最新李永乐暑期强化班线性代数笔记

合集下载

考研数学线性代数和概率论的复习重点

考研数学线性代数和概率论的复习重点

考研数学线性代数和概率论的复习重点考研数学线性代数和概率论的复习重点有许多表示刚一开始线性代数和概率论与数理统计有难处,认为看书举步维艰。

店铺为大家精心准备了考研数学线性代数和概率论的复习要点,欢迎大家前来阅读。

考研数学线性代数和概率论的复习难点▶难点事实上线性代数应该是数学三门课中最好拿分的,但是这门课有一个特点,就是入门难,但是一旦入门就一通百通。

这门课由于思维上与高数南辕北辙,所以一上来会很不适应。

总体而言,6章内容环环相扣,所以很多同学一上来看第一章发现内容涉及到第五章,看到第二章发现竟有第4章的知识点,无法形成完整的知识网络,自然无法入门。

▶学习规划总的来说,线性代数这本书6章内容应该分为三个部分逐个攻破:首先行列式和矩阵,第二向量与方程组,第三第5和第六章。

这三个内容联系得相当紧密,必须逐个攻破,这样以两章为单位,每个单位中出现的知识点定理罗列出来,找到他们彼此的关系。

最好是拿一张白纸,像C语言中的指针那样一个一个连起来,形成属于你的知识网络,这一部分有哪些板块,每个板块有哪些定义知识点,比如行列式的定义,矩阵的定义各是,你是怎么理解的,向量与方程组有什么联系与区别,这些最基础的一定要搞清。

对于概率论,第一章是整本书的思维基础,第二章与第三章的逻辑思维就好像一元积分与二元积分一样,难点在于二元积分的计算。

在学习的过程中还是要先思考这一章节有哪些部分,每个部分哪些定义,哪些知识点,自己要找一张大纸,将这些全部像C语言中二叉树一样,罗列成一个树形图,最后根据每一个知识点各个击破。

第5章不用细看,第六章第七章主要是记忆,在记忆的基础上尽可能的理解。

浙大版的书上每章的课后题相当经典,请同学们反复推敲,做过之后,请在总结一遍,比如说这几道题是属于离散型还是连续型,对应了哪些知识点。

▶视频学习法线性代数:不要一上来就看李永乐的视频,因为那个视频是强化阶段看的,建议听一下施光燕的线性代数12讲,这位老师讲的内容很基础,只有十二讲,但是全讲到重点上去了,这样你就会很容易入门了。

线性代数知识点归纳

线性代数知识点归纳

线性代数知识点归纳线性代数复习要点第一部分行列式1.排列的逆序数2.行列式按行(列)展开法则3.行列式的性质及行列式的计算行列式的定义行列式的计算:①(定义法)②(降阶法)行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.③(化为三角型行列式)上三角、下三角行列式等于主对角线上元素的乘积④若都是方阵(不必同阶)则⑤关于副对角线:⑦型公式:⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法.⑨(递推公式法)对阶行列式找出与或,之间的一种关系——称为递推公式,其中,,等结构相同,再由递推公式求出的方法称为递推公式法.(拆分法)把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算.⑩(数学归纳法)2.对于阶行列式,恒有:,其中为阶主子式;3.证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值.4.代数余子式和余子式的关系:第二部分矩阵矩阵的运算性质矩阵求逆矩阵的秩的性质矩阵方程的求解矩阵的定义由个数排成的行列的表称为矩阵.记作:或(同型矩阵:两个矩阵的行数相等、列数也相等.(矩阵相等:两个矩阵同型,且对应元素相等.(矩阵运算a.矩阵加(减)法:两个同型矩阵,对应元素相加(减).b.数与矩阵相乘:数与矩阵的乘积记作或,规定为.c.矩阵与矩阵相乘:设,,则,其中注:矩阵乘法不满足:交换律、消去律,即公式不成立.a.分块对角阵相乘:b.用对角矩阵乘一个矩阵相当于用的对角线上的各元素依次乘此矩阵的向量;用对角矩阵乘一个矩阵相当于用的对角线上的各元素依次乘此矩阵的向量d.两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,⑤矩阵的转置:把矩阵的行换成同序数的列得到的新矩阵,叫做的转置矩阵,记作.a.对称矩阵和反对称矩阵:是对称矩阵.是反对称矩阵.b.分块矩阵的转置矩阵:⑥伴随矩阵:,为中各个元素的代数余子式.,,.分块对角阵矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:(无条件恒成立) 2.逆矩阵的求法方阵可逆.①伴随矩阵法:②初等变换法③分块矩阵的逆矩阵:④,⑤配方法或者待定系数法(逆矩阵的定义)行阶梯形矩阵可画出一条阶梯线,线的下方全为;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是时,称为行最简形矩阵初等变换与初等矩阵对换变换、倍乘变换、倍加(或消法)变换初等变换初等矩阵初等矩阵的逆初等矩阵的行列式 () () () ?矩阵的初等变换和初等矩阵的关系:(对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘;(对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘.注意:初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵.矩阵的秩关于矩阵秩的描述:①、,中有阶子式不为0,阶子式(存在的话)全部为0;②、,的阶子式全部为0;③、,中存在阶子式不为0;矩阵的秩的性质:①;;≤≤②③④⑤≤⑥若、可逆,则;即:可逆矩阵不影响矩阵的秩.⑦若;若⑧等价标准型.⑨≤,≤≤⑩,求秩矩阵方程的解法):设法化成第三部分线性方程组1.向量组的线性表示2.向量组的线性相关性3.向量组的秩4.向量空间5.线性方程组的解的判定6.线性方程组的解的结构(通解)(1)齐次线性方程组的解的结构(基础解系与通解的关系)(2)非齐次线性方程组的解的结构(通解)线性表示:对于给定向量组,若存在一组数使得,则称是的线性组合,或称称可由的线性表示.线性表示的判别定理:可由的线性表示由个未知数个方程的方程组构成元线性方程:①、有解②、③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数)2.设的列向量为的列向量为,,为的解可由线性表示.即:的列向量能由的列向量线性表示,为系数矩阵. 同理:的行向量能由的行向量线性表示,为系数矩阵. 即:线性相关性判别方法:法1法2法3推论线性相关性判别法(归纳)线性相关性的性质零向量是任何向量的线性组合零向量与任何同维实向量正交单个零向量线性相关;单个非零向量线性无关部分相关整体必相关;整体无关部分必无关原向量组无关接长向量组无关;接长向量组相关原向量组相关两个向量线性相关对应元素成比例;两两正交的非零向量组线性无关向量组中任一向量≤都是此向量组的线性组合若线性无关,而线性相关则可由线性表示且表示法一向量组的秩向量组的极大无关组所含向量的个数,称为这个向量组的秩.记作矩阵等价经过有限次初等变换化为向量组等价和可以相互线性表示记作:矩阵的行向量组的秩列向量组的秩阶梯形矩阵的秩等于它的非零行的个数矩阵的初等变换不改变矩阵的秩且不改变行向量间的线性关系向量组可由向量组线性表示且,则线性相关向量组线性无关且可由线性表示则.向量组可由向量组线性表示且则两向量组等价任一向量组和它的极大无关组等价向量组极大无关组若两个线性无关的向量组等价则它们包含的向量个数相等设是矩阵若,的行向量线性无关;线性方程组的矩阵式向量式(1)解得判别定理(2)线性方程组解的性质:判断是的基础解系的条件:①线性无关;②是的解;③.(4)求非齐次线性方程组Ax=b的通解的步骤(5)其他性质一个齐次线性方程组的基础解系不唯一.√若是的一个解,是的一个解线性无关√与同解(列向量个数相同):①它们的极大无关组相对应从而秩相等②它们对应的部分组有一样的线性相关性③它们有相同的内在线性关系与的行向量组等价齐次方程组与同解(左乘可逆矩阵);矩阵与的列向量组等价(右乘可逆矩阵).第四部分方阵的特征值及特征向量1.施密特正交化过程2.特征值、特征向量的性质及计算3.矩阵的相似对角化,尤其是对称阵的相似对角化1.(标准正交基个维线性无关的向量两两正交每个向量长度为1与的内积(.记为:④向量的长度⑤是单位向量的向量.2.内积的性质:①正定性:②对称性:③线性:(设A是一个n阶方阵,若存在数和n维非零列向量,使得,则称是方阵A的一个特征值,为方阵A的对应于特征值的一个特征向量.(的特征矩阵).(的特征多项式).④是矩阵的特征多项式⑤,称为矩阵的迹.⑥上三角阵、下三角阵、对角阵的特征值就是主对角线上的各元素若则为的的基础解系即为属于的线性无关的特征向量.⑧一定可分解为=、,从而的特征值为:,.为各行的公比,为各列的公比.⑨若的全部特征值,是多项式,则:①若满足的任何一个特征值必满足②的全部特征值为;.⑩与有相同的特征值,但特征向量不一定相同.特征值与特征向量的求法(1)写出矩阵A的特征方程,求出特征值.(2)根据得到A对应于特征值的特征向量.设的基础解系为其中.则A对应于特征值的全部特征向量为其中为任意不全为零的数.(与相似(为可逆矩阵)(与正交相似(为正交矩阵)(可以相似对角化与对角阵相似.(称是的相似标准形)6.相似矩阵的性质:①,从而有相同的特征值,但特征向量不一定相同.是关于的特征向量,是关于的特征向量.②③从而同时可逆或不可逆④⑤若与相似,则的多项式与的多项式相似.矩阵对角化的判定方法①n阶矩阵A可对角化(即相似于对角阵)的充分必要条件是A有n 个线性无关的特征向量.这时,为的特征向量拼成的矩阵,为对角阵,主对角线上的元素为的特征值.设为对应于的线性无关的特征向量,则有:.②可相似对角化,其中为的重数恰有个线性无关的特征向量.:当为的重的特征值时,可相似对角化的重数基础解系的个数.③若阶矩阵有个互异的特征值可相似对角化.实对称矩阵的性质:①特征值全是实数,特征向量是实向量;②不同特征值对应的特征向量必定正交;:对于普通方阵,不同特征值对应的特征向量线性无关;③一定有个线性无关的特征向量.若有重的特征值,该特征值的重数=;④必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形;⑤与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形;⑥两个实对称矩阵相似有相同的特征值.9.正交矩阵正交矩阵的性质①;②;③正交阵的行列式等于1或-1④是正交阵则也是正交阵⑤两个正交阵之积仍是正交阵⑥的行(列)向量都是单位正交向量组.10.11.施密特线性无关单位化:其中为对称矩阵,(与合同.()(正惯性指数二次型的规范形中正项项数负惯性指数二次型的规范形中负项项数符号差(为二次型的秩)④两个矩阵合同它们有相同的正负惯性指数他们的秩与正惯性指数分别相等.⑤两个矩阵合同的充分条件是:与等价⑥两个矩阵合同的必要条件是:2.经过化为标准形.(正交变换法(配方法(1)若二次型含有的平方项,则先把含有的乘积项集中,然后配方,再对其余的变量同样进行,直到都配成平方项为止,经过非退化线性变换,就得到标准形;若二次型中不含有平方项,但是(),则先作可逆线性变换,化二次型为含有平方项的二次型,然后再按(1)中方法配方.(初等变换法3. 正定二次型不全为零,.正定矩阵正定二次型对应的矩阵.4.为正定二次型(之一成立):(1),;(2)的特征值全大于;(3)的正惯性指数为;(4)的所有顺序主子式全大于;(5)与合同,即存在可逆矩阵使得;(6)存在可逆矩阵,使得;5.(1)合同变换不改变二次型的正定性.(2)为正定矩阵;.(3)为正定矩阵也是正定矩阵.(4)与合同,若为正定矩阵为正定矩阵(5)为正定矩阵为正定矩阵,但不一定为正定矩阵. 半正定矩阵的判定一些重要的结论:全体维实向量构成的集合叫做维向量空间.√关于:①称为的标准基,中的自然基,单位坐标向量;②线性无关;③;④;⑤任意一个维向量都可以用线性表示.7第1页共20页。

李永乐.线性代数冲刺笔记(打印版)

李永乐.线性代数冲刺笔记(打印版)
【分析】若A为n阶方阵,则 ,从而由r(A)=2知r(A*)=1,又|A|=0,得A*A=A A*=|A|E=0 A的列向量是A*x=0解.由解的结构知应填k1[□,□,□]T+k2[□,□,□]T的形式.
【解】而由r(A)=2知r(A*)=1,所以通解由n-r(B)=3-1=2个解向量构成.
又|A|=0,得A*A=A A*=|A|E=0 A的列向量是A*x=0解.
【解】由r(A)=3知Ax=0的通解由n-r(B)=4-3=1个解向量构成.从而
3(α1+α2)-2(α2+2α3)是Ax=0的解,即[-1,0, 1,2]T
(α2+2α3)-(α1+α2)是Ax=b的解,即[1,1, 1,1]T
从而,[1,1,1,1]T+k[-1,0, 1,2]T是Ax=b的通解,其中k为任意常数.
【分析】从AB=0要得想到两方面的信息:(I) r(A)+r(B)≤n(II)B的列向量均是Ax=0的解.
}
【解】由AB=0 r(A)+r(B)≤3.
因为A≠0,B≠0知1≤r(A)≤2,1≤r(A)≤2
当k≠9时,r(B)=2,从而r(A)=1,此时极大无关组为α1.由AB=0得
(k-9)α3=0
(或用秩)
#
∵η1,η2,…,ηt线性无关,α是Ax=b的解 α不能由η1,η2,…,ηt线性表出.
x1η1+x2η2+…+xtηt=α无解 r(η1,η2,…,ηt)≠r(η1,η2,…,ηt,α)
∵r(η1,η2,…,ηt)=t r(η1,η2,…,ηT,α)=t+1
r(α,α+η1,α+η2,…,α+ηt)=t+1 α,α+η1,α+η2,…,α+ηt线性无关.
由i知132230从而32112234????????????01320用观察法取另一个向量使得它与2310t线性无关即32112234???????????????11210所以bx的通解是5310tk12310tk21211t其中k1k2为任意常数

暑假2021考研数学线性代数复习技巧

暑假2021考研数学线性代数复习技巧

暑假2021考研数学线性代数复习技巧时间过的很快,为了做好准备,下面由小编为你精心准备了“暑假2021考研数学线性代数复习技巧”,持续关注本站将可以持续获取更多的考试资讯!暑假2021考研数学线性代数复习技巧考研数学主要考查三科:高等数学、线性代数、概率论与数理统计,三门课程所占的分值比例也不一样,总体来说高等数学占考研数学的大部分比例,而线性代数不管数几所占的分值比例均是22%。

虽然线代只占22%的分值,但是它的复习确有一定的难度,这是因为线性代数这门学科不仅知识点多、概念多、定理多、符号多、运算规律多,而且各章节的内容也是相互纵横交错的,知识点之间的联系非常紧密。

因此,广大考生在暑期复习线性代数的时候应该将重点放在对基本概念的理解上,做到掌握基本定理的条件、结论及其应用、各种运算规律及基本题型的计算方法等。

多注重知识点之间的衔接与转换,注重理解,多思考多总结,使知识成网状,努力提高自己综合分析问题的能力。

为了让考生在暑期复习中能将线性代数提高到一个新的层次,在此小编为给各位同学分析一下历年考研重点及其复习思路,以使大家做到有的放矢决胜千里!考研线性代数总共涉及到六章的内容,接下来我们针对各章节进行考点的总结,并给出暑期复习重难点。

第一章行列式本章的重点是行列式的计算,主要有两种类型的题目:数值型行列式的计算和抽象型行列式的计算。

数值型行列式的计算不会以单独题目的形式考查,但是在解决线性方程组求解问题以及特征值与特征向量的问题时均涉及到数值型行列式的计算;而抽象型行列式的计算问题会以填空题的形式展现,在历年考研中可以找到有关抽象型行列式的计算问题。

因此,广大考生在暑假复习期间行列式这块要做到利用行列式的性质及展开定理熟练的、准确的计算出数值型行列式的值,不论是高阶的还是低阶的都要会计算;另外还要会综合后面的知识会计算简单的抽象行列式的值。

第二章矩阵本章需要重点掌握的基本概念有可逆矩阵、伴随矩阵、分块矩阵和初等矩阵,可逆阵与伴随矩阵的相关性质也很重要,也是需要考生掌握的。

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结线性代数是一门重要的数学学科,它主要研究线性空间和线性变换理论。

在现代科学和工程中,线性代数已经成为一门必修课程,涵盖了许多实用的知识点和重要的应用。

本文将对线性代数的主要知识点进行总结,包括向量、矩阵、线性方程组、向量空间和线性变换等方面。

一、向量向量是线性代数中最基本的概念之一,也是最重要的数学工具之一。

向量的定义是指由大小和方向组成的一种量。

在二维平面中,一个向量可以用一个有序数对(x,y)来表示。

在三维空间中,一个向量可以用一个有序数三元组(x,y,z)来表示。

向量之间的加法和减法可以通过对应坐标分别进行加减来实现,向量之间的数量积和向量积等运算也可以通过坐标来实现。

二、矩阵矩阵是线性代数中用来描述线性变换的重要工具。

矩阵的定义是一个由数个数按照一定规律排列成的矩形数组。

矩阵可以表示为m行n列的形式,其中m表示矩阵的行数,n表示矩阵的列数。

矩阵之间的加法和减法可以分别对应元素进行加减,矩阵与标量的乘法可以对矩阵的每个元素都乘以标量。

矩阵之间的乘法是矩阵理论中最重要的运算之一,它不仅可以表示矩阵之间的变换关系,还可以用于求解线性方程组等问题。

三、线性方程组线性方程组是线性代数中重要的一个应用,它是由若干个线性方程组成的方程组。

一个线性方程的一般形式可以表示为a1x1+a2x2+...+anxn=b,其中x1,x2,...,xn,b都是未知量,a1,a2,...,an都是已知数。

线性方程组的解可以通过高斯消元法、克拉默法则等方法求解。

当方程组无解或无穷解时,需要通过矩阵行列式的方法来判断方程组解的情况。

四、向量空间向量空间是线性代数中的基本概念之一,它是一个包含向量的集合,在这个集合中,向量满足若干性质。

这些性质包括封闭性、加法交换性、加法结合性、乘法分配律和乘法结合律等。

向量空间可以是有限个向量的有限维向量空间,也可以是无限个向量的无限维向量空间。

向量空间不仅是线性代数中理论研究的基础,也是许多应用问题求解的基础。

《线性代数》学习笔记一

《线性代数》学习笔记一

主 题: 《线性代数》学习笔记 内 容:《线性代数》学习笔记一——行列式的定义和性质1、二、三阶行列式的定义解二元线性方程组 a 11x 1+a 12x 2=b 1a 21x 1=a 22x 2=b 2用消元法去x 2得 (a 11a 22-a 12a 21)x 1=b 1a 22-b 2a 12, 消去x 1得 (a 11a 22-a 12a 21)x 2=a 11b 2-a 21b 1, 当a 11a 22-a 12a 21≠0时,得出211222*********a a a a a b a b x --=, 211222111212112a a a a b a b a x --=分子与分母都是由4个数构成的两对乘积之差,例如分母是由方程的4个系数确定的,若将4个系数按出现在方程中的相对位置排成二行(横为行)二列(纵为列)的数表a 11 a 12 a 21 a 22a 11a 22-a 12a 21就是二对角线上两个数乘积之差定义1 a 11a 22-a 12a 12称为由数表 a 11 a 12 a 21 a 22确定的二阶行列式,记作:11122122,,a a a a 改为 11122122a a a a 即1112112212212122a a a a a a a a数a ij (i,j=1,2)称为行列式的元素,a ij 的第一个下标i 称为行标,第二个下标j称为列标,a ij 表示该元素在第i 行,第j 列。

由以上定义知: 222121122221,,a b a b a b a b =- ,221111121211b a b a b a b a =- 把行列式中元素间的逗号去掉,两个元素间应该有空格。

于是以上所得的方程组的解完全可以用行列式表示。

仿照以上解二元联立方程组,用消元法解三元联立方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a 可以引出三阶行列式的概念。

【精品】线性代数各章知识点及脉络图(含例题)-假期预习必备

【精品】线性代数各章知识点及脉络图(含例题)-假期预习必备

一、行列式知识结构网络图概念性质展开式计算证明0A =应用经转置行列式的值不变;某行有公因数k ,可把k 提到行列式外;某行所有元素都是两个数的和,则可写成两个行列式之和; 两行互换行列式变号;某行的k 倍加至另一行.行列式的值不变;不同行、不同列的n 个元素之积的代数和1nn ik ik k D a A ==∑(按i 行展开)1nn kj kj k D a A ==∑(按j 行展开)余子式、代数余子式给定(i ,j )元的值未给定(i ,j )元的值化三角形-加边法、爪型行列式;公式法-特殊行列式、范德蒙德行列式; 递推、数学归纳法;等用行列式性质计算; 用矩阵性质计算; 用方阵的特征值;等克拉默法则;判断方阵的可逆,利用伴随几种求逆矩阵; 线性相关性的判定;求矩阵的秩,并判断线性方程组的解存在情况; 求方阵的特征值。

()n n R n ⨯<A ;0是方阵A 的特征值;=-A A行列式行列式是线性代数中的重要工具,在求解线性方程组、求逆矩阵、判断向量组的线性相关性、求矩阵的特征值、判断二次型的正定性等方面都要用到.本章的重点是应用行列式的性质和展开定理计算行列式.行列式的计算除了利用性质及展开定理外,还有三角化法、升阶法、递推法和数学归纳法等,计算方法多,技巧性强,这是难点所在.要掌握好这些方法,首先必须具体分析所求行列式元素分布的规律,针对其特点采取适当的方法;其次是要注意总结、积累经验,不断提高运算能力.行列式的性质【例】:已知531,252,234都是9的倍数,利用行列式的性质(而不是展开),证明522353124也是9的倍数。

解答:522353124231321010r r ,r r ++522353531252234139r 5229353582726【例】:如果除最后一行外,从每一行减去后面的一行,而从最后一行减去原先的第一行,问行列式值如何变化?解答:设原行列式为⎪⎪⎪⎭⎫ ⎝⎛=n A αα 1det ,则新的行列式为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=-113221det ααααααααn n n B , ()00,,3,2det 11321113221=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=--ααααααααααααααn n n i n n n n i r r B特殊行列式1、(主)对角行列式、上(下)三角行列式1111111111221122221111111niii nnnnnna a a a a a a a a a a a a a a a ====∏2、(次)对角行列式、上(下)三角行列式()()12111111212212121111111n n n n n nn,n,n ,n ,n iii n n,n nnn n a a a a a a a a a a aa a a a a ----=-===-∏3、分块三角行列式 形式简记为:*==⨯*A O A AB BO B,()1k n⨯*==-⨯*O A AA B BB O4、范德蒙德行列式()211112112122222221212121111111121121111111,,,11n n n n n n n n n n n n n n n n n n nn n x x x x x x x x x x f x x x x x x x x x x x x x x x x x --------------==()()121,,,n ijn i j f x x x x x ≥>≥=-∏ ()()()()()1213211212111,,,n nj n j j j n j n j j j f x x x xx xx xx x x --≥≥-≥≥≥≥≥≥=-⋅---∏∏∏∏()()()()1221n n n n n n x x x x x x x x --=----()()()()()()()12131211323121n n n n n n x x x x x x x x x x x x x x -------------认识范德蒙德行列式可以将n 阶范德蒙德行列式看成式关于n 个变量12,,,n x x x 的函数,即()12,,,n n D f x x x =。

李永乐线代笔记定稿版

李永乐线代笔记定稿版

李永乐线代笔记HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】1、线代5~7道题行列式矩阵向量方程组特征值二次型2、微积分数一考的难3、数一线代多一个向量空间考点【行列式、矩阵、向量、方程组、特征值、二次型】4、说曲面名称,数一;三个平面5、方程组,有解、无解、唯一解、无穷解【相关、无关、帙、线性表述、研究方程组解的理论】===【研究解的过程提炼出矩阵、行列式】6、二次型是特征值的几何应用,为什么有各种不同的曲面,由特征值的正负等,7、二次型和特征值的关系8、方程组和特征值是重点,考解答题9、概念多,定理,运算法则多,符号多10、内容纵横交错,知识前后联系紧密代数的一题多解,用不同的定理公式做同一道题11、逻辑推理要求高,可能考证明题,要在证明题花点时间1.方程组,解的情况,有没有解,相关无关,帙2.怎么求解,什么叫方程组的解:x1.。

xn带进每个方程,则是解3.同解变形(1)将两个方程位置互换(2)将某个方程乘以一个非零常数(3)将某个方程的K倍加到某个方程上---------------矩阵的初等变换【解方程组只能做行变换,不能列变换】4.先正向消元---由上往下;然后反响求解-----由下往上5.系数变成a,b,求a,b取什么值有解、无解;面对参数怎么消元,讨论1.求其次方程解(1)初等行变换(2)阶梯型(3)行最简化t、u2.加减消元2分,求解过程没分,答案写出来给满分,看着行最简直接写答案3.A---mxn,有几个线性无关解,n-A的帙4.帙就是最简行矩阵的行数5.找到单位矩阵,其他的是变量,用100法则;找到1对应的数,写其相反数6.对矩阵A进行初等行变换;则方程组的一个基础解系为----------行最简1、矩阵基础知识,矩阵:mxn表格数叫矩阵【行列式一定是一个数,行列相等】2、矩阵描述一些事情、做运算3、矩阵乘法:A-MxN列,B-N行xS.AB-MxS,i行乘j列4、遇到AB=0,秩;解5、对角矩阵得对角矩阵,左右可以交换;对角矩阵的次方=对应元素的次方6、列前行后,的N阶矩阵,行前列后,的一个数7、Ab转置与ba转置互为转置矩阵8、主对角线元素的和叫做矩阵的“迹”9、Ab转置的主对角线等于b转置a10、方程组可以写成矩阵乘法11、A-n,A各行元素之和都为0,【1,1,1,1,1,。

线性代数知识点归纳

线性代数知识点归纳

线性代数知识点归纳线性代数是一门研究向量、向量空间、线性变换以及有限维线性方程组的数学分支。

它广泛应用于各个领域,如物理、计算机科学、工程学等。

线性代数的核心概念和工具包括行列式、矩阵、向量组以及线性方程组等。

下面将详细介绍线性代数的相关知识点。

一、行列式1.1 行列式的概念:行列式是一个函数,它从n×n阶方阵到实数(或复数)的映射。

行列式记作|A|,其中A是一个n×n的方阵。

1.2 逆序数:在n×n阶方阵A中,将行列式中元素a_ij与a_ji互换,所得到的新的行列式称为原行列式的逆序数。

1.3 余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij删去,剩下的(n-1)×(n-1)阶方阵的行列式称为原行列式的余子式,记作M_ij。

1.4 代数余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij替换为它的相反数,然后计算得到的新的行列式,称为原行列式的代数余子式,记作A_ij。

1.5 行列式的性质:行列式具有以下性质:(1)交换行列式中任意两个元素的位置,行列式的值变号。

(2)行列式中某一行(列)的元素乘以常数k,行列式的值也乘以k。

(3)行列式中某一行(列)的元素与另一行(列)的元素相加,行列式的值不变。

(4)行列式某一行(列)的元素与另一行(列)的元素相减,行列式的值变号。

1.6 行列式的计算方法:行列式的计算方法有:降阶法、按行(列)展开法、克拉默法则等。

二、矩阵2.1 矩阵的概念:矩阵是一个由数组元素构成的矩形阵列,矩阵中的元素称为矩阵的项。

矩阵记作A,其中A是一个m×n的矩阵,A_ij表示矩阵A中第i行第j列的元素。

2.2 矩阵的线性运算:矩阵的线性运算包括加法、减法、数乘等。

2.3 矩阵的乘法:两个矩阵A和B的乘法,记作A×B,要求A是一个m×n的矩阵,B是一个n×p的矩阵。

矩阵的乘法满足交换律、结合律和分配律。

李永乐线性代数冲刺笔记(打印版)

李永乐线性代数冲刺笔记(打印版)

1
(III)由 A 2 =β α1 -2α2 +α3-α4=β, 1


1
那么 B=[α3,α2,α1,β+α4]=[α3,α2,α1,α1-2α2+α3-α4] r(B)=4.
- 2 - / 11
从而 n-r(B)=2.源自5因为[α3,α2,α1,α1 -2α2+α3-α4] 3 =α1-3α2+5α3 1
β=α+l1η1+l2η2+…+lt ηt
β=(1-l1 -l2 -…-lt)α+l1η1+l2η2+…+lt ηt
- 1 - / 10
即 β 可由 α,α+η1,α+η2,…,α+ηt 表出.
【评注】 本题考查向量小组的线性相关的证明和线性表出的证明.考查了方程组基础解系的
概念:
设有向量小组 η1,η2,…,ηt 满足: (1) Aηi = 0(i =1,…,t),即 ηi 是 Ax = 0 的解. (2) Ax = 0 的任意一个解都可以由 η1,η2,…,ηt 表出. (3) η1,η2,…,ηt 线性无关. 那么称 η1,η2,…,ηt 为 Ax = 0 的基础解系. 也就是说若 η1,η2,…,ηt 是 Ax = 0 的基础解系,那么 η1,η2,…,ηt 必满足上
设 k0α+k1 (α+η1)+k2(α+η2)+…+ kT(α+ηt)=0
(1)
即 (k0+k1+k2+…+kT)α+k1η1+k2η2+…+kT ηt=0
(2)
由 Aα=b, Aηi=0(i=1,…,t),用 A 左乘(2),有
(k0+k1+k2+…+kt)Aα+k1Aη1+k2Aη2+…+ktAηt=0
即 (k0 +k1+k2 +…+kt)b=0
又 b≠0,有 k0+k1+k2+…+kT=0

线性代数笔记

线性代数笔记

线性代数笔记(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--线性代数笔记第一章行列式 .................................................................................................. 错误!未定义书签。

第二章矩阵 ...................................................................................................... 错误!未定义书签。

第三章向量空间............................................................................................. 错误!未定义书签。

第四章线性方程组.......................................................................................... 错误!未定义书签。

第五章特征值与特征向量...................................... 错误!未定义书签。

第一章行列式行列式的性质给定行列式,将它的行列互换所得的新行列式称为D的转置行列式,记为或。

性质1 转置的行列式与原行列式相等。

即(这个性质表明:行列式对行成立的性质,对列也成立,反之亦然)性质2 用数k乘行列式D的某一行(列)的每个元素所得的新行列式等于kD。

推论1 若行列式中某一行(列)的元素有公因数,则可将公因数提到行列式之外。

推论2 若行列式中某一行(列)的元素全为零,则行列式的值为0。

可以证明:任意一个奇数阶反对称行列式必为零。

性质3行列式的两行(列)互换,行列式的值改变符号。

线代知识点总结手写

线代知识点总结手写

线代知识点总结手写1. 向量向量是线性代数中的基本概念之一。

向量通常用箭头或有序数组来表示,具有大小和方向。

向量的运算包括加法、数乘、内积和外积等。

在数学和物理等领域中,向量广泛应用于描述力、速度、位移等物理量,是分析和研究物理现象的重要工具。

2. 向量空间向量空间是线性代数中的另一个重要概念,它是一组向量的集合,满足一定的运算规则。

向量空间的定义包括对加法和数乘运算的封闭性、结合律、分配律等性质。

向量空间有许多重要的性质和定理,如零向量的唯一性、向量的线性无关性、极大线性无关组、维数、基、坐标等概念。

3. 矩阵矩阵是线性代数中的另一个基本概念,它是一个由数构成的矩形阵列。

矩阵的运算包括加法、数乘、矩阵乘法等。

矩阵在代数方程组的求解、线性变换的描述、数据分析等领域有着广泛的应用。

4. 行列式行列式是一个方阵所具有的一个数。

行列式的计算公式十分复杂,但在计算过程中,可以采用一系列特定的运算规则来简化计算。

行列式有着丰富的性质和定理,如行列式的性质、克拉默法则、行列式的计算等。

5. 线性方程组线性方程组是一组线性方程的集合。

通过消元法、高斯消元法、克莱姆法则等方法,可以求解线性方程组的解。

线性方程组的解有唯一解、无解和不定解三种情况,其解的形式可以通过参数表示。

6. 特征值与特征向量特征值与特征向量是矩阵的一个重要概念,它们在矩阵的对角化、矩阵的谱分解等方面有着重要的应用。

特征值与特征向量的计算与性质有着一系列的定理和规则,它们对于理解矩阵的性质和结构有着重要的意义。

以上是线性代数的一些基本知识点和方法。

线性代数作为数学的一门基础课程,其应用广泛,涉及面广泛,对于理工科的学生来说具有非常重要的意义。

通过学习线性代数,可以帮助学生更好地理解和应用数学知识,提高数学建模和实际问题求解的能力。

希望本文对读者理解线性代数的核心概念和方法有所帮助。

线性代数知识点大全(强化记忆版)【推荐】

线性代数知识点大全(强化记忆版)【推荐】

D (j=1、2⋯⋯n)线性代数知识点总结第一章行列式二三阶行列式N阶行列式:行列式中所有不同行、不同列的n个元素的乘积的和a ij n =∑(-1)τ(j1j2..j n)a a...a1j12j2j1j2jnnjn (奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。

(转置行列式D=D T)②行列式中某两行(列)互换,行列式变号。

推论:若行列式中某两行(列)对应元素相等,则行列式等于零。

③常数k乘以行列式的某一行(列),等于k乘以此行列式。

推论:若行列式中两行(列)成比例,则行列式值为零;推论:行列式中某一行(列)元素全为零,行列式为零。

④行列式具有分行(列)可加性⑤将行列式某一行(列)的k倍加到另一行(列)上,值不变行列式依行(列)展开:余子式M、代数余子式A=(-1)i+j Mij ij ij定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。

克莱姆法则:非齐次线性方程组:当系数行列式D≠0时,有唯一解:x=j 齐次线性方程组:当系数行列式D=1≠0时,则只有零解逆否:若方程组存在非零解,则D等于零特殊行列式:Dja11①转置行列式:a21a31a12a22a32a13a23a33a11→a12a13a21a22a23a31a32a33②对称行列式:a=aij ji③反对称行列式:a=-aij ji奇数阶的反对称行列式值为零a11④三线性行列式:a21a31a12a22a130方法:用k a把a化为零,。

化为三角形行列式12221a33⑤上(下)三角形行列式:行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的)化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、m *n (零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵)ij m *n---------分配、结合律= (∑ a b )等价标准形矩阵 D =  r O ⎫⎪⎪ ⎝ O O ⎭第二章 矩阵矩阵的概念: A矩阵的运算:加法(同型矩阵)---------交换、结合律数乘 kA = (ka )乘法A *B = (a ) ik m *l*(b )kj l*nl 1ik kj m *n注意什么时候有意义一般 AB=BA ,不满足消去律;由 AB=0,不能得 A=0 或 B=0 转置 ( A T )T = A( A + B)T = A T + B T(kA)T = kA T ( AB)T = B T A T (反序定理)方幂: A k 1 A k 2 = A k 1 +k 2( A k 1 )k 2 = A k 1 +k 2几 种 特 殊 的 矩 阵 : 对 角 矩 阵 : 若 AB 都 是 N 阶 对 角 阵 , k 是 数 , 则 kA 、 A+B 、AB 都是 n 阶对角阵数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方都是 0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆 矩 阵 : 设 A 是 N 阶 方 阵 , 若 存 在 N 阶 矩 阵 B 的 AB=BA=I 则 称 A 是 可 逆 的 ,A -1 =B (非奇异矩阵、奇异矩阵|A|=0、伴随矩阵)初 等 变 换 1 、 交 换 两 行 ( 列 ) 2. 、 非 零 k 乘 某 一 行 ( 列 ) 3 、 将 某 行 ( 列 ) 的 K 倍加到另一行(列)初等变换不改变矩阵的可逆性 初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的(对换阵 倍乘阵 倍加阵)⎛ I r矩阵的秩 r(A):满秩矩阵 降秩矩阵 若 A 可逆,则满秩若 A 是非奇异矩阵,则 r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1 定义 2 转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵 (ka ij )n = k (a ij )n ,行列式 ka ijn=k n a ij n逆矩阵注: ①AB=BA=I 则 A 与 B 一定是方阵 ②BA=AB=I 则 A 与 B 一定互逆;③不是所有的方阵都存在逆矩阵;④若 A 可逆,则其逆矩阵是唯一的。

李永乐线性代数考研复习资料。复习提纲+经典例题解答

李永乐线性代数考研复习资料。复习提纲+经典例题解答
分析:观察D中元素,S中A31、A32、A33、A34前的系数与D 中各行元素无直接的关联。因此不能用例1.16(1.17)中方法求解,若直接计算A 31、A32、A33、A3后再求S,太麻烦且易出错。
因为:
是个公式,在等式右边n项中,
的因子,因此若等式左边行列式中 即可,即:
中都不包含 换成C1,只要在等式右边第一项换成
清华大学数学科学系 何坚勇 主讲 并提供文档资料
本节课程内容:
第一章:行列式(续) 5、可用逐行(列)相减方法来化简的行列式 有这样一类行列式,其相邻两行(或两列)之间有部分相 同的元素,而这些相同的元素集中在某个角上,(或左上 角或左下角,或右上角,或右下角),这样当用相邻两行 相减的方法所得到的零元素就集中在某个角上,便于将行 列式化为上、下三角形行列式。 例1.8
ABC Amber CHM Converter Trial version, /abcchm.html
清华大学考研辅导强化班课程 《线性代数》
清华大学数学科学系 何坚勇 主讲 并提供文档资料
例1.11
例1.12
思路:数字较大,直接计算麻烦。观察可知其第2列与第1 列相差不大,第3列与第2列的3倍相近。 例1.13
本题行列式中没有元素1,若直接化成上(下)三角形, 突岢鱿址质 虼讼冉 ?行的(-1)倍加到第1行,得 ½a11=-1,然后再化零。 (七)、利用行列式是一个多项式,可以分解因式的性质 来计算行列式。 若f(x)是x的一个多项式,显然当f(a)=0时,f(x)应有(x -a)的因式,如f(x)=x2-5x+6,则f(2)=0,f(3)=0,故f (x)=K(x-2)(x-3),再利用x=x0可求出K, 或用某个特定的xm项对比系数定出K。 例1.14

考研数学:线性代数知识点汇总精选全文完整版

考研数学:线性代数知识点汇总精选全文完整版

可编辑修改精选全文完整版2019考研数学:线性代数知识点汇总摘要:尽管考研数学的考查内容各个学校的侧重点不一样,但是都是在考研大纲里面的更改。

因此,了解好考研数学的每一个小知识点,才能全面掌握考研数学。

就帮大家整理了一些线性代数的知识点,分享给在数学上犯愁的同学们。

►【行列式】1、行列式本质就是一个数2、行列式概念、逆序数考研:小题,无法联系其他知识点,当场解决。

3、二阶、三阶行列式具体性计算考研:不会单独出题,常常结合伴随矩阵、可逆矩阵考察。

4、余子式和代数余子式考研:代数余子式的正负是一个易错点,了解代数余子式才能学习行列式展开定理。

5、行列式展开定理考研:核心知识点,必考!6、行列式性质考研:核心知识点,必考!小题为主。

7、行列式计算的几个题型①、划三角(正三角、倒三角)②、各项均加到第一列(行)③、逐项相加④、分块矩阵⑤、找公因这样做的目的,在行/列消出一个0,方便运用行列式展开定理。

考研:经常运用在找特征值中。

⑥数学归纳法⑦范德蒙行列式⑧代数余子式求和⑨构造新的代数余子式8、抽象型行列式(矩阵行列式)①转置②K倍③可逆③伴随④题型丨A+B丨;丨A+B-1丨;丨A-1+B丨型(这部分内容放在第二章,但属于第一章的内容)考研:出小题概率非常大,抽象性行列式与行列式性质结合考察。

►【矩阵】1、矩阵性质考研:与伴随矩阵、可逆矩阵、初等矩阵结合考察。

2、数字型n阶矩阵运算①方法一:秩是1②方法二:含对角线上下三角为0的矩阵③方法三:利用二项式定理,拆写成E+B型④方法四:利用分块矩阵⑤方法五:P-1AP=B;P-1APP-1AP=B2方法五涉及相似对角化知识。

方法三涉及高中知识。

考研:常见在大题出现,是大题的第一问!看到数字型n阶矩阵运算,一定出自这5个方法。

(二战考上,如果本题不会做,你的问题出在只掌握这五种方法的某几种,所以你是失败在归纳总结上了)3、伴随矩阵考研:伴随矩阵常与其他知识考察,与行列式、转置、K倍、可逆、伴随的伴随结合考察。

线性代数笔记

线性代数笔记

线性代数笔记Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】线性代数笔记第一章行列式1.3.1行列式的性质给定行列式,将它的行列互换所得的新行列式称为D的转置行列式,记为或。

性质1 转置的行列式与原行列式相等。

即(这个性质表明:行列式对行成立的性质,对列也成立,反之亦然)性质2 用数k乘行列式D的某一行(列)的每个元素所得的新行列式等于kD。

推论1 若行列式中某一行(列)的元素有公因数,则可将公因数提到行列式之外。

推论2 若行列式中某一行(列)的元素全为零,则行列式的值为0。

可以证明:任意一个奇数阶反对称行列式必为零。

性质3行列式的两行(列)互换,行列式的值改变符号。

以二阶为例推论3 若行列式某两行(列),完全相同,则行列式的值为零。

性质4 若行列式某两行(列)的对应元素成比例,则行列式的值为零。

性质5 若行列式中某一行(列)元素可分解为两个元素的和,则行列式可分解为两个行列式的和,注意性质中是指某一行(列)而不是每一行。

性质6 把行列式的某一行(列)的每个元素都乘以加到另一行(列),所得的行列式的值不变。

范德蒙德行列式例10 范德蒙行列式…….=(x2-x1)(x3-x1)(x3-x2)克莱姆法则定理1.4.1 对于n阶行列式定理如果n个未知数,n个方程的线性方程组的系数行列式D≠0,则方程组有惟一的解:定理如果n个未知数n个方程的齐次方程组的系数行列式D≠0,则该方程组只有零解,没有非零解。

推论如果齐次方程组有非零解,则必有系数行列式D=0。

第二章矩阵一、矩阵的运算1、矩阵的加法设A=(a ij)m×n ,B=(b ij)m×n,则A+B=(a ij+b ij)m×n矩阵的加法适合下列运算规则:(1)交换律:A+B=B+A(2)结合律:(A+B)+C=A+(B+C)(3)A+0=0+A=A此处0表示与A同型的零矩阵,即A=(a ij)m×n,0=0m×n(4)矩阵A=(a ij)m×n,规定-A=(-a ij)m×n,(称之为A的负矩阵),则有A+(-A)=(-A)+A=02、矩阵的数乘设A=(a ij)m×n,K为数,则KA=(Ka ij)m×n矩阵的数乘适合下列运算规则:(1)K(A+B)=KA+KB(2)(K+L)A=KA+LA(3)(KL)A=K(LA)(4)1*A=A(5)0*A=0(左端的零是指数0,而右端的“0”表示一个与A行数列数相同的零矩阵。

线性代数知识点归纳

线性代数知识点归纳

线性代数知识点归纳线性代数是现代数学中的一个重要分支,主要研究向量空间及其上的线性映射。

它在许多科学领域中都有广泛的应用,包括物理学、计算机科学、经济学等。

本文将对线性代数中的一些重要知识点进行归纳总结,以帮助读者更好地理解和掌握这门学科。

一、向量与矩阵1. 向量的定义与运算- 向量的表示:向量可以用有序数组表示,也可以用线段箭头表示。

- 向量的加法与减法:向量之间可以进行加法和减法运算,满足交换律和结合律。

- 向量的数乘:向量与实数之间可以进行数乘运算。

- 内积与外积:向量之间有内积和外积两种运算,分别表示向量的夹角和与之垂直的面积。

2. 矩阵的定义与运算- 矩阵的表示:矩阵可以用二维数组表示,其中每个元素称为矩阵的一个元。

- 矩阵的加法与减法:矩阵之间可以进行加法和减法运算,要求矩阵的维度相同。

- 矩阵的数乘:矩阵与实数之间可以进行数乘运算。

- 矩阵乘法:矩阵乘法满足结合律,但不满足交换律。

二、线性方程组与矩阵运算1. 线性方程组- 线性方程组的定义:线性方程组由一组线性方程组成,其中每个方程都是线性的。

- 解的存在性与唯一性:线性方程组的解可能没有,可能有唯一解,也可能有无穷多解。

- 线性方程组的求解方法:高斯消元法、矩阵求逆、克拉默法则等。

2. 矩阵的逆与行列式- 矩阵的逆:若矩阵A存在逆矩阵A^-1,满足A·A^-1 = A^-1·A = I,其中I为单位矩阵。

- 行列式:行列式是一个与矩阵相关的标量值,用于判断矩阵的可逆性和计算矩阵的特征值。

三、线性映射与特征值问题1. 线性映射- 线性映射的定义:线性映射是一个满足线性性质的函数,将一个向量空间映射到另一个向量空间。

- 线性映射的表示与运算:线性映射可以用矩阵表示,可以进行加法、减法和数乘。

- 线性映射的核与像:线性映射的核是所有映射到零向量的向量集合,像是所有映射到的向量集合。

2. 特征值与特征向量- 特征值与特征向量的定义:对于一个线性映射,若存在一个非零向量使得线性映射作用于该向量后相当于对该向量进行标量乘法,该向量称为特征向量,该标量称为特征值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



方2005考研数学理工类冲刺
线性代数
主讲:李永乐
第15章弹簧元件
15.1 弹簧元件的的功用和类型
弹簧受外力作用后能产生较大的弹性变形,在机械设备中广泛应用弹簧作为弹性元件。

弹簧的主要功用有:1)控制机构的运动或零件的位置,如凸轮机构、离合器、阀门以及各种调速器中的弹簧;2)缓冲及吸振,如车辆弹簧和各种缓冲器中的弹簧;3)储存能量,如钟表、仪器中的弹簧;4)测量力的大小,如弹簧秤中的弹簧。

弹簧的种类很多,从外形看,有螺旋弹簧、环形弹簧、碟形弹簧、平面涡卷弹簧和板弹簧等。

螺旋弹簧是用金属丝(条)按螺旋线卷饶而成,由于制造简便,所以应用最广。

按其形状可分为:圆柱形(下图a、b、d)、截锥形(下图c)等。

按受载情况又可分为拉伸弹簧(下图a)、压缩弹簧(下图b、c)和扭转弹簧(下图d)。

环形弹簧(下图a)和碟形弹簧(下图b)都是压缩弹簧,在工作过程中,一部分能量消耗在各圈之间的摩擦上,因此具有很高的缓冲吸振能力,多用于重型机械的缓冲装置。

平面涡卷弹簧或称盘簧(下图c),它的轴向尺寸很小,常用作仪器和钟表的储能装置。

板弹簧(下图d)是由许多长度不同的钢板叠合而成,主要用作各种车辆的减振装置。

本章主要介绍圆柱螺旋拉伸、压缩弹簧的结构和设计。

15.2 圆柱螺旋拉伸、压缩弹簧的应力与变形
一、弹簧的应力
圆柱螺旋拉伸及压缩弹簧的外载荷(轴向力)均沿弹簧的轴线作用,它们的应力和变形计算是相同的。

现以圆柱螺旋压缩弹簧为例进行分析。

下左图所示为一圆柱螺旋压缩弹簧,轴向力F作用在弹簧的轴线上,弹簧丝是圆截面的,直径为d,弹簧中径为D2,螺旋升角为a。

相关文档
最新文档