ANSYS建模-路基上双块式无砟轨道结构的参数影响分析

ANSYS建模-路基上双块式无砟轨道结构的参数影响分析
ANSYS建模-路基上双块式无砟轨道结构的参数影响分析

CRTS-I型双块式无砟轨道施工图技术交底

CRTS-I型双块式无砟轨道施工图技术交底

一、工程概况 我分部承建的沪昆客运专线(云南段TJ3标)D1K1072+515.54~D1K1081+631.45段CRTS I型双块式无砟道床工程,管区全长9115.91m,位于曲靖市马龙县王家庄镇内。其中,一般路基地段无砟道床双线长2023.46m,刚性路基地段无砟道床双线长55.98m,桥梁地段无砟道床双线长3756.47m,s隧道地段无砟道床双线长3280m。 曲线段超高采用外轨抬高的办法来实现,在缓和曲线内线性过渡。管段内有两段平曲线,D1K1071+890.5202~D1K1075+018.7482段为左偏曲线,曲线长3128.228m,缓和曲线长1060m,曲线半径9000m,超高设计值85mm,超高顺破率0.16‰;D1K1078+374.0026~D1K1080+993.8548段为右偏曲线,曲线长2619.8522m,缓和曲线长820m,曲线半径11005m,超高设计值70mm,超高顺破 率0.17‰。竖曲线里程:D1K1073+225~D1K1073+675段坡度i 1=-10‰、i 2 =-25‰; D1K1075+690~D1K1076+110段坡度i 1=-25‰、i 2 =-11‰;D1K1077+622.5~ D1K1078+177.5段坡度i 1=-11‰、i 2 =7.5‰;D1K1079+621~D1K1080+179段坡度 i 1=-25‰、i 2 =-11‰,曲线半径30000m。 二、设计图纸组成 1、路基地段CRTSⅠ型双块式无砟轨道结构设计图[图号:长昆客专(玉昆段)施轨-09-01] 2、路基地段CRTSⅠ型双块式无砟轨道结构设计图[图号:长昆客专(玉昆段)施轨-09-02] 3、桥梁地段CRTSⅠ型双块式无砟轨道结构设计图[图号:长昆客专(玉昆段)施轨-10-01] 4、隧道地段CRTSⅠ型双块式无砟轨道结构设计图[图号:长昆客专(玉昆段)施轨-11-01] 5、CRTSⅠ型双块式无砟轨道简支箱梁桥面预埋件设计图[图号:长昆客专(玉昆段)施轨-01] 6、CRTSⅠ型双块式无砟轨道简支箱梁桥台预埋件设计图[图号:长昆客专(玉昆段)施轨-02] 7、铁路综合接地系统[图号:通号(2009)9301]

CRTSI型板式无砟轨道结构

CRTS I型板式无砟轨道结构 西南交通大学王其昌 (2009.05) 1、结构组成 CRTS I型板式无砟轨道结构由钢轨、弹性扣件、轨道板、水泥乳化沥青砂 浆充填层、混凝土底座、凸型挡台及其周围填充树脂等组成。图 1.1 (a)、(b) 为平板式、框架式板式无砟轨道,图 1.2和图1.3分别为其横纵断面图。 (a) (b) 图1.1 CRTS I型板式无砟轨道 图「2 CR T型板式板式无砟轨道横断面图 图1.3 CRTS I型板式无砟轨道纵断面图 时速200?250公里及时速300?350公里客运专线CRTS I型板式无砟轨道通用参考图[图号:通线(2008) 2201及通线(2008) 2301],已经铁道部经济规

划设计院2008年7月发布。 2、路基地段CRTS I 型板式无砟轨道 图2.1为路基地段CRTS I 型板式无砟轨道,设计应符合下列规定: L 」 L 」 图2.1路基地段CRTS I 型板式无砟轨道 (1) 底座在路基基床表层上设置。 (2) 底座每隔一定长度,对应凸形挡台中心位置,设置横向伸缩缝。 (3) 线间排水应结合线路纵坡、桥涵等线路条件具体设计。当采用集水井 方式时,集水井设置间隔应根据汇水面积和当地气象条件计算确定。 严寒地区线 间排水设计应考虑防冻措施。 (4) 线路两侧及线间路基表面以沥青混凝土防水材料封闭,路基面防水材 料的性能应符合相关规定。 3、桥梁地段CRTS I 型板式无砟轨道 图3.1为桥梁地段CRTS I 型板式无砟轨道,设计应符合下列规定: (1) 底座在梁面上构筑,底座通过梁体预埋套筒植筋与桥梁连接。在底座 一定宽度范围内,梁面应进行拉毛或凿毛处理设计。 (2) 底座对应每块轨道板长度,在凸形挡台中心位置,设置横向伸缩缝。 (3) 底座范围内,梁面不设防水层和保护层;底座范围以外,根据桥梁设 计的相关规定设置防水层和保护层。 (4) 桥上扣件纵向阻力及梁端扣件结构型式应根据计算确定。 ____ A 廉中心应

高速铁路有砟、无砟轨道结构及精调.

第二章高速铁路有砟、无砟轨道结构及精调 第一节概述 无砟轨道是以混凝土或沥青混合料等取代散粒道碴道床而组成的轨道结构形式。由于无碴轨道具有轨道平顺性高、刚度均匀性好、轨道几何形位能持久保持、维修工作量显著减少等特点,在各国铁路得到了迅速发展。特别是高速铁路,一些国家已把无碴轨道作为轨道的主要结构形式进行全面推广,并取得了显著的经济效益和社会效益。以下是无砟轨道的主要优势和缺点。 一、无砟轨道的优势主要有: 1、轨道结构稳定、质量均衡、变形量小,利于高速行车; 2、变形积累慢,养护维修工作量小; 3、使用寿命长—设计使用寿命60年; 二、无砟轨道的缺点主要有: 1、轨道造价高:有砟180万/km,双块式350万,1型板式450万,2型 板式500万。 2、对基础要求高因而显著提高修建成本:有砟轨道可允许15cm工后沉 降,无砟轨道允许3cm,由此引起的以桥代路及路基加固投资巨大。 3、振动噪声大:减振降噪型无砟轨道目前尚不成功,减振无砟轨道选型 存在较大困难。 4、一旦损坏整治困难:尤其是连续式无砟轨道。 第二节无砟轨道结构 一、国外铁路无碴轨道结构型式 国外铁路无碴轨道的发展,数量上经历了由少到多、技术上经历了由浅到深、品种上经历了由单一到多样、铺设范围上经历了由桥梁、隧道到路基、道岔的过程。无碴轨道已成为高速铁路的发展趋势。 1.日本 日本是发展无碴轨道最早的国家之一。早在20世纪60年代中期,日本就开始了无碴轨道的研究与试验并逐步推广应用,无碴轨道比例愈来愈大,成为高速铁路轨道结构的主要形式。据统计,日本高速铁路无碴轨道比例,在20世纪70年代达到60%以上,而90年代则达到80%以上。

路基工后沉降分析

路基工后沉降标准资料分析 随着高速铁路的发展,对路基工后沉降的要求越来越高。路基的工后沉降包括:路堤填筑部分的沉降和地基的沉降。一般路基施工完成后的工后沉降,路堤填筑部分的沉降极小,主要是地基的沉降。各国对路基工后沉降的要求是考虑线路维修养护条件及路基不均匀沉降差对线路的影响。 法国高速铁路对于有碴轨道不均匀沉降差为20mm/10m,最大沉降量为5cm;对于无碴轨道不均匀沉降差为30mm/20m,最大沉降量为5cm。 德国高速铁路对于无碴轨道考虑扣件调整范围为20mm,在保证轨道线形的情况下,路基工后最大沉降量为3倍的扣件允许调整量,则路基工后最大沉降量为6cm。 日本高速铁路对于无碴轨道考虑路基工后最大沉降量为3cm。 韩国高速铁路考虑路基工后沉降最大沉降量为7cm。(可能为有碴轨道) 台湾高速铁路考虑路基工后沉降标准是采用法国标准。 目前各国高速铁路在制定路基工后沉降标准时主要是考虑线路的维修养护标准,特别是考虑了无碴轨道结构对路基沉降的高标准要求,其工后沉降较小。从高速铁路线路平顺性考虑,路基应控制沉降差和最大沉降量。我们认为高速铁路路基是免维修的,而实际上高速铁路路基是处于常维护的状态(每天要对线路状况进行检查,按日常养护维修标准对其进行调整)。高速铁路的每2年要进行一次大的维修养

护。高速铁路的养护维修模式与一般铁路有了质的变化。 对于路基工后沉降应提出路基工后沉降差和最大沉降量的标准,供设计和施工考虑。路基工后沉降从轨道养护维修标准考虑,路基工后沉降差应考虑线路短波不平顺和扣件可调值,路基工后最大沉降量应考虑线路长波不平顺和钢轨位置的可调整量。 着国民经济的发展和人民生活水平的不断提高,旅客对于乘坐车辆舒适度和速度的要求越来越高,具体到客运专线而言,即是对路桥结构变形和强度指标的要求越来越高。从德、法、日三国针对我国高速铁路设计咨询结果来看,德、法强调控制路基的不均匀沉降,其追求沉降的目标是不均匀沉降为零;工后沉降5cm或3cm的指标相对而言较为严格,如何确保路基沉降变形满足质量标准要求成为路基工程的重点课题。我国很早开始对高速铁路基础关键技术进行了一系列的研究,在借鉴国外高速铁路大量理论、试验和建设实践的基础上,相继制定了有关设计暂行规定和设计指南,初步形成了我国客运专线技术体系。为保证列车高速、平稳、舒适、安全运行,我国相关规定路基工后沉降量不应大于5cm,沉降速率应小于2cm/年,桥台台尾过度段路基工后沉降量不应大于3cm;无蹅轨道路基工后沉降量不大于15mm,不均匀沉降变形20mm/20m。详见表1-1。 二、路基沉降的概念 1.工后沉降:在铺轨工程完后(指有蹅轨道工程竣工或无蹅轨道道床工程完后,下同)以后,基础设施产生的沉降量。工后沉降标准与项目建设速度目标、轨道类型、施工类型、施工日期、轨道维修养护标准和维修周期、工程投资大小等因素相关,同时也与地质勘探试验、沉降计算、沉降观测、工后沉降预测等的方法和精度密切相关,表1-1正是上述思想的反映。 2.均匀沉降:铺轨工程完成后,一定区域范围内路基沉降量的相同性及其分布。 3.不均匀沉降:铺轨工程完成后,一定区域范围内不同测点路基沉降量的差异大小及其分布。 4.台后沉降:铺轨工程完成后,桥台台尾过渡段路基工后沉降量。 5.差异沉降:铺轨工程完成后,路基与桥台、隧道等结构物间的沉降变形量差。 三、路基沉降的组成 路基的变形主要由路基本体和地基基础的变形组成;路基本体的变形通常指机床表层、机床底层和基床下路堤的变形。路堤结构各部的沉降组成见表3-1。 1、基床表层:通常由级配碎石或级配砂砾石组成。基床表层的变形在填筑完成约1周后基本自调完毕,该变形量可以忽略不计。

浅析公路路基沉降分析及施工技术

浅析公路路基沉降分析及施工技术 发表时间:2018-05-14T15:03:42.313Z 来源:《建筑学研究前沿》2017年第35期作者:武丽芬 [导读] 通过对公路施工的问题分析,我们可以得知,路基路面在沉降地段的施工问题是公路的施工当中的重中之重。 山西省吕梁市交城县交通运输局山西吕梁 030500 摘要:通过对公路施工的问题分析,我们可以得知,路基路面在沉降地段的施工问题是公路的施工当中的重中之重,太多的道路沉降问题都是发生在设计的过程中,最初设计的时候就有了问题,所以,在实际的路面路基的施工的时候可以采取搭板技术,它是缓解沉降地段施工问题的方有效措施,进而使公路的安全质量得到提升,基于此,本文就针对公路沉降段路基路面的施工进行具体分析。 关键词:公路路基;沉降分析;施工技术 引言 路基的沉降问题严重影响着公路的安全运行,对于路基沉降问题的分析以及解决措施都会影响整个公路工程的施工进度、施工质量以及施工安全。在决定路基稳定因素中,地基施工质量起到非常关键的作用。施工技术决定着工程质量、工程进度以及工程经济,严重者还对后期工程的运营质量起到影响。在当今飞速发展的中国,道路交通事业飞速前进,道路已普及各个角落,以前的农村泥泞道路也大都被沥青道路取代。在公路建设中对路基稳定性的要求也越来越高,因此,在道路建设实际工程中也引入了愈来愈多的先进技术。所以,在进行公路建设过程中,对公路建设的施工技术以及施工质量需要大大提升,处理好路基沉降难题,保证公路施工的正常发展。 1、公路路基沉降原因 在公路建设过程中,由于公路路基沉降经常极大程度上影响路面成效,公路路基沉降先是造成对路基损坏形成不良后果,然后因为外力的作用对公路路面结构形成严重破坏。在路基沉降后期,在路面内部填土应变区域发生变形,会引起不同程度上的沉降,导致填充裂缝,因为拉伸强度不够导致填充地方开裂。如果不能及时有效的对路基沉降问题找出解决办法,那么则会造成路面变形。对于应用到的水泥板非常容易碎裂,在路面产生横向或纵向裂纹现象,很容易产生边坡不稳情况。因此不难发现,对于公路路基沉降带来的严重现象是一系列的,更是极大程度上危害公路建设工程的施工质量和安全使用期限。要想对路基沉降问题提出解决措施,首先要找到路基沉降原因,这样才能很好提出措施。对于引起公路路基沉降的原因有很多,除了前期建设中场地地质条件原因等,还有对地理结构以及环境的数据是否完整等因素。总之,在诸多原因导致下,很容易造成公路施工过程中或后期运行中路基沉降问题。如果在施工前期,不能科学合理的计算沉降实际速率、沉降曲线,就会经常引起工程施工中的误差,接着造成公路路基沉降。进行填土施工时,及时分析路基、填土临界高度等,而且还要多留意路基沉降现象。不然会导致软基与临界的距离相近,以及容量也不合格,最终造成路基沉降或者形成开裂。对现实公路路基建设中,需要考虑以上诸多影响因素,并给出相应解决措施,最大程度上降低路基沉降发生的可能。 2、路基沉降施工技术方面的控制措施 2.1、加强下沉地段的结构设计 在公路施工的时候首先我们要在结构上进行科学合理的设计。目前为止,我们国家在对道路施工的有关标准中,几乎没有对沉降的地段在搭板作业上有一个统一的标准,所以,我们在公路正常的地段施工的时候就要对搭板的长度和材质的强度多多重视,一般来说,都是施工方在施工的时候根据设计方案里面的要求进行施工,其实具体的施工设计需要参考桥头路堤以及桥面的沉降数值和项目通车的标准来进行实施。在设计中可以使用土工格栅的施工手法,让土工格栅的抗剪切能力得到充分的发挥,降低在道路填土过程中出现位移和土层出现移动情况的发生,进而提升公路施工中路基路面的稳定性能。第二,设计沉降缓和过渡段落。在公路施工以前我们首先要对现场进行勘测,尤其是在软土层的地段,我们需要对路基和路面进行有效的处理,在设计中,我们要对强度不同的沉降地段用强度渐变的方法来设计,让不一样强度的沉降地段进行平稳的过渡,其中,路堤和桥台的渐变长度要控制在不能超过五十米的地方,处理不同沉降地段在沉降数值上的差距也要控制在五厘米之内,第三,如果从路基路面的角度去分析的话,为了减小沉降发生的可能性,我们可以用钢筋混凝土结构怪做为路堤,从而有效的提升整个路面的荷载能力。 2.2、合理选择填料 施工材料对于公路工程沉降段路基路面施工至关重要。在选择路基材料时要先进行土壤试验,并借助数据对比的方式选择填充性能佳的材料实施填充处理,通常而言,应优先选用渗水性能较佳、含水量较少的材料,保证材料具备一定的渗水能力,比如砂石类,不能采用淤泥、沼泽土等含水量偏高的材料。 2.3、搭板设置 在公路工程沉降段路基路面施工过程中,首先需保证锚栓及拉杆的位置保持在一定的水平线上,这样也能保证相关工作的安全性,而在后期进行支座的选择过程中,对于底层要进行铺垫,一般设置在搭板位置的附近,支座采用橡胶材料,距离应不高于80cm,以便施工人员可通过对距离的掌握来保证施工过程的稳定性。其次,在公路工程桥台与牛腿之间的位置要呈现倒立的状态,保证路面结构的稳定性。如果桥头位置与搭板存在一些缝隙,可将一些填充类的材料用于其中,以保证工程能够顺利实施,避免出现雨水浸泡的情况,而用来填充的材料可以选择沥青或是纤维类材料,并且在进行填充的过程当中,为减少缝隙,施工人员需要进行倒灌,以保证其防水性。 2.4、加强地基处理施工控制 公路工程在施工的程中对地基的合理施工能够减小发生错台问题可能性的出现。比如,对于软土地基进行施工的时候,往往会在路基加入填充料,这样会导致使软土地基向周边挤密移动,从而使基桩的压力加大,这样就比较容易出桥台位移和转动的情况,因此,想要减小这种情的发生,我们就要对针对性的措施,加强地基的刚度。如果在沟壑段对地基进行施工,由于这个路段的含水量大,并且土质孔隙大,我们可以把粘土层进行交换,增加粘土层的强度,进面加大地基的刚度,以此来确保公路的施工质量。 2.5、施工检测控制 检测时,采用科学方式——地表沉降计进行施工测量。进行植土时,把实际测试数据作为参考根据。并且控制植土速度,及时对公路路基的沉稳趋势作出判断评估。合理的掌控植土速度,做到对路面施工进度的安排。在施工中要想达到地表平稳,要测量地表水平位移的

无砟轨道与有砟轨道的对比

湖南高速铁路职业技术学院毕业论文 (2012届) 论文题目:无砟轨道与有砟轨道的对比 姓名:卿景明 系(院):湖南高速铁路职业技术学院 专业名称:铁道工程 指导老师:*** 2012 年 5 月20 日 中文摘要

随着高速铁路的大规模建设、既有线提速改造及重载铁路的快速发展,作为铁路重要基础设施的轨道结构需要不断更新、技术不断完善。高速铁路的技术核心是高速度,它对轨道结构就有了高平顺性和高稳定性的要求。传统的轨道结构已不适应目前铁路发展的需要,结构形式和设计方法必须相应改变。 在高速发展的今天,轨道交通已经成为了主流的交通工具,特别是城市轨道交通,而轨道交通现在基本都采用无砟轨道的技术进行施工,它相比于有砟轨道确实有一定的优势但也不可避免有各方面的劣势。 随着我国铁路建设水平的不断发展和提高,铁路的建设模式正逐步从客货共线形式向客货分离形式转变,通过对客运专线无砟轨道与有砟轨道的技术、经济比较,无砟轨道已成为客运专线的发展趋势。由于国内铁路建设和运输条件与国外存在差异,没有一种成熟的结构形式能够完全用“拿来主义”坐在国内运用。因此我国铁路轨道技术的发展应当总结国外铁路无砟轨道与有砟轨道的结构特点,充分分析国内的铁路结构和运用条件,选择技术先进、经济合理的轨道结构形式,对比分析无砟轨道与有砟轨道的各种技术,从而优化轨道结构。 关键词:高速铁路无砟轨道有砟轨道 Abstract

With the high speed railway, large-scale construction of existing railway-speed-increasing transformation and overloaded railway of rapid development, as an important railway infrastructure of track structure need to constantly updated, technology improvement. High-speed rail technology core is high speed, it to track structure is the GaoPingShun sex and the high reliability requirements. The traditional rail structure can meet the needs of the development of the current railway, structure form and design method must change accordingly. In the current rapid development of rail transit has become the mainstream of transportation, especially on urban rail transit, and rail traffic now are the basic technology to track a frantic jumble no construction, it is compared to the frantic jumble of a certain track advantage but also hard to avoid the disadvantages. With China's level of railway construction development and improve, railway construction mode gradually from the passenger and freight line forms to passenger separation form change, through to the special passenger line frantic jumble no tracks with a frantic jumble of technology, economy comparison orbit, frantic jumble no track has become the development trend of the passenger special line. Because domestic railway construction and transportation conditions and foreign different, not a kind of mature structure form can completely with "copycat" sat in the domestic use. So China's railway track technology development should be summarized foreign railway tracks with a frantic jumble no frantic jumble the structure characteristics of the track, the full analysis of the domestic railway structure and applying condition, select the advanced technology, reasonable economy of track structure form, comparison and analysis of the frantic jumble no tracks with a frantic jumble of orbit technology, so as to optimize the rail structure. Keywords

(整理)CRTSⅠ型板式无砟轨道施工技术.

CRTSⅠ型板式无砟轨道施工技术 一、概述 CRTSⅠ型板式无砟轨道由钢轨、弹性分开式扣件(本项目为WJ-7A 型扣件)、充填式垫板、轨道板、水泥乳化沥青砂浆调整层、钢筋混凝土底座、凸形挡台及其周围填充树脂等组成。结构分路基、桥梁和隧道地段,结构高度分别为787mm、687mm。轨道板均为预制,标准板长度为4962mm、3685mm和4856mm,一标范围内用到异型板长度有两种分别为4652mm和3345mm。 二、轨道结构设计 (一)总体设计 1.桥梁地段 桥梁地段轨道结构高度为687mm(钢轨176+扣件39+轨道板220+砂浆50+底座202),底座板宽度为2.8m。底座在梁面分段设置,每块轨道板长度底座设置20mm伸缩缝,伸缩缝对应凸形挡台中心并绕过凸形挡台。底座范围内梁面不设防水层和保护层,轨道中线2.6m范围内的梁面在梁场预制时应进行拉毛处理,梁体采用预埋套筒植筋与底座连接。

注意:1.底座施工之前检查梁面是否按要求拉毛。 2.轨道施工完成后再进行桥梁防水层的施工。 3.严格控制梁缝处扣件间距,一般不应大于700mm,困难条件下最大不超过725mm,不满足要求时底座进行悬出,悬出量最大不超过50mm。采取底座悬出措施后扣件间距也不能满足困难条件下要求时应对梁缝进行处理。 4.严格控制梁面高程,保证底座厚度在允许范围内。 2.路基地段 路基地段轨道结构高度为787mm(钢轨176+扣件39+轨道板220+砂浆50+底座302),底座板宽度为3.0m。底座在基床表层上分段设置,普通路基地段每3~4块轨道板长对应的底座长度设置一处伸缩缝。伸缩缝宽20mm。两块底座板之间伸缩缝处设置10根传力杆,传力杆为直径38mm的光圆钢筋。设置标准按《公路水泥混凝土路面施工技术规范》(JTG F30-2003)中表9.1执行。混凝土整体浇筑路基上每块轨道板对应一处伸缩缝,伸缩缝宽20mm。同时,在混凝土路基沉降缝上方底

地基沉降造成的事故分析

地基沉降造成的事故分析 建筑物一般总会产生一定的沉降,软弱地基上的建筑物更容易产生不均匀沉降。过大的不均匀沉降易使上部结构开裂与破坏,造成建筑物各处渗水、下水道堵塞不畅等,严重影响建筑物的使用。对于多层砌体结构,由于砌体的抗拉、抗剪强度较低,在地基沉降时,很易在墙体上产生斜裂缝或踏步式裂缝,窗洞的四角部位尤其厉害。 而建筑物和土工建筑物修建前,地基中早已存在着由土体自身重力引起的自重应力。建筑物和土工建筑物荷载通过基础或路堤的底面传递给地基,使天然土层原有的应力状态发生变化,在附加的三向应力分量作用下,地基中产生了竖向、侧向和剪切变形,导致各点的竖向和侧向位移。地基表面的竖向变形称为地基沉降,或基础沉降。 建筑地基在长期荷载作用下产生的沉降,其最终沉降量可划分为三个部分:初始沉降(或称瞬时沉降)、主固结沉降(简称固结沉降)及次固结沉降。 初始沉降 初始沉降又称瞬时沉降,是指外荷加上的瞬间,饱和软土中孔隙水尚来不及排出时所发生的沉降,此时土体只发生形变而没有体变,一般情况下把这种变形称之为剪切变形,按弹性变形计算。 主固结沉降 主固结沉降是指荷载作用在地基上后,随着时间的延续,外荷不变而地基土中的孔隙水不断排除过程中所发生的沉降,它起于荷载施加之时,止于荷载引起的孔隙水压力完全消散之后,是地基沉降的主要部分。 次固结沉降 次固结沉降量常比主固结沉降量小得多,大都可以忽略。但对极软的粘性土,如淤泥、淤泥质土,尤其是含有腐殖质等有机质时,或当深厚的高压缩性土层受到较小的压力增量比作用时,次固结沉降会成为总沉降量的一个主要组成部分,应给以重视。 地基沉降的原因 1.首先是地质勘察报告的准确性差、真实性不高。实际施工中,有些工程不进行地质 勘察盲目施工;有的勘察不按规定进行,如钻探中布孔不准确或孔深不到位;有的抄袭相邻建筑物的资料等,都会给设计人员造成分析、判断或设计错误,使建筑物可能产生沉降或不均匀沉降,甚至发生结构破坏。 2.其次是设计方面存在问题。建筑物长度太长;建筑体型比较复杂凹凸转角多;未在 适当部位设置沉降缝;基础及建筑物整体刚度不足;建筑物层高相差大所受荷载差异大;地基土的压缩性显著不同、地基处理方法不同;以及设计方面的错误等都会引起建筑物产生过大的不均匀沉降 3.最后是施工方面存在问题。没有认真进行验槽;基础施工前扰动了地基土;在已建 成的建筑物周围推放大量的建筑材料或土方;对于砖砌体结构,砌筑质量不满足要求,砂浆强度低、灰缝不饱满、砌砖组砌不当、通缝多、拉结筋不按规定设置等,也会引起建筑物建成后产生不均匀沉降 4.结构设计不当,主要忽略了地基承载力之内的地基差异变形。

CRTSⅢ型板式无砟轨道结构组成及施工工艺

CRTSⅢ型板式无砟轨道结构及施工工艺 CRTSⅢ型板式无砟轨道结构组成 1.桥梁地段无砟轨道结构 桥梁地段CRTSⅢ型板式无砟轨道由钢轨、弹性扣件、轨道板、自 密实混凝土层、隔离层、底座等部分组成。轨道结构高度为762mm。轨道板宽2500mm,厚210mm;自密实混凝土层厚100mm,宽度2500mm, 采用C40混凝土;底座C40钢筋混凝土结构,宽度2900mm,直线地段厚 度200m。轨道板与自密实层间设门型钢筋。自密实层设凸台,与底座 凹槽对应设置,凹槽尺寸为1000×700mm,凹槽周围设橡胶垫板。 2.路基地段无砟轨道结构 路基地段CRTSⅢ型板式无砟轨道由钢轨、弹性扣件、轨道板、自 密实混凝土层、隔离层、底座等部分组成。轨道结构高度为862mm。轨道板宽2500mm,厚210mm;自密实混凝土层宽度2500mm,厚100mm,

采用C40混凝土;底座C40钢筋混凝土结构,宽度3100mm,直线地段厚 度300m,每3块板下底座为一块,相连底座间设传力杆结构。轨道板 与自密实层间设门型钢筋。自密实层设凸台,与底座凹槽对应设置,凹槽尺寸为1000×700mm,凹槽周围设橡胶垫板。 CRTSⅢ型板式无砟轨道施工工艺 1.2 工程特点 CRTSⅢ型板式无砟轨道工程施工工序繁多,技术复杂,质量标准高,须专业化队伍精心施做。底座板施工、自密实混凝土配制及灌注、铺装与精调等技术含量高,施工难度大,需认真研究并借鉴在建同类工程经验。施工便道条件较差,轨道板运输困难且存在较大风险。桥上、隧道内作业面狭窄,物流组织困难。 2 主要施工方案 无砟轨道系统由钢筋混凝土底座板、中间隔离层、自密实混凝土填充层和轨道板组成(见图1)。轨道板采用工厂预制。根据工期和线路铺设长度配备无碴轨道施工设备,每套设备负责2个作业单元交

CRTSⅡ型板式无砟轨道结构设计

CRTSⅡ型板式无砟轨道施工工法 1 前言 沪杭客运专线设计采用Ⅱ型板式无砟轨道,设计时速350km/h。通过学习、研究德国博格公司原始技术资料,借签京津城际积累下来的经验教训,外出实地参观学习同时在建的京沪高铁,积极与设计、业主、监理、兄弟单位以及这方面的专家沟通、咨询,充分利用各方面的资源,立足现场实际,提早着手准备,探索、总结、现场观摩、培训学习,在仅一个多月的无砟轨道紧张施工中大胆实施、积极创新,形成了自己一套相对成熟、完善的CRTSⅡ型无砟轨道施工工法。 2 特点 2.1 施工工艺成熟、可靠,质量保证。 2.2 工艺简单,操作方便,可形成流水作业。 2.3 施工效率高,尤其适合快速施工。 3 适用范围 该工法适用于CRTSⅡ型板式无砟轨道结构的高速铁路、客运专线、城际轨道交通等工程的路基、桥上无砟轨道施工。 4 工艺原理 CRTSⅡ型轨道板铺设工艺分两种工况:铺装路基上CRTSⅡ型板和铺装长桥上CRTSⅡ型板。 4.1 桥上无砟轨道结构设计 桥上CRTSⅡ无砟轨道结构由两布一膜滑动层/高强挤塑板、混凝土底座板、水泥乳化沥青砂浆调整层和轨道板四部分组成。自上而下分为:20cm 厚混凝土轨道

板,2cm~4cm 沥青砂浆垫层,19cm 厚(直线段)混凝土底座板,“土工布+塑料膜+土工布”滑动层(简称两布一膜)。梁缝处1.5m 范围内为消除梁端转角对底座板的内力,加装5cm 厚高强挤塑板。 Ⅱ型轨道板标准长度6.45m,板缝5cm,板间用张拉锁纵向连接。轨道板铺设于桥面上经精调和灌浆后进行纵向张拉连接成为整体。为了适应连续底座板连续结构,在桥梁两端路基上设置摩擦板及端刺(桥上设临时端刺),以限制底座板中的应力及温度变形,两端刺间底座板纵向跨梁缝连续,在桥梁固定支座上方通过梁体设置的预埋螺纹钢筋和抗剪齿槽与梁体固结,形成底座板纵向传力结构。底座板两侧设置侧向挡块,限制底座板横、竖向位移和翘曲。水泥乳化沥青砂浆是填充于底座板/支承层与轨道板之间的结构层,主要起充填、支撑、承力和传力作用,并可对轨道提供一定的弹韧性,是轨道结构中的重要结构层,水泥乳化沥青砂浆充填层标准厚度为2cm~4cm。底座板与梁面之间设两布一膜滑动层(剪力齿槽部分除外),形成底座板与梁面可相对滑动的状态。桥上CRTSⅡ型板式无砟轨道一般构造详见图4-1。 图4-1 桥上无砟轨道一般构造断面图 4.2 路基上无砟轨道结构设计

解析路基不均匀沉降的形成原因危害及处理措施

路基不均匀沉降形成原因危害及处理措施09土木(交通)赵鑫龙0919011011 【关键词】:路基纵向不均匀沉降,路基横向不均匀沉降,形成原因,造成危害,处理措施。 【摘要】:近年来,科学技术发展的为我国的交通事业的发展注入了强大的原动力。我 国的交通状况正发生着日新月异的变化交通的高速发展已成为我国的经济版图中最引人注目的心篇章,数字化交通征打造着我国交通的新理念。然而路基的不均匀沉降这一难题始终困扰着我们的工程技术人员,阻扰在公路工程的发展和完善。 一,路基不均匀沉降的类型 1)纵向不均匀沉降 路基纵向不均匀沉降主要表现为桥头跳车和纵向填挖交界处不均匀沉降,致使路、桥过渡段出现不同程度的台阶,且路面平整性受损,严重影响了公路的使用功能。 2)横向不均匀沉降 由于车载、地下水及自重等作用,路基横向不均匀沉降引起的公路工程病害已成为公路工程质量通病之一。 二,路基横向不均匀沉降的原因分析 路基横向不均匀沉降的发生是多方面因素综合作用的结果。其中,内因在于地基及路基本身;外因是车载、地下水及自重等作用。 1.地基对路基横向不均匀沉降的影响 (1)路堤地基处理不当 ①伐树除根及表土处理不彻底或是路基基底的压实度不够,致使路堤形成后,一旦杂质腐烂变质,地基将会发生松软和不均匀沉降。 ②地面横坡大于1:5的路段,路堤填筑前地基未按规定要求挖成台阶,填料与地基结合不良,在荷载作用下填料极易失稳而沿坡面发生滑移,从而产生横向不均匀沉降。 (2)特殊地基地段 ①软土地基对路基横向不均匀沉降的影响 当路基修筑在软土地段时,软土层本身力学性能差,在附加应力作用下,会发生固结沉降、次固结沉降和侧向塑性挤出,导致明显的沉降变形。有些河谷、水塘地段虽作了清淤处理,但是处理不彻底或回填材料控制得不好,从而形成人为的相对软土层,造成路基的不均匀沉降。在高填方填筑后,地基出现不均匀沉降,甚至路面开裂。在一些地表水和地下水自然排泄困难的地方,地基土中的软土层在固结过程中的较大沉降变形,也是产生过大沉降和沉降差的重要原因。有些路段所处地基不属于软土地基,但处于低洼、河谷处,长期受水冲蚀,

CRTS-1型双块式无砟轨道

目录 1、编制依据---------------------------------------------- 1 2、工程概况---------------------------------------------- 1 3、工期目标---------------------------------------------- 2 4、设计技术要求------------------------------------------ 2 5、施工准备---------------------------------------------- 3 6、防水层施工-------------------------------------------- 4 7、施工质量要求------------------------------------------ 8 8、施工安全防护控制措施--------------------------------- 10 9、环境保护措施----------------------------------------- 10

CRTS-1型双块式无砟轨道 防水层施工方案 1、编制依据 (1)、《铁路桥涵设计基本规范》(TB 10002.1-2005) (2)、《高速铁路桥涵工程施工技术指南》(铁建设【2010】241号)(3)、《高速铁路桥涵工程质量验收标准》(TB10752-2010 J1148-2011) (4)、《客运专线铁路常用跨度梁桥面附属设施》(通桥(2008)8388 A) (5)、《铁路混凝土桥涵防水层》二设桥参(土设桥参(土一)(2010)6002) (6)、《铁路桥涵工程施工安全技术规程》(TB10303-2009) (7)、《聚氨酯防水涂料》(GB/T 19250—2003) (8)、《弹性体改性沥青防水卷材》(GB18242-2000) (9)、《道路用改性沥青防水卷材》(JC/T 974—2005) (10)、《沥青基防水卷材用基层处理剂》(JC/T1069-2008)(11)、国家及地方关于安全生产和环境保护等方面的法律法规。2、工程概况 2.1 工程简介 玉屏制梁场主要承担上院子变宽多线大桥沪向桥台至两岔河昆向桥台(DK437+918.5~D1K451+456)共计11座桥梁约3.1km防水层及保护层混凝土施工。梁面除底座范围不进行防水层处理外,电缆沟槽内、底座板缝间、防护墙与底座及线间均需进行防水层和保护层施工。

路基沉降原因分析及处理措施

路基沉降原因分析及处理措施 1、路基不均匀沉降的原因 1.1、路基填土压实度不足 由于压实度不足,往往导致填方路基的不均匀沉降变形,路基两侧出现纵向裂缝,路基土体压实度不足的主要原因有以下几点:(1)施工受实际条件的限制。路基施工时,天气太干燥,局部路堤填料粘土土块粉碎不足致使路基压实度不均匀;暗埋式构造物处因构造物长度限制使路基边缘不能超宽碾压,致使路基边缘压实度不够;某些加减速车道与行车道没有同步施工,当拼接处理得不好时,其拼接处也会产生压实度不足的情况。 (2)考虑到施工安全和进度,使得压力或压力作用时间不足,路基压实不充分,致使路基压实度达不到规范要求。 (3)由于填方土体的最佳含水量控制不好,压实效果达不到规范要求。 (4)在填方路堤施工中,当路堤施工到一定高度以后,路堤边缘土体往往存在压实度不足问题,对于较高的填方路基,通常都要做相应的处治。 填方土体压实度不足,其结果是土体前期固结压力小于自重应力和各种附加应力之和,在自重作用下就会发生沉降变形,这些附加应力主要来自以下几个方面: ①车载,尤其超载情况; ②含水量变化造成土体容重的改变;

③地下水位升降而导致浮力作用改变; ④土体饱和度改变,引起负孔隙水压力改变。这些附加应力引起土体中有效应力改变,从而导致土体发生压缩变形。 土体压实度不足还会导致填土路基的侧向变形。目前采用的地基沉降计算方法是假定侧向完全受限,仅有竖向变形,实际路基土中存在有侧向变形,这种侧向变形会引起沉降。 1.2、路堤填料不均匀,控制不当 在公路施工过程中,对填料、级配很难得到有效的控制,填料常常是开挖路堑、隧道掘进产生的废方,这些填料性质差异大、级配也相差很远。一方面,在施工过程中,如果分层碾压厚度过大,小颗粒填料和软弱物质很难得到有效压实,在荷载的长期作用下,回填料会产生不协调沉降变形,路面会产生局部沉陷,刚性路面还可能产生裂纹。另一方面,由于回填料的性质不一样,特别是有的回填料具有膨胀性,在路基排水系统局部失效后,水的渗入会使路面局部隆起,影响行车舒适度,严重的会使路面破坏。 控制不当体现在: (1)选用了稳定性较差的路堤填料,如采用高液限粘土、粉质土或使用淤泥、腐殖质含量较高的土料填筑路堤,会使路堤产生整段或局部的变形。 (2)采用不同土质填筑路堤时,因土的性质不同如填筑方法不当,碾压成型后易造成不均匀性沉降。 1.3、地下水的影响

CRTSI型板式无砟轨道结构

CRTS Ⅰ型板式无砟轨道结构 西南交通大学 王其昌 (2009.05) 1、结构组成 CRTS Ⅰ型板式无砟轨道结构由钢轨、弹性扣件、轨道板、水泥乳化沥青砂浆充填层、混凝土底座、凸型挡台及其周围填充树脂等组成。图1.1(a )、(b )为平板式、框架式板式无砟轨道,图1.2和图1.3分别为其横纵断面图。 (a ) (b ) 图1.1 CRTS Ⅰ型板式无砟轨道 路基基床表层桥梁保护层隧底填充层 C40C50 钢轨扣件41轨道板CAM层50 底座 300(路)200(桥隧仰)757(路) 657(桥隧仰)815(隧无仰) 2400 2800(桥隧)I型板式无碴轨道横断面图 358(隧无仰) 图1.2 CRTS Ⅰ型板式无砟轨道横断面图 图1.3 CRTS Ⅰ型板式无砟轨道纵断面图 时速200~250公里及时速300~350公里客运专线CRTS Ⅰ型板式无砟轨道通用参考图[图号:通线(2008)2201及通线(2008)2301],已经铁道部经济

规划设计院2008年7月发布。

2、路基地段CRTSⅠ型板式无砟轨道 图2.1为路基地段CRTSⅠ型板式无砟轨道,设计应符合下列规定: 图2.1 路基地段CRTSⅠ型板式无砟轨道 (1)底座在路基基床表层上设置。 (2)底座每隔一定长度,对应凸形挡台中心位置,设置横向伸缩缝。 (3)线间排水应结合线路纵坡、桥涵等线路条件具体设计。当采用集水井方式时,集水井设置间隔应根据汇水面积和当地气象条件计算确定。严寒地区线间排水设计应考虑防冻措施。 (4)线路两侧及线间路基表面以沥青混凝土防水材料封闭,路基面防水材料的性能应符合相关规定。 3、桥梁地段CRTSⅠ型板式无砟轨道 图3.1为桥梁地段CRTSⅠ型板式无砟轨道,设计应符合下列规定: (1)底座在梁面上构筑,底座通过梁体预埋套筒植筋与桥梁连接。在底座一定宽度范围内,梁面应进行拉毛或凿毛处理设计。 (2)底座对应每块轨道板长度,在凸形挡台中心位置,设置横向伸缩缝。 (3)底座范围内,梁面不设防水层和保护层;底座范围以外,根据桥梁设计的相关规定设置防水层和保护层。 (4)桥上扣件纵向阻力及梁端扣件结构型式应根据计算确定。 (5)桥面采用三列排水方式。

CRTSI型板式无砟轨道结构

CRTSⅠ型板式无砟轨道结构 西南交通大学王其昌 (2009.05) 1、结构组成 CRTSⅠ型板式无砟轨道结构由钢轨、弹性扣件、轨道板、水泥乳化沥青砂浆充填层、混凝土底座、凸型挡台及其周围填充树脂等组成。图1.1(a)、(b)为平板式、框架式板式无砟轨道,图1.2和图1.3分别为其横纵断面图。 (a)(b) 图1.1 CRTSⅠ型板式无砟轨道 41 50 300(路) 200(桥隧仰) I型板式无碴 轨道横断面图 358(隧无仰) 图1.2 CRTSⅠ型板式无砟轨道横断面图 图1.3 CRTSⅠ型板式无砟轨道纵断面图 时速200~250公里及时速300~350公里客运专线CRTSⅠ型板式无砟轨道通用参考图[图号:通线(2008)2201及通线(2008)2301],已经铁道部经济规

划设计院2008年7月发布。 2、路基地段CRTSⅠ型板式无砟轨道 图2.1为路基地段CRTSⅠ型板式无砟轨道,设计应符合下列规定: 图2.1 路基地段CRTSⅠ型板式无砟轨道 (1)底座在路基基床表层上设置。 (2)底座每隔一定长度,对应凸形挡台中心位置,设置横向伸缩缝。 (3)线间排水应结合线路纵坡、桥涵等线路条件具体设计。当采用集水井方式时,集水井设置间隔应根据汇水面积和当地气象条件计算确定。严寒地区线间排水设计应考虑防冻措施。 (4)线路两侧及线间路基表面以沥青混凝土防水材料封闭,路基面防水材料的性能应符合相关规定。 3、桥梁地段CRTSⅠ型板式无砟轨道 图3.1为桥梁地段CRTSⅠ型板式无砟轨道,设计应符合下列规定: (1)底座在梁面上构筑,底座通过梁体预埋套筒植筋与桥梁连接。在底座一定宽度范围内,梁面应进行拉毛或凿毛处理设计。 (2)底座对应每块轨道板长度,在凸形挡台中心位置,设置横向伸缩缝。 (3)底座范围内,梁面不设防水层和保护层;底座范围以外,根据桥梁设计的相关规定设置防水层和保护层。 (4)桥上扣件纵向阻力及梁端扣件结构型式应根据计算确定。 (5)桥面采用三列排水方式。

路基沉降分析及地基沉降计算

路基沉降分析及地基沉降计算 摘要:铁路经过的地区比较复杂,路基作为铁路的重要组成部分,是承受轨道 结构重量和列车荷载及各种附加力的基础,路基本体必须有足够的强度和一定范 围内的变形,所以作为承载高速铁路的基础—路基的设计得到越来越广泛的重视,把路基作为土工结构物来设计的理念在路基设计中逐步得到体现,在一般情况下,路基给工程带来的主要难题是沉降变形及其各种处理措施条件下的固结问题,所 以路基沉降变形问题是高速铁路设计中所要考虑的主要控制因素。 1 路基沉降的原因 1.1 路基填土压实度不足 由于压实度不足,往往导致填方路基的不均匀沉降变形,路基两侧出现纵向裂缝,路基 土体压实度不足的主要原因有以下几点: (1)施工受实际条件的限制。路基施工时,天气太干燥,局部路堤填料粘土土块粉碎不 足致使路基压实度不均匀;暗埋式构造物处因构造物长度限制使路基边缘不能超宽碾压,致 使路基边缘压实度不够;某些加减速车道与行车道没有同步施工,当拼接处理得不好时,其 拼接处也会产生压实度不足的情况。 (2)考虑到施工安全和进度,使得压力或压力作用时间不足,路基压实不充分,致使路 基压实度达不到规范要求。 (3)由于填方土体的最佳含水量控制不好,压实效果达不到规范要求。 (4)在填方路堤施工中,当路堤施工到一定高度以后,路堤边缘土体往往存在压实度不 足问题,对于较高的填方路基,通常都要做相应的处治。 填方土体压实度不足,其结果是土体前期固结压力小于自重应力和各种附加应力之和, 在自重作用下就会发生沉降变形,这些附加应力主要来自以下几个方面:①车载,尤其超载 情况;②含水量变化造成土体容重的改变;③地下水位升降而导致浮力作用改变;④土体 饱和度改变,引起负孔隙水压力改变。这些附加应力引起土体中有效应力改变,从而导致土 体发生压缩变形。 1.2 路堤填料不均匀,控制不当 在公路施工过程中,对填料、级配很难得到有效的控制,填料常常是开挖路堑、隧道掘 进产生的方法,这些填料性质差异大、级配也相差很远。一方面,在施工过程中,如果分层 碾压厚度过大,小颗粒填料和软弱物质很难得到有效压实,在荷载的长期作用下,回填料会 产生不协调沉降变形,路面会产生局部沉陷,刚性路面还可能产生裂纹。另一方面,由于回 填料的性质不一样,特别是有的回填料具有膨胀性,在路基排水系统局部失效后,水的渗入 会使路面局部隆起,影响行车舒适度,严重的会使路面破坏。 1.3 地下水的影响 在地下水的交替作用下,路基土体内含水量反复变化,土体容重在一定范围内波动,更 为重要的是由毛细管张力引起的负孔隙水压力可以达到相当的数值,再加上水的软化、润滑 效应,可以使土体产生沉降变形。路基或地基中地下水的动态特征对路基不均匀沉降影响很大,路堤及其地基中的地下水主要补给来源有3种类型,即地下水侧向补给、降雨补给、地 表水侧向补给。其动态变化及潜蚀作用影响到土体中的有效应力分布、土体的结构特征和土 体强度从而导致路基的不均匀沉降。 2影响路基沉降的因素 2.1.影响沉降稳定的自然因素 2.1.1 地形 地形不仅影响路线的选定与线形设计.也影响到路基设计。平原、丘陵、山岭各区地势 不同,各区的水和温度的情况也不相同。平原区地势平坦,地面水易于积聚,地下水水位较高,因此路基需要保持一定的最小填土高度,力求不低于自然区划和土质所规定的临界高度:丘陵区地势起伏,山岭区地势陡峭。如果排水设计不当,或地质情况不良,易降低路基的强 度与稳定性,出现水毁、边坡坍方、路堤沿山坡的滑动等坏现象。

相关文档
最新文档