初中数学九年级图形与几何题

合集下载

【初中数学】第1课时 几何图形面积问题 [人教版九年级上册] (练习题)

【初中数学】第1课时 几何图形面积问题 [人教版九年级上册] (练习题)

第1课时几何图形面积问题[人教版九年级上册](2912)1.乐乐要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40cm,这个三角形的面积S(单位:cm2)随x的变化而变化.(1)S与x之间的函数解析式为(写出自变量的取值范围);(2)当x=时,这个三角形的面积S最大,最大面积是.2.如图,在△ABC中,∠B=90∘,AB=8cm,BC=6cm,点P从点A开始沿AB边向点B以2cm/s的速度运动,点Q从点B开始沿BC边向点C以1cm/s的速度运动.如果点P,Q分别从点A,B同时出发,当其中一点到达终点时,另一点也随之停止运动.当△PBQ的面积最大时,运动时间为s.3.已知直角三角形两条直角边的和等于20,当两条直角边各为多少时,这个直角三角形的面积最大?最大值是多少?4.用52cm的铁丝弯成一个矩形,设矩形的一边长为xcm,则另一边长为cm,矩形的面积S=,自变量x的取值范围为.当x=时,该矩形的面积最大,为cm2.5.如图,已知平行四边形ABCD的周长为8cm,∠B=30∘,若边长AB=xcm.(1)平行四边形ABCD的面积y(cm2)与x之间的函数解析式为,自变量x的取值范围为;(2)当x取时,y的值最大,最大值为.6.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是cm2.7.手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60cm,菱形的面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.(1)请直接写出S与x之间的函数解析式(写出自变量x的取值范围);(2)当x是多少时,菱形风筝的面积S最大?最大面积是多少?8.如图,预防新冠肺炎疫情期间,某校在校门口用塑料膜围成一个临时隔离区,隔离区一面靠长为5m的墙,隔离区分成两个区域,中间用塑料膜隔开.已知整个隔离区塑料膜总长为12m,若隔离区出入口的大小不计,并且隔离区靠墙的面不能超过墙长,小明认为:隔离区的最大面积为12m2;小亮认为:隔离区的面积可能为9m2,则()A.小明正确,小亮错误B.小明错误,小亮正确C.两人均正确D.两人均错误9.如图,在边长为6cm的正方形ABCD中,点E,F,G,H分别从点A,B,C,D同时出发,均以1cm/s的速度沿各边向点B,C,D,A匀速运动,当点E到达点B时,四个点同时停止运动.在运动过程中,当运动时间为s时,四边形EFGH的面积最小,其最小值是cm2.10.有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C= 135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.参考答案1.【答案】:S=−12x2+20x(0<x<40);20cm.;200cm2.2.【答案】:2【解析】:设运动时间为t s.根据题意,得S△PBQ=12×(8−2t)t=−t2+4t=−(t−2)2+4,则由函数图象知,当t=2时,△PBQ的面积最大,为4cm2.3.【答案】:解:设直角三角形的直角边为x,则另一直角边为20−x,这个直角三角形的面积为S,根据题意得:S=12x(20−x)(0<x<20)配方得:S=−12(x−10)2+50,∴当x=10时,S最大为50,则20−10=10,∴当两直角边长均为10时,面积最大,最大值为50.4.【答案】:(26−x);−x2+26x;0<x<26.;13;1695.【答案】:y=−12x2+2x;0<x<4;2;2【解析】:由ABCD的周长为8cm及AB=xcm,知BC=(4−x)cm.过点A作AH⊥BC于点H,则AH=12xcm,所以y=12x(4−x)=−12x2+2x=−12(x−2)2+2,即当x=2时,y有最大值,最大值为26.【答案】:12.5【解析】:设其中一段铁丝的长为xcm,则另一段铁丝的长为(20−x)cm,则正方形的面积之和为(x4)2+(20−x4)2=18(x2−20x+100)+12.5=18(x−10)2+12.5, ∴当两小段铁丝的长都等于10cm时,面积之和最小,最小值为12.5cm27(1)【答案】解:由题意,得:S =12x(60−x)=−12x 2+30x(0<x <60).(2)【答案】∵S =−12x 2+30x ,a =−12<0,∴S 有最大值.当x =−b 2a =−302×(−12)=30时,S 的最大面积为4ac−b 24a =4×(−12)×0−3024×(−12)=450.∴当x 是30cm 时,菱形风筝的面积S 最大,最大面积为450cm 2.8.【答案】:B【解析】:设隔离区平行于墙的一边长为xm(0<x ≤5),隔离区的面积为S m 2. 由题意,得S =12−x 3·x =−13x 2+4x ,∴对称轴为直线x =−42×(−13)=6.∵0<x ≤5,抛物线开口向下,在对称轴左侧,S 随x 的增大而增大,∴当x =5时,S 取得最大值,最大值为−13×52+4×5=−253+20=353. ∵9<353<12,∴小明错误;令S =9,得9=−13x 2+4x ,解得x 1=9(舍去),x 2=3,∴当x =3时,S =9,∴隔离区的面积可能为9m 2. 故选B .9.【答案】:3;18【解析】:设运动时间为t s (0≤t ≤6),则AE =t cm ,AH =(6−t)cm .根据题意,得S 四边形EFGH =S 正方形ABCD −4S △AEH=6×6−4×12t(6−t)=2t 2−12t +36=2(t −3)2+18, 所以当t =3时,四边形EFGH 的面积最小,其最小值是18cm 2.10(1)【答案】解:①若所截矩形材料的一条边是BC,如图1所示:过点C作CF⊥AE于F,S1=AB⋅BC=6×5=30;②若所截矩形材料的一条边是AE,如图2所示:过点E作EF//AB交CD于F,FG⊥AB于G,过点C作CH⊥FG于H,则四边形AEFG为矩形,四边形BCHG为矩形,∵∠C=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴AE=FG=6,HG=BC=5,BG=CH=FH,∴BG=CH=FH=FG−HG=6−5=1,∴AG=AB−BG=6−1=5,∴S2=AE⋅AG=6×5=30;【解析】:①若所截矩形材料的一条边是BC,过点C作CF⊥AE于F,得出S1=AB⋅BC=6×5=30;②若所截矩形材料的一条边是AE,过点E作EF//AB交CD于F,FG⊥AB于G,过点C 作CH⊥FG于H,则四边形AEFG为矩形,四边形BCHG为矩形,证出△CHF为等腰三角形,得出AE=FG=6,HG=BC=5,BG=CH=FH,求出BG=CH=FH=FG−HG=1,AG=AB−BG=5,得出S2=AE⋅AG=6×5=30;(2)【答案】能;理由如下:在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,∵∠C=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴MG=BC=5,BM=CG,FG=DG,设AM=x,则BM=6−x,∴FM=GM+FG=GM+CG=BC+BM=11−x,∴S=AM×FM=x(11−x)=−x2+11x=−(x−5.5)2+30.25,∴当x=5.5时,S的最大值为30.25.【解析】:在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,证出△CGF为等腰三角形,得出MG= BC=5,BM=CG,FG=DG,设AM=x,则BM=6−x,FM=GM+FG=GM+CG=BC+BM= 11−x,得出S=AM×FM=x(11−x)=−x2+11x,由二次函数的性质即可得出结果.。

初中数学几何图形复习题集与答案

初中数学几何图形复习题集与答案

初中数学几何图形复习题集与答案这里是初中数学几何图形复习题集与答案,共提供30道题目。

请同学们认真阅读题目,理解题意,并通过答案进行核对和巩固知识。

1.请画出两条平行线。

答案:参考图形略。

(画两条相互平行且不相交的直线)2.请画出一个等边三角形。

答案:参考图形略。

(画一个三个边长相等的三角形)3.请画出一个等腰直角三角形。

答案:参考图形略。

(画一个既有直角又有两条边相等的三角形)4.请画出一个菱形。

答案:参考图形略。

(画一个四边长度相等的平行四边形)5.请画出一个梯形。

答案:参考图形略。

(画一个有两边平行的四边形)6.已知三角形ABC,AB=5cm,BC=6cm,AC=7cm,请判断它是一个什么三角形?答案:这是一个一般三角形,因为三边的长度都不相等。

7.已知正方形ABCD,AB=3cm,请计算它的周长。

答案:正方形的周长等于4倍边长,所以周长为12cm。

8.已知正方形EFGH,EF=5cm,请计算它的面积。

答案:正方形的面积等于边长的平方,所以面积为25cm²。

9.请计算一个边长为4cm的等边三角形的周长。

答案:等边三角形的周长等于3倍边长,所以周长为12cm。

10.请计算一个底边长为6cm,高为8cm的梯形的面积。

答案:梯形的面积等于上底加下底乘以高再除以2,所以面积为56cm²。

11.已知矩形IJKL,IJ=5cm,JK=7cm,请计算它的周长。

答案:矩形的周长等于两个相邻边的长度之和乘以2,所以周长为24cm。

12.已知矩形MNOP,MN=4cm,请计算它的面积。

答案:矩形的面积等于两个相邻边的长度之积,所以面积为16cm²。

13.请计算一个底边长为6cm,高为9cm的等腰梯形的面积。

答案:等腰梯形的面积等于上底加下底乘以高再除以2,所以面积为45cm²。

14.请计算一个直径为8cm的圆的周长。

答案:圆的周长等于直径乘以π,所以周长为8πcm。

15.请计算一个半径为5cm的圆的面积。

初中数学几何图形题库

初中数学几何图形题库

初中数学几何图形题库以下是一系列的初中数学几何图形题目,供同学们进行练习和复习。

题目一:平行线的性质1. 已知平行线l1与l2被一条截线t所交,证明l1与l2被t所截得的内角互补。

2. 若平行线l1与l2能够被同一条截线t分成相等的线段,证明l1与l2是平行的。

题目二:三角形的性质1. 在△ABC中,若∠A=90°,则AC^2=AB^2+BC^2成立吗?请说明理由。

2. 已知△ABC中,∠A=∠B,若AC=BC,则△ABC是否为等腰三角形?请给出证明或反例。

3. 在△ABC中,AC>BC。

若∠A=45°,∠B=60°,请问∠C的度数是多少?题目三:相似三角形1. 若两个三角形的对应角度相等且对应边长成比例,这两个三角形一定相似吗?请给出你的理由。

2. 在△ABC和△DEF中,∠A=∠D,∠B=∠E,∠C=∠F。

已知AB=4cm,BC=6cm,DE=8cm,求EF的长度。

题目四:四边形的性质1. 若一个四边形的对角相等,那么它一定是矩形吗?请说明理由。

2. 在矩形ABCD中,AB=2cm,BC=3cm。

若将AB延长至E,使得AE=5cm,连接CE,求∠CED的度数。

题目五:圆和圆的关系1. 若一个圆通过另一个圆的圆心,并且两个圆的半径不相等,这两个圆一定相交吗?请给出你的理由。

2. 在下图所示的两个圆中,圆O与圆P的半径分别为3cm和5cm。

若两个圆的圆心之间的距离为4cm,求两个圆相交的弦的长度。

题目六:立体几何1. 在一个立方体中,连接两个对角点,得到一条对角线。

求这条对角线的长度。

2. 一个正方体的体积为64cm³,求正方体的边长。

题目七:平面上的图形1. 若一个图形既是矩形又是菱形,这个图形一定是正方形吗?请给出理由。

2. 在平面直角坐标系中,直线y=x与y=2x的交点为A,直线y=-x 与y=-2x的交点为B。

求线段AB的中点的坐标。

以上是初中数学几何图形题库的一部分,希望能够帮助同学们更好地理解和掌握几何知识。

初中九年级数学图形与几何练习题

初中九年级数学图形与几何练习题

初中九年级数学图形与几何练习题在初中九年级数学学习中,图形与几何是一个重要的内容。

通过解练习题,能够帮助同学们巩固知识,提高解题能力。

下面为大家提供一些九年级数学图形与几何的练习题,希望同学们能够认真思考并完成。

1. 已知一个长方形的长是12cm,宽是8cm,求长方形的周长和面积。

2. 一个圆的半径是5cm,求圆的周长和面积。


3.14作为π的近似值。

3. 在一个正方形中,对角线长为10√2 cm,求正方形的边长。

4. 一个矩形的长是3个单位,面积是9个单位,求矩形的宽。

5. 已知一个平行四边形的底边长为5cm,高为3cm,求平行四边形的面积。

6. 一个正方形的边长分别减少了2cm和3cm,新的正方形的面
积是原来的1/4,求原来的正方形的边长。

7. 两个边长分别为6cm和8cm的直角三角形,求斜边的长。

8. 在一个等边三角形中,高的长度是边长的2/3,求等边三角
形的边长。

9. 一个等腰梯形的上底长为8cm,下底长为12cm,高为5cm,求等腰梯形的面积。

10. 一个椭圆的长轴长为10cm,短轴长为8cm,求椭圆的周长
和面积。

以上是初中九年级数学图形与几何的练习题,希望同学们能够
按照题目要求独立完成。

通过这些练习题,同学们能够运用所学
的图形与几何知识进行计算和解决问题,提高自己的数学能力。

祝同学们学习进步!。

【初中数学】人教版九年级上册第3课时 几何图形问题(练习题)

【初中数学】人教版九年级上册第3课时 几何图形问题(练习题)

人教版九年级上册第3课时几何图形问题(2912)A 知识要点分类练夯实基础1.如图,把一块长为40cm,宽为30cm的矩形硬纸板的四角剪去四个相同的小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为600cm2,设剪去的小正方形的边长为xcm,则可列方程为()A.(30−2x)(40−x)=600B.(30−x)(40−x)=600C.(30−x)(40−2x)=600D.(30−2x)(40−2x)=6002.为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为.3.一条长为12cm的铁丝被剪成两段,每段均折成正方形.若两个正方形的面积和等于5cm2,则这两个正方形的边长分别为.4.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m).试设计一种砌法,使所砌三面墙的总长度为50m,且矩形花园的面积为300m2.5.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图所示),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为x m,则可列方程为()A.(x+1)(x+2)=18B.x2−3x+16=0C.(x−1)(x−2)=18D.x2+3x+16=06.如图,学校课外生物小组的试验园地的形状是长(AB)35米、宽20米的矩形,为便于管理,要在中间开辟一横两纵共三条等宽的小道,若设小道的宽为x米,则种植面积(单位:平方米)为()A.35×20−35x−20x+2x2B.35×20−35x−2×20xC.(35−2x)(20−x)D.(35−x)(20−2x)7.如图,小明家有一块长1.5m、宽1m的矩形地毯,为了使地毯美观,小明请来工匠在地毯的四周镶上宽度相同的花色地毯,镶完后地毯的面积是原地毯面积的2倍,则花色地毯的宽为m.8.在一张矩形的床单四周绣上宽度相等的花边,剩下部分的面积为1.6m2,已知床单的长是2m,宽是1.4m,求花边的宽度.B 规律方法综合练训练思维9.如图,矩形ABCD的周长是20cm,以AB,AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和为68cm2,则矩形ABCD的面积是()A.24cm2B.21cm2C.16cm2D.9cm210.如图,有一块长5米、宽4米的地毯,为了美观,设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,其所占面积是整个地毯面.积的1780(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.C 拓广探究创新练提升素养11.已知:如图,在△ABC中,∠B=90∘,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度匀速运动,同时点Q从点B开始沿BC边向点C以2cm/s的速度匀速运动.当其中一点到达终点时,另一点也随之停止运动.设运动时间为xs(x>0).(1) s后,△PBQ的面积为4cm2;(2)几秒后,PQ的长度为5cm?(3)△PBQ的面积能否为7cm2?请说明理由参考答案1.【答案】:D【解析】:设剪去小正方形的边长是xcm,则纸盒底面的长为(40−2x)cm,宽为(30−2x)cm,根据题意得:(40−2x)(30−2x)=600.故选:D.2.【答案】:x(x+40)=12005.【答案】:C3.【答案】:1cm,2cm4.【答案】:解:设AB的长为xm,则BC的长为(50−2x)m.根据题意,得x(50−2x)=300,2x2−50x+300=0,解得x1=10,x2=15.当x=10时,50−2x=30>25(不合题意,舍去);当x=15时,50−2x=20<25(符合题意).答:当AB的长为15m,BC的长为20m时,可使矩形花园的面积为300m2.6.【答案】:C【解析】:依题意,得:(35−2x)(20−x),故选:C.7.【答案】:0.25【解析】:设花色地毯的宽为xm,那么地毯的面积=(1.5+2x)(1+2x)m2.因为镶完后地毯的面积是原地毯面积的2倍,所以(1.5+2x)(1+2x)=2×1.5×1,即8x2+10x−3=0.解得x1=0.25,x2=−1.5(不合题意,舍去).故花色地毯的宽为0.25m.8.【答案】:设花边的宽度为xm.依题意,得 (2−2x)(1.4−2x)=1.6,解得x 1=1.5(舍去),x 2=0.2.答:花边的宽度为0.2m【解析】:设花边的宽度为xm .表示出剩下部分的长与宽,以“剩下部分的面积为1.6m 2”为等量关系列方程求解9.【答案】:C【解析】:设正方形ABEF 的边长为xcm ,正方形ADGH 的边长为ycm , 依题意得x 2+y 2=68,①又2x +2y =20,②因为x 2+y 2=(x +y)2−2xy ,将①②代入得xy =16,即矩形ABCD 的面积是16cm 210(1)【答案】解:设配色条纹的宽度为x 米. 依题意,得2x ×5+2x ×4−4x 2=1780×5×4, 解得x 1=174(不符合题意,舍去),x 2=14. 答:配色条纹的宽度为14米.(2)【答案】配色条纹部分的造价为1780×5×4×200=850(元), 其余部分的造价为(1−1780)×5×4×100=1575(元), 所以总造价为850+1575=2425(元).答:地毯的总造价是2425元11(1)【答案】1【解析】:由S △PBQ =12BP ·BQ ,得12(5−x)·2x =4, 整理,得x 2−5x +4=0,解得x 1=1,x 2=4.当x =4时,2x =8>7,说明此时点Q越过点C,不符合要求,舍去.所以1s后△PBQ的面积为4cm2.故答案为1.(2)【答案】解:由BP2+BQ2=PQ2,得(5−x)2+(2x)2=52,整理,得x2−2x=0,解得x1=0(不合题意,舍去),x2=2.答:2s后,PQ的长度为5cm.(3)【答案】不能.理由:假设△PBQ的面积为7cm2,则(5−x)·2x=7,由题意,得12整理,得x2−5x+7=0.因为Δ=b2−4ac=(−5)2−4×1×7=25−28=−3<0,所以此方程无实数根,所以△PBQ的面积不能为7cm2.。

22.3.1 几何图形问题(课后练)-初中数学人教版九年级上册课前课中课后同步试题精编

22.3.1 几何图形问题(课后练)-初中数学人教版九年级上册课前课中课后同步试题精编
(1)求y关于自变量x的函数关系式,并直接写出x的取值范围;
(2)求围成矩形绿化带ABCD面积y的最大值;
(3)若要求矩形绿化带ABCD的面积不少于45m2,请直接写出AB长的取值范围.
10.如图,为美化环境,某校计划在一块长为60m,宽40m的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为xm,花圃的面积为S,
2.如图所示,点P是边长为1的正方形 对角线 上一动点(P与点A、C不重合),点E在 上,且 ,设 , 的面积为y,则下列图象中,能表示y与x函数关系的图象大致是()
A. B. C. D.
3.如图,正六边形的边长为10,分别以正六边形的顶点A、B、C、D、E、F为圆心,画6个全等的圆.若圆的半径为x,且0<x≤5,阴影部分的面积为y,能反映y与x之间函数关系的大致图形是()
2.D
【分析】
过点 作 于 ,若要求 的面积,则需要求出 , 的值,利用已知条件和正方形的性质以及勾股定理可求出 , 的值.再利用三角形的面积公式得到 与 的关系式,此时还要考虑到自变量 的取值范围和 的取值范围.
【详解】
解:过点 作 于 ,


正方形 的边长是1,

, ,



即 ,
是 的二次函数 ,
22.3第一课时几何图形问题(课后练)
1.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为ycm2的无盖的长方体盒子,则y与x之间的函数关系式为()
A.y=x2-70x+1200B.y=x2-140x+4800C.y=4x2-280x+4800D.y=4800-4x2

通用版初中数学图形的性质几何图形初步真题

通用版初中数学图形的性质几何图形初步真题

(每日一练)通用版初中数学图形的性质几何图形初步真题单选题1、在正方形ABCD中,分别以B、D为圆心,以正方形的边长2为半径画弧,则图中阴影部分的面积为()A.2π−4B.4−2πC.2D.π答案:A解析:由图可知,阴影部分的面积是两个圆心角为90°,且半径为2的扇形的面积与正方形的面积的差,可据此求出阴影部分的面积.S阴影=2S扇形-S正方形=2×90π×22-22=2π-4360故选:A小提示:本题利用了扇形的面积公式,正方形的面积公式求解,得出S阴影=2S扇形-S正方形是解题关键.2、已知⊙O的半径等于3,圆心O到点P的距离为5,那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法确定答案:B根据d,r法则逐一判断即可.解:∵r=3,d=5,∴d>r,∴点P在⊙O外.故选:B.小提示:本题考查了点与圆的位置关系,熟练掌握d,r法则是解题的关键.3、如图,AB为⊙O的直径,C,D为⊙O上的两点,若∠ABD=54°,则∠C的度数为()A.34°B.36°C.46°D.54°答案:B解析:连接AD,如图,根据圆周角定理得到∠ADB=90°,∠C=∠A,然后利用互余计算出∠A,从而得到∠C的度数.解:连接AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A=90°−∠ABD=90°−54°=36°,∴∠C=∠A=36°.小提示:本题主要考查了同弦所对的圆周角相等,直径所对的圆周角是直角,解题的关键在于能够熟练掌握相关知识进行求解.解答题4、定义:对角线互相垂直且相等的四边形叫做垂等四边形.(1)下面四边形是垂等四边形的是;(填序号)①平行四边形;②矩形;③菱形;④正方形(2)图形判定:如图1,在四边形ABCD中,AD//BC,AC⊥BD,过点D作BD垂线交BC的延长线于点E,且∠DBC=45°,证明:四边形ABCD是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为6的垂等四边形ABCD内接于⊙O中,∠BCD=60°.求⊙O的半径.答案:(1)④;(2)见解析;(3)r=2解析:(1)根据垂等四边形的性质对每个图形判断即可;(2)根据已知条件可证明四边形ACED是平行四边形,即可得到AC=DE,再根据等腰直角三角形的性质即可得到结果;(3)过点O作OE⊥BD,根据面积公式可求得BD的长,根据垂径定理和锐角三角函数即可得到⊙O的半径.解:(1)①平行四边形的对角线互相平分但不垂直和相等,故不是垂等四边形;②矩形对角线相等但不一定垂直,故不是垂等四边形;③菱形的对角线互相垂直但不一定相等,故不是垂等四边形;④正方形的对角线互相垂直且相等,故正方形是垂等四边形;故选:④;(2)∵AC⊥BD,ED⊥BD,∴AC∥DE,又∵AD∥BC,∴四边形ADEC是平行四边形,∴AC=DE,又∵∠DBC=45°,∴△BDE是等腰直角三角形,∴BD=DE,∴BD=AC,又∵BD⊥AC,∴四边形ABCD是垂等四边形;(3)如图,过点O作OE⊥BD,连接OD,∵四边形ABCD是垂等四边形,∴AC=BD,又∵垂等四边形的面积是24,∴12AC•BD=6,解得,AC=BD=2√3,又∵∠BCD=60°,∴∠DOE=60°,设半径为r,根据垂径定理可得:在△ODE中,OD=r,DE=√3,∴r=DEsin60°=√3√32=2,∴⊙O的半径为2.小提示:本题是一道圆的综合题,主要考查了平行四边形的性质、菱形的性质、矩形的性质、正方形的性质、新定义、圆周角定理、垂径定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用新定义解答问题.5、如图,在⊙O中,AB是⊙O的弦,CD是⊙O的直径,且AB⊥CD,垂足为G,点E在劣弧AB⃗⃗⃗⃗⃗ 上,连接CE.(1)求证:CE 平分∠AEB ;(2)连接BC ,若BC //AE ,求证:BC =BE .答案:(1)见解析;(2)见解析解析:(1)根据垂径定理,可得AC⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ ,从而得到 ∠AEC =∠BEC ,即可求证; (2)根据BC ∥AE ,可得到∠AEC =∠BCE ,再由∠AEC =∠BEC ,即可求证.(1)证明:∵CD ⊥AB ,CD 是直径,∴AC⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ . ∴∠AEC =∠BEC ,∴CE 平分∠AEB ;(2)解:如图,∵BC ∥AE ,∴∠AEC =∠BCE .又∵∠AEC =∠BEC ,∴∠BCE =∠BEC∴BE=BC.小提示:本题主要考查了垂径定理,平行线的性质,等腰三角形的性质,熟练掌握相关知识点是解题的关键.。

初中数学几何图形专题训练50题含答案

初中数学几何图形专题训练50题含答案

初中数学几何图形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,已知∠AOC=∠BOD=90º,∠AOD=150º,则∠BOC 的度数为( )A .30ºB .45ºC .50ºD .60º 2.下列图形属于立体图形的是( )A .正方形B .三角形C .球D .梯形 3.已知∠AOB =75°,以O 为端点作射线OC ,使∠AOC =48°,则∠BOC 的度数为( )A .123°B .123°和27°C .23°D .27°4.如图,已知点C 是线段AB 的中点,2AC cm =, 1.5DC cm =,则BD =( )A .0.5cmB .1cmC .1.5cmD .2cm 5.已知A ,B ,C ,D 四点,任意三点都不在同一直线上,以其中的任意两点为端点的线段的数量是( )A .5B .6C .7D .8 6.如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若2110∠=︒,那么1∠的度数是( )A .10°B .20°C .30°D .40° 7.如图,已知∠ACB=90°,CD∠AB ,垂足是D ,则图中与∠A 相等的角是( )A.∠1B.∠2C.∠B D.∠1、∠2和∠B 8.在地理课堂上,老师组织学生进行寻找北极星的探究活动时,李佳同学使用了如图所示的半圆仪,则下列四个角中,最可能和互补的角为()A.B.C.D.9.下列说法正确的是()A.连接两点的线段,叫做两点间的距离B.射线OA与射线AO表示的是同一条射线C.经过两点有一条直线,并且只有一条直线D.从一点引出的两条直线所形成的图形叫做角10.我军在海南举行了建国以来海上最大的军事演习,位于点O处的军演指挥部观测到军舰A位于点O的北偏东65︒方向(如图),同时观测到军舰B位于点O处的南偏西20︒方向,则AOB∠=()A .85︒B .105︒C .125︒D .135︒ 11.如图,小玮从A 处沿北偏东40°方向行走到点B 处,又从点B 处沿东偏南23°方向行走到点C 处,则∠ABC 的度数为( )A .99°B .107°C .127°D .129° 12.如图,CE 是ABC 的外角ACD ∠的平分线,且CE 交BA 的延长线于点E ,30B ∠=︒,100ACD ∠=︒,则E ∠的度数为( )A .10°B .15°C .20°D .25° 13.如图所示,正方体的展开图为( )A .B .C .D .14.如图方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上,点P 也在小正方形的顶点上.某人从点P 出发,沿图中已有的格点所连线段走一周(即不能直接走线段AC 且要回到P ),则这个人所走的路程最少是( )A .7B .14C .10D .不确定 15.如图,等边∠ABC 的边长为6,AD 是BC 边上的中线,M 是AD 上的动点,E 是边AC 上一点,若AE =2,则EM +CM 的最小值为( )AB .C .D .16.已知A ,B ,C 三点在同一条直线上,M ,N 分别为线段AB ,BC 的中点,且AB =60,BC =40,则MN 的长为( )A .10B .50C .10或50D .无法确定 17.如图,从4点钟开始,过了40分钟后,分针与时针所夹角的度数是( )A .090B .0100C .0110D .0120 18.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒ 19.一把直尺和一块三角板ABC (含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D 、点E ,另一边与三角板的两直角边分别交于点F 、点A ,且∠CED=50°,那么∠BAF=()A.10°B.50°C.45°D.40°20.如图,直线AB MN∥,点C为直线MN上一点,连接AC、BC,∠CAB=40°,∠ACB=90°,∠BAC的角平分线交MN于点D,点E是射线AD上的一个动点,连接CE、BE,∠CED的角平分线交MN于点F.当∠BEF=70°时,令ECMα∠=,用含α的式子表示∠EBC为().A.52αB.10α︒-C.1102α︒-D.1102α-︒二、填空题21.如图,将∠AOB 绕点O 按逆时针方向旋转40°后得到∠COD,若∠AOB=15°,则∠AOD 的度数是______°.22.若∠A与∠B互余,则∠A+∠B=_____;若∠A与∠B互补,则∠A+∠B=_____. 23.如图,点A、O、B在一条直线上,且∠AOD=35°,OD平分∠AOC,则图中∠BOC=______度.24.如图,在直线AB 上有一点O ,OC ∠OD ,OE 是∠DOB 的角平分线,当∠DOE =20°时,∠AOC =___°.25.一个直棱柱有12条棱,则它是__棱柱.26.如图,EF 是ABC 的中位线,BD 平分ABC ∠交EF 于D ,若6,10AB BC ==,则DF =______.27.已知5526α∠=︒',则α∠的余角为____________28.在墙上钉一根细木条至少要钉2根钉才稳,根据是_________________________; 29.在棱柱中,任何相邻的两个面的交线都叫做______,相邻的两个侧面的交线叫做_______.30.如图所示,//AB CD ,CE 平分ACD ∠,并且交AB 于E ,118A ∠=︒,则AEC ∠等于______.31.如图,AOB 与COB △关于边OB 所在的直线成轴对称,AO 的延长线交BC 于点D .若45BOD ∠=︒,20C ∠=︒,则ADC ∠=___________.32.一副三角板按如图放置,则下列结论:∠如果230∠=︒,则有AC DE ∥;∠如果BC AD ∥,则有245∠=︒;∠如果445∠=︒,那么160∠=︒;∠ BAE CAD ∠+∠ 随着2∠的变化而变化,其中正确的是____.33.已知C 是线段AB 的中点,AB=10,若E 是直线AB 上的一点,且BE=3,则CE=_____34.如图,C ,D 是线段AB 上两点,已知AC :CD :DB=1:2:3,M 、N 分别为AC 、DB 的中点,且AB=8cm ,求线段MN 的长_____.35.已知OC 为一条射线,OM 平分AOC ∠,ON 平分BOC ∠.(1)如图1,当60AOB ∠=︒,OC 为AOB ∠内部任意一条射线时,MON ∠=_____; (2)如图2,当60AOB ∠=︒,OC 旋转到AOB ∠的外部时,MON ∠=_____; (3)如图3,当AOB α∠=,OC 旋转到AOB ∠(120BOC ∠<︒)的外部时,求MON ∠,请借助图3填空.解:因为OM 平分AOC ∠,ON 平分BOC ∠ 所以1122COM AOC CON BOC ∠=∠∠=∠,(依据是____________) 所以MON COM ∠=∠-_________12AOC =∠-_______12=________. 36.如图,已知60BAC ∠=︒,AD 是角平分线且20AD =,作AD 的垂直平分线交AC 于点F ,作DE AC ⊥,则DEF 的周长为 ______.37.平面内,已知AOB 90∠=,20,BOC OE ∠=平分,AOB OF ∠平分BOC ∠,则EOF ∠=______.38.如图所示,设L AB AD CD =++,M BE CE =+,N BC =.试比较M 、N 、L 的大小:________.39.已知点C 在线段AB 上,2AC BC =,点D 、E 在直线AB 上,点D 在点E 的左侧.(1)若18AB =,点D 与点A 重合,8DE =,则EC =_________;(2)若2AB DE =,线段DE 在直线AB 上移动,且满足关系式32AD EC BE +=,则CD AB =_______.三、解答题40.如图所示,在长方形ABCD 中,6cm BC ,8cm CD =,现绕这个长方形的一边所在直线旋转一周得到一个几何体.请解决以下问题:(1)说出旋转得到的几何体的名称?(2)如果用一个平面去截旋转得到的几何体,那么截面有哪些形状(至少写出3种)?(3)求旋转得到的几何体的表面积?(结果保留π)41.将一个正方体的表面沿某些棱剪开,展成一个平面图形,你能得到哪些形状的平面图形?42.如图,OB 为AOC ∠的平分线,OD 是COE ∠的平分线.(1)如果40AOB ∠=︒,30DOE ∠=︒,那么BOD ∠为多少度?(2)如果140AOE ∠=︒,30COD ∠=︒,那么AOB ∠为多少度?(3)如果AOC α∠=︒,COE β∠=︒,则BOD ∠=______°,如果AOE θ∠=︒,则BOD ∠=______︒.43.如图,点C 是线段AB 上的一点,点M 是线段AC 的中点,点N 是线段BC 的中点.(1)如果12,5AB cm AM cm ==,求BC 的长;(2)如果8MN cm =,求AB 的长.44.如图,一只蚂蚁沿长方体的表面从顶点A 爬到另一顶点M ,已知AB =3,AD = 4,BF = 5.求这只蚂蚁爬行的最短距离.45.已知AB CD ∥,点M 、N 分别在直线AB 、CD 上,AME ∠与CNE ∠的平分线所在的直线相交于点F .(1)如图1,点E 、F 都在直线AB 、CD 之间且70MEN ∠=︒时,MFN ∠的度数为___________;(2)如图2,当点E在直线AB、CD之间,F在直线CD下方时,写出MEN∠与MFN∠之间的数量关系,并证明;∠与(3)如图3,当点E在直线AB上方,F在直线AB与CD之间时,直接写出MEN∠之间的数量关系.MFN46.O为直线AB上的一点,OC∠OD,射线OE平分∠AOD.(1)如图∠,判断∠COE和∠BOD之间的数量关系,并说明理由;(2)若将∠COD绕点O旋转至图∠的位置,试问(1)中∠COE和∠BOD之间的数量关系是否发生变化?并说明理由;(3)若将∠COD绕点O旋转至图∠的位置,探究∠COE和∠BOD之间的数量关系,并说明理由.47.已知,P是线段AB的中点,点C是线段AB的三等分点,线段CP的长为4 cm.(1)求线段AB的长;(2)若点D是线段AC的中点,求线段DP的长.48.【提出问题】如图1,在直角ABC中,∠BAC=90°,点A正好落在直线l上,则∠1、∠2的关系为【探究问题】如图2,在直角ABC中,∠BAC=90°,AB=AC,点A正好落在直线l 上,分别作BD∠l于点D,CE∠l于点E,试探究线段BD、CE、DE之间的数量关系,并说明理由.【解决问题】如图3,在ABC中,∠CAB、∠CBA均为锐角,点A、B正好落在直线l 上,分别以A、B为直角顶点,向ABC外作等腰直角三角形ACE和等腰直角三角形BCF,分别过点E、F作直线l的垂线,垂足为M、N.∠试探究线段EM、AB、FN之间的数量关系,并说明理由;∠若AC=3,BC=4,五边形EMNFC面积的最大值为49.如图,两个形状、大小完全相同的含有3060︒︒、的三角板如图∠放置,PA PB 、与直线MN 重合,且三角板PAC ,三角板PBD 均可以绕点P 逆时针旋转.(1)求DPC ∠;(2)如图∠,若三角板PBD 保持不动,三角板PAC 的边PA 从PN 绕点P 逆时针旋转一定角度,PF 平分,APD PE ∠平分CPD ∠,求EPF ∠.(3)如图∠,在图∠基础上,若三角板PAC 的边PA 从PN 开始绕点P 逆时针旋转,转速为3︒/秒,同时三角板PBD 的边PB 从PM 绕点P 逆时针旋转,转速为2︒/秒,(当PC 转到与PM 重合时,两三角板都停止转动),求CPD BPN∠∠的值. (4)如图∠,在图∠基础上,若三角板PAC 开始绕点P 逆时针旋转,转速为5︒/秒,同时三角板PBD 绕点P 逆时针旋转,转速为1︒/秒,(当PA 转到与PM 重合时,两三角板都停止转动),在旋转过程中,PC PB PD 、、三条射线中,当其中一条射线平分另两条射线的夹角时,直接写出旋转的时间.参考答案:1.A【详解】试题分析:根据∠AOC=∠BOD=90º,∠AOD=150º,可得∠COD的度数,从而求得结果.∠∠AOC=∠BOD=90º,∠AOD=150º∠∠COD=∠AOD-∠AOC=60°∠∠BOC=∠BOD-∠COD=30°故选A.考点:本题考查的是角的计算点评:本题是基础应用题,只需学生熟练掌握角的大小关系,即可完成.2.C【分析】依据立体图形的定义回答即可.【详解】解:正方形、三角形、梯形是平面图形,球是立体图形.故选:C.【点睛】本题主要考查的是立体图形的认识,掌握相关概念是解题的关键.3.B【分析】讨论:当OC在∠AOB的内部,如图1,则∠BOC=∠AOB-∠AOC;OC在∠AOB的外部,如图2,则∠BOC=∠AOB+∠AOC.【详解】解:当OC在∠AOB的内部,如图1,∠∠AOB=75°,∠AOC=48°,∠∠BOC=∠AOB-∠AOC=75°-48°=27°;当OC在∠AOB的外部,如图2,∠∠AOB=75°,∠AOC=48°,∠∠BOC=∠AOB+∠AOC=75°+48°=123°,综上所述,∠BOC的度数为27°或123°.【点睛】本题考查的是角的计算,在解答此题时要注意进行分类讨论,不要漏解.4.A【分析】根据线段中点和线段之间的关系计算即可.【详解】解:点C是线段AB的中点,∴2==,BC AC cm∴2 1.50.5=-=-=.BD BC CD cm故选:A.【点睛】本题考查线段中点和线段的长度关系,掌握线段中点的性质是解答关键.5.B【分析】根据题意画出示意图,即可得答案.【详解】解:如图所示,有四个点,且每三点都不在同一直线上,每两点连一条线段,则可以连6条线段,故选:B.【点睛】本题主要考查了直线、线段、射线数量问题,能正确根据题意画出图形是解决问题的关键.6.D【分析】利用平行线的性质和平角的性质可以求得结果得出答案.【详解】解:如图示∠=︒,将一块含有30︒的直角三角板的顶点放在直尺的一边上,2110∠32110∠=∠=︒,∠11802301801103040∠=︒-∠-︒=︒-︒-︒=︒【点睛】本题主要考查了平行线的性质,正确得出3∠的度数是解题关键.7.B【分析】【详解】∠∠ACB= 90°,即∠1+∠2= 90°又∠在Rt∠ACD 中,∠A+∠1=90°∠∠A=∠2故选:B.8.D【详解】析:根据图形估计∠AOB 的大致度数,然后根据互为补角的和等于180°进行解答即可.解答:解:根据图形可得∠AOB 大约为135°,∠与∠AOB 互补的角大约为45°,综合各选项D 符合.故选D .9.C【分析】根据线段、射线、直线的定义即可解题.【详解】解:A. 连接两点的线段长度,叫做两点间的距离B. 射线OA 与射线AO 表示的是同一条射线,错误,射线具有方向性,C. 经过两点有一条直线,并且只有一条直线,正确,D. 错误,应该是从一点引出的两条射线所形成的图形叫做角,故选C.【点睛】本题考查了线段、射线、直线的性质,属于简单题,熟悉定义是解题关键. 10.D【分析】根据方向角的定义以及角的和差关系进行计算即可.【详解】解:由方向角的定义可知,65NOA ∠=︒,20SOB ∠=︒,∠906525AOE ∠=︒-︒=︒,∠AOB AOE EOS SOB ∠=∠+∠+∠,259020=︒+︒+︒故选:D .【点睛】本题考查方向角,理解方向角的定义是解决问题的前提.11.B【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【详解】如图:∠小明从A 处沿北偏东40︒方向行走至点B 处,又从点B 处沿东偏南23︒方向行走至点C 处,∠40DAB ∠=︒,23CBF ∠=︒,∠向北方向线是平行的,即AD BE ∥,∠40ABE DAB ∠=∠=︒,∠90EBF ∠=︒,∠902367EBC ∠=︒-︒=︒,∠4067107ABC ABE EBC ∠=∠+∠=︒+︒=︒,故选B .【点睛】本题考查方位角,解题的关键是画图正确表示出方位角.12.C 【分析】先根据角平分线的定义求出1502ECD ACD ∠=∠=︒,再由三角形外角的性质求解【详解】解:∠CE平分∠ACD,∠ACD=100°,∠1502ECD ACD∠=∠=︒,∠∠B=30°,∠∠E=∠ECD-∠B=20°,故选C.【点睛】本题主要考查了角平分线的定义,三角形外角的性质,熟知角平分线的定义和三角形外角的性质是解题的关键.13.A【分析】根据正方体的展开图的性质判断即可;【详解】A中展开图正确;B中对号面和等号面是对面,与题意不符;C中对号的方向不正确,故不正确;D中三个符号的方位不相符,故不正确;故答案选A.【点睛】本题主要考查了正方体的展开图考查,准确判断符号方向是解题的关键.14.B【分析】根据题意作图得到运动的轨迹,根据矩形的周长特点即可求解.【详解】如图,这个人所走的路程是图中的矩形,周长为2(3+4)=14故选B.【点睛】此题主要考查网格的作图,解题的关键是根据题意作出图形求解.15.C【分析】连接BE,交AD于点M,过点E作EF∠BC交于点F,此时EM+CM的值最小,求出BE即可.【详解】解:连接BE,交AD于点M,过点E作EF∠BC交于点F,∠∠ABC是等边三角形,AD是BC边上的中线,∠B点与C点关于AD对称,∠BM=CM,∠EM+CM=EM+BM=BE,此时EM+CM的值最小,∠AC=6,AE=2,∠EC=4,在Rt∠EFC中,∠ECF=60°,∠FC=2,EF=在Rt∠BEF中,BF=4,∠BE=故选:C.【点睛】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,灵活运用勾股定理是解题的关键.16.C【分析】根据题意画出图形,再根据图形求解即可.【详解】解:(1)当C在线段AB延长线上时,如图1,∠M、N分别为AB、BC的中点,∠BM=12AB=30,BN=12BC=20;∠MN=50.(2)当C在AB上时,如图2,同理可知BM =30,BN =20,∠MN =10;所以MN =50或10,故选C .【点睛】本题考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.17.B【分析】4点时,分针与时针相差四大格,即120°,根据分针每分钟转6°,时针每分钟转0.5°,则40分钟后它们的夹角为40×6°﹣4×30°﹣40×0.5°.【详解】4点40分钟时,钟表的时针与分针形成的夹角的度数=40×6°﹣4×30°﹣40×0.5°=100°.故选B .【点睛】本题考查了钟面角:钟面被分成12大格,每大格30°;分针每分钟转6°,时针每分钟转0.5°.18.D【分析】根据题意结合图形列出方程组,解方程组即可.【详解】解:由题意得,1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩==. 故选:D .【点睛】本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.19.A【分析】先根据∠CED =50°,DE ∠AF ,即可得到∠CAF =50°,最后根据∠BAC =60°,即可得出∠BAF 的大小.【详解】∠DE ∠AF ,∠CED =50°,∠∠CAF =∠CED =50°,∠∠BAC =60°,∠∠BAF=60°﹣50°=10°,故选:A.【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键.20.D【分析】先求出∠ABC,再延长CE,交AB于点G,结合平行线的性质表示出∠BCE,然后根据三角形内角和定理表示∠CED,再根据角平分线得定义表示出∠CEB,最后根据三角形内角和定理得出答案.【详解】在∠ABC中,∠CAB=40°,∠ACB=90°,∠∠ABC=50°.延长CE,交AB于点G,∠MN BA∥,∠EGBα∠=,∠ACM=∠BAC=40°,∠∠ACE=α-40°,∠∠BCE=90°-(α-40°)=130°-α.∠∠CEA=180°-∠CAE-∠ACE,∠∠CED=180°-∠CEA=∠CAE+∠ACE=20°+(α-40°)=α-20°.∠EF平分∠CED,∠∠CEF=111022CEDα∠=-︒,∠∠CEB=1110706022αα-︒+︒=+︒,∠∠EBC=11180(60)(130)10 22ααα︒-+︒-︒-=-︒.故选:D.【点睛】本题主要考查了角平分线的定义,三角形内角和定理,平行线的性质,将待求角转化到适合的三角形是解题的关键.21.55°##55度【分析】根据将∠AOB 绕点O 按逆时针方向旋转40°后得到∠COD ,可得∠BOD = 40° 即可得∠AOD =∠BOD +∠AOB = 55°.【详解】∠将∠AOB 绕点O 按逆时针方向旋转40°后得到∠COD .∠∠BOD = 40°,∠∠AOB = 15°∠∠AOD =∠BOD +∠AOB = 40°+ 15°= 55°,故答案为:55°.【点睛】本题考查三角形的旋转变换,解题的关键是掌握旋转的性质.22. 90°##90度 180°##180度【分析】根据互余,互补的定义即可得到结果.【详解】若∠A 与∠B 互余,则∠A +∠B =90°;若∠A 与∠B 互补,则∠A +∠B =180°.故答案为:90°,180°【点睛】解答本题的关键是熟记和为90°的两个角互余,和为180°的两个角互补. 23.110【分析】根据角平分线可得270AOC AOD ∠=∠=︒,再利用补角的性质求解即可得.【详解】解:∵OD 平分AOC ∠,35AOD ∠=︒,∴223570AOC AOD ∠=∠=⨯︒=︒,∵AOC ∠与BOC ∠是邻补角,∴180AOC BOC ∠+∠=︒,∴18070110BOC ∠=︒-︒=︒.故答案为:110.【点睛】题目主要考查角平分线的计算及补角的性质,理解题意,结合图形求角度是解题关键.24.50【分析】先求出∠BOD ,根据平角的性质即可求出∠AOC .【详解】∠OE 是∠DOB 的角平分线,当∠DOE =20°∠∠BOD =2∠DOE =40°∠OC ∠OD ,∠∠AOC =180°-90°-∠BOD =50°故答案为:50.【点睛】此题主要考查角度求解,解题的关键是熟知角平分线的性质、直角的性质. 25.四【详解】试题解析:设该棱柱为n 棱柱,根据题意得:3n =12.解得:n =4.所以该棱柱为四棱柱,故答案是:四.26.2【分析】根据中位线的性质可得EF BC ∥,EF =12BC =5,则有∠CBD =∠BDE ,AE =BE =12AB =3,再根据BD 平分∠ABC ,有∠ABD =∠CBD ,即有∠ABD =∠BDE ,则可得DE =BE =3,问题得解.【详解】∠EF 是∠ABC 的中位线,∠EF BC ∥,EF =12BC =5,E 点为AB 中点, ∠∠CBD =∠BDE ,AE =BE =12AB =3. ∠BD 平分∠ABC ,∠∠ABD =∠CBD ,∠∠ABD =∠BDE ,∠DE =BE =3.∠DF =EF −DE =EF −BE =5−3=2.故答案为:2.【点睛】本题考了三角形中位线的性质、角平分线的性质以及等角对等边的知识,求出DE =BE 是解答本题的关键.27.3434'︒【分析】直接利用互余两角的关系,结合度分秒的换算得出答案.【详解】解:∠5526α∠=︒',∠α∠的余角为:9055263434'=︒'︒-︒.故答案为:3434'︒.【点睛】此题主要考查了余角的定义和度分秒的转换,正确把握相关定义是解题关键. 28.两点确定一条直线【分析】由于两点确定一条直线,所以在墙上固定一根木条至少需要两根钉子.【详解】在墙上固定一根木条至少需要两根钉子,依据的数学道理是两点确定一条直线. 故答案为两点确定一条直线.【点睛】当木工师傅锯木板时,他会用墨盒在木板上弹出墨线,这样会使木板沿直线锯下;在正常情况下,射击时只要保证瞄准的一只眼在两个准星确定在直线上,才能射中目标等等;它们都是运用了“两点确定一条直线”的直线的性质.29. 棱, 侧棱;【分析】由棱柱的组成部分的定义直接填空即可.【详解】在棱柱中,任何相邻的两个面的交线都叫做棱,相邻的两个侧面的交线叫做侧棱. 故答案为棱;侧棱.【点睛】熟记面与面相交成线,在棱柱中,任何相邻的两个面的交线都叫做棱. 30.31°【分析】要求AEC ∠的度数,根据平行线的性质,只需求得2∠的度数.显然结合平行线的性质以及角平分线的定义就可解决.【详解】解://AB CD ,CE 平分ACD ∠交AB 于E ,118A ∠=︒,1112(180)(180118)3122A ∴∠=∠=︒-∠=︒-︒=︒, 231AEC ∴∠=∠=︒,故答案为:31°.【点睛】本题考查的是角平分线的性质及平行线的性质,比较简单,需同学们熟练掌握.31.70︒##70度【分析】根据三角形外角的定义和性质可知ADC A ABD ∠=∠+∠,利用轴对称的性质求出A ∠与ABD ∠的大小并进行计算即可. 【详解】解:AOB 与COB △关于边OB 所在的直线成轴对称∴20A C ∠=∠=︒,2ABD ABO ∠=∠,根据三角形外角的性质可知:在AOB 中,452025ABO BOD A ∠=∠-∠=︒-︒=︒222550ABD ABO ∴∠=∠=⨯︒=︒∴ 在ABD △中,205070ADC A ABD ∠=∠+∠=︒+︒=︒.故答案为:70︒.【点睛】本题考查轴对称的性质和三角形外角的性质,熟练运用三角形的外角性质进行计算是本题的解题关键.32.∠∠∠【分析】根据平行线的判定与性质即可逐一进行证明.【详解】解:∠∠230∠=︒,∠190260∠=︒-∠=︒,∠60AED ∠=︒,∠1AED ∠=∠,∠AC DE ∥;所以∠正确;∠∠BC AD ∥,∠345B ∠=∠=︒,∠290345∠=︒-∠=︒;所以∠正确;∠如图,∠445,60EGF GEF ∠=∠=︒∠=︒,∠4560105GFA ∠=︒+︒=︒,∠1GFA C ∠=∠+∠,∠45C ∠=︒,∠160∠=︒.所以∠正确.∠∠123290∠+∠=∠+∠=︒,∠21239090180BAE CAD ∠+∠=∠+∠+∠+∠=︒+︒=︒,∠BAE CAD ∠+∠随着2∠的变化不会发生变化;所以∠错误;所以其中正确的是∠∠∠.故答案为:∠∠∠.【点睛】本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并熟练运用.33.2或8【分析】由已知C 是线段AB 中点,AB=10,求得BC'= 5,进一步分类探讨:E 在BC 内;E 在BC 的延长线上;由此画图得出答案即可.【详解】C 是线段AB 的中点, AB= 10,BC= AB= 5,如图,当E 在BC 内,CE= BC- BE= 5- 3=2;∠如图,E 在BC 的延长线上,CE= BC+ BE= 5+3=8 ;所以CE= 2或8;故本题答案为:2或8.【点睛】解决本题的关键突破口是分类讨论,本题考查了学生综合分析的能力,要求学生掌握线段中点的意义,线段的和与差.34.153cm 【分析】根据线段的比例,可得线段的长度,根据线段的和差,可得答案.【详解】∠AC :CD :DB=1:2:3,设AC=a ,CD=2a ,DB=3a ,∠AB=AC+CD+DB=a+2a+3a=6a=8,解得:a=43, ∠AC=43,DB=3×43=4, ∠M 、N 分别为AC 、DB 的中点, ∠AM=12AC=23,BN=12DB=2, ∠MN=AB-AM-BN=8-23-2=513(cm ). 故答案为:153cm 【点睛】本题考查了与线段中点有关的计算,根据比例关系列出方程求出各线段的长是关键.35. 30° 30° 角平分线定义 ∠CON 12BOC ∠ α 【分析】对于(1),根据角平分线定义得12COM AOC ∠=∠,12CON BOC ∠=∠,再结合12MON COM CON AOB ∠=∠+∠=∠,可得答案; 对于(2),仿照(1),根据12MON COM CON AOB ∠=∠-∠=∠求解; 对于(3),仿照(2)解答即可.(1)因为OM 平分∠AOC ,ON 平分∠BOC , 所以12COM AOC ∠=∠,12CON BOC ∠=∠, 所以11603022MON COM CON AOB ∠=∠+∠=∠=⨯︒=︒. 故答案为:30°.(2) 因为OM 平分∠AOC ,ON 平分∠BOC , 所以12COM AOC ∠=∠,12CON BOC ∠=∠, 所以11603022MON COM CON AOB ∠=∠-∠=∠=⨯︒=︒. 故答案为:30°.(3)因为OM 平分∠AOC ,ON 平分∠BOC , 所以12COM AOC ∠=∠,12CON BOC ∠=∠(依据的角平分线定义), 所以111222MON COM CON AOC BOC α∠=∠-∠=∠-∠=. 故答案为:角平分线定义,∠CON ,12BOC ∠,α. 【点睛】本题主要考查了角的和差的计算,角平分线定义,掌握角平分线定义是解题的关键.36.10+【分析】根据含30°角的直角三角形的性质求出DE 、根据勾股定理求出AE ,根据线段垂直平分线的性质、三角形的周长公式计算,得到答案.【详解】解:∠60BAC ∠=︒,AD 是角平分线,∠30DAE ∠=︒,在Rt DAE 中,20,30AD DAE =∠=︒, ∠1102DE AD ==,由勾股定理得:AE =∠AD 的垂直平分线交AC 于点F ,∠FA FD =,∠DEF 的垂直10DE EF FD DE EF FA DE AE =++=++=+=+故答案为:10+【点睛】本题考查的是直角三角形的性质、勾股定理、线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.37.35︒或55︒【分析】分OC 在AOB ∠的内部和外部进行讨论,运用角平分线性质及角的和差进行运算即可.【详解】解:∠AOB 90∠=,OE 平分,AOB ∠ ∠∠BOE=12∠AOB=45°∠20,BOC ∠=OF 平分BOC ∠ ∠∠FOC=∠FOB =12∠BOC=10°当OC 在AOB ∠的内部时,如图∠∠EOF=∠BOE-∠BOF=45-10=35︒︒︒当OC 在AOB ∠的外部时,如图∠∠EOF=∠BOE+∠BOF=45+10=55︒︒︒故答案为:35︒或55︒【点睛】本题考查了角平分线的定义,先求出∠BOC 的度数,再求出∠FOC 的度数,最后求出答案,有两种情况,以防漏掉.38.L M N >>【分析】根据连接两点的所有线中,线段最短的性质解答.【详解】∠AB+AE >BE ,CD+DE >CE ,∠AB+AE+CD+DE >BE+CE ,即l >m ,又BE+CE >BC ,即m >n ,∠L M N >>.【点睛】本题考查了知识点两点之间线段最短,解题的关键是熟记性质.39. (1)4 (2)116或1742. 【分析】(1)画出符合题意的图形,由18,2AB AC BC ==,求解BC ,再利用线段的和差关系求解EC 即可得到答案;(2)根据AC=2BC ,AB=2DE ,线段DE 在直线AB 上移动,满足关系式32AD EC BE +=,再分六种情况讨论,∠当DE 在点A 左侧时,∠当A 在DE 之间时,∠当DE 在线段AC 上时,∠当C 在DE 之间时,∠当D 在CB 之间时,∠当D 在B 的右边时,可以设CE=x ,DC=y ,用含x 和y 的式子表示,,AD EC BE 的长,从而得出x 与y 的等量关系,即可求出 CD AB的值. 【详解】解:(1)如图,18AB DB ==,2,AC BC = 163BC AB ∴==, 8DE =,1886 4.EC AB DE BC ∴=--=--=(2)∠AC=2BC ,AB=2DE ,满足关系式32AD EC BE +=, ∠当DE 在点A 左侧时,如图,设CE=x ,DC=y , 则DE y x =-,∠()()242,33AB y x AC AB y x =-==-,()12222,333BC y x y x =-=-∠41,33AD DC AC x y =-=- ∠2133BE BC CE y x =+=+ ∠7133AD EC x y +=- ∠32AD EC BE +=, ∴ ()23,AD EC BE += ∠7121233333x y y x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 解得,811x y =, ∠ ()11.826211CD y y AB y x y y ===-⎛⎫- ⎪⎝⎭ ∠当A 在DE 之间时,如图,设,,CE x CD y == 则DE y x =-, 同理可得:11.6CD AB = ∠当DE 在线段AC 上时,设,,CE x CD y == 则DE y x =-,,222,DE y x AB DE y x ∴=-==-24422,,33333AC AB y x BC y x ∴==-=- 1411,,3333AD AC CD y x AD CE y x ∴=-=-+=- 21+,33BE BC CE y x ==+ AD CE ∴+<,BE32AD EC BE +=, AD CE ∴+>,BE∴ 不合题意舍去;∠当C 在DE 之间时,如图,设CE=x ,DC=y , 则DE=x+y ,∠()()242,,33AB x y AC AB x y =+==+ ()()112333BC AB x y x y ==+=+, ∠41,33AD AC DC x y =-=+ ∠7133AD EC x y +=+ ∠21,33BE BC CE y x =-=- ∠32AD EC BE += ∴ ()23,AD EC BE += ∠7121233333x y y x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭, 解得,417x y =, ∠ ()174242217CD y y AB x y y y ===+⎛⎫+ ⎪⎝⎭. ∠当D 在CB 之间时,设,,CD y CE x == 则,222,DE x y AB DE x y =-==- 4422,,3333AC x y BC x y ∴=-=- 4112,,3333AD AC CD x y BE CE BC x y ∴=+=-=-=+ 71,33AD CE x y ∴+=- ∠32AD EC BE += ∴ ()23,AD EC BE += 同理可得:8,11x y = 与图形条件x >y 不符舍去, ∠当D 在B 的右边时,设,,CD y CE x == 则,222,DE x y AB DE x y =-==-4422,,3333AC x y BC x y ∴=-=- 4112,,3333AD AC CD x y BE CE BC x y ∴=+=-=-=+ 71,33AD CE x y ∴+=- ∠32AD EC BE += ∴ ()23,AD EC BE += 同理可得:8,11x y =与图形条件x >y 不符,舍去, 综上:CD AB 的值为:116或1742. 故答案为116或1742. 【点睛】本题考查的是线段的和差关系,二元一次方程思想,与线段相关的动态问题,分类讨论的思想,掌握以上知识是解题的关键.40.(1)圆柱(2)长方形、圆形或梯形(3)168π平方厘米或224π平方厘米【分析】(1)由图形旋转性质可知旋转后得到的几何体是圆柱;(2)用一个平面截圆柱,从不同角度截取的形状不同;(3)分情况讨论,找出圆柱的底面半径和高,即可求解.【详解】(1)解:由图形旋转性质可知,绕长方形的一边所在直线旋转一周后所得立方体为柱体、底面为圆,因此得到的几何体是圆柱.故答案为圆柱.(2)解:用一个平面截圆柱,截面形状可能为长方形、圆形或梯形.(3)解:分情况讨论,若绕BC 边旋转,则所得圆柱的表面积为:228286=224S S S 侧底平方厘米;若绕CD 边旋转,则所得圆柱的表面积为:226268=168S S S 侧底平方厘米.故旋转得到的几何体的表面积为168π平方厘米或224π平方厘米.【点睛】本题考查了点、线、面、体,截几何体,圆柱的表面积计算等知识点,解题关键是理解点动成线、线动成面、面动成体.41.【解析】略42.(1)70BOD ∠=︒(2)40AOB ∠=︒ (3)()12αβ+;12θ【分析】(1)根据角平分线的定义得出40BOC AOB ∠=∠=︒,30DOC DOE ∠=∠=︒,再根据角度之间的关系求出BOD ∠的度数即可;(2)先根据角平分线的定义,30COD ∠=︒,得出260COE COD ∠=∠=︒,根据140AOE ∠=︒,求出80AOC ∠=︒,根据角平分线的定义即可得出答案; (3)根据角平分线的定义得出1122BOC AOC ∠=∠=︒,1122COD COE ∠=∠=︒,根据角度之间的关系得出()12BOD ∠=+︒;根据角平分线的定义得出12BOD AOE ∠=∠. 【详解】(1)解:∠OB 为AOC ∠的平分线,OD 是COE ∠的平分线,∠40BOC AOB ∠=∠=︒,30DOC DOE ∠=∠=︒,∠403070BOD BOC DOC ∠=∠+∠=︒+︒=︒.(2)解:∠OD 是COE ∠的平分线,30COD ∠=︒,∠260COE COD ∠=∠=︒,∠140AOE ∠=︒,∠80AOC AOE COE ∠=∠-∠=︒,∠OB 为AOC ∠的平分线,∠4120AOB AOC ∠=∠=︒. (3)解:∠OB 为AOC ∠的平分线,OD 是COE ∠的平分线,AOC α∠=︒,COE β∠=︒,∠1122BOC AOC ∠=∠=︒,1122COD COE ∠=∠=︒, ∠()111222BOD BOC COD ∠=∠+∠=︒+︒=+︒; ∠OB 为AOC ∠的平分线,OD 是COE ∠的平分线,∠1BOC AOB 2∠=∠,12COD COE ∠=∠, ∠BOD BOC COD ∠=∠+∠1122AOC COE =∠+∠ ()12AOC COE =∠+∠ 12AOE =∠ 12=. 故答案为:()12αβ+;12θ. 【点睛】本题主要考查了角平分线的定义,几何图形中的角度计算,解题的关键是熟练掌握角平分线的定义,数形结合.43.(1)2BC cm =;(2)16AB cm =【分析】(1)先求出AC ,根据BC=AB-AC ,即可求出BC ;(2)求出BC=2CN, AC=2CM,把MN=CN+MC=8cm 代入求出即可.【详解】解: (1) ∠点M 是线段AC 的中点,∠AC=2AM,∠AM=5cm,∠AC=10cm,∠AB=12cm ,∠BC=AB-AC=12-10=2cm,(2)∠点M 是线段AC 的中点,点N 是线段BC 的中点.∠BC=2NC ,AC=2MC,∠MN=NC+MC=8cm ,∠AB=BC+AC=2NC+2MC==2(NC+MC)=2MN=28⨯cm=16cm .【点睛】本题考查了两点之间的距离的应用,主要考查学生的观察图形的能力和计算能力.44【分析】由AB=3,AD=4,BF=5长宽高三种长度不同,蚂蚁走的折面不同,距离也不同,要按不同的棱展开两个面,(1)长方形沿着棱ND展开,(2)长方形沿着棱DC展开,(3)长方形沿着棱BC展开,用勾股定理求出对角线的长度,再比较取最短者.【详解】∠AB=3,AD=4,BF=5∠MC =BF=AE=5,BC=AD=MF=4,MN= CD=AB=3(1)长方形沿着棱ND展开如图∠所示时,在Rt∆AEM中AM2=AE2+EM2= AE2+(NE+MN)2=52+(3+4)2=25+49=74,(2)长方形沿着棱DC展开如图∠所示时,AM2=AB2+( BC+CM)2=32+(4+5)2=9+81=90,(3)长方形沿着棱BC展开如图∠所示时,AM2=MF2+( AB+BF)2=42+(3+5)2=16+64=80,∠ AM=∠【点睛】本题考查蚂蚁所走最短路径问题,涉及长方体的侧面展开问题,要会分析最短路径涉及几个面展开,展开后走的哪条路径为最短,分别求出经比较才能解决问题.45.(1)145°(2)∠MEN=2∠MFN,证明见解析(3)1∠MEN+∠MFN=180°,证明见解析2【分析】分析:(1)过E作EH∠AB,FG∠AB,根据平行线的性质得到结论;(2)根据三角形的外角的性质得,平行线的性质,角平分线的定义即可得到结论;(3)根据平行线的性质得到∠MGE∠∠ENC,根据角平分线的定义得到∠MGE∠∠ENC∠2∠FNG∠∠AME∠2∠1∠∠E∠∠MGE∠∠E∠2∠FNG,根据三角形的外角的性质和四边形的内角和即可得到结论.(1)解:如图1,过E作EH∠AB,FG∠AB。

初中数学几何图形的绘制练习题及参考答案

初中数学几何图形的绘制练习题及参考答案

初中数学几何图形的绘制练习题及参考答案几何图形是初中数学非常重要的一部分,掌握几何图形的基本知识对于初中生来说至关重要。

在学习中,掌握图形的绘制是基础,下面我们来看一些几何图形的绘制练习题及参考答案。

一. 直角三角形的绘制直角三角形有一个直角和两个锐角。

我们可以根据直角三角形的特点来进行绘制。

1. 练习题:请在平面直角坐标系中,作出三点坐标分别为(0,0)、(5,0)和(0,3)的直角三角形ABC,其中∠A为直角。

2. 参考答案:首先,在平面直角坐标系中先依次连接AB、AC和BC三条线段,然后通过使用勾股定理,我们可以求出AC的边长为√(5²+3²)=√34,以此为半径做一个以A为圆心的圆,与AB相交于点D,则AD的长度为5。

然后我们在点D处作一条以AC为对边的平行线DE,使其与BC相交于点E,则DE和BC即为所求的直角三角形的另两条边。

二. 直线的绘制直线是初中数学中一种最基本的图形,可以通过给定其上两个点或一点及其斜率来进行绘制。

1. 练习题:在平面直角坐标系中,分别绘制过以下两点的直线:点A(2,3)和点B(5,7);点C(-3,-1)和点D(1,-5)。

2. 参考答案:在平面直角坐标系中,首先连接点A和点B,然后我们可以通过计算其斜率为:(7-3)/(5-2) = 4/3。

然后我们带入点A或者点B,即y-3=(4/3)(x-2),展开后化简为y = (4/3)x - 2/3,该式即直线AB的解析式。

同理地,可以得到点C和点D所连成的直线的解析式。

三. 圆的绘制圆是由平面内到定点距离相等的点所组成的图形。

我们可以通过给定圆心和半径来进行圆的绘制。

1. 练习题:在平面直角坐标系中,绘制一个圆心坐标为(3, -1), 半径为4的圆.2. 参考答案:在平面直角坐标系中,先在点(3,-1)处作一个点,然后再以此为圆心,半径为4作一个圆,即可得到所求的圆形。

利用圆的解析式可以表示该圆形,即(x-3)² + (y+1)² = 4²。

最新人教版初中九年级上册数学难点探究专题:相似与几何图形的综合问题

最新人教版初中九年级上册数学难点探究专题:相似与几何图形的综合问题

难点探究专题:相似与几何图形的综合问题——突破相似与三角形、四边形等综合问题及含动点的解题思路◆类型一 相似与三角形1.(娄底中考)一块直角三角板ABC 按如图放置,顶点A 的坐标为(0,1),直角顶点C 的坐标为(-3,0),∠B =30°,则点B 的坐标为 .第1题图第2题图2.(无锡中考)如图,Rt △ABC 中,∠ACB =90°,AC =3,BC =4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处.再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B ′F 的长为( )A.35B.45C.23D.32 ◆类型二 相似与四边形3.★(黄石中考)现有多个全等直角三角形,先取三个拼成如图①所示的形状,R 为DE 的中点,BR 分别交AC ,CD 于P ,Q ,易证BP ∶PQ ∶QR =3∶1∶2.(1)若取四个直角三角形拼成如图②所示的形状,S 为EF 的中点,BS 分别交AC ,CD ,DE 于P ,Q ,R ,则BP ∶PQ ∶QR ∶RS = ;(2)若取五个直角三角形拼成如图③所示的形状,T 为FG 的中点,BT 分别交AC ,CD ,DE ,EF 于P ,Q ,R ,S ,则BP ∶PQ ∶QR ∶RS ∶ST = .4.★★(安徽中考)如图①,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD =∠BGC .(1)求证:AD =BC ;(2)求证:△AGD ∽△EGF ;(3)如图②,若AD 、BC 所在直线互相垂直,求ADEF 的值.◆类型三 运用相似解决几何图形中的动点问题5.如图,在正方形ABCD 中,M 是BC 边上的动点,N 在CD 上,CN =14CD ,若AB =1,设BM =x ,当x = 时,以A 、B 、M 为顶点的三角形和以N 、C 、M 为顶点的三角形相似.6.★(钦州中考)如图,在平面直角坐标系中,以点B (0,8)为端点的射线BG ∥x 轴,点A 是射线BG 上的一个动点(点A 与点B 不重合),在射线AG 上取AD =OB ,作线段AD 的垂直平分线,垂足为E ,与x 轴交于点F ,过点A 作AC ⊥OA ,交射线EF 于点C ,连接OC 、CD ,设点A 的横坐标为t .(1)用含t 的式子表示点E 的坐标为 ; (2)当t 为何值时,∠OCD =180°?7.★如图,在一块直角三角板ABC 中,∠C =90°,∠A =30°,BC =1,将另一个含30°角的△EDF 的30°角的顶点D 放在AB 边上,E 、F 分别在AC 、BC 上,当点D 在AB 边上移动时,DE 始终与AB 垂直,若△CEF 与△DEF 相似,求AD 的长度.难点探究专题:相似与几何图形的综合问题1.(-3-3,33) 解析:如图,过点B 作BE ⊥x 轴于点E .易证△EBC ∽△OCA ,∴EB OC =BCCA =ECOA.∵点A 的坐标为(0,1),点C 的坐标为(-3,0),∴OA =1,OC =3,∴AC =OA 2+OC 2=10.在Rt △ACB 中,∠B =30°,∴AB =2AC =210,∴BC =AB 2-AC 2=30,∴BCAC = 3.∴BE =33,EC =3,∴EO =EC +CO =3+3,∴点B 的坐标为(-3-3,33).2.B 解析:在Rt △ABC 中,∵∠ACB =90°,AC =3,BC =4,∴AB =5.∵将边AC 沿CE 翻折,使点A 落在AB 上的点D 处,∴AE =DE ,CE ⊥AB .易得△AEC ∽△ACB ,∴AC AB =AEAC ,∴AE=95.∵S △ABC =12AB ·CE =12AC ·BC ,∴CE =125.∵将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,∴∠ECF =45°,∴EF =CE =125,∴BF =AB -AE -EF =5-95-125=45.故选B.3.(1)4∶1∶3∶2 (2)5∶1∶4∶2∶3 解析:(1)由题意可知ABBC=CE =12BE .设CQ =a .∵S 是EF 的中点,∴EF =2ES .∵CD ∥EF ,∴△BCQ ∽△BES ,∴CQ ES =BCBE =12,∴ES =2CQ =2a ,∴AB =CD =EF =2ES =4a ,QD =3a .∵AB ∥CD ,∴△ABP ∽△CQP ,∴BP QP =AB CQ =41.同理:PQ QR =CQ QD =13,QR RS =QD ES =32.∴BP ∶PQ ∶QR ∶RS = 4∶1∶3∶2.故答案为4∶1∶3∶2;(2)设CP =b .由题意可知BC =CE =EG =13BG .∵T 是FG 的中点,∴FG =2TG .∵AC ∥DE ,∴△BCP ∽△BER ,∴CP ER =BC BE =12,∴RE =2CP =2b .同理:△BCP ∽△BGT ,∴CP TG =BC BG =13,∴TG =3CP =3b ,∴AC =DE =FG =6b ,∴AP =5b ,DR =4b ,FT =3b .∵AB ∥CD ,∴△ABP ∽△CQP ,∴BP QP =AP CP =51.同理:PQ QR =CP DR =14,QR RS = DR RE =42,RSST =RE FT =23.∴BP ∶PQ ∶QR ∶RS ∶ST = 5∶1∶4∶2∶3.故答案为5∶1∶4∶2∶3. 方法点拨:根据已知条件,充分利用图形中平行的条件,连续用相似三角形的判定与性质,得出线段之间的比例关系,“遇平行,想相似;用相似,得比例”是相似形的常用思路之一.4.(1)证明:∵点E 是AB 的中点,GE ⊥AB ,∴GE 是线段AB 的垂直平分线,∴AG =BG .同理可得GD =GC .在△AGD 与△BGC 中,⎩⎪⎨⎪⎧AG =BG ,∠AGD =∠BGC ,GD =GC ,∴△AGD ≌△BGC ,∴AD =BC ;(2)证明:∵∠AGD =∠BGC ,∴∠AGB =∠DGC .∵AG =BG ,DG =CG ,且E 、F 分别为AB 、CD 的中点,∴∠AGE =12∠AGB ,∠DGF =12∠DGC ,∴∠AGE =∠DGF ,∴∠AGE -∠DGE =∠DGF-∠DGE ,即∠AGD =∠EGF .∵GE ⊥AB ,GF ⊥CD ,∴∠AEG =∠DFG =90°,∴△AGE ∽△DGF ,∴AG DG =GE GF ,∴AG GE =DGGF.又∵∠AGD =∠EGF ,∴△AGD ∽△EGF ;(3)解:如图,延长AD 交BC 的延长线于点M .∵AD 、BC 所在的直线互相垂直,∴∠DAB +∠ABC =90°,即∠DAB +∠ABG +∠GBC =90°.由(1)可知△AGD ≌△BGC ,∴∠GAD =∠GBC .∴∠DAB +∠ABG +∠GAD =90°,即∠GAB +∠GBA =90°.由(1)可知AG =BG ,∴∠GAB =∠GBA ,∴∠GAB =45°.又∵GE ⊥AB ,∴∠AEG =90°,∴GA =AE 2+GE 2=2GE ,∴GAGE= 2.由(2)可知△AGD ∽△EGF ,∴AD EF =GAGE= 2.5.12或456.解:(1)(t +4,8)(2)∵EF 是线段AD 的垂直平分线,点C 在射线EF 上,AD =BO =8,∴AE =DE =12AD =4,∠AEC =90°,∴∠ECA +∠EAC =90°.又∵AO ⊥CA ,∴∠OAC =90°,∴∠BAO +∠EAC =90°,∴∠ECA =∠BAO .又∵BG ∥x 轴,∴BG ⊥y 轴,则∠OBA =90°,∴∠AEC =∠OBA ,∴△ABO ∽△CEA ,∴BO EA =AB CE ,即84=t CE .∴CE =12t .当∠OCD =180°时,点C 在线段OD 上.∵EF ⊥BG ,BO ⊥BG ,∴CE ∥BO ,∴△CDE ∽△ODB ,∴CE OB =DE DB ,即12t 8=4t +8,∴12t 2+4t-32=0,解得t 1=45-4,t 2=-45-4(不合题意,舍去).∴当t =45-4时,∠OCD =180°.7.解:∵∠C =90°,∠A =30°,∴∠B =60°.∵∠EDF =30°,ED ⊥AB 于D ,∴∠FDB =60°,∴△BDF 是等边三角形.∵BC =1,∴AB =2.∵BD =BF ,∴2-AD =1-CF ,∴AD =CF +1.(Ⅰ)如图①,若∠FED =90°,则∠FED =∠ADE ,∴EF ∥AB ,∴∠CEF =∠A =30°,∴CF =12EF ,∠CEF =∠EDF .又∵∠C =∠FED =90°,∴△CEF ∽△EDF ,∴CF EF =EF DF ,即CF 2CF =2CF1-CF ,解得CF =15,∴AD =15+1=65;(Ⅱ)如图②,若∠EFD =90°,则∠CFE =180°-90°-60°=30°,∴CE =12EF ,∠CFE =∠FDE .又∵∠C =∠EFD =90°,∴△CEF ∽△FED ,∴CF FD =CE FE ,即CF 1-CF =12,解得CF =13,∴AD =13+1=43. 综上所述,若△CEF 与△DEF 相似,AD 的长为65或43.我爸爸告诉我,你现在翻的一页书都是将来要数的一张张钞票,所以不让你学习的人,就是在抢你的财富,不想要的都是傻子。

初中数学几何图形练习题库附答案

初中数学几何图形练习题库附答案

初中数学几何图形练习题库附答案1. 题目:在平面直角坐标系中,已知点A(3,4)和B(-2,1),求线段AB的长度和斜率。

解答:根据两点间距离公式,线段AB的长度为√[(x2-x1)²+(y2-y1)²],所以线段AB的长度为√[(-2-3)²+(1-4)²] = √[25+9] = √34。

斜率k = (y2-y1)/(x2-x1),所以斜率k = (1-4)/(-2-3) = -3/-5 = 3/5。

2. 题目:已知△ABC中,AB=AC,∠BAC=30°,求∠ABC和∠ACB的度数。

解答:由于AB=AC,所以△ABC是等腰三角形,∠BAC=∠CAB。

根据三角形内角和定理可知,∠ABC+∠BAC+∠ACB = 180°。

将题目中已知条件代入,得到∠ABC+30°+∠ABC = 180°,化简得到2∠ABC = 150°,再化简得到∠ABC = 75°。

由于∠BAC=∠CAB=30°,所以∠ACB = 180° - ∠BAC -∠ABC = 180° - 30° - 75° = 75°。

3. 题目:已知平行四边形ABCD中,AB=8cm,BC=6cm,求对角线AC的长度以及角ACD的度数。

解答:对角线AC把平行四边形分成两个全等三角形△ABC和△ACD。

根据勾股定理可以求得AC的长度,即AC²=AB²+BC²,所以AC = √(8²+6²) = √(64+36) = √100 = 10cm。

由于△ABC和△ACD是全等三角形,所以∠ACD = ∠ABC = 180° - ∠ACB = 180° - 75° = 105°。

4. 题目:已知等腰梯形ABCD中,AB∥CD,AB=CD=12cm,AD=9cm,求梯形的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档