三极管经典教程PPT课件

合集下载

三极管PPT课件

三极管PPT课件

一、三极管的基本结构
2021/6/24
它是通过一定的制作工艺,将两 个PN结结合在一起的器件,两个PN结 相互作用,使三极管成为一个具有控制 电流作用的半导体器件。
三极管可以用来放大微弱的信号
和作为无触点开关。
4
2.1.1 三极管的结构
2021/6/24
三极管的结构模型和符号
5
2.1.1 三极管的结构
2021/6/24
12
2.1.3 三极管的电流分配关系 和电流放大作用
二、三极管的电流分配关系
(1)IC与IE的关系
α
=
IC IE
α 称为共基极直流电流放大系数 ,是
小于1且接近于1的值,一般为0.9-
0.99。
2021/6/24
13
2.1.3 三极管的电流分配关系 和电流放大作用
(2)IC与IB的关系
2021/6/24
24
2.1.4 三极管的伏安特性曲线
二、输出特性曲线
iCf uCEIB常数
2021/6/24
21 25
2.1.4 三极管的伏安特性曲线
(3)饱和区
工作条件:发射结正偏,集电结正偏。
工作特点:
① iC几乎不随iB变化,uCE略有增加,iC迅速上升。
②UCE很小,称之为饱和电压,用UCES表示。
19
2.1.4 三极管的伏安特性曲线
输入特性曲线的讨论:
(1)当UCE<1V时
三极管的发射结、集电结均正偏,此时的三极 管相当于两个PN结的并联,曲线与二极管相似, 所以增大UCE时,输入曲线明显右移。
(2)当UCE≥1V时
发射结正偏、集电结反偏,此时再继续增大
UCE特性曲线右移不明显,不同的UCE输入曲线

三极管PPT教学讲义

三极管PPT教学讲义

收集 载流
基区的少数载流子——ICBO

VBB
VCC
电流分配与控制 IE= IEN+ IEP 且有IEN>>IEP IEN=ICN+ IBN 且有ICN>>IBN IC=ICN+ ICBO
IB=IEP+ IBN-ICBO
IE =IC+IB
VBB
VCC
电流分配与控制
• 使晶体管具有电流分配与控制能力的两个重要条件
– ③集电结对非平衡载流子的收集作用漂移为主
4.1.3 三极管各电极的电流关系
集电极电流IC和发射极电流IE之间的关系定义:
ICN/IE
称为共基极直流电流放大系数。
表示集电极收集到的电子电流ICN与总发射极电流IE的比
值。ICN与IE相比,因ICN中没有IEP和IBN,所以 的值小
于1, 但接近1,一般为0.98~0.999 。
BJT 结构
从外表上看两个N区,或两个P区是对称的,实际上: 发射区的掺杂浓度大,发射载流子 集电区掺杂浓度低,且集电结面积大,收集载流子 基区得很薄,控制载流子分配,其厚度一般在几个微米至几十
个微米.
+
BJT的三种组态
CB Common Base :共基极,基 极为公共电极
CE Common Emitter :共发射极, 发射极为公共电极
强,IC增大. JC和JE都正偏, VCES约等于0.3V,
ic VCE=VBE

6和 放
区 4


2
IC< IB 0
饱和时c、e间电压记为VCES,深 度饱和时VCES约等于0.3V.
截止区
246

《三极管基本知识》PPT课件

《三极管基本知识》PPT课件
饱和区
4

3
2

100A
80A 60A 40A
1

20A
IB=0
3 6 9 12 UCE(V)
截止区
IC(mA ) 4 3
2
此1区00域A中 :
IB=800,IC=AICEO,U
B称E<为6死0截区A止电区压。,
40A
1
20A
IB=0
3 6 9 12 UCE(V)
二、输出特性
IC(mA )
此区域满
ICBO A
ICBO是集
电结反偏 由少子的 漂移形成 的反向电 流,受温 度的变化 影响。
3.集电极最大电流ICM
集电极电流IC上升会导致三极管的值的下降,
当值下降到正常值的三分之二时的集电极电
流即为ICM。
4.集-射极反向击穿电压
当集---射极之间的电压UCE超过一定的数值时,
三极管就会被击穿。手册上给出的数值是25C、
注意:β和β数值很接近,通常不将他们严格区分。
四、三极管的特性曲线
IB
A RB
V UBE
RP
EB
IC mA
EC
V UCE
实验线路
一、输入特性
IB(A) 80 60 40
20
死区电压,
0.4
硅管0.5V
工作压降: 硅管 UBE0.6~0.7V
0.8 UBE(V)
一、输入特性
输入特性描述的是三极管基极电流IB和发射结两端电压UBE 之间的关系。
nnp发射区集电区基区发射结集电结ecb发射极集电极基极ppn发射区集电区基区发射结集电结ecb发射极集电极基极becnnp基极发射极集电极npn型pnp集电极基极发射极bcepnp型becnpn型becpnp型二极管检测用数字万用表测试二极管时是测量二极管的正向压降

初三理化生3三极管课件

初三理化生3三极管课件
复合管的组成:多只管子合理连接等效成一只管子。 目的:增大β,减小前级驱动电流,改变管子的类型。
iE iB1(1 1)(1 2 ) 12
不同类型的管子复合 后,其类型决定于T1管。
讨论一
1、分别分析uI=0V、5V时T是工作在截止状态还是导通状态; 2、已知T导通时的UBE=0.7V,若当uI=5V,则β在什么范围内T 处于放大状态,在什么范围内T处于饱和状态?
2K (v V )
n
GS
P
iD Kn (vGS VP )2
3.3 电流源电路
3.3.1 BJT电流源电路
1、 镜像电流源
3、组合电流源
2、 微电流源
3.3.2 FET电流源
1、 JFET电流源 2、 MOSFET镜像电流源 3、 MOSFET多路电流源
3.3.1 BJT电流源电路
1、镜象电流源
晶体管有三个极、三个区、两个PN结。
3.1.2 晶体管电流的可控性
1、 电流可控是如何实现的? 从两个独立的理想二极管一个正偏,一个反偏。来理解….
可控的内部条件发基射区区很浓薄度,最且高杂,质集浓电度区低面积最大
可控的外部条件vBE vCB
V(发射结正偏) ON
0,即v v(集电结反偏)
CE
基准电流
T0 和 T1 特性完全相同。
即β0=β1,ICEO0=ICEO1
I (V V ) R
R
CC
BE
V V ,I I
BE1
BE0
B1
B0
IC1 IC0 IC
IR
IC0
IB0
I B1
IC
2IC
IC 2 IR
代表符号
若 2 时,则IC IR

《三极管教学》课件

《三极管教学》课件

五种典型的三极管电路
放大电路
了解放大电路设计和三极管在信 号增强中的应用。
开关电路
探索三极管在开关应用中的工作 原理和电路设计。
电源电路
了解使用三极管的电源电路设计 和稳定性特点。
正弦振荡电路
探索使用三极管产生方波信号的 电路设计原理和应用。
输入与输出特性曲线
简单电路图示例
通过简单的电路图示例,展示三极管在电子电 路中的应用。
分类
按用途分类
了解三极管根据不同用途的分类,如放大电路、开 关电路、电源电路和振荡电路。
按管子类型分类
探索三极管根据不同类型(如NPN和PNP)的分类。
参数
放大系数 最大耐压 最大电流容限 常用参数的典型值
了解三极管的放大倍数和其对电路的影响。 探索三极管能够承受的最大电压。 了解三极管能够承受的最大电流。 介绍一些常用参数的典型数值,并解释其意义。
输出特性曲线
了解三极管输出特性曲线的形状和特点。
输入特性曲线
探索三极管输入特性曲线的影响和设计要点。
直流负载线
了解直流负载线对三极管的偏置点和工作状态的影 响。
交流负载线
探索交流负载线对三极管放大功能的影响。
三极管技术指标测试
测试基本流程和步骤
了解三极管技术指标测试的基本流程和常用步骤。
测试工具和设备
探索使用的测试工具和设备,以及其功能和作用。
三极管的参数选用
选择框图
介绍选择框图的使用方法,帮助选择合适的三极管。
实例讲解
通过实例演示,详细说明如何根据应用需求选择合 适的三极管。
典型三极管应用案例
放大器电路
探索三极管在放大器电路中的应用,如音频放 大。

三极管ppt课件完整版

三极管ppt课件完整版

常见故障现象及诊断方法
诊断方法
测量三极管的耐压值是否降低,观察电路是否有过载现象,若确认 损坏则更换三极管。
故障现象3
三极管漏电流过大。
诊断方法
测量三极管的漏电流是否超过规定值,若过大则检查电路是否存在漏 电现象,并更换三极管。
常见故障现象及诊断方法
故障现象4
三极管热稳定性差。
诊断方法
检查三极管的散热条件是否良好,测量其热稳定性参数是否在规定范围内,若异常则改善散热条件或 更换适合的三极管型号。
组成
输入回路、输出回路、耦合电容、直流电源。
工作原理
共基放大电路的特点是输入回路与输出回路共用一个电极,即基极。输入信号加在三极管的发射极和基极之间, 输出信号从集电极取出。由于共基放大电路的输入阻抗低,输出阻抗高,因此具有电压放大倍数大、频带宽等优 点。
共集放大电路组成及工作原理
组成
输入回路、输出回路、耦合电容、直流电源 。
真加剧。而截止频率则限制了三极管能够放大的信号频率范围。
03
三极管基本放大电路分析
共射放大电路组成及工作原理
组成
输入回路、输出回路、耦合电容、直流电源。
工作原理
利用三极管的电流放大作用,将输入信号放大并输出。输入信号加在三极管的基 极和发射极之间,输出信号从集电极取出,经过耦合电容与负载相连。
共基放大电路组成及工作原理
偏置电路类型及其作用
固定偏置电路
01
提供稳定的基极电流,使三极管工作在放大区。
分压式偏置电路
02
通过电阻分压为基极提供合适的偏置电压,使三极管具有稳定
的静态工作点。
集电极-基极偏置电路
03
利用集电极电阻的压降为基极提供偏置电压,适用于某些特殊

三极管ppt课件

三极管ppt课件

(4) 集电极的反向电流
ICN
因可集见电:结反偏,故基区本
身I的B=少IBN数-I载CB流O 子-电子和集
电区本身的少数载流子-空 穴I也C=要IC发N+生IC漂BO移运动形成
IBN ICBO
电I流B+IICCB=OIBN+ICN=IEN
最新版整理ppt
IE=IEN+IEP
32- 11
4 双极结型三极管及放大电路基础
4.发射结反偏且,: V集CC电>结VB正B 偏
倒置状态
倒置状态是一种非工作状态。 最新版整理ppt
7
7
4 双极结型三极管及放大电路基础
4.1 半导体三极管(BJT)
4.1.2 放大状态下BJT的工作原理
2.处于放大状态的BJT内部载流子的运动
(1)形成发射极电流IE
c
ba.基发区射向区发向射基区扩注散入空电穴子 形成发射极电流IEEPN::
因基因可发区发见射的射:结多区正数I外E=偏载接IE,流电空N+子源间IE空的P电穴荷 b 因区向负发变发极射薄射,所区,区扩以杂扩散电质散运源浓。动负度扩加极远散强不远到, Rb 大漂发断于移射向基运区发区动后射的减被区杂弱电提质.源供浓负电度极子故拉, : 发子走 I从I故EE射向PN,而:。。I区基形形EI=E的区成成NIE>多扩N发发>+>数散I射射IEE载。P极极P≈流I电电EN子流流电最新版整理ppVt BB
基极(b)
集电极(c)
集电结(Jc)
箭头代表发射结正偏时
流过发射结电流的实际方向。
最新版整理ppt
32- 4
4 双极结型三极管及放大电路基础
4.1 半导体三极管(BJT)

三极管ppt课件

三极管ppt课件
生变化。
晶体管截止频率影响
晶体管的截止频率限制了其放大高频信号 的能力,当输入信号频率接近或超过截止 频率时,晶体管放大倍数急剧下降。
负载效应影响
在高频段,负载效应对信号产生较大的影 响,使得输出信号的幅度和相位发生变化 。
05
三极管功率放大电路设计 与应用
功率放大电路类型及特点
甲类功率放大电路
采用单电源供电,输出端通过大容量电容与负载耦合,具 有电路简单、成本低等优点,但电源功率利用率较低且存 在较大的非线性失真。
集成功率放大器简介与应用
集成功率放大器概述
将功率放大电路与必要的辅助电路集成在同一芯片上,具 有体积小、重量轻、可靠性高等优点。
集成功率放大器的应用
广泛应用于音响设备、电视机、计算机等电子设备中,用 于驱动扬声器、耳机等负载,提供足够的输出功率和良好 的音质效果。
工作点设置在截止区,主要用于高频功率放大,效率很高但非线性失 真严重。
OCL和OTL功率放大电路设计实例
要点一
OCL(Output Capacitor Less )功…
采用双电源供电,输出端与负载直接耦合,具有低失真、 高效率等优点,但需要较大的电源功率和输出电容。
要点二
OTL(Output Transformer Less…
02
三极管基本放大电路
共射放大电路组成及原理
组成
输入回路、输出回路、耦合电容、直 流电源
特点
电压放大倍数大,输出电阻较大,输 入电阻适中
原理
利用三极管的电流放大作用,将输入 信号放大并
共基放大电路组成及原理
01
02
03
组成
输入回路、输出回路、耦 合电容、直流电源

《三极管基本知识》PPT课件

《三极管基本知识》PPT课件
背景
三极管是电子电路中的重要元件,广泛应用于放大、开关、振荡等电路中。随 着电子技术的发展,三极管的应用领域不断扩大,对电子工程师的要求也越来 越高。
课程内容和结构
课程内容
本课程将介绍三极管的基本原理、结构、特性、参数以及应用等方面的知识。
课程结构
本课程将按照“由浅入深、循序渐进”的原则,先介绍三极管的基本概念和原理,然后逐步深入讲解三极管的特 性和应用。具体内容包括:三极管的基本原理、结构和分类;三极管的放大原理和特性;三极管的参数和选型; 三极管的应用电路和实例等。
输入特性曲线
输入特性曲线表示三极管在放 大状态下,基极电流(Ib)与 基极-发射极电压(Vbe)之
间的关系。
输入特性曲线与二极管的伏 安特性曲线类似,呈指数关
系。
当Vbe较小时,Ib几乎为零, 当Vbe超过一定值后,Ib随 Vbe的增大而迅速增大。
输出特性曲线
输出特性曲线表示三极管在放大状态下,集电极电流 (Ic)与集电极-发射极电压(Vce)之间的关系。
工业控制领域
三极管在工业控制电路中也有 着广泛的应用,如电机控制、
温度控制等。
消费电子领域
音响、电视、冰箱等消费电子 产品中也需要使用三极管进行
信号放大或电路控制。
03
三极管结构与工作原理
三极管内部结构
掺杂浓度
发射区掺杂浓度最高,基区很薄且 掺杂浓度最低,集电区掺杂浓度较 高。
PN结
三极管内部包含两个PN结,分别 是发射结和集电结。
三极管主要参数
01
02
03
电流放大系数
表示三极管对电流的放大 能力,是判断三极管放大 性能的重要参数。
极间反向电流
包括集电极-基极反向饱和 电流和集电极-发射极反向 饱和电流,反映了三极管 的截止性能。

《三极管教学》课件

《三极管教学》课件
《三极管教学》ppt课件
三极管概述三极管工作原理三极管基本应用三极管特性参数三极管的选择与使用
三极管概述
01
总结词
三极管是一种电子元件,由三个半导体区域组成,具有放大和开关电流的功能。
详细描述
三极管是电子学中非常重要的基本元件之一,由三个半导体区域组成,分别是基极(base)、集电极(collector)和发射极(emitter)。这三个区域在结构上有所不同,从而使得三极管具有了放大和开关电流的功能。
详细描述
பைடு நூலகம்
总结词
三极管的符号通常由三个电极的图形和字母组成,用于表示三极管的类型和功能。
要点一
要点二
详细描述
在电路图中,三极管的符号通常由三个电极的图形和字母组成。其中,字母B表示基极,E表示发射极,C表示集电极。根据三极管的类型和功能,这些符号会有所不同。例如,NPN型硅三极管的电路符号中,基极是箭头朝里的三角形,集电极是箭头朝外的三角形,发射极是竖线;PNP型硅三极管的电路符号中,基极是箭头朝外的三角形,集电极是箭头朝里的三角形,发射极是竖线。这些符号能够帮助我们理解和分析电路的工作原理。
根据结构和材料的不同,三极管可以分为双极型和场效应型两大类。
总结词
双极型三极管是由半导体材料制成的,其工作原理基于电子和空穴两种载流子的运动。常见的双极型三极管有硅三极管和锗三极管。场效应型三极管则是由金属-氧化物-半导体结构制成的,其工作原理基于电场对载流子的调控。常见的场效应型三极管有NMOS和PMOS两种。
考虑三极管工作时产生的热量,合理设计散热措施,保证管子工作在安全温度范围内。
散热设计
在某些应用中,需要将多个三极管配对使用,以获得更好的性能。
配对使用

三极管(1)最新PPT资料

三极管(1)最新PPT资料
1、IE=IC+IB ——这就是三极管的电流分配规律
2、三极管中既有电子的流动,也有空穴的流 动,即有两种载流子的运动,所以常称为双极 型三极管,简称三极管。
三、电流放大作用
由于基区很薄,空穴浓度又低(掺杂少),所以
发射区扩散来的电子大部分流向集电极形成IC,只 有很小一部分流向基极形成IB。管子作成后, IC和 IB的比例就保持一定, IC= ßIB , IB 可控制IC,这 就是三极管的电流放大作用。
在扩散过程中与基区空穴相遇而复合,基区电 源补充空穴,形成基极电流IB 。
基区掺杂少,宽度窄,所以复合机会大大减少, 因此IB很小。 3、电子被集电极收集的情况
集电结反偏,内电场增强,一方面阻止集电区 电子向基区扩散,另一方面把发射区扩散来的电子 收集到集电区,形成集电极电流IC 。
根据以上分析可知:
3)集电结面积比发射结大。
动态(U ≠0)时, ΔI 与ΔI 的比值称为 是指当基极电流IB为常数时,三极管集电极与发射极之间的电压UCE与集电极电流IC的关系。
直流放大系数
ß=
IC IB
交流放大系数
ß=
Δ IC Δ IB
从电压关系上看,b、e间加的是正向电压,UBE 只要有少量变化,IB就有较大变化,通过三极管的电 流放大作用IC变化更大,通过RC产生的电压变化,比 UBE的变化大很多倍,三极管的电流放大作用就转化 为电压放大作用。
电压放大倍数
Au= UCE UBE
2)、当IB增大时, 相应地IC也增大,曲线上移, 而且IC比IB增加得多得多
IC = βIB , ∆ IC = β ∆ IB ——这就是三极管的电流放大作用。
2、截止区:发射结及集电结均反偏。IB ≈ 0, IC ≈ 0。

三极管放大电路-PPT..

三极管放大电路-PPT..

多级放 大器常 用的耦 合方式
1.阻容耦合
阻容耦合就是利用电容作为耦合和隔直流元件。
阻容耦合方式
• 阻容耦合的
• 优点是:
• 前后级直流通路彼此隔开,每一级的静态工作点 都相互独立。便于分析、设计和应用。
• 缺点是:
• 信号在通过耦合电容加到下一级时会大幅度衰减 。在集成电路里制造大电容很困难,所以阻容耦 合只适用于分立元件电路。
2.3.2 用微变等效电路法分析放大电路
• 1画出放大电路的交流通路
用微变等 效电路法 分析放大 电路的步

• 2用相应的等效电路代替三极管
• 3计算性能指标
小知识 输入电阻是从输入端看放 大电路的等效电阻,输出电阻是 从输出端看放大电路的等效电阻 。因此,输入电阻要包括RB ,而 输出电路就不能把负载电阻算进 去。
本章导读
第2章 基本放大电路
本章重点学习基本放大电路的工作原理和 放大电路的基本分析方法。同时介绍放大电路的 性能指标,并介绍多级放大电路及应用。
本章以共射极的基本放大电路为基础,分析 放大电路的原理和实质,讲述了电压偏置电路的 意义。通过图解法和微变等效电路两种方法,讨 论如何设置工作点,计算输入电阻、输出电阻和 电压放大倍数,了解多级放大电路的级间耦合方 式及场效应管放大电路。
2.3 微变等效电路
• 2.3.1 放大电路的微变等效电路 • 1.晶体管的微变等效电路 • 放大电路的微变等效电路,其核心是晶体管的
微变等效电路。
晶体管的微变等效电路
• 2.共射极放大电路的微变等效电路
• 小知识
• 交流通路上电压、电流都是交变量,既可 用交流量表示,也可以用相量表示,上图 箭标表示它们的参考方向。

三极管经典教程PPT课件

三极管经典教程PPT课件
静态工作点
为了使三极管工作在放大区,需要设置合适的静态工作点,即合适的基极电流和集电极电压。静态工作点的设置对放大电 路的性能有很大影响。
动态性能 共射放大电路具有较高的电压放大倍数和较好的频率响应特性。但由于三极管的非线性特性,输出信号 会产生失真。
共基放大电路
原理分析
共基放大电路中,信号源与三极管的发射极和基极相连, 集电极作为输出端。与共射放大电路相比,共基放大电路 具有更高的电流放大倍数和更宽的频带宽度。
放大状态:当加在三极管发射结的电 压大于PN结的导通电压,并处于某一 恰当的值时,三极管的发射结正向偏 置,集电结反向偏置,这时基极电流 对集电极电流起着控制作用,使三极 管具有电流放大作用,其电流放大倍 数β=ΔIc/ΔIb,这时三极管处放大状态。
饱和导通状态:当加在三极管发射结 的电压大于PN结的导通电压,并当基 极电流增大到一定程度时,集电极电 流不再随着基极电流的增大而增大, 而是处于某一定值附近不怎么变化, 这时三极管失去电流放大作用,集电 极与发射极之间的电压很小,集电极 和发射极之间相当于开关的导通状态。 三极管的这种状态我们称之为饱和导 通状态。
电极电流IC与基极电流IB之比。
极间反向电流 包括集电结反向饱和电流ICBO和发 射极反向电流IEBO,用于衡量三极管
的稳定性。
截止频率fT 表示三极管的高频性能,定义为当β 下降到低频时β值的0.707倍时所对应 的频率。
动态特性参数的意义 用于全面评价三极管的性能,为电路 设计提供重要依据。
03
解调概念
从已调信号中提取出低频信号的过程。
解调方式
对应不同的调制方式,有相应的解调方法,如包络检波、鉴频和鉴相等。
07
三极管应用实例与选型指南
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021
电流放大系数
共 射 电 流 放 大 系 数
iB b +
c + iC
vCE
vBE - e -
VCC
VBB
共射极放大电路
直流电流放大系数
=IC / IB | vCE =const 交流电流放大系数 =IC/IBvCE=const
2021
电流放大系数




直流电流放大系数
放 大
α=IC/IE
vCCEE = 0V vCE
0V
1V
iB b +
c + iC
vCE
vBE - e -
VCC
VBB
共射极放大电路
2021
BJT的特性曲线
2. 输出特性曲线 输出电流与输出电压间的关系曲线
iCv=CfB(vCEvC )EiB=vcBoE nst
输饱出和特区性:曲vCE线<v的BE 三的个区区域域,: 发射结正偏,集电结正 偏。 iC明显受vCE控制 的截区放止域大区,区:但:i不此B=随时0的i,B的输发增出射曲结线正以 加下而偏的增,区大集域。电。在结此饱反时和偏,区。,i发C不射随结 可和近vC集似E变电认化结为,均v但C反E随保偏i持B。的不i增C只大有而很
V C1.3V,V B0.6V
V CV B1.30.60.7V A -集电极
VA6VVB,VC
管子为NPN管
C-基极,B-发射极
另一例题参见P30 2.2.2-1
2021
§2.2.3 三极管的主要参数
三极管的参数是 用来表征管子性 能优劣适应范围 的,是选管的依 据,共有以下三 大类参数。
电流放大系数 极间反向电流 极限参数
系 数
交流电流放大系数
α=ΔiC/ΔiE
2021
α与β间的关系
ic
ib
(1 ie)ie
1
1
2021
极间反向电流
(1) 集电极基极间反向饱和电流ICBO
发射极开路时,集电结的反向饱和电流。
(2) 集电极发射极间的反向饱和电流ICEO
ICEO=(1+ )I C BIOCBO c
即输出特性u曲A b
较大的Δi三E 极管A基V区的
如(1mA) 电流传递作用
V V
O I
ΔVO= ΔiCRL
(较大)
ΔiC(较大)
如(0.98mA)
2021
电压放大倍数
两个要点
三极管的放大作用,主要是 输 入依电靠压它的的变IE化能,通是过通基过区其传输, 改 变然输后入顺电利流到,达再集通电过极输而入实现
的。故要保证此传输,一方 电流面的要传满输足去内控部制条输件出,电即压发射 的 变区化掺, 所杂以浓度是要一远种大电于流基控区掺 制器杂要件满浓。足度外,基部区条要件薄,;即另发一射方结面
变小。线的对性反于增向小大电功,流率且。硅iC管, iB
一般vCES=0.2V。
iB
b +
VcC+E =ViCBE
vCE
vBE - e -
VCC
VBB
共射极放大电路
2021
如何判断三极管的电极、管型和材料
当三极管在电路中处于放大状态时
发射结处于正向偏置,且对于硅管 |VBE|=0.7V,锗管|VBE|=0.2V;
(当1) 当vCvEC>E=10VV以时,后相,当由于于发集射结电的结正的向反伏偏安特电性压曲可线以。在单位时 (间2) 内当集将电所结有进到入达反偏集状电态结时边,上vC的B=载vC流E 子- v拉BE随到着集v电CE的极增,大故而iC增 大不,随集v电CE结变的化反,偏所加以强。同由样于的基v区BE的下宽的度i调B不制效变应,,特基性区曲变窄线,几基区 复乎合重减叠少。,同样的vBE下 IB减小,特性曲线右移。
§2.2.1 三极管的结构和工作原理
分类
按频率分有高频管、低频管 按功率分有小、中、大功率管 按材料分有硅管、锗管
按结构分有NPN型和PNP型
2021
国产三极管的命名方式
3DG6
三 表高设 极 示频计 管 器管序
件号 材 料 和 极 性
A:PNP锗材料 B:NPN锗材料 C:PNP硅材料 D:NPN硅材料
2021
三极管内载流子的传输过程
动画2-1
2021
三极管内载流子的传输过程
在三集极电另管结外内2上3,有.基电集1存两为.区发子电在种双集射在区载极漂电区流基型收移区子三向区集运参本极基中扩动与管身区的散,导,存注扩过由电记在入散来,此为的电故与的B形J少称子复T电成此子合子电种,流三I极CB管O
集电结处于反向偏置,且|VCB|>1V;
NPN管集电极电位比发射极电位高, PNP管集电极电位比发射极电位低。
2021
例 题
一个BJT在电路中处于 正常放大状态,测得A、 B和C三个管脚对地的直 流电位分别为6V,0.6V, 1.3V。试判别三个管脚 的极名、是硅管还是锗 管?NPN型还是PNP型?
2021
三极管三个电极间的分配关系
IE=IBN+ICN IB=IBN-ICBO IC=ICN+ICBO
2021
IE=IB+IC
三极管的放大作用
正向时PN结电 流与电压成指
数关系
iE=IE+ΔiE iC=iE=IC+ΔiC
+ ΔVI
-
ec
+
b
RL ΔVO
iB=IB+△iB _
较小ΔVI 如(20mV)
正偏,集电结要反偏。
2021
§2.2.2 三极管的特性
三极管在电路中的连接方式
共发射极连接
共基极连接
共集电极连接
2021
三极管的特性曲线
概 念 特性曲线是 指各电极之 间的电压与 电流之间的 关系曲线
输入特性曲线 输出特性曲线
2021
BJT的特性曲线
1. 输入特性曲线 输入电流与输入电压间的关系曲线 iB=f(vBE) vCE=const (以共射极放大电路为例)
2021
三极管的不同封装形式
金属封装 塑料封装
大功率管
中功率管
2021
三极管的结构
半导体三极管的结构示意集图电如极下,图用所C示或。c 它有两种 表发示射(极类E,m型发i用t:tN射eErP)或区N;e型和PNP型集。电区表示(Collector)。
基区 基发极射,结用(BJe或) b表示021
结构特点:
• 发射区的掺杂浓度最高; • 集电区掺杂浓度低于发射区,且面积大; • 基区很薄,一般在几个微米至几十个微米,且
掺杂浓度最低。
管芯结构剖面图
2021
三极管的电流分配与放大作用
正常放大时外加偏置电压的要求
be结正 偏
bc结反偏
发射结应加正向电压(正向偏置) 集电结应加反向电压(反向偏置) 问:若为PNP管,图中电源极性如何?
相关文档
最新文档