考研数学:前辈吐血总结史上最全求极限方法
求极限的12种方法总结及例题
求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。
在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。
本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。
2. 利用极限的定义我们可以利用极限的定义来求解问题。
根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。
利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。
3. 利用夹逼准则夹逼准则是求极限常用的方法之一。
当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。
要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。
4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。
利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。
要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。
5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。
洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。
通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。
6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。
当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。
通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。
7. 利用换元法换元法是求解复杂函数极限的常用方法之一。
通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。
对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。
求函数极限的方法总结及例题
求函数极限的方法总结及例题一、求函数极限的方法总结。
1. 代入法。
当函数在极限点处连续时,直接将极限点代入函数求值。
例如,对于函数f(x)=x + 1,求lim_x→2(x + 1),直接将x = 2代入,得到lim_x→2(x+1)=2 + 1=3。
2. 因式分解法。
适用于(0)/(0)型的极限。
例如,求lim_x→1frac{x^2-1}{x 1},将分子因式分解为(x + 1)(x 1),则原式=lim_x→1((x + 1)(x 1))/(x 1)=lim_x→1(x + 1)=2。
3. 有理化法。
对于含有根式的函数,通过有理化来消除根式。
例如,求lim_x→0(√(x+1)-1)/(x),分子分母同时乘以√(x + 1)+1进行有理化,得到lim_x→0((√(x + 1)-1)(√(x + 1)+1))/(x(√(x + 1)+1))=lim_x→0(x)/(x(√(x + 1)+1))=lim_x→0(1)/(√(x + 1)+1)=(1)/(2)。
4. 等价无穷小替换法。
当x→0时,sin xsim x,tan xsim x,ln(1 + x)sim x,e^x-1sim x等。
例如,求lim_x→0(sin2x)/(x),因为sin2xsim2x(x→0),所以lim_x→0(sin2x)/(x)=lim_x→0(2x)/(x)=2。
5. 洛必达法则。
对于(0)/(0)型或(∞)/(∞)型的极限,可对分子分母分别求导再求极限。
例如,求lim_x→0frac{e^x-1}{x},这是(0)/(0)型,根据洛必达法则,lim_x→0frac{e^x-1}{x}=lim_x→0frac{(e^x-1)'}{x'}=lim_x→0frac{e^x}{1}=1。
二、例题。
1. 例1。
求lim_x→3frac{x^2-9}{x 3}解析:这是(0)/(0)型极限,可先对分子因式分解,x^2-9=(x + 3)(x 3)。
考研数学极限七种运算方法
考研数学极限七种运算方法考研网为大家提供考研数学极限七种运算方法,更多考研资讯请关注我们网站的更新!考研数学极限七种运算方法极限是整个高等数学学习的工具,高数中很多重要概念例如导数、定积分、二重积分等都是由极限定义出来的。
在数学考察中,极限的计算占据很大一部分,所以考生必须熟练掌握。
基础复习阶段这部分内容如何复习?下面小编重点谈谈极限七种运算方法及适用情况。
基础阶段,我们的目标是三基本:基本概念、基本定理、基本方法,因此在基础阶段学习极限应从两个方面着手,一是极限的定义,二是极限的运算。
极限的定义在考试大纲中明确要求是理解,理解的意思并不是会背诵定义内容,而是能够领会定义内容背后的所蕴含的含义,正确理解所代表的任意小以及代表的距离。
除定义本身以外,极限的趋近状态也要注意区分,对于函数来说有六种趋近状态:各自的含义要非常清楚,而数列只有一种趋近状态,虽然没有指明,但是数列里边的隐含之意为。
极限的计算则需要首先掌握考研数学要考到的七种基本方法,知道七种方法适用的情况。
第一种是四则运算,此方法大家最为熟悉,但比较容易出错,需要注意使用四则运算的前提是进行运算的函数极限必须都是存在的;第二种是等价无穷小替换,这一方法比较受欢迎,而且很多极限计算的问题只需经过等价无穷小代换就能得出结果,不需再使用其他方法,需要注意的是等价无穷小代换前提必须首先是无穷小才可代换,另外只能在乘积因子内代换(有些是可以在加减因子中代换的,但是在没有十足把握的情况下应避免使用在加减因子中代换);第三种是洛必达法则,适用于及型未定式,在使用的过程中需要注意一下几点:1、洛必达法则必须结合等价无穷小使用;2、使用一次整理一次;3、其他类型未定式需要转化成及型才可以使用洛必达法则等;第四种是泰勒展式,这是解决极限问题的利器,在基础阶段不必要求掌握如何使用,只需了解泰勒展式的内容即可,具体使用原则会在强化阶段给出;第五种是夹逼定理,主要用于解决含有不等式关系的极限问题,特别应用于个分式之和的数列极限问题,通过放缩分母来达到出现不等关系的目的;第六种是定积分的定义,与夹逼定理相区别,夹逼定理解决的问题放缩分母后分子可用一个式子去表示,而定积分的定义可解决夹逼定理不能解决的问题,通过主要的三步:1、提取,2、凑出,3、极限符号及连加符号改写为,改写为,改写为计算定积分即可解决个分式之和的数列极限问题;第七种方法是适用于数列极限的单调有界性定理,难点在于如何确定证明方向,一般单调有界性定理适用于由递推公式给出的数列极限问题,因此可采取数学归纳法证明有界性,做差的办法证明单调性。
求极限的13种方法
求极限的13种方法求极限的方法有很多种,以下列举了常见的13种方法和技巧,以帮助解决各种极限问题。
1.代入法:将极限中的变量代入表达式中,简化计算。
这通常适用于简单的多项式函数。
2.夹逼定理:当一个函数夹在两个趋向于相同极限的函数之间时,函数的极限也趋向于相同的值。
3.式子分解:通过将复杂的函数分解成更简单的部分,可以更容易地计算极限。
4.求导法则:使用导数的性质和规则来计算函数的极限。
这适用于涉及导数的函数。
5.递归关系:如果一个函数的递归关系式成立,可以使用递归关系来计算函数的极限。
6.级数展开:将函数展开成无穷级数的形式,可以使用级数的性质来计算函数的极限。
7.泰勒级数:对于可微的函数,可以通过使用泰勒级数来近似计算函数的极限。
8. 洛必达法则:如果一个函数的极限形式是$\frac{0}{0}$或$\frac{\infty}{\infty}$,可以使用洛必达法则来计算极限。
该法则涉及对分子分母同时求导的操作。
9.极限存在性证明:通过证明一个函数在一些点上的左极限和右极限存在且相等,可以证明函数在该点上的极限存在。
10.收敛性证明:对于一个序列极限,可以通过证明序列是有界且单调递增或单调递减的来证明其极限存在。
11.极限值的判断:根据函数的性质,可以判断函数在一些点上的极限是多少。
12.替换法:通过将变量替换为一个新的变量,可以使函数更容易计算极限。
13.反证法:通过假设极限不存在或不等于一些特定值,来推导出矛盾的结论,从而证明极限存在或等于一些特定值。
这些方法并非完整的极限求解技巧列表,但是它们是最常见和基本的方法。
在实际问题中,可能需要结合使用多种方法来求解复杂的极限。
考研高数中求极限的几种特殊方法
考研高数中求极限的几种特殊方法在数学分析中,极限是研究函数的重要工具。
通过极限,我们可以研究函数的性质,进行函数的计算,以及解决与函数相关的问题。
求函数极限的方法有很多种,以下是几种常见的方法。
对于一些简单的初等函数,我们可以直接根据函数的定义代入特定的x值来求得极限。
例如,求lim (x→2) (x-2),我们可以直接代入x=2,得到极限为0。
当函数在某一点处的极限存在时,如果从该点趋近的数列是无穷小量,则此函数在该点处的极限就等于该数列的极限。
例如,求lim (x→0) (1/x),我们可以令x=1/t,当t→∞时,x→0,而t=1/x趋近于无穷小量,所以lim (x→0) (1/x) = lim (t→∞) (t) = ∞。
洛必达法则是求未定式极限的重要方法。
如果一个极限的形式是0/0或者∞/∞,那么我们可以通过对函数同时取微分的方式来找到极限的值。
例如,求lim (x→+∞) (x^2+3)/(2x^2+1),分子分母同时求导,得到lim (x→+∞) (2x/4x) = lim (x→+∞) (1/2) = 1/2。
对于一些复杂的函数,我们可以通过泰勒展开的方式将其表示为无限多项多项式之和的形式。
通过选取适当的x值,我们可以使得多项式的和尽可能接近真实的函数值。
例如,求lim (x→0) ((1+x)^m-1)/x,我们可以使用泰勒展开得到lim (x→0) ((1+x)^m-1)/x = lim (x→0) m(1+x)^(m-1) = m。
夹逼定理是一种通过构造两个有界序列来找到一个数列的极限的方法。
如果一个数列的项可以划分为三部分,而每一部分都分别被两个有界序列所夹逼,那么这个数列的极限就等于这两个有界序列的极限的平均值。
例如,求lim (n→∞) (n!/(n^n))^(1/n),令a_n=(n!/(n^n))^(1/n),则a_n ≤ a_{n+1}且a_n ≥ a_{n-1},因此由夹逼定理可知lim a_n=lim a_{n+1}=lim a_{n-1}=1。
求极限的13种方法
求极限的13种方法(简叙)龘龖龍极限概念与求极限的运算贯穿了高等数学课程的始终,极限思想亦是高等数学的核心与基础,因此,全面掌握求极限的方法与技巧是高等数学的基本要求。
本篇较为全面地介绍了求数列极限与函数极限的各种方法,供同学参考。
一、利用恒等变形求极限利用恒等变形求极限是最基础的一种方法,但恒等变形灵活多变,令人难以琢磨。
常用的的恒等变形有:分式的分解、分子或分母有理化、三角函数的恒等变形、某些求和公式与求积公式的利用等。
例1、求极限 )1...()1)(1(22lim na a a n +++∞→ ,其中1<a分析 由于积的极限等于极限的积这一法则只对有限个因子成立,因此,应先对其进行恒等变形。
解 因为)1...()1)(1(22na a a +++ =)1...()1)(1)(1(1122na a a a a +++-- =)1...()1)(1(11222na a a a ++-- =)1(1112+--n a a当∞→n 时,,21∞→+n 而1<a ,故从而,012→+n a)1...()1)(1(22lim naa a n +++∞→=a-11 二、利用变量代换求极限利用变量代换求极限的主要目的是化简原表达式,从而减少运算量,提高运算效率。
常用的变量代换有倒代换、整体代换、三角代换等。
例2、求极限11lim 1--→nmx x x ,其中m,n 为正整数。
分析 这是含根式的(00)型未定式,应先将其利用变量代换进行化简,再进一步计算极限。
解 令11,1→→=t x x t mn时,则当原式=mnt t t t t t t t t t t t m m n n m m n n t m n t =++++++=+++-+++-=----------→→1...1...)1...)(1()1...)(1(lim 11lim 2121212111 三、利用对数转换求极限利用对数转换求极限主要是通过公式,ln v u v e u ⋅=进行恒等变形,特别的情形,在(∞1)型未定式时可直接运用v u v e u ⋅-=)1( 例3、求极限ox →lim xx 2csc )(cos解 原式=ox →lim 21sin sin 21lim csc )1(cos 2202---==→ee e xx xx x四、利用夹逼准则求极限利用夹逼准则求极限主要应用于表达式易于放缩的情形。
考研数学:求极限的16种方法1500字
考研数学:求极限的16种方法1500字极限是数学中的重要概念,是解析数学中很多问题的基础。
求极限的方法有很多种,下面就介绍一下求极限的16种常用方法。
1. 直接代入法:对于某个函数在某个点的极限,如果可以直接将极限点代入函数中计算出极限值,则可以使用直接代入法。
2. 连续性法则:如果一个函数在某个点处连续,那么该点的极限值就是函数在该点的函数值。
3. 无穷小量的性质:利用无穷小量的性质对极限进行求解,例如利用已知的极限,对函数进行分子分母的化简、展开等操作。
4. 夹逼法:当一个函数夹在两个函数之间时,利用两个函数的极限值可以求出该函数的极限值。
5. 单调有界原理:对于单调有界的函数,可以通过证明上下确界得到极限值。
6. 极限的四则运算法则:对于两个函数的极限,可以利用四则运算法则求出其和、差、积、商的极限。
7. 换元法:通过对函数进行变量替换,将原来的极限问题转化为更简单的问题求解。
8. 泰勒级数展开法:对于某些函数,可以利用泰勒级数展开的性质,将函数进行级数展开,然后求出极限值。
9. 符号常用极限法:对于一些特殊的函数,例如正弦函数、指数函数等,可以通过符号常用极限值来求出其极限。
10. 隐函数极限法:对于隐函数的极限问题,需要通过隐函数求导的方式来求出极限值。
11. 单调列法:对于一个递增(递减)且有上(下)界的序列,可以通过极限的单调列法求出极限。
12. Stolz定理:当一个数列为无穷大与无穷小的极限的商时,可以利用Stolz定理求出极限。
13. 递推法:对于递归定义的数列,可以通过递推的方式求出极限。
14. 分部积分法:对于一些函数的积分,可以通过分部积分法转化为极限问题求解。
15. L'Hospital法则:对于一些不定型的极限问题,可以通过L'Hospital法则来求出其极限。
16. 堪培拉法则:对于一些含有多个变量的函数,可以利用堪培拉法则求出其极限。
以上是求解极限的16种常用方法,掌握这些方法可以更好地应对极限求解问题。
数学求极限的方法总结
数学求极限的方法总结数学求极限的方法有:求未定式极限、求和,积分等。
求未定式极限包括:利用柯西不等式、洛必达法则、函数单调性等。
求和,积分等,如运用数学归纳法。
1。
求未定式极限求未定式极限,通常是利用数列的极限的性质或无穷小量的比较来进行的。
若两个无穷小的比值相等,那么它们的极限也相等。
这个结论叫做数列的极限存在准则,它是我们进一步讨论极限概念和计算极限的基础。
例如,在复利计算中,常常使用到数列的极限存在准则:limnlnn=lim[n( 1+x) n+x]所以,对于无穷大量,可以把它看成是无穷小量的连续函数。
我们先根据无穷小量的比较法则,比较两个无穷小量的大小关系,看它们是否相等。
2。
求和,积分可以运用数学归纳法,把几个极限连乘积,再把所得的商加起来,就得出了极限值。
例如,在求函数极限的过程中,如果是在小于等于零的地方,可以运用函数的单调性,也可以直接进行四则运算求极限。
因为这样的题目是考查基本的知识点,只要基本功扎实,稍微努力即可得出答案。
3。
运用数学归纳法。
数学归纳法是通过观察和研究,发现事物之间内在的联系和规律,从而达到对事物认识和掌握的一种数学方法。
这个方法有很多优点,例如,有利于培养人们的逻辑思维能力,有利于提高解决问题的能力。
我们应该充分发挥它的优势。
计算,证明都可以使用它。
4。
利用柯西不等式进行判断如果已经确定了极限的存在性,可以利用柯西不等式的推导方法,简化计算。
例如,若f(x) =lim_{ntoinfty} f(n)=0, then f'(x)=lim_{ntoinfty} lim_{ntoinfty}f'(n)=infty。
5。
洛必达法则用洛必达法则求极限时,需要用到三个等式,即无穷大量与无穷小量之比是无穷大量;二者的绝对值之比也是无穷大量。
两个无穷大量之比是无穷小量;当两个无穷小量的比值是无穷小量时,其差是无穷小量。
总之,我们要学会运用各种方法去解题,不要死读书。
考研数学知识点:极限的计算精选全文
可编辑修改精选全文完整版考研数学知识点:极限的计算2016考研数学知识点:极限的计算极限是考研数学每年必考的内容,分值在10分左右。
一、涉及的知识点及考查形式可涉及极限计算的知识点有,连续性及间断点的分类(分段函数分段点的连续问题),可导(导数是由函数极限来定义的),渐近线,二重极限(多元微分学)。
其中,二重极限难度较大。
极限以间接考查或与其他知识点综合出题的比重很大,也可以直接出题,所以考查形式有多种。
如已知极限求参数,无穷小的概念与比较,求间断点类型和个数,求渐近线方程或条数,求某一点处的连续性和可导性,求多元函数在某一点处极限是否存在,求含有极限的函数表达式,已知极限求极限等。
二、计算方法函数极限计算的常规方法主要分四类:等价无穷小替换,洛必达法则,泰勒公式,导数定义。
数列极限涉及的常规方法主要有四类:夹逼定理,定积分的.定义(主要是针对部分和求极限),转化为函数极限(归结原则),单调有界准则。
其中前三者用于求数列极限,最后一个是用于证明数列极限存在。
其中,四则运算、两个重要极限作为最基本的知识,不列入常规方法中。
三、求解步骤及历年真题解析极限中有7种未定型,有了这7种未定型,极限的求解步骤就变得极为简单。
第一步,定型,确定极限是7种未定型中哪一类型。
第二步,化简,主要方法是根式有理化、非零因子提前算出、加减部分的极限存在要提前算出、等价无穷小替换等。
第三步,定法,主要是应用函数极限和数列极限的常规方法进行求解。
其中第一步与第二步的顺序是相对的,可以先化简再定型。
四、小结极限相关的基本概念和基本理论是极限复习的重点,而计算方法是极限复习也是得分的关键。
基本概念和基本理论理解透了,才能正确使求极限的方法进行求解。
在求极限的过程中,需要注意计算方法、理论所使用的条件,尤其是等价无穷小替换的条件。
求极限的方法总结
千里之行,始于足下。
求极限的方法总结求极限是微积分的重要内容,也是解决数学问题中常用的方法之一。
下面是对求极限的方法进行总结:1. 代入法:当在不断插入一个趋于该极限的数值时,假如函数表达式有意义,且极限存在,则取其极限值作为函数的极限。
2. 四则运算法则:假如函数 f(x) 和 g(x) 在 x = a 处极限都存在,那么可以利用加减乘除等基本运算的极限法则求解。
3. 夹逼定理:当存在两个函数 f(x) ≤ g(x) ≤ h(x),且函数 f(x),h(x)的极限都为 L,那么 g(x)的极限也为 L。
4. 函数的连续性:假如函数 f(x) 在 x = a 处连续,那么函数 f(x) 在x = a 处也存在极限。
5. 分解因式法:可以通过将函数进行分解因式,使得函数变为两个函数之比,然后利用极限的分解限求解。
6. 无穷小与无穷大:假如 x → a 时,函数 f(x) 的极限为 0,那么称函数 f(x) 为无穷小。
假如 x → a 时,函数 f(x) 的极限为∞或 -∞,那么称函数 f(x) 为无穷大。
通过争辩函数的无穷小和无穷大性质,可以求解极限。
7. 等价无穷小法:假如函数 f(x) 和 g(x) 在 x = a 处极限都为 0,并且极限 lim(x→a) [f(x)/g(x)] 存在且为 L (L ≠ 0),那么可以使用“等价无穷小”来求解极限。
第1页/共2页锲而不舍,金石可镂。
8. 数列极限法则:假如数列 {an} 在 n →∞时有极限 L,则函数 f(x) = an 在 x →∞时的极限也为 L。
通过数列的极限法则,可以推导出函数的极限。
9. 泰勒开放:对于光滑函数,可以利用泰勒开放来近似求解极限。
10. 形式不确定型:对于一些形式不确定的极限,可以通过化简、将其转换成其他形式来求解。
11. 极限存在定理:对于一些特定的函数和性质,可以通过极限存在定理来判定函数的极限是否存在。
上述是常用的一些求解极限的方法总结,通过运用这些方法,可以更加精确地求解各种极限问题。
求极限方法总结
求极限方法总结求极限方法总结一,求极限的方法横向总结:1带根式的分式或简单根式加减法求极限:1)根式相加减或只有分子带根式:用平方差公式,凑平方(有分式又同时出现未知数的不同次幂:将未知数全部化到分子或分母的位置上)2)分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式(常用到2分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。
3等差数列与等比数列和求极限:用求和公式。
4分母是乘积分子是相同常数的n项的和求极限:列项求和5分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。
6运用重要极限求极限(基本)。
7乘除法中用等价无穷小量求极限。
8函数在一点处连续时,函数的极限等于极限的函数。
9常数比0型求极限:先求倒数的极限。
10根号套根号型:约分,注意别约错了。
11三角函数的加减求极限:用三角函数公式,将sin化cos二,求极限的方法纵向总结:1未知数趋近于一个常数求极限:分子分母凑出(x-常数)的形式,然后约分(因为x不等于该常数所以可以约分)最后将该常数带入其他式子。
2未知数趋近于0或无穷:1)将x放在相同的位置2)用无穷小量与有界变量的乘积3)2个重要极限4)分式解法(上述)高数解题技巧。
高数(上册)期末复习要点高数(上册)期末复习要点第一章:1、极限2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法 2、分部积分法(注意加C )定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面4、空间旋转面(柱面)高数解题技巧。
考研数学:求极限的16个方法总结
考研数学:求极限的16个方法总结极限的保号性很重要就是说在一定区间内函数的正负与极限一致。
1、极限分为一般极限,还有个数列极限(区别在于数列极限时发散的,是一般极限的一种)。
2、解决极限的方法如下1)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1或者(1+x)的a次方-1等价于Ax等等。
全部熟记。
(x趋近无穷的时候还原成无穷小)2)洛必达法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提。
必须是X趋近而不是N趋近。
(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件。
还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用无疑是死路一条)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。
洛必达法则分为三种情况1)0比0无穷比无穷时候直接用2)0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了3)0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0当他的幂移下来趋近于无穷的时候LNX趋近于0)3、泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!)e 的x展开sina展开cos展开ln1+x展开对题目简化有很好帮助4、面对无穷大比上无穷大形式的解决办法。
取大头原则最大项除分子分母!看上去复杂处理很简单。
5、无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!6、夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
考研数学:求极限的16种方法
考研数学:求极限的16种方法1500字求极限是数学中一个重要的概念和技巧,经常会在高等数学、微积分、函数分析等课程中出现。
在考研数学中,求极限也是一个比较常见的题型,有时候会要求借助不同的方法来求解极限。
以下是16种常见的求极限的方法:方法1:代入法代入法是求极限中最基本的方法之一,特别适用于极限问题中有指定点的情况。
代入的点可以是有限点或无限点,通过将极限值代入原函数中,来求得极限。
方法2:夹逼定理夹逼定理也是一种常用的方法,适用于需要用两个已知函数夹住待求函数的情况。
通过取两个已知函数逐渐逼近待求函数,来求得极限。
方法3:集中取值法集中取值法是一种常用的方法,适用于需要对待求函数的取值进行讨论的情况。
通过将待求函数的取值限制在一个区间内,来求得极限。
方法4:变量代换法变量代换法是一种常用的方法,适用于需要通过变换变量来求得极限的情况。
通过进行恰当的变换变量,将原极限转化为另一个更容易求解的极限。
方法5:公共因子法公共因子法是一种常用的方法,适用于需要将待求函数的表达式进行分解的情况。
通过进行恰当的分解,将待求函数表达式中的公共因子提取出来,来求得极限。
方法6:三角函数极限法三角函数极限法是一种常用的方法,适用于需要进行三角函数的极限转化的情况。
通过使用三角函数的性质和公式,将原极限转化为更容易求解的三角函数极限。
方法7:幂函数极限法幂函数极限法是一种常用的方法,适用于需要进行幂函数的极限转化的情况。
通过使用幂函数的性质和公式,将原极限转化为更容易求解的幂函数极限。
方法8:自然对数极限法自然对数极限法是一种常用的方法,适用于需要进行自然对数的极限转化的情况。
通过使用自然对数的性质和公式,将原极限转化为更容易求解的自然对数极限。
方法9:常数e极限法常数e极限法是一种常用的方法,适用于需要进行常数e的极限转化的情况。
通过使用常数e的性质和公式,将原极限转化为更容易求解的常数e极限。
方法10:斜率法斜率法是一种常用的方法,适用于需要进行斜率的极限转化的情况。
考研数学中求极限方法的总结精选全文
可编辑修改精选全文完整版考研数学中求极限方法的总结1.引言19 世纪建立的极限理论奠定了微积分的基础[1],使数学这门古老的学科有了质的飞跃,由此建立起来的理论及其应用开创了一个崭新的数学时代。
但是对于数列及函数极限的求解问题,看似简单,但实则方法过于多种多样,往往就是一个比较难一点的极限问题,就会导致学者因选错方法而浪费大量的时间或者根本做不出来。
因此本文针对求极限的方法进行总结归纳,给学者梳理出了一些求极限的方法。
2.利用几种已知公式求极限2.1.和差化积公式积化和差公式解题思路:此方法一般求解的比较简单的极限,比较明显的是两个三角函数相减或相乘的形式。
2.2.伯努利不等式己知实数x>-1 ,当n≥1时,有(1+x)n≥1+ nx;当0≤n≤1,有(1+x)n≤1+ nx。
解题思路:此种类型一般是在求解极限的过程中,所以在这里就不举例说明。
2.3.泰勒公式[2]解题思路:对于型不定式中,如果运用洛必达则比较麻烦。
此类题目比较明显的特征是含有 e x,sin x,cos x,ln (1+ x)等混在一起的混合运算,此类题大多数是用洛必达做不出来的,而用泰勒公式进行简单的替换就很容易求出来的。
例1.3 求极限解:由泰勒公式展开到第三项得:3.利用洛必达法则求极限[3]定理:对在数列 x n与 y n间有一定关系的商的极限,我们可以用序列的洛比达法则。
满足4.利用单调有界性求极限单调有界定理[3]:在实数系中,有界的单调数列必有极限。
有上界的递增数列必有极限,有下界的递减数列必有极限。
5.利用迫敛性(两边夹定理)求极限迫敛性[3]:设收敛数列{a n },{b n }都是以a为极限,则数列{c n }满足,存在正数N0,当n >N0时有 a n≤c n≤b n,则数列收敛,且满足。
解题思路:一般适用于较复杂的通项。
首先要把从 x n的表达式写出来,然后通过放缩法找到两个有相同极限值的数列。
例题4.1 求极限解:因为由迫敛性得。
求极限的方法总结
极限是数学分析中的重要概念,也是微积分的基础。
求极限的方法有很多种,下面将对常用的几种方法进行总结和解析。
1. 直接代入法直接代入法是最基本的求极限方法,适用于函数单调、连续,且直接代入可知极限值的情况。
具体步骤如下:(1)将极限表达式中的变量替换为具体的数值。
(2)根据函数的定义和性质,计算替换后的表达式。
(3)得出极限值。
2. 因式分解法因式分解法适用于有理函数的极限求解,通过分解函数,消除分子、分母中的共同因子,简化极限表达式。
具体步骤如下:(1)对有理函数进行因式分解。
(2)对分解后的表达式进行约分,消除共同因子。
(3)根据约分后的表达式求极限。
3. 泰勒公式法泰勒公式法是利用泰勒公式将函数展开,近似表示函数在某一点附近的值,从而求解极限。
具体步骤如下:(1)确定函数在某一点附近的泰勒展开式。
(2)根据泰勒展开式求极限。
4. 洛必达法则洛必达法则(L’Hôpital’s Rule)适用于求解“0/0”或“∞/∞”形式的极限。
该法则通过对分子、分母同时求导,将极限问题转化为导数的极限问题。
具体步骤如下:(1)判断极限形式是否为“0/0”或“∞/∞”。
(2)对分子、分母分别求导。
(3)将求导后的表达式代入原极限表达式。
(4)求解新的极限表达式。
5. 夹逼定理夹逼定理(Squeeze Theorem)适用于求解形如“f(x) = (g(x))/(h(x))”,且当x趋向于某一点时,g(x)和h(x)分别趋向于a和b(a ≠ b)的极限。
具体步骤如下:(1)找到两个函数p(x)和q(x),使得p(x) ≤ f(x) ≤ q(x)。
(2)证明当x趋向于某一点时,p(x)和q(x)分别趋向于a和b。
(3)根据夹逼定理,得出f(x)趋向于a。
6. 有界函数法有界函数法适用于求解形如“f(x) = g(x)/h(x)”,且当x趋向于某一点时,g(x)趋向于0,h(x)趋向于无穷大的极限。
具体步骤如下:(1)证明g(x)在x趋向于某一点时趋向于0。
考研数学二极限求解题技巧
考研数学二极限求解题技巧求解考研数学二极限问题可以运用以下几个技巧:1. 利用基本的极限求解公式:在解决数学二极限问题时,经常可以运用以下基本的极限求解公式:- $\\lim_{x\\to a} (k) = k$ (常数性质)- $\\lim_{x\\to a} (x) = a$ (同一性质)- $\\lim_{x\\to a} (x^n) = a^n$ (幂函数性质)- $\\lim_{x\\to a} (f(x) + g(x)) = \\lim_{x\\to a} f(x) + \\lim_{x\\to a} g(x)$ (加法性质)- $\\lim_{x\\to a} (f(x) \\cdot g(x)) = \\lim_{x\\to a} f(x) \\cdot \\lim_{x\\to a} g(x)$ (乘法性质)- $\\lim_{x\\to a} \\frac{f(x)}{g(x)} = \\frac{\\lim_{x\\to a} f(x)}{\\lim_{x\\to a} g(x)}$ (除法性质)这些基本的极限运算公式是求解数学二极限问题的基础,熟练掌握并灵活运用这些公式有助于快速解题。
2. 利用夹逼定理:夹逼定理是求解数学二极限问题时常用的重要方法。
夹逼定理的原理是:如果对于$x$在某个点附近的取值范围内,存在函数$g(x)$和$f(x)$两个函数,使得对于所有这些$x$,满足$g(x) \\leq f(x) \\leq h(x)$,且$\\lim_{x\\to a} g(x) = \\lim_{x\\to a} h(x) = L$,那么$\\lim_{x\\to a} f(x) = L$。
运用夹逼定理时,可以通过构造合适的函数$g(x)$和$h(x)$,将要求解的问题转化为求解$g(x)$和$h(x)$的极限,并找到它们的极限值。
3. 利用换元法:换元法在解决数学二极限问题时也是一种常用的方法。
考研 高数 极限运算法则
0
( x →∞ )
0
那末 lim f ( x )存在, 且等于 A.
x → x0 ( x→∞ )
准则Ⅰ和准则Ⅰ`称为两边夹原理.
杨 树 文
*利用两边夹关键在于构造不等关系式
网 络 高 等 数 学 教 程
例
求 lim (
n→ ∞
1 n +1
2
+
1 n +2
2
+L+
1 n +n
2
).
1 1 n n < +L+ < , 解 Q 2 2 2 2 n +n n +1 n +n n +1
则 lim f ( g ( x)) = lim f (lim g ( x)) = A
x →a u →b x→a x →a u →b
例: limsin(sin x)) = limsin x = 0
x →0 x →0
幂指函数的极限运算
f ( x) → A > 0, g ( x) → B, 则f ( x) g ( x ) → AB
无穷小分出法:以分母中自变量的最高次幂除分 子,分母,以分出无穷小,然后再求极限.
杨 树 文
网 络 高 等 数 学 教 程
例5 解
1 2 n 求 lim ( 2 + 2 + L + 2 ). n→ ∞ n n n
n → ∞时, 是无穷小之和. 先变形再求极限.
1 2 n 1+ 2 +L+ n lim ( 2 + 2 + L + 2 ) = lim 2 n→ ∞ n n→ ∞ n n n
考研数学:极限的计算方法(函数的连续性)
版权所有翻印必究/考研数学:极限的计算方法(函数的连续性)在考研数学中,高数占据了大半壁江山,并且极限是整个高数的基础,对于基础的知识点,考研涉及百分之八十,所以对于极限的计算是考研数学的第一道大题,对于这道题,同学们的得分率是高数中最高的。
对于简单的题型,我们不应该满足于得分,也不应该满足于得全分,更应该追求快速的得全分。
那对于极限的计算中数值型的,主要就是解决七种未定式000,,0,,1,0,0∞∞⎛⎫⋅∞∞-∞∞ ⎪∞⎝⎭。
对于我们的在解决的时候主要是化简,那我们化简得目的是什么呢?就是把不能代入的转化为能代入的。
比如11lim 1x x →+这个极限我们只需要将1x =代入到11x +中即可,因为函数在这一点是连续的。
那我们另一个例子是:2112lim(11x x x →---在这里1x =不能直接代入,因为函数在点1x =处是不连续的。
所以同学们在化简极限时,只需要将极限化简到在该点是连续的函数即可,然后将该点值代入即可。
换句话说,该点极限值即为该点函数值。
对于上面的极限2112lim()11x x x →---通分即可得到2211112111lim()lim lim 1112x x x x x x x x →→→+--===--+。
我们一直在说连续函数,那连续函数到底是什么呢?如果函数在某点的邻域内有定义,并且00lim ()()x x f x f x →=,则称函数()f x 在0x x =处连续。
即极限值等于函数值。
例如1()x e f x x -=,则求0lim ()x f x →。
解析:对于该题函数在0x =是不连续的,故我们需要化简极限。
版权所有翻印必究对于极限00001lim ()lim lim lim11x x x x x e x f x x x →→→→-====。
所以我们只需要将其化简为在该点连续的函数。
对于考研中的极限的计算,我们以后再碰到极限计算的化简时,能有一个方向。
2022考研数学讲解之求极限的11种方法
例 13
求极限
ax ax 2
lim
,
x0
x2
(a 0).
【解】 a x e x ln a 1 x ln a x 2 ln 2 a ( x 2 ) , 2
a x 1 x ln a x 2 ln 2 a ( x2 ) ; 2
a x a x 2 x 2 ln 2 a ( x 2 ).
(Ⅰ)证明
lim
n
xn
存在,并求该极限;
1
(Ⅱ)计算
lim
n
xn1 xn
xn2
.
【分析】 一般利用单调增加有上界或单调减少有下界数列必有极限的准则来证明数列
极限的存在.
【详解】 (Ⅰ)因为 0 x1 ,则 0 x2 sin x1 1 .
可推得 0 xn1 sin xn 1 , n 1, 2,,则数列xn 有界.
2
例 8:求极限 lim sin x x x0 tan3 x
【解】 lim sin x x
lim sin x x
lim
cos x 1 lim
1 2
x2
1
x0 tan3 x x0
x3
x0 3x 2
x0 3x 2
6
6.用罗必塔法则求极限
例 9:求极限 lim ln cos 2x ln(1 sin 2 x)
1 cosx ~ 1 x2 , 1 axb 1 ~ abx ;
2 (2) 等价无穷小量代换,只能代换极限式中的因.式.;
(3)此方法在各种求极限的方法中应.作.为.首.选.。
例 7:求极限 lim x ln(1 x) x0 1 cos x
【解】
lim x ln(1 x) lim x x 2 . x0 1 cos x x0 1 x2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考研数学:前辈吐血总结史上最全求极
限方法
[摘要]假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。
树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。
为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。
函数的性质表现在各个方面。
首先对极限的总结如下。
极限的保号性很重要就是说在一定区间内函数的正负与极限一致
1、极限分为一般极限,还有个数列极限(区别在于数列极限时发散的,是一般极限的一种)。
2、解决极限的方法如下
1)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1或者(1+x)的a次方-1等价于Ax等等。
全部熟记。
(x趋近无穷的时候还原成无穷小)
2)洛必达法则(大题目有时候会有暗示要你使用这个方法)
首先他的使用有严格的使用前提。
必须是X趋近而不是N趋近。
(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件。
还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用无疑是死路一条)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。
洛必达法则分为三种情况
1)0比0无穷比无穷时候直接用
2)0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了
3)0的0次方1的无穷次方无穷的0次方
对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0当他的幂移下来趋近于无穷的时候LNX趋近于0)
3、泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!)e 的x展开sina展开cos展开ln1+x展开对题目简化有很好帮助
4、面对无穷大比上无穷大形式的解决办法。
取大头原则最大项除分子分母!看上去复杂处理很简单。
5、无穷小于有界函数的处理办法
面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!
6、夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
7、等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)
8、各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数。
9、求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化。
10、两个重要极限的应用。
这两个很重要!对第一个而言是X趋近0时候的sinx与x比值。
第2个就如果x趋近无穷大无穷小都有对有对应的形式(第二个实际上是用于函数是1的无穷的形式)(当底数是1的时候要特别注意可能是用第二个重要极限)
11、还有个方法,非常方便的方法。
就是当趋近于无穷大时候,不同函数趋近于无穷的速度是不一样的。
x的x次方快于x!快于指数函数快于幂数函数快于对数函数(画图也能看出速率的快慢)。
当x趋近无穷的时候他们的比值的极限一眼就能看出来了
12、换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中
13、假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的
14、还有对付数列极限的一种方法,就是当你面对题目实在是没有办法走投无路的时候可以考虑转化为定积分。
一般是从0到1的形式。
15、单调有界的性质。
对付递推数列时候使用证明单调性。
16、直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x)加减某个值)加减f(x)的形式,看见了有特别注意)(当题目中告诉你F(0)=0时候f(0)导数=0的时候就是暗示你一定要用导数定义!)
凯程教育:
凯程考研成立于2005年,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。
凯程考研的宗旨:让学习成为一种习惯;
凯程考研的价值观口号:凯旋归来,前程万里;
信念:让每个学员都有好最好的归宿;
使命:完善全新的教育模式,做中国最专业的考研辅导机构;
激情:永不言弃,乐观向上;
敬业:以专业的态度做非凡的事业;
服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。
如何选择考研辅导班:
在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。
师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。
判断师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底的,是一批教师配合的结果。
还要深入了解教师的学术背景、资料著述成就、辅导成就等。
凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。
而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。
对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。
在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。
在凯程官方网站的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。
对于如此高的成绩,凯程集训营班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多
学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。
最好的办法是直接和凯程老师详细沟通一下就清楚了。
建校历史:机构成立的历史也是一个参考因素,历史越久,积累的人脉资源更多。
例如,凯程教育已经成立10年(2005年),一直以来专注于考研,成功率一直遥遥领先,同学们有兴趣可以联系一下他们在线老师或者电话。
有没有实体学校校区:有些机构比较小,就是一个在写字楼里上课,自习,这种环境是不太好的,一个优秀的机构必须是在教学环境,大学校园这样环境。
凯程有自己的学习校区,有吃住学一体化教学环境,独立卫浴、空调、暖气齐全,这也是一个考研机构实力的体现。
此外,最好还要看一下他们的营业执照。