重卡车架纵梁点焊工艺

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双点焊工艺总结

1 点焊质量

1.1焊接质量与参数对照表

(1)开始时电极预紧压力过小,熔化核心周围未形成塑性金属环而向外飞溅;

(2)加热结束时,因加热时间过长,熔化核心过大,在电极压力下,塑性金属环发生崩溃,熔化金属从焊件之间或焊件表面溢出。

1.3焊接质量一般要求

1.3.1 焊透率

点焊接头的强度决定于焊点的几何尺寸及其内外质量。一般要求熔核直径随板厚增加而增大。熔核在单板上的熔化厚度hn对板厚度δ的百分比称焊透率A,即A=单板上的熔化高度hn/板厚δ×100%。通常规定A在20%-80%范围内。实验表明,焊点熔核直经符合要求时,取A》20%便可保证焊点的强度。A过大,熔核接近焊件表面,使表面金属过热,晶粒粗大,易出现飞溅或熔核内产生缩孔、裂纹等缺陷,接头承载能力下降。一般不许A>80%。

参考:

(1)薄板焊接——薄板焊接时,因散热强烈,焊透率宜选小,可取10%左右。

(2)不同板厚焊接——薄板一边焊透率选10-20%。

(3)镁合金焊接——选60%左右。

(4)钛合金焊接——可达95%。

※一般焊透率选40%左右较好。

一个好的焊点,从外观上看,表面压坑浅,平滑均匀过渡无明显凸肩或局部挤压的表面鼓起,不允许有外表环状或经向裂纹,表面不能有熔化或粘附的铜合金。从内部看,焊点形状规则,均匀其尺寸能满足结构强度的要求,核心内部无贯穿性或越规家值的裂纹,结合线深入及缩孔均在规定范围内,焊点核心无严重过热组织及其它不允许的缺陷。

直接决定了接头的强度。一般焊点直径为:d=2δ+3(δ为板厚)。在板件搭边宽度的允许下,焊点直径应尽量大点。

2点焊工艺介绍

2.1 点焊过程

点焊经如图1所示过程:是一种永久结合的金属连接方式。焊件通过焊接电流处局部发热而发生塑性变形,同时在焊件加热处施加压力,形成熔核。

焊件自身的电阻,产生相当大的热量,温度也很高。尤其是在焊件之间的接触面处,首先熔化,形成熔化核心。电极与焊件之间的接触电阻也产生热量,但大部分被水冷的铜合金电极带走,于是电极与焊件之间接触处的温度远比焊件之间接触处为低。正常情况下是达不到熔化温度。在圆柱体周围的金属

因电流密度小,温度不高,其中靠近熔化核心的金属温度较高,达到塑性状态,在压力作用下发生焊接,形成一个塑性金属环,紧密地包围着熔化核心,不使熔化金属向外溢出。

附图1:点焊过程示意图

2.2.2 焊接循环

(1)点焊和凸焊的焊接循环由四个基本阶段:

1)预压阶段——电极下降到电流接通阶段,确保电极压紧工件,使工件间有适当压力。

2)焊接时间——焊接电流通过工件,产热形成熔核。

3)维持时间——切断焊接电流,电极压力继续维持至熔核凝固到足够强度。

4)休止时间——电极开始提起到电极再次开始下降,开始下一个焊接循环。

(2)为了改善焊接接头的性能,有时需要将下列各项中的一个或多个加于基本循环:

1)加大预压力以消除厚工件之间的间隙,使之紧密贴合。

2)用预热脉冲提高金属的塑性,使工件易于紧密贴合、防止飞溅;凸焊时这样做可以使多个凸点在通电焊接前与平板均匀接触,以保证各点加热的一致。

3)加大锻压力以压实熔核,防止产生裂纹或缩孔。

4)用回火或缓冷脉冲消除合金钢的淬火组织,提高接头的力学性能,或在不加大锻压力的条件下,防止裂纹和缩孔。

2.2 点焊参数

Q=kI2RT;(k=0.24)

1电阻 R=r1+r2+r3+r4+r5;(R为接触电阻总和,单位Ω)

(1)其中r1、r5-工件与电极间接触电阻,希望r1、r5≈0.此电阻取决于工件表面状况及电极压紧力,电极与板料间的电阻与板料电阻和板料间相比,由于铜合金的电阻率和硬度一般比工件低,因此很小,对熔核形成的影响更小;

(2)r2、r4-工件电阻,取决于工件电阻率,与所焊的金属种类有关,,电阻率大产热高、散热慢(不锈钢),电阻率小产热低、散热快(铝合金),前者可使用较小电流,后者需使用较大焊接电流,电阻率取决于金属的种类、金属的热处理状态、金属的加工种类、温度。

(3)r3 -工件间接触电阻,此电阻取决于表面状况及电极压紧力,接触电阻存在时间是短暂的一般存在于焊接初期,形成原因包括

①工件及电极存在电阻率高的氧化物及脏污;

②在表面十分洁净的条件下,表面的微观不平度,使工件只能在粗糙表面的局部点形成接触点,在接触点处形成电流线的收拢。由于电流通路的缩小而增加了接触处的电阻。

附图2:焊点及接触电阻构成示意图

影响最大,需严格控制,熔核的尺寸或焊透率是增加的。在正常情况下,焊接区的电流密度应有一个合理的上、下限。低于下限时,热量过小,不能

形成熔核;高于上限,加热速度过快,会发生飞溅,使焊点质量下降。但是,当电极力增大时,产生飞溅的焊接电流上限值也增大。在生产中当电极力

给定时,通过调节焊接电流,使其稍低于飞溅电流值,便可获得最大的点焊强度。

引起电流变化的主要原因是电网电压波动和交流焊机次级回路阻抗(在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。阻抗常

用Z表示,是一个复数,实部称为电阻,虚部称为电抗,其中电容在电路中对交流电所起的阻碍作用称为容抗 ,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电路中对交流电引起的阻碍作用总称为电抗。阻抗的单位是欧。)变化。阻抗变化是因为回路的几何形状变化或因在次级回路中引入不同

量的磁性金属。对于直流焊机,次级回路阻抗变化,对电流无明显影响。

为了保证熔核尺寸和焊点强度,焊接时间与焊接电流在一定范围内可以相互补充。为了获得一定强度的焊点,可以采用大电流和短时间(强条件,又

称硬规范),也可采用小电流和长时间(弱条件,也称软规范)。选用硬规范还是软规范,取决于金属的性能、厚度和所用焊机的功率。对于不同性能

和厚度的金属所需的电流和时间,都有一个上下限,使用时以此为准。

(1)电极力对焊点形成有着双重作用。它既影响焊点的接触电阻,即影响热源的强度与分布;又影响电极散热的效果和焊接区塑性变形及核心的致密程度。当其它参数不变时,增大电极力,则接触电阻减少,散热加强,因而总热量减少,熔核尺寸减少,特别焊透率降低很快,甚至没焊透。若电极力过小,则板间接触不良,其接触电阻虽大却不稳定,甚至出现飞溅和烧穿等缺陷。由于电极力对焊接区金属塑性环的形成,对消除焊点的内、外缺陷和改善金属组织有较大的作用。因此,在一般情况下,若焊机容量足够大,就可以在采取增大电极力的同时,相应的也增大焊接电流,以提高焊接质量。

(2)电极压力对两电极间总电阻R有明显的影响,随着电极压力的增大,R显著减小,而焊接电流增大的幅度却不大,不能影响因R减小引起的产热减少。若电极力过小,则板间接触不良,其接触电阻虽大却不稳定,甚至出现飞溅和烧穿等缺陷。因此,焊点强度总随着焊接压力增大而减小。解决的办法是在增大焊接压力的同时,增大焊接电流。

由于电极的接触面积决定着电流密度,电极材料的电阻率和导热性关系着热量的产生和散失,因此,电极的形状和材料对熔核的形成有显著影响。随着电极端头的变形和磨损,接触面积增大,焊点强度将降低。电极端面和电极本体的结构形状、尺寸及其冷却条件影响着熔核几何尺寸与焊点强度。对于常用的圆锥形电极,其电极体越大,电极头的圆锥角越大,则散热越好。但是圆锥角越大,其端面不断受热磨损后,电极工作面直径迅速增大;若圆锥角过小,则散热条件差,电极表面温度高,更易变形磨损。为了提高点焊质量的稳定性,要求焊接过程电极工作面直径变化尽可能小。

工件表面的氧化物、污垢、油和其他杂质增大了接触电阻。过厚的氧化物层甚至会使电流不能通过。局部的导通,由于电流密度过大,则会产生飞溅和表面烧损。氧化物层的存在还会影响各个焊点加热的不均匀性,引起焊接质量波动。因此彻底清理工件表面是保证获得优质接头的必要条件。

2.2.5 工艺参数相互关系

实际上点焊过程上述各工艺参数间并非孤立变化,常常变动其中一个参数会引起另一个参数的改变,彼此相互制约。改变焊接电流、焊接时间、电极力、电极工作面直径都会影响焊接区的发热量,其中焊接电流、电极工作面直径直接影响散热,而焊接时间、电极力与焊点塑性区大小有密切关系。增加焊

相关文档
最新文档