值域.
4、函数 y sin ln 2 x 由 __________ 复合而成 .
5、若 f ( x ) 的定义域为[ 0 , ] ,则 f(x 2 1 )的定义域 为__________ ,f (sin x ) 的定义域为__________ , f ( x a )(a 0) 的定义域为__________ _, f ( x a ) f ( x a ) (a 0) 的定义域为_________ .
(1)
( 2)
y f (u) u,
y f ( u) ln u,
u g( x ) x x 2
u g( x ) sin x 1
思考题解答
(1)
y f [ g( x )]
x x
2
1 x D { x | 0 x 1}, f ( D ) [0, ] 2 ( 2) 不能. g( x ) sin x 1 0
二、应用图形的“叠加 ”作函数 y x sin x 的图形 .
1,x 1 三、设 f ( x ) 0,x 1 ,g ( x ) e x , 1,x 1 求 f [ g( x )] ,g[ f ( x )] ,并作出它们的图形 .
四、火车站行李收费规定如下: 千克以下不计费, 20 20~50 千克每千克收费 0.20 元,超出 50 千克超 出部分每千克 0.30 元,试建立行李收费 f ( x ) (元 ) 于行李重量 x (千克) 之间的函数关系,并作出图 形.
ye
x

(0,1)
(a 1)
e 2.71828
3、对数函数
y log a x ( a 0, a 1)

(1,0)
y log a x
(a 1)
y ln x
y log 1 xin x
y sin x
余弦函数 y cos x
5、反三角函数
反正弦函数 y arcsin x
y arcsin x
反余弦函数 y arccos x
y arccos x
反正切函数 y arctan x
y arctan x
反余切函数 y arc cot x
y arccot x
幂函数,指数函数,对数函数,三角函数和反三角函数
第二节
• • • •
初等函数
一、基本初等函数 二、复合函数、初等函数 三、双曲函数与反双曲函数 四、小结
一、基本初等函数
1、幂函数
y x ( 是常数)
y
y x2
1
(1,1)
y x
y x
o
1 y x
1
x
2、指数函数
ya (a 0, a 1)
x
1 x y( ) a
y ax
2、初等函数
由常数和基本初等函数经过有限次四则运算和有限次 的函数复合步骤所构成并可用一个式子表示的函数,称为初 等函数.
三、双曲函数与反双曲函数
1、双曲函数
e x e x 双曲正弦 shx 2 D : ( , ), 奇函数.
e x e x 双曲余弦 chx 2
y chx
三、
1, x 0 ; f [ g( x )] 0, x 0 1, x 0
e , x 1 g[ f ( x )] 1, x 1 1 , x 1 e
x 20 0 y 0.2 x ,20 x 50 四、 10 0.3( x 50), x 50 .
相关文档
最新文档