高考物理试题真题分类汇编物理动量守恒定律

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理试题真题分类汇编物理动量守恒定律

一、高考物理精讲专题动量守恒定律

1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.

①求弹簧恢复原长时乙的速度大小;

②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】

(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:

又知

联立以上方程可得

,方向向右。

(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为

由动量定理可得,挡板对乙滑块冲量的最大值为:

2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的

1

2

反弹,小球向右摆动一个小角度即被取走。已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度2

10m/s g =。求:

(1)碰撞后瞬间,小球受到的拉力是多大?

(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】

解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:

22

1111011=22

m gL m v m v μ--

解之可得:1=4m/s v 因为1v v <,说明假设合理

滑块与小球碰撞,由动量守恒定律:21111221

=+2

m v m v m v - 解之得:2=2m/s v

碰后,对小球,根据牛顿第二定律:2

22

2m v F m g l

-=

小球受到的拉力:42N F =

(2)设滑块与小球碰撞前的运动时间为1t ,则()0111

2

L v v t =+ 解之得:11s t =

在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=

设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭

解之得:22s t =

滑块向左运动最大位移:121122m x v t ⎛⎫

=

⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度

11

2

v

在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程

22212X vt m ∆==

因此,整个过程中,因摩擦而产生的内能是

()112Q m g x x μ=∆+∆=13.5J

3.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:

(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2

014

mv ;(2) 0mv 【解析】 【详解】

解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以

2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速

度相等,有:2

12

v v =

而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:0

12

v v =

,20 v v = 所以第一次碰撞中的机械能损失为:2

2

22012011

11222

2

24

E m v m v mv mv ∆=--=g

g g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=

4.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L 。物体P 置于P 1的最右端,质量为2m 且可以看作质点。P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起,P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内)。P 与P 2之间的动摩擦因数为μ,求:

(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧最大压缩量x 和相应的弹性势能E p 。

【答案】(1) 201v v =,4

302v v = (2)L g v x -=μ3220,162

p mv E = 【解析】(1) P 1、P 2碰撞过程,动量守恒,102mv mv =,解得2

1v v =

。 对P 1、P 2、P 组成的系统,由动量守恒定律 ,204)2(mv v m m =+,解得4

30

2v v =

(2)当弹簧压缩最大时,P 1、P 2、P 三者具有共同速度v 2,对P 1、P 2、P 组成的系统,从

P 1、P 2碰撞结束到P 压缩弹簧后被弹回并停在A 点,用能量守恒定律

)(2)2()2(212212212

22021x L mg u v m m m mv mv ++++=⨯+⨯ 解得L g

v x -=μ3220

相关文档
最新文档