理论力学《点的合成运动》答案

合集下载

理论力学:第6章 点的合成运动

理论力学:第6章 点的合成运动


2 2 r

aeτ 0 ,解出 aa=142r。所以小环 M 的加速度为 142r。
6-23 已知 O1 A O2 B l 1.5 m,且 O1A 平行于 O2 B ,题 6-23 图所示位置,
滑道 OC 的角速度=2 rad/s,角加速度 =1 rad/s2,OM = b =1 m。试求图示位置
第 6 章 点的合成运动
6-7 题 6-7 图所示曲柄滑道机构中,杆 BC 为水平,而杆 DE 保持铅直。 曲柄长 OA=10 cm,以匀角速度 = 20 rad/s 绕 O 轴转动,通过滑块 A 使杆 BC 作 往复运动。求当曲柄与水平线的交角为 = 0、30、90时,杆 BC 的速度。
·8·
由图得 vr=ve=b=2 m/s, va O1 l 。
得到 O1

l
b cos 45
21
1.5
2 2
1.89 rad/s 。
(2)求加速度。动点,动坐标系的选择不变,则动点 M 的加速度图如图(c)
所示。由加速度合成定理
aa ae ar aC
即 aan aaτ aeτ aen ar aC
时 O1A 的角速度和角加速度。
M
45 45
vr
ve
va
x
ae
ane
ana
45
ar
aC
aa
(a)
(b)
(c)
题 6-23 图
解:(1)求速度。
选取 M 为动点,动坐标系固连于滑道 OC 上,则动点 M 的速度图如图(b)
所示。由速度合成定理
va=ve+vr
沿 OC 轴的垂直方向投影得

理论力学答案第5章点的复合运动分析

理论力学答案第5章点的复合运动分析

第5章 点的复合运动分析5-1 曲柄OA 在图示瞬时以ω0绕轴O 转动,并带动直角曲杆O 1BC 在图示平面内运动。

若d 为已知,试求曲杆O 1BC 的角速度。

解:1、运动分析:动点:A ,动系:曲杆O 1BC ,牵连运动:定轴转动,相对运动:直线,绝对运动:圆周运动。

2、速度分析:r e a v v v += 0a 2ωl v =;0e a 2ωl v v == 01e 1ωω==AO v BC O (顺时针)5-2 图示曲柄滑杆机构中、滑杆上有圆弧滑道,其半径cm 10=R ,圆心O 1在导杆BC 上。

曲柄长cm 10=OA ,以匀角速rad/s 4πω=绕O 轴转动。

当机构在图示位置时,曲柄与水平线交角 30=φ。

求此时滑杆CB 的速度。

解:1、运动分析:动点:A ,动系:BC ,牵连运动:平移,相对运动:圆周运动,绝对运动:圆周运动。

2、速度分析:r e a v v v +=πω401a =⋅=A O v cm/s ; 12640a e ====πv v v BC cm/s5-3 图示刨床的加速机构由两平行轴O 和O 1、曲柄OA 和滑道摇杆O 1B 组成。

曲柄OA 的末端与滑块铰接,滑块可沿摇杆O 1B 上的滑道滑动。

已知曲柄OA 长r 并以等角速度ω转动,两轴间的距离是OO 1 = d 。

试求滑块滑道中的相对运动方程,以及摇杆的转动方程。

解:分析几何关系:A 点坐标 d t r x +=ωϕcos cos 1 (1) t r x ωϕsin sin 1= (2) (1)、(2)两式求平方,相加,再开方,得: 1.相对运动方程trd r d t r d t rd t r x ωωωωcos 2sin cos 2cos 22222221++=+++=将(1)、(2)式相除,得: 2.摇杆转动方程: dt r tr +=ωωϕcos sin tandt r t r +=ωωϕcos sin arctan5-4 曲柄摇杆机构如图所示。

哈工大理论力学教研室《理论力学Ⅰ》(第7版)课后习题-点的合成运动(圣才出品)

哈工大理论力学教研室《理论力学Ⅰ》(第7版)课后习题-点的合成运动(圣才出品)

图 7-4 解:以 M 为动点,水轮为动系,牵连运动轨迹为定轴转动,速度分析如图 7-5 所示。
图 7-5 由 va = ve + vr 在 x、y 两个方向上的分量得
va sin 60o = ve + vr sin va cos 60o = vr cos
7 / 42
圣才电子书

图 7-1
图 7-2
7-2 图 7-2 中的速度平行四边形有无错误?错在哪里?
1 / 42
圣才电子书 十万种考研考证电子书、题库视频学习平台

答:都有错误,改正见图 7-3。
图 7-3 7-3 如下计算对不对?错在哪里?
图 7-4 (a)图 7-4(a)中取动点为滑块 A,动参考系为杆 OC,则 ve=ω·OA,va=cosφ (b)图 7-4(b)中 vBC=ve=vacos60°va=ωr 因为 ω=常量,所以,VBC=常量, (c)图 7-4(c)中为了求 aa 的大小,取加速度在 η 轴上的投影式:aacosφ-ac=0 所以 答:(a)不对,va 的速度平行四边形画法不正确,正确图见图 7-5。 (b)加速度的计算不正确。vBC 和 ω 为此瞬时的大小,不是任意时刻的速度和角速度 故不能对时间求导。
其中 ρ 和 φ 是用极坐标表示的点的运动方程,aρ 和 aψ 是点的加速度沿极径和其垂直 方向的投影。
答:如图 7-7 建立直角坐标系.xOy 与极坐标系 ρOφ。 取动点 Q,动系 OA
4 / 42
圣才电子书

加速度合成(图 7-8)
十万种考研考证电子书、题库视频学习平台
aa=aen+aet+ar+ac
大小:?
方向:Hale Waihona Puke √ √ √ √图 7-7

清华大学版理论力学课后习题答案大全-----第5章点的复合运动分析

清华大学版理论力学课后习题答案大全-----第5章点的复合运动分析

第5章 点的复合运动分析5-1 曲柄OA 在图示瞬时以ω0绕轴O 转动,并带动直角曲杆O 1BC 在图示平面内运动。

若d 为已知,试求曲杆O 1BC 的角速度。

解:1、运动分析:动点:A ,动系:曲杆O 1BC ,牵连运动:定轴转动,相对运动:直线,绝对运动:圆周运动。

2、速度分析:r e a v v v += 0a 2ωl v =;0e a 2ωl v v == 01e 1ωω==AO v BC O (顺时针)5-2 图示曲柄滑杆机构中、滑杆上有圆弧滑道,其半径cm 10=R ,圆心O 1在导杆BC 上。

曲柄长cm 10=OA ,以匀角速rad/s 4πω=绕O 轴30=φ。

求此时滑转动。

当机构在图示位置时,曲柄与水平线交角杆CB 的速度。

解:1、运动分析:动点:A ,动系:BC ,牵连运动:平移,相对运动:圆周运动,绝对运动:圆周运动。

2、速度分析:r e a v v v += πω401a =⋅=A O v cm/s ; 12640a e ====πv v v BC cm/s5-3 图示刨床的加速机构由两平行轴O 和O 1、曲柄OA 和滑道摇杆O 1B 组成。

曲柄OA 的末端与滑块铰接,滑块可沿摇杆O 1B 上的滑道滑动。

已知曲柄OA 长r 并以等角速度ω转动,两轴间的距离是OO 1 = d 。

试求滑块滑道中的相对运动方程,以及摇杆的转动方程。

解:分析几何关系:A 点坐标 d t r x +=ωϕcos cos 1 (1) t r x ωϕsin sin 1= (2) (1)、(2)两式求平方,相加,再开方,得: 1.相对运动方程 将(1)、(2)式相除,得: 2.摇杆转动方程:5-4 曲柄摇杆机构如图所示。

已知:曲柄O 1A 以匀角速度ω1绕轴O 1转动,O 1A = R ,O 1O 2 =b ,O 2O = L 。

试求当O 1A 水平位置时,杆BC 的速度。

解:1、A 点:动点:A ,动系:杆O 2A ,牵连运动:定轴转动,相对运动:直线,绝对运动:圆周运动。

3理论力学 第八章点的合成运动解析

3理论力学 第八章点的合成运动解析

? ? tg ?1 v?
v平
[例8-2] 曲柄摆杆机构
φ
已知:OA= r , ? , OO1=l 图示瞬时OA? O
求:摆杆O1B角速度? 1
解:取套筒A点为动点,摆杆O1B为动系.基座为静系。
绝对速度va = r ?
相对速度vr = ?
方向? OA 方向//O1B
牵连速度ve = ?
方向? O1B
由速度合成定理 va ? vr ? ve 作出速度平行四边形 如图示。
r
ve ? va sin? ? r? ?
r2? l2
又?ve ? O1 A?? 1,
? ? 1 ? Ov1eA?
1? r 2 ?l2
r 2?
r2?
l2
?
r
r 2?
2 ? l2


[例8-3]圆盘凸轮机构
已知:OC=e , R ? 3e , ? (匀角速度)
vr
va
A veva
B
aa
ar
va
A
Baen
ae?
练习三
解:
A
?
?
o
B
A
? ?
o
ve ? OB??
va
B
vr
动系:OA杆; 动点:滑块B
A
? ?
arn
o
aen ? OB?? 2
ar?
B
aa
a?e ? OB??
[例8-1] 桥式吊车。 已知:小 车水平运行,速度为v平, 物块A相对小车垂直上升 的速度为v? 。求物块A的运 行速度。
一、实例 : M点运动
地面: 摆线, 车箱: 圆。
二、复合运动的一般模型

理论力学(7.7)--点的合成运动-思考题答案

理论力学(7.7)--点的合成运动-思考题答案

第七章 点的合成运动答 案7-1在选择动点和动系时,应遵循两条原则:一是动点和动系不能选在同一刚体上;二是应使动点的相对轨迹易于确定,否则将给计算带来不变。

对于图示机构,若以曲柄为动系,滑块为动点,若不计滑块的尺寸,则动点相对动系无运动。

若以 B 上的点A 为动点,以曲柄为动参考系,可以求出 B 的角速度,但实际上由于相对轨迹不清楚,相对法向加速度难以确定,所以难以求出 B 的角加速度。

7-2均有错误。

图 a 中的绝对速度 应在牵连速度 和相对速度 的对角线上;图 b 中的错误为牵连速度 的错误,从而引起相对速度 的错误。

7-3均有错误。

(a)中的速度四边形不对,相对速度不沿水平方向,应沿杆OC 方向;(b)中虽然 ω=常量,但不能认为 =常量, 不等于零;(c)中的投影式不对,应为 。

7-4速度表达式、求导表达式都对,求绝对导数(相对定系求导),则。

在动系为平移的情况下, 。

在动系为转动情况下,。

7-5正确。

不正确,因为有相对运动,导致牵连点的位置不断变化,使 产生新的增量,而 是动系上在该瞬时与动点重合那一点的切向加速度。

正确,因为只有变矢量才有绝对导数和相对导数之分,而 是标量, 无论是绝对导数还是相对导数,其意义是相同的,都代表相对切向加速度的大小。

均正确。

7-6图 a 正确,图 b 不正确。

原因是相对轨迹分析有误,相对加速度分析的不正确。

7-7若定参考系是不动的,则按速度合成定理和加速度合成定理求出的速度和加速度为绝对速度和绝对加速度。

若定参考系在运动,按速度合成定理和加速度合成定理求出的速度和加速度应理解为相对速度和相对加速度。

7-8设定系为直角坐标系 Oxy,动系为极坐标系,其相对于定系绕 O轴转动,动点沿极径作相对运动,则,按公式求出绝对加速度沿极径、极角方向的投影即可。

理论力学 第2版 09点的合成运动

理论力学 第2版 09点的合成运动
只含有 aa 大小和 a rt 大小两个 未知量 将加速度矢量方程向 轴投影:
ae
a rt
A v a
n a R r aa
C

2 1 v aa sin ae cos arn a cos R sin 2
解得此时顶杆 AB 的加速度为
v2 aa a cot R sin 3
4)加速度分析
aa aen aet ar aC
其中, aa 0
2 u 2 u aen 2OA 2l 4 l 2l 2

aC
a
aa
t e
D
ar
A
u 2 2 u2 aC 2 vr 2 u 2l 2 2 l
向垂直于 OD 的 轴投影,有
二、绝对运动、相对运动与牵连运动
1. 绝对运动
2. 相对运动
相对运动:动点相对于动系的运动
相对速度:动点相对于动系的速度,记作 vr 相对加速度:动点相对于动系的加速度,记作 ar 3. 牵连运动
牵连运动:动系相对于定系的运动。
牵连点:动系中与动点重合的点 牵连速度:牵连点相对于定系的速度,记作 ve 牵连加速度:牵连点相对于定系的加速度,记作 ae
2
解: 1)选择动点与动系 动点:活动销子 M 动系:分别固连于圆盘和 直杆 OA 上
O
M
30
A
1
b
2)速度分析 动系固连于圆盘上时,有
ve1
2
ve2
A
30
va = ve1 + vr1
动系固连于直杆上时,有
O v r2
M
va = ve2 + vr2

点的合成运动

点的合成运动

点的合成运动一、是非题1. 在研究点的合成运动问题时,所选的动点必须相对地球有运动。

( × )2. 牵连速度是动参考系相对于静参考系的速度。

( × )3. 牵连运动为定轴转动时,科氏加速度始终为零,动点在空间里一定作直线运动。

( × )4. 如果考虑地球自转,则在地球上的任何地方运动的物体(视为质点),都有科氏加速度。

( √ )5. 用合成运动的方法分析点的运动时,若牵连角速度00≠ω,相对速度0≠r v ,则一定有不为零的科氏加速度。

( × )6. 牵连速度是动参考系相对于固定参考系的速度。

( × )7. 当牵连运动为定轴转动时,牵连加速度等于牵连速度对时间的一阶导数。

( × )8. 当牵连运动为平动时,相对加速度等于相对速度对时间的一阶导数。

( √ )9. 在点的复合运动中,下述等式是否一定成立(式中各导数均为相对静系求导):A. t d d e e v a =, ( × ) B. t d d r rv a =, ( × ) C. t v a d d e e=, ( × ) D. t v a d d r r=, ( × ) E.t v d d a a =a , ( √ ) F. tv a a d d a =。

( × ) 10. 在点的复合运动中,请选出正确的说法:A. 若0,0e =≠v r ,则必有0=C a , ( × )B. 若0,0e =≠a r ,则必有0=C a , ( × )C. 若0≠e n a ,则必有0=C a , ( × )D. 若0,0r ≠≠v ϕ,则必有0≠a , ( × )E. 若0,0r ≠≠a ω,则必有0≠a ( × )这里r 为动点的绝对矢径,上面所指皆为某瞬时。

11. 在点的复合运动中,下述说法是否成立:A. 若v r 为常量,则必有0r =a , ( × )B. 若ω为常量,则必有0e =a , ( × )C. 若ω||r v ,则必有0c =a 。

理论力学课后习题答案

理论力学课后习题答案

第7章 点的合成运动一、是非题(正确的在括号内打“√”、错误的打“×”)1.点的速度和加速度合成定理建立了两个不同物体上两点之间的速度和加速度之间的 关系。

( √ ) 2.根据速度合成定理,动点的绝对速度一定大于其相对速度。

( × )3.应用速度合成定理,在选取动点和动系时,若动点是某刚体上的一点,则动系不可以固结在这个刚体上。

( √ )4.从地球上观察到的太阳轨迹与同时在月球上观察到的轨迹相同。

( × ) 5.在合成运动中,当牵连运动为转动时,科氏加速度一定不为零。

( × ) 6.科氏加速度是由于牵连运动改变了相对速度的方向而产生的加速度。

( √ ) 7.在图中,动点M 以常速度r v 相对圆盘在圆盘直径上运动,圆盘以匀角速度ω绕定轴O 转动,则无论动点运动到圆盘上的什么位置,其科氏加速度都相等。

( √ )二、填空题1.已知r 234=++v i j k ,e 63=-ωi k ,则k =a 18 i + -60 j + 36 k 。

2.在图中,两个机构的斜杆绕O 2的角速度均为2ω,O 1O 2的距离为l ,斜杆与竖直方向的夹角为θ,则图(a)中直杆的角速度=1ωθθωcos sin 2,图(b)中直杆的角速度=1ω2ω。

图 图3.科氏加速度为零的条件有:动参考系作平动、0=r v 和r e v ω//。

4.绝对运动和相对运动是指动点分别相对于定系和动系的运动,而牵连运动是指牵连点相对于定系的运动。

牵连点是指某瞬时动系上和动点相重合的点,相应的牵连速度和加速度是指牵连点相对于定系的速度和加速度。

5.如图所示的系统,以''Ax y 为动参考系,Ax'总在水平轴上运动,AB l =。

则点B 的相对轨迹是圆周,若kt ϕ= (k 为常量),点B 的相对速度为lk ,相对加速度为2lk 。

图6.当点的绝对运动轨迹和相对运动轨迹都是曲线时,牵连运动是直线平动时的加速度合成定理表达式是a e r =+a a a ;牵连运动是曲线平动时的加速度合成定理表达式是 a e r =+a a a ;牵连运动是转动时的加速度合成定理表达式是a e r k =++a a a a 。

理论力学试题题目含参考答案

理论力学试题题目含参考答案

理论力学部分第一章 静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。

( )2.两端用光滑铰链连接的构件是二力构件。

( )3.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。

( )4.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。

( )5.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。

( )6.约束反力的方向总是与约束所能阻止的被约束物体的运动方向一致的。

( )二、选择题1.若作用在A 点的两个大小不等的力1F 和2F ,沿同一直线但方向相反。

则其合力可以表示为 。

① 1F -2F ;② 2F -1F ;③ 1F +2F ;2.三力平衡定理是 。

① 共面不平行的三个力互相平衡必汇交于一点;② 共面三力若平衡,必汇交于一点;③ 三力汇交于一点,则这三个力必互相平衡。

3.在下述原理、法则、定理中,只适用于刚体的有 。

① 二力平衡原理; ② 力的平行四边形法则;③ 加减平衡力系原理; ④ 力的可传性原理;⑤ 作用与反作用定理。

4.图示系统只受F 作用而平衡。

欲使A 支座约束力的作用线与AB 成30︒角,则斜面的倾角应为________。

① 0︒; ② 30︒;③ 45︒; ④ 60︒。

5.二力A F 、B F 作用在刚体上且0=+B A F F ,则此刚体________。

①一定平衡; ② 一定不平衡;③ 平衡与否不能判断。

三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。

2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。

3.作用在刚体上的两个力等效的条件是。

4.在平面约束中,由约束本身的性质就可以确定约束力方位的约束有,可以确定约束力方向的约束有,方向不能确定的约束有(各写出两种约束)。

理论力学(7.5)--点的合成运动

理论力学(7.5)--点的合成运动

第七章作业1、已知:如图所示,点 M 在平面Ox ' y '中运动,运动方程为:x' =40(1-cos t)mm , y' =40sin t mm,式中t 以 s 计,x ' 和 y ' 以 mm 计。

平面Ox ' y ' 又绕垂直于该平面的O 轴转动,转动方程为 φ=t rad ,式中角 φ 为动坐标系的 x '轴与定坐标系的 x 轴间的交角。

试求:点 M 的相对轨迹和绝对轨迹。

2、已知:在图 a 和 b 所示的两种机构中,己知= a =200mm , =3rad/s 。

试求:图示位置时杆 A 的角速度。

3、已知:绕轴O 转动的圆盘及直杆OA 上均有一导槽,两导槽间有一活动销子M ,如图所示, b =0.lm 。

设在图示位置时,圆盘及直杆的角速度分别为=9rad/s 和=3rad/s 。

试求:此瞬时销子 M 的速度。

4、已知:图示偏心轮摇杆机构中,摇杆 A 借助弹簧压在半径为 R 的偏心轮C 上。

偏心轮C 绕轴 O 往复摆动,从而带动摇杆绕轴 摆动。

设 OC ⊥O时,轮 C 的角速度为ω,角加速度为零,θ =。

试求:此时摇杆 A 的角速度和角加速度 。

5、已知:小车沿水平方向向右作加速运动,其加速度 。

在小车上有一轮绕 O 轴转动,轮的半径 r =0.2m ,转动的规律为 。

试求:当 t =1s 时,轮缘上点 A 绝对加速度。

6、已知:图示直角曲杆OBC 以匀角速度ω=0.5rad/s 绕 O 轴转动,使套在其上的小环 M 沿固定直杆 OA 滑动, OB =0.1m , OB 与BC 垂直。

试求:当 φ =时,小环 M 的速度和加速度。

第七章点的合成运动习题解答

第七章点的合成运动习题解答

习 题7-1 如图7-26所示,光点M 沿y 轴作谐振动,其运动方程为:x = 0,)cos(θω+=t A y ,式中,A 、ω、θ均为常数。

如将点M 投影到感光记录纸上,此纸以等速v e 向左运动,试求点在记录纸上的轨迹。

图7-26t v x e =')cos()cos(eθωθω+'=+=='x v A t A y y7-2 用车刀切削工件的端面,车刀刀尖M 的运动方程为 t b x ωsin =,其中b 、ω为常数,工件以等角速度ω逆时针方向转动,如图7-27所示。

试求车刀在工件端面上切出的痕迹。

图7-27t b t y t x x ωωωsin sin cos ='-'=0cos sin ='+'=t y t x y ωω解得)2sin(2cos sin sin tan cos sin t b t t b t t t t b x ωωωωωωω==+=' ]1)2[cos(2sin tan 2-=-='-='t b t b t x y ωωω 4)2()(222b b y x =+'+'7-3 河的两岸相互平行,如图7-28所示。

设各处河水流速均匀且不随时间改变。

一船由点A 朝与岸垂直的方向等速驶出,经过10 min 到达对岸,这时船到达点B 的下游120 m 处的点C 。

为使船A 能垂直到达对岸的点B ,船应逆流并保持与直线AB 成某一角度的方向航行。

在此情况下,船经12.5 min 到达对岸。

试求河宽L 、船相对于水的相对速度v r 和水的流速v 的大小。

图7-28m/s 2.0600120==v 600r L v = 船A 能垂直到达对岸的点B750a L v = 2a 22r v v v += 2222.0)750()600(+=L L m 200)7501()6001(2.022=-=L m/s 31r =v 7-4 半径R = 60mm 的半圆管BC 绕定轴OO 1按规律)5(t t -=ϕ转动,点在管内运动,相对于管子的运动方程为2π10t BM =(弧长的单位为mm),如图7-29所示。

理论力学答案(第七章后)

理论力学答案(第七章后)

第七章 点的合成运动一、是非题7.1.1动点的相对运动为直线运动,牵连运动为直线平动时,动点的绝对运动必为直线运动。

( × ) 7.1.2无论牵连运动为何种运动,点的速度合成定理r e av v v +=都成立。

( ∨ ) 7.1.3某瞬时动点的绝对速度为零,则动点的相对速度和牵连速度也一定为零。

( × ) 7.1.4当牵连运动为平动时,牵连加速度等于牵连速度关于时间的一阶导数。

( ∨ ) 7.1.5动坐标系上任一点的速度和加速度就是动点的牵连速度和牵连加速度。

( × ) 7.1.6不论牵连运动为何种运动,关系式a a +a a r e =都成立。

(× ) 7.1.7只要动点的相对运动轨迹是曲线,就一定存在相对切向加速度。

( × ) 7.1.8在点的合成运动中,判断下述说法是否正确:(1)若r v 为常量,则必有r a =0。

( × ) (2)若e ω为常量,则必有e a =0.( × )(3)若e r ωv //则必有0=C a 。

( ∨ ) 7.1.9在点的合成运动中,动点的绝对加速度总是等于牵连加速度与相对加速度的矢量和。

( × ) 7.1.10当牵连运动为定轴转动时一定有科氏加速度。

( × )二、 填空题7.2.1 牵连点是某瞬时 动系 上与 动点 重合的那一点。

7.2.2e a v v =大小为,在一般情况下,若已知v e 、v r ,应按a 的大小。

三、选择题:7.3.1 动点的牵连速度是指某瞬时牵连点的速度,它相对的坐标系是( A )。

A 、 定参考系B 、 动参考系C 、 任意参考系 7.3.2 在图示机构中,已知t b a s ωsin +=, 且t ωϕ=(其中a 、b 、ω均为常数),杆长为L ,若取小球A 为动点,动系固结于物块B ,定系固结于地面,则小球的牵连速度v e 的大小为( B )。

工程力学A 参考习题之点的合成运动习题及解答

工程力学A 参考习题之点的合成运动习题及解答

点的合成运动习题及解答已知 OA=l ,曲杆BCD 的速度为v ,BC=a; 求:A 点的速度与x 的关系。

解:取曲杆上的点B 为动点,OA 杆为动系,则r e a v v vv v a ,得22a e a x a .v sin .v v,a x a.v OB v 22eA v .v l .0 l ,a x a .22已知 两种机构中2m .0a O O 21 , 杆 A O 1的角速度1 =3rad/s,030 ;求:杆A O 2A O 1的角速度2 .解: 图 (a) , 取杆A O 1上的A 点为动点,杆A O 2为动系,图 (b) , 取杆A O 2上的A 点为动点,杆A O 1为动系,由: r e a v v v分别作速度矢量图。

由图 (a) 解出23a.cos30.v v 10a e ,,s /rad 5.12A O v 12e 2由图 (b) 解出32.a .cos30v v 10e a , ,s /5rad .12A O v 12e 2.s /rad 232A O v 12a 2已知 V v AB 常数,当t=0时,0 ;求:045 时,点C 的速度的大小。

解: 取杆AB 上的A 点为动点,杆OC 为动系,由: r e a v v v作速度矢量图。

cos .v cos .v v a e ,lcos .a OA OC .v v e c解出 l a.cos vv 2c,当045 时, 2l av v c已知,轮C 半径为R ,偏心距OC=e, 角速度 =常数;求:00 时,平底杆AB 的速度。

解: 取轮心C 为动点,平底杆AB 为动系,由: r e a v v v 作速度矢量图。

图中r v 平行于杆AB 的底平面,所以.cos .v v a e 当00 时,平底杆AB 的速度 e v e已知:1m .0B O A O 21 , AB O O 21 ;杆 A O 1以等角速度转动, =2 rad/s ;求:060 时,CD 杆的角速度和角加速度。

07 点的合成运动题解

07 点的合成运动题解

vB
B
ve
va
M
vr

A (c)
C
相对运动:动点 M 沿 BC 杆做直线运动; 牵连运动:动系随 BC 杆做曲线平动。
D
7.3 物体对地面的速度为 u,沿下列轨道运动至图示位置时,试求出科氏加速度的大小 和方向,设地球的自转角速度为。 (1) 赤道 A 点; (2) 北纬 30°B 点; (3) 沿经线 C 点; (4) 沿经线 D 点; (5) 沿经线 E 点。 解: (1) 赤道 A 点;
将上式分别向 x 和 y 投影得:
; a ax ae a r sin 30o a rn cos 30o 0.1 cm/s 2 ;
a ay a r cos 30 o a rn sin 30 o 74.64 cm/s 2

2 2 a a ax a ay 74.64cm / s 2
(2)
n aa a a ae a r
n 式中 aa 2 OC 2 e , a a OC e
向垂直方向投影得:
n aa cos a a sin ae , ae e cos e 2 sin ,即顶杆的加速度。

O
vr
( a)
(b) 选动点:杆 O1M 上的 M 点,动系:固结于偏心轮,
ve
M
O1
va
O
vr
绝对运动:动点以 O1 为圆心 O1M 为半径的圆周运动; 相对运动:动点 M 沿偏心轮轮廓的曲线运动; 牵连运动:动系随偏心轮的定轴转动。

( b) E (c) 选动点:杆 EM 上的 M 点,动系:固结于 BC 杆, 绝对运动:动点 M 沿铅垂方向做直线运动;

理论力学-点的合成运动

理论力学-点的合成运动

第六章点的合成运动一、是非题1、不论牵连运动的何种运动,点的速度合成定理a=e+r皆成立。

()2、在点的合成运动中,动点的绝对加速度总是等于牵连加速度与相对加速度的矢量和。

()3、当牵连运动为平动时,相对加速度等于相对速度对时间的一阶导数。

()4、用合成运动的方法分析点的运动时,若牵连角速度ωe≠0,相对速度υr≠0,则一定有不为零的科氏加速度。

()5、若将动坐标取在作定轴转动的刚体上,则刚体内沿平行于转动轴的直线运动的动点,其加速度一定等于牵连加速度和相对加速度的矢量和。

()6、刚体作定轴转动,动点M在刚体内沿平行于转动轴的直线运动,若取刚体为动坐标系,则任一瞬时动点的牵连加速度都是相等的。

()7、当牵连运动定轴转动时一定有科氏加速度。

()8、如果考虑地球自转,则在地球上的任何地方运动的物体(视为质点),都有科氏加速度。

()二、选择题1、长L的直杆OA,以角速度ω绕O轴转动,杆的A端铰接一个半径为r的圆盘,圆盘相对于直杆以角速度ωr,绕A轴转动。

今以圆盘边缘上的一点M为动点,OA为动坐标,当AM垂直OA时,点M的相对速度为。

①υr=Lωr,方向沿AM;②υr=r(ωr-ω),方向垂直AM,指向左下方;③υr=r(L2+r2)1/2ωr,方向垂直OM,指向右下方;④υr=rωr,方向垂直AM,指向在左下方。

2、直角三角形板ABC,一边长L,以匀角速度ω绕B轴转动,点M以S=Lt的规律自A向C运动,当t=1秒时,点M的相对加速度的大小αr= ;牵连加速度的大小αe = ;科氏加速度的大小αk = 。

方向均需在图中画出。

①Lω2;②0;③3Lω2;④23 L ω2。

3.圆盘以匀角速度ω0绕O 轴转动,其上一动点M 相对于圆盘以匀速u 在直槽内运动。

若以圆盘为动系,则当M 运动到A 、B 、C 各点时,动点的牵连加速度的大小 ,科氏加速度的大小 。

①相等;②不相等;③处于A ,B 位置时相等。

4.一动点在圆盘内运动,同时圆盘又绕直径轴x以角速度ω转动,若AB ∥OX ,CD ⊥OX ,则当动点沿 运动时,可使科氏加速度恒等于零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 0 0 0
4
动系:固连于CBDE上的坐标系。 动系平动, v A = v CBDE = v BC 静系:固连于地面的坐标系。 绝对速度:A相对于地面的速度。 相对速度:A相对于DE的速度。 牵连速度:CBDE相对于地面的速度。
→ → →
vr
900 − ϕ A
120 0
va
ϕ
ve = vBC
ϕ O
5
相对速度:C相对于OC杆的速度。 牵连速度:OC杆相对于地面的速度。
ve = OC ⋅ ω =
→ → →
0.4 × 0.5 = 0.231( m / s ) cos 30 0
va = ve + vr va = ve 0.2 = = 0.267( m / s ) 0 cos 30 cos 2 30 0
BC作平动,故
v BC = v a = 1.155lω 0
[习题7-9] 一外形为半圆弧的凸轮A,半径r=300mm,沿水平方向向右作匀加速运动, 其加速度aA=800mm/s 。凸轮推动直杆BC沿铅直导槽上下运动。设在图所示瞬时, vA=600mm/s,求杆BC的速度及加速度。 解: 动点:B。 动系:固连于凸轮A上的坐标系。 静系:固连于地面的坐标系。 绝对速度:B相对于地面的速度。 相对速度:B相对于凸轮的速度。 牵连速度:B相对于凸轮的速度。
θ = 40.930
→ →
即 v 与 v1 之间的夹角为 θ = 40.93 。 种子走过的水平距离为:
0
s = v x t = v cos θ ⋅ t h = vyt +
1 2 gt 2 1 2 gt 2
h = v sin θt +
0.25 = 2.65 sin 40.930 t + 0.5 × 9.8t 2
→ → →
B v v r = 1m / s θ
N
v e = 0.5m / s C
1000 m
A
v = ve + v r
1
v = ve2 + v r2 = 0.5 2 + 12 = 1.118(m / s ) θ = arctan AC = vr 1 = arctan = 63.435 0 ve 0.5
va = ve + vr v a = rω v BC va = 0 0 sin(180 − 120 − 90 + ϕ ) sin 120 0
0
vBC rϕ = 0 sin(ϕ − 30 ) sin 1200
v BC
sin( ϕ − 30 0 ) = ⋅ rω sin 120 0 1 sin( 0 − 30 ) 3 | ϕ =0 = ⋅ rω = 2 rω = − rω 0 sin 120 3 3 2
→ → →
va = ve + vr v A = v tan α
因为杆AB作上下平动,故活塞B的速度为:
vr
va = v A
α
ve = v
vB = v A = v tan α
[习题7-6] 图示一曲柄滑道机构,长 OA = r 的曲柄,以匀角速度 ω 绕O轴转动。装在水平杆 CB上的滑槽DE与水平线成 60 角。求当曲柄与水平线的夹角 ϕ 分别为 0 、 30 、 60 时, 杆BC的速度。 解: 动点:A。
n r
[习题7-10] 铰接四边形机构中的O 1A=O 2B=100mm,O 1O2=AB,杆O1A以等角 速度ω=2rad/s绕O1轴转动。AB杆上有一套筒C,此筒与CD杆相铰接,机构各部件 都在同一铅直面内。求当φ=60°时CD杆的速度和加速度。 解: 动点:C。 动系:固连于AB杆上的坐标系。 静系:固连于地面的坐标系。 绝对速度:C相对于地面的速度。 相对速度:C相对于AB杆的速度。 牵连速度:AB杆相对于地面的速度。
60 0
30 0
15 0 60 0
30 0 15 0
4
4
va
vr va vr
[习题7-5] 三角形凸轮沿水平方向运动,其斜边与水平线成 α 角。杆AB的A端搁 置在斜面上,另一端B在气缸内滑动,如某瞬时凸轮以速度 v 向右运动,求活塞B 的速度。 解: 动点:A。 动系:固连于凸轮上的坐标系。 静系:固连于地面的坐标系。 绝对速度:A相对于地面的速度,待求。 相对速度:A相对于凸轮的速度。 牵连速度:凸轮相对于地面的速度。
→ → →
v1
60 0
250 mm
v2
ve = 1m / s
θ
120 0
v = ve + v r
v = 12 + 2 2 − 2 × 1× 2 cos1200 = 2.65(m / s) v
vr = 2m / s
2
1 2.65 = 0 sin(60 − θ ) sin 1200
60 0 − θ = arcsin sin 120 0 = 19.07 0 2.65
→ → → → →
aa
y x
300 600 300
a a = a e + a r = ae + a rn + a τ r
上式在 x 轴上的投影为:
aτ r
a a cos 60 0 = ae cos 30 0 − a rn
arn
B
ae
7
2 vr a a = 3ae − 2a = 3ae − 2 ⋅ r 2 (1200) a a = 1.732 × 800 − 2 × = −8214.4( mm / s 2 ) ,负号表示方向向下。 300
.第七章
点的合成运动习题解
[习题7-1] 汽车A以 v1 = 40km / h 沿直线道路行驶, 汽车B以 v 2 = 40 2km / h 沿另一叉道行驶。 求在B车上观察到的A车的速度。 解: 动点:A车。 动系:固连于B车的坐标系。 静系:固连地面的坐标系。 绝对运动:动点A相对于地面的运动。 相对运动:动点A相对于B车的运动。 牵连运动:在动系中,动点与动系的重合点, 即牵连点相对于静系(地面)的运动。当A、 B两车相遇时,即它们之间的距离趋近于0时, A、B相重合,B车相对于地面的速度就是 牵连速度。 ve = v 2 。由速度合成定理得:
1000 1000 = = 500( m ) ,即,船将在北岸下流500m处靠岸。如图所示,A为出 tan θ 2
发点,B为靠岸点。 渡河所花的时间: t1 = (2)
1000m = 1000( s ) = 16分 40秒 1m / s
α = arcsin
ve 0.5 = arcsin = 30 0 vr 1
→ → →

va
vr
300 900
B
ve
va = ve + vr
凸轮在水平面上作平动,BC在铅垂方向上作平动。
ve = v A
vBC = v B = va = ve cot 300 = v A cot 300 = 600 3 = 1039.23(mm / s)
vr =

ve = 2v e = 2 × 600 = 1200( mm / s ) sin 30 0
→ → →
v = v1
45 0
vr = v AB
ve = v 2
45 0
v = ve + v r 。用作图法求得: v r = v AB = 40km / h
(↑)
故,B车上的人观察到A车的速度为 v r = v AB = 40km / h ,方向如图所示。 [习题7-2] 由西向东流的河,宽1000m,流速为0.5m/s,小船自南岸某点出发渡至北岸,设小船 相对于水流的划速为1m/s。问:(1)若划速保持与河岸垂直,船在北岸的何处靠岸?渡河时间 需多久?(2)若欲使船在北岸上正对出发点处靠岸,划船时应取什么方向?渡河时间需多久? 解: (1) 动点:船。 动系:固连在流水上。 静系:固连在岸上。 绝对运动:岸上的人看到的船的运动。 相对运动:船上的有看到的船的运动。 牵连运动:与船相重合的水体的运动。 绝对速度:未知待求,如图所示的 v 。 相对速度: v r = 1m / s ,方向如图所示。 牵连速度: ve = 0.5m / s ,方向如图所示。 由速度合成定理得:
6
绝对速度:B相对于地面的速度。 相对速度:B相对于 O1 D 杆的速度。 牵连速度: O1 D 杆相对于地面的速度。
→ → →
ve
900
va
30 0
B
va = ve + vr
1 ve = O1 B ⋅ ω O1D = 4l × ω 0 = lω 0 4
vr
va =
ve lω 0 = = 1.155lω 0 0 cos 30 0.866
→ → →
v a = ve + vr
v r = 2 2 + 4 2 − 2 × 2 × 4 cos 75 0 = 3.98(m / s )
3
当 v r ⊥ v B 时,传送带B的速度为:
v B = v a sin 15 0 = 4 sin 15 0 = 1.04(m / s ) ve
ve
15 0
2
→ → →
va = ve + vr ve = v a sin 30 0 =
1 lω 0 2 1 = lω0 2
ve va
30
0
ve = O1 A ⋅ ωO1D
2l ⋅ ω O1D =
900
1 lω 0 2
vr
A
1 ω O1D = ω 0 4
动点:B。 动系:固连于 O1 D 杆上的坐标系。 静系:固连于地面的坐标系。
v a = v AB = rω1 = 0.2 / 0.75 ω1 = 0.267 / r1 =
0.2 / 0.75 = 5.33( rad / s ) 0.05
相关文档
最新文档