大学物理答案第12章汇总

合集下载

大学物理答案第12章

大学物理答案第12章

第十二章 磁介质中的磁场12-1 一螺绕环的平均半径为R =0.08m, 其上绕有N =240匝线圈, 电流强度为I=0.30A 时充满管内的铁磁质的相对磁导率µr =5000, 问管内的磁场强度和磁感强度各为多少?分析 螺绕环磁场几乎都集中在环内, 磁场线是一系列圆心在对称轴上的圆.如果圆环的截面积很小,可认为环内各点的磁场强度大小相等,等于以平均半径R 为半径的圆上的磁场强度.解 H=nI A/m2.143A/m 08.0230.02402=⨯⨯==ππRNIT90.0T 2.14350001047r 0=⨯⨯⨯===-πμμμH H B12-2 在图12-6所示的实验中,环形螺线管共包含500匝线圈, 平均周长为50cm, 当线圈中的电流强度为2.0A 时, 用冲击电流计测得介质内的磁感强度为2.0T , 求这时(1)待测材料的相对磁导率r μ,(2)磁化面电流线密度s j .分析 磁场强度和磁感强度B 的关系为H H B r 0μμμ==,从而可求出r μ. 解 (1) A/m 2000A/m 5.02500=⨯==L NI nI H 7961021040.270r =⨯⨯⨯==-πμμHB(2)由于磁化面电流产生的附加磁感强度为B '=B-B 0,得s00)(j nI B μμμ=-='则 A/m1059.1)1(6r 0s ⨯=-=-=nI nI j μμμμ12-3 将一直径为10cm 的薄铁圆盘放在B 0=0.4×10-4 T 的均匀磁场中, 使磁感线垂直于盘面, 已知盘中心的磁感强度为B c =0.1T, 假设盘被均匀磁化,磁化面电流可视为沿圆盘边缘流动的一圆电流.求(1)磁化面电流大小;(2)盘的轴线上距盘心0.4m 处的磁感强度.分析 铁盘在外磁场B 0中要被磁化, 产生附加磁场.附加磁场与外磁场B 0同向,所以盘中心的磁感强度B c =B 0+B c ˊ.如果将磁化面电流I s 视为沿圆盘边缘流动的圆电流.解 (1)磁化面电流I s 在环心c 处产生的附加磁场的磁感强度为 RI B sc20μ='盘中心的总磁感强度为cc B B B '+=0从已知条件可见,对于铁磁质,有c B B <<0,即c c B B '≈,得A1096.7223c0s ⨯=='=μμRBB R I c(2)距c 点x 处的磁场可视为外磁场B 0与磁化面电流磁场B ˊ的叠加,即有T 1091.1)(242/32220-⨯=+='x RRI B s μ401031.2-⨯='+=B B B T12-4 半径为R 的载流长直导线,电流强度为I ,外面裹有一层厚度为b 的磁介质,其相对磁导率为r μ,(1)求磁介质中任一点的磁场强度H 和磁感强度B 的大小;(2)若沿磁介质的内外表面流动的磁化面电流方向与轴线平行,试证明二电流等大反向并求其大小.分析 长直载流直导线的磁场线是以轴线为中心的一系列同心圆.应用有磁介质的安培环路定理时只须计算闭合回路所包围的传导电流,而应用真空中的安培环路定理时应计算闭合回路所包围的传导电流和磁化面电流. 解 (1) 介质内rIH B rI H πμμπ2 2===(2) 假设介质为顺磁质,介质内表面磁化面电流I s 方向如图12-4所示,在介质内任一点磁感强度B=B 0+B ’,因 rIB πμ2==0B rIπμ20 rI B πμ2s0='得rI rI B s πμμπμ2)(200-=='即有 I I )1(r s -=μ设介质外表面磁化面电流为I s ˊ,应用介质中的安培环路定律,可得介质外任一点磁场强度为rI H π2=应用真空中的安培环路定理,介质外有)(d s s 0I I I '++=⋅⎰μlB即 )(2s s 0I I I rB '++=μπrI I I B πμ2)(s s 0'++=又因 B=µ0H=rIπμ20由以上两式得II I )1(r s s --=-='μ即介质内外表面磁化面电流大小相等, 方向相反.。

大学物理第12章习题解答

大学物理第12章习题解答

第十二章 习题答案12.1 选择题(1) 对位移电流,下述四种说法哪个正确( )A. 位移电流是由线性变化磁场产生的.B. 位移电流是指变化的电场.C. 位移电流的热效应服从焦耳-楞次定律.D. 位移电流的磁效应不服从安培环路定理.(2) 空气中有一无限长金属薄壁圆筒,在表面上沿圆周方向均匀地流着一层随时间变化的面电流i (t),则( )A. 圆筒内均匀地分布着变化磁场和变化电场.B. 任意时刻通过圆筒内假象的任一球面的磁通量和电通量均为零.C. 沿圆筒内任意闭合环路上电场强度的环流为零.D. 沿圆筒外任意闭合环路上磁感应强度的环流不为零.(3) 如图12.1(3)所示为一充电后的平行板电容器,A 板带正电,B 板带负电,开关K 合上时,A 、B 板间位移电流的方向为(按图上所标x 轴正方向回答)A .x 轴正向B .x 轴负向C .x 轴正向或负向D .不确定 题12.1(3)图 答案:(1) B, (2)B, (3)B.12.2 填空题1. S t B l E L S d d ⋅⋅⎰⎰∂∂-= ① 0d =⎰⋅S B S ②S t D I l H S L i d d ⋅⋅⎰⎰∑∂∂+= ③试判断下列结论是否包含于或等效于哪一个麦克斯韦方程式的.将确定的方程式用代号填在相应结论的空白处.(1) 变化的电场一定伴随有磁场__________________.(2) 变化的磁场一定伴随有电场__________________.(3) 磁感线是无头无尾的闭合曲线________________.2.平行板电容器的电容C 为20 μF ,两板上的电压变化率V/s 105.1d d 5⨯=tU ,则该平行板电容器中的位移电流为____________.3.一空气平行板电容器的两极板是半径为R 的圆形导体片,在充电时,板间电场强度的变化率为tE d d .若略去边缘效应,则两板间的位移电流为______________. 答案: (1)③①②, (2)3 A, (3)20R dt dE πε12.3 圆柱形电容器内、外导体截面半径分别为R 1和R 2(R 1 <R 2) ,中间充满介电常数为ε的电介质.当两极板间的电压变化率为k tU =d d 时(k 为常数),求介质内距圆柱轴线为r 处的位移电流密度.解:设圆柱形电容器内、外导体单位长度分别带有±λ的电量,由高斯定理⎰==⋅l rl D S d D λπ2 内、外导体间的电位移矢量r D πλ2=;电场强度rD E πελε2== 内、外导体间的电势差:12ln 2221R R dr r l d E U R R πελπελ==⋅=⎰⎰ ∴ 12ln 2R R U πελ= 电位移矢量:R R e R R r U e r D 12ln 2επλ== ∴ 介质内距离圆柱轴线为r 处的位移电流密度R R d e R R r k e dt dU R R r t D j 1212ln ln εε==∂∂= 12.4 (1)试证明平行板电容器两极板之间的位移电流可写为tU C I d d d =,其中C 是电容器的电容,U 是两极板间的电势差.(2)要在1.0 μF 的电容器内产生1.0 A 的位移电流,加在电容器上的电压变化率应是多大?解:(1) 平行板电容器:d U E D εε== 电容:d SC ε= 由位移电流定义:()dt dU C CU dt d d U S dt d dt dD SS j I d d ==⎪⎭⎫ ⎝⎛===ε 得证。

大学物理参考答案(白少民)第12章 相对论基础

大学物理参考答案(白少民)第12章 相对论基础
' ' ' 解:(1) l x = l cos θ
' l⊥ = l ' sin θ '
由尺缩效应公式得
' ' ' ' lx = lx 1 − υ 2 / c 2 = l ' cos θ ' 1 − υ 2 / c 2 , l ⊥ = l ⊥ = l sin θ
由此得
2 l = l x2 + l y = l ' 1−
(3)从地球上看电子相对于飞船的速度 (4)从地球上看电子相对于光子的速率 (5)从地球上看光子相对于飞船的速率
u电子 −υ = 0.89c − 0.5c = 0.39c u电子 − u 光子 = 0.89c − ( −1.0c ) = 1.89c
υ − u 光子 = 0.5c − ( −1.0c ) =1.5c
2 2
由此解得
υ = 1 − tan 2 30 0 c = 1 − c =
1 3
2 c 3
12.14 求火箭以 0.15c 和 0.85c 的速率运动时,其运动质量与静止质量之比. 解:当 υ = 0.15c ,
m 1 1 = = = 1.01 2 2 m0 1 −υ / c 1 − 0.15 2
当 υ = 0.85c 时
= 4.7 ×10 −14 J = 2.95 ×10 5 eV

−27 12.17 一 个 质 子 的 静 质 量 为 m p = 1.67265 ×10 kg , 一 个 中 子 的 静 质 量 为
m n = 1.67495 ×10 −27 kg , 一 个 质 子 和 一 个 中 子 结 合 成 的 氘 核 的 静 质 量 为

大学物理第12章学习题答案

大学物理第12章学习题答案

习题十二12-1 某单色光从空气射入水中,其频率、波速、波长是否变化?怎样变化?解: υ不变,为波源的振动频率;nn 空λλ=变小;υλn u =变小.12-2 在杨氏双缝实验中,作如下调节时,屏幕上的干涉条纹将如何变化?试说明理由. (1)使两缝之间的距离变小;(2)保持双缝间距不变,使双缝与屏幕间的距离变小; (3)整个装置的结构不变,全部浸入水中; (4)光源作平行于1S ,2S 联线方向上下微小移动; (5)用一块透明的薄云母片盖住下面的一条缝. 解: 由λdDx =∆知,(1)条纹变疏;(2)条纹变密;(3)条纹变密;(4)零级明纹在屏幕上作相反方向的上下移动;(5)零级明纹向下移动. 12-3 什么是光程? 在不同的均匀媒质中,若单色光通过的光程相等时,其几何路程是否相同?其所需时间是否相同?在光程差与位相差的关系式∆λπϕ∆2= 中,光波的波长要用真空中波长,为什么?解:nr =∆.不同媒质若光程相等,则其几何路程定不相同;其所需时间相同,为Ct ∆=∆. 因为∆中已经将光在介质中的路程折算为光在真空中所走的路程。

12-4 如题12-4图所示,A ,B 两块平板玻璃构成空气劈尖,分析在下列情况中劈尖干涉条纹将如何变化?(1) A 沿垂直于B 的方向向上平移[见图(a)]; (2) A 绕棱边逆时针转动[见图(b)].题12-4图 解: (1)由l2λθ=,2λke k =知,各级条纹向棱边方向移动,条纹间距不变;(2)各级条纹向棱边方向移动,且条纹变密.12-5 用劈尖干涉来检测工件表面的平整度,当波长为λ的单色光垂直入射时,观察到的干涉条纹如题12-5图所示,每一条纹的弯曲部分的顶点恰与左邻的直线部分的连线相切.试说明工件缺陷是凸还是凹?并估算该缺陷的程度.解: 工件缺陷是凹的.故各级等厚线(在缺陷附近的)向棱边方向弯曲.按题意,每一条纹弯曲部分的顶点恰与左邻的直线部分连线相切,说明弯曲部分相当于条纹向棱边移动了一条,故相应的空气隙厚度差为2λ=∆e ,这也是工件缺陷的程度.题12-5图 题12-6图12-6 如题12-6图,牛顿环的平凸透镜可以上下移动,若以单色光垂直照射,看见条纹向中 心收缩,问透镜是向上还是向下移动?解: 条纹向中心收缩,透镜应向上移动.因相应条纹的膜厚k e 位置向中心移动. 12-7 在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求: (1)若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长; (2)相邻两明条纹间的距离.解: (1)由λk d D x =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm 12-8 在双缝装置中,用一很薄的云母片(n=1.58)覆盖其中的一条缝,结果使屏幕上的第七级明条纹恰好移到屏幕中央原零级明纹的位置.若入射光的波长为5500oA ,求此云母片的厚度. 解: 设云母片厚度为e ,则由云母片引起的光程差为e n e ne )1(-=-=δ按题意 λδ7=∴ 610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ 12-9 洛埃镜干涉装置如题12-9图所示,镜长30cm ,狭缝光源S 在离镜左边20cm 的平面内,与镜面的垂直距离为2.0mm ,光源波长=λ7.2×10-7m ,试求位于镜右边缘的屏幕上第一条明条纹到镜边缘的距离.题12-9图解: 镜面反射光有半波损失,且反射光可视为虚光源S '发出.所以由S 与S '发出的两光束到达屏幕上距镜边缘为x 处的光程差为 22)(12λλδ+=+-=D x dr r 第一明纹处,对应λδ=∴25105.44.0250102.72--⨯=⨯⨯⨯==d Dx λmm 12-10 一平面单色光波垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃板上.油的折射率为1.30,玻璃的折射率为1.50,若单色光的波长可由光源连续可调,可观察到5000 oA 与7000oA 这两个波长的单色光在反射中消失.试求油膜层的厚度.解: 油膜上、下两表面反射光的光程差为ne 2,由反射相消条件有λλ)21(2)12(2+=+=k k k ne ),2,1,0(⋅⋅⋅=k ① 当50001=λoA 时,有2500)21(21111+=+=λλk k ne ②当70002=λoA 时,有3500)21(22222+=+=λλk k ne ③因12λλ>,所以12k k <;又因为1λ与2λ之间不存在3λ满足33)21(2λ+=k ne 式即不存在 132k k k <<的情形,所以2k 、1k 应为连续整数,即 112-=k k ④ 由②、③、④式可得:51)1(75171000121221+-=+=+=k k k k λλ 得 31=k2112=-=k k可由②式求得油膜的厚度为67312250011=+=nk e λo A12-11 白光垂直照射到空气中一厚度为3800 oA 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解: 由反射干涉相长公式有λλk ne =+22 ),2,1(⋅⋅⋅=k得 122021612380033.14124-=-⨯⨯=-=k k k ne λ 2=k , 67392=λoA (红色)3=k , 40433=λ oA (紫色)所以肥皂膜正面呈现紫红色.由透射干涉相长公式 λk ne =2),2,1(⋅⋅⋅=k 所以 kk ne 101082==λ 当2=k 时, λ =5054oA (绿色) 故背面呈现绿色.12-12 在折射率1n =1.52的镜头表面涂有一层折射率2n =1.38的Mg 2F 增透膜,如果此膜适用于波长λ=5500 oA 的光,问膜的厚度应取何值?解: 设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即λ)21(22+=k e n ),2,1,0(⋅⋅⋅=k∴ 222422)21(n n k n k e λλλ+=+=)9961993(38.14550038.125500+=⨯+⨯=k k o A 令0=k ,得膜的最薄厚度为996oA . 当k 为其他整数倍时,也都满足要求.12-13 如题12-13图,波长为6800oA 的平行光垂直照射到L =0.12m 长的两块玻璃片上,两玻璃片一边相互接触,另一边被直径d =0.048mm 的细钢丝隔开.求:(1)两玻璃片间的夹角=θ?(2)相邻两明条纹间空气膜的厚度差是多少? (3)相邻两暗条纹的间距是多少? (4)在这0.12 m 内呈现多少条明条纹?题12-13图解: (1)由图知,d L =θsin ,即d L =θ故 43100.41012.0048.0-⨯=⨯==L d θ(弧度) (2)相邻两明条纹空气膜厚度差为7104.32-⨯==∆λe m(3)相邻两暗纹间距641010850100.421068002---⨯=⨯⨯⨯==θλl m 85.0= mm (4)141≈=∆lLN 条 12-14 用=λ 5000oA 的平行光垂直入射劈形薄膜的上表面,从反射光中观察,劈尖的 棱边是暗纹.若劈尖上面媒质的折射率1n 大于薄膜的折射率n (n =1.5).求: (1)膜下面媒质的折射率2n 与n 的大小关系; (2)第10条暗纹处薄膜的厚度;(3)使膜的下表面向下平移一微小距离e ∆,干涉条纹有什么变化?若e ∆=2.0 μm ,原来的第10条暗纹处将被哪级暗纹占据?解: (1)n n >2.因为劈尖的棱边是暗纹,对应光程差2)12(22λλ+=+=∆k ne ,膜厚0=e 处,有0=k ,只能是下面媒质的反射光有半波损失2λ才合题意; (2)3105.15.12500092929-⨯=⨯⨯==⨯=∆n e nλλ mm (因10个条纹只有9个条纹间距)(3)膜的下表面向下平移,各级条纹向棱边方向移动.若0.2=∆e μm ,原来第10条暗纹处现对应的膜厚为)100.2105.1(33--⨯+⨯='∆e mm21100.55.12105.3243=⨯⨯⨯⨯='∆=∆--n e N λ 现被第21级暗纹占据.12-15 (1)若用波长不同的光观察牛顿环,1λ=6000oA ,2λ=4500oA ,观察到用1λ时的第k个暗环与用2λ时的第k+1个暗环重合,已知透镜的曲率半径是190cm .求用1λ时第k 个暗环的半径.(2)又如在牛顿环中用波长为5000oA 的第5个明环与用波长为2λ的第6个明环重合,求未知波长2λ.解: (1)由牛顿环暗环公式λkR r k =据题意有 21)1(λλR k kR r +==∴212λλλ-=k ,代入上式得2121λλλλ-=R r10101010210450010600010450010600010190-----⨯-⨯⨯⨯⨯⨯⨯= 31085.1-⨯=m(2)用A 50001 =λ照射,51=k 级明环与2λ的62=k 级明环重合,则有 2)12(2)12(2211λλR k R k r -=-=∴ 4091500016215212121212=⨯-⨯-⨯=--=λλk k o A12-16 当牛顿环装置中的透镜与玻璃之间的空间充以液体时,第十个亮环的直径由1d =1.40×10-2m 变为2d =1.27×10-2m ,求液体的折射率.解: 由牛顿环明环公式2)12(21λR k D r -==空 nR k D r 2)12(22λ-==液 两式相除得n D D =21,即22.161.196.12221≈==D D n12-17 利用迈克耳逊干涉仪可测量单色光的波长.当1M 移动距离为0.322mm 时,观察到干涉条纹移动数为1024条,求所用单色光的波长. 解: 由 2λNd ∆=∆得 102410322.0223-⨯⨯=∆∆=N d λ 710289.6-⨯=m 6289=oA12-18 把折射率为n =1.632的玻璃片放入迈克耳逊干涉仪的一条光路中,观察到有150条干涉条纹向一方移过.若所用单色光的波长为λ= 5000oA ,求此玻璃片的厚度. 解: 设插入玻璃片厚度为d ,则相应光程差变化为λN d n ∆=-)1(2∴ )1632.1(2105000150)1(210-⨯⨯=-∆=-n N d λ5109.5-⨯=m 2109.5-⨯=mm。

大学物理课后习题答案(上下册全)武汉大学出版社 第12章 习题解答

大学物理课后习题答案(上下册全)武汉大学出版社 第12章 习题解答

第12章 习题与答案12-1 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为[ ]A. 1.5λ.B. 1.5λ/n .C. 1.5n .D. 3λ. [答案:A ]12-2 平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,λ1为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为[ ]A. 2πn 2e / ( n 1λ1).B. 4πn 1e / ( n 2λ1)] +π.C. 4πn 2e / ( n 1λ1) ]+π.D. 4πn 2e / ( n 1λ1).[答案: C ]12-3 两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的[ ]A. 间隔变小,并向棱边方向平移.B. 间隔变大,并向远离棱边方向平移.C. 间隔不变,向棱边方向平移.D.间隔变小,并向远离棱边方向平移. [答案: A ]12-4 用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如题12-4图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分[ ]A. 凸起,且高度为4λ.B. 凸起,且高度为2λ.C. 凹陷,且深度为2λ.D. 凹陷,且深度为4λ.[答案: C ]12-5 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹[ ]A .中心暗斑变成亮斑. B. 间距变大. C. 间距变小. D. 间距不变. [答案: C ]题12-4图12-6 在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为[ ] A. =3a b . B. =2a b . C. =a b . D. =0.5a b [答案: C ]12-7 对某一定波长的垂直入射光 衍射光栅的屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该[ ]A. 换一个光栅常数较小的光栅.B. 换一个光栅常数较大的光栅.C. 将光栅向靠近屏幕的方向移动.D. 将光栅向远离屏幕的方向移动.[答案: B ]12-8如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为[ ]A. I 0 / 8.B. I 0 / 4.C. 3 I 0 / 8.D. 3 I 0 / 4.[答案: A ]12-9一束自然光自空气射向一块平板玻璃(如题12-9图),设入射角等于布儒斯特角i 0,则在上表面的出射光2是[ ]A. 自然光.B. 线偏振光且光矢量的振动方向平行于入射面.C. 线偏振光且光矢量的振动方向垂直于入射面.D. 部分偏振光.[答案: C ]12-10相干光的必要条件为________________________,________________________,________________________。

《大学物理学》习题解答(第12章 静电场中的导体和电介质)(1)

《大学物理学》习题解答(第12章 静电场中的导体和电介质)(1)

E1 0 , (r R1 ) ; E2

Q1er (Q Q2 )er , ( R1 r R2 ) ; E3 1 , ( R2 r ) ; 2 4 0 r 4 0 r 2
Q1 Q2 4 0 R2
外球面的电势
VR2
R2
E
3
dr
R2
内外球面电势差
6 5 6
根据球形电容器的电容公式,得:
C 4 0
R1 R2 4.58 102 F R2 R1
解得: q (4 0V0
Q ) R1 R2 E1 [ R1V0 R1Q ]er 2 4 0 R2 r 2 r
( R1 r R2 )
所以,球外壳内电场
壳外电场
E2 [
R1V0 ( R2 R1 )Q ]er 4 0 R2 r 2 r2
R2
( R2 r )
qBR d1 qCL d 2 0; 0S 0S d1Q d1 d 2
解上面的方程组得:
qBR q AL Q d1d 2 ; 0 S d1 d 2
qCL q AR Q d1d 2 0 S d1 d 2
故有
U BA
【12.5】 如图所示,在真空中将半径为 R 的金属球接地,在与球 O 相距为 r(r>R)处放置一点电荷 q,不计 接地导线上电荷的影响,求金属球表面上的感应电荷总量。 R 【12.5 解】金属球表面以及球内各点电势相同,等于 0,这是点电荷 q 和金属 q 球表面各处的感应电荷 dq ' 共同激发的。 选取一个特殊点——球心, 该点的电 势为
E1
qer ( q Q )er , ( R1 r R2 ) ; E 2 , ( R2 r ) 2 4 0 r 4 0 r 2

大学 物理学 第五版 马文蔚 答案上下册第十二章

大学 物理学 第五版 马文蔚 答案上下册第十二章

第十二章气体动理论12-1 温度为0℃和100℃时理想气体分子的平均平动动能各为多少?欲使分子的平均平动动能等于1eV,气体的温度需多高?解:=1ε231kT =5.65×2110-J ,=2ε232kT =7.72×2110-J由于1eV=1.6×1910-J , 所以理想气体对应的温度为:T=2ε/3k =7.73×310 K12-2一容器中储有氧气,其压强为0.1个标准大气压,温度为27℃,求:(1)氧气分子的数密度n ;(2)氧气密度ρ;(3)氧气分子的平均平动动能k ε?(1)由气体状态方程nkT p =得,242351045.23001038.110013.11.0⨯=⨯⨯⨯⨯==-kT p n 3m - (2)由气体状态方程RT M MpV mol=(M ,mol M 分别为氧气质量和摩尔质量) 得氧气密度:13.030031.810013.11.0032.05mol =⨯⨯⨯⨯===RT p M V Mρ 3m kg -⋅ (3) 氧气分子的平均平动动能21231021.63001038.12323--⨯=⨯⨯⨯==kT k ε 12-3 在容积为2.0×33m 10-的容器中,有内能为6.75×210J 的刚性双原子理想气体分子,求(1)气体的压强;(2)设分子总数5.4×2210个,求气体温度;(3)气体分子的平均平动动能?解:(1)由2iRTM m =ε 以及RT Mm pV =, 可得气体压强p =iVε2=1.35×510 Pa(2)分子数密度VNn =, 得该气体的温度62.3===NkpV nk p T×210K (3)气体分子的平均平动动能为=ε23kT=7.49×2110-J 12-4 2100.2-⨯kg 氢气装在3100.4-⨯m 3的容器内,当容器内的压强为51090.3⨯Pa 时,氢气分子的平均平动动能为多大?解:由RT Mm pV =得 mRMpV T =所以221089.32323-⨯=⋅==mRMpV k kT εJ 12-5 1mol 刚性双原子气体分子氢气,其温度为27℃,求其对应的平动动能、转动动能和内能各是多少?(求内能时可不考虑原子间势能)解:理想气体分子的能量为RT i n E 2=,所以氢气对应的平动动能为(3=t )5.373930031.8231=⨯⨯⨯=t εJ 转动动能为(2=r) 249330031.8221=⨯⨯⨯=r εJ内能5=i 5.623230031.8251=⨯⨯⨯=i ε J12-6 设有N 个粒子的系统,其速率分布如图所示,求:(1)分布函数)(v f 的表达式; (2)速度在1.50v到2.00v 之间的粒子数;(3) N 个粒子的平均速率;(4) 0.50v 到10v 区间内粒子的平均速率? 解:(1)从上图所给条件得:⎪⎩⎪⎨⎧≥=≤≤=≤≤=)2(0)()2()()0(/)(00000v v v Nf v v v a v Nf v v v av v Nf 由此可得分布函数表达式为:⎪⎩⎪⎨⎧≥≤≤≤≤=)2(0)2(/)0(/)(00000v v v v v Na v v Nv av v f 类似于概率密度的归一化条件,故)(v f 满足⎰+∞∞-1d )(=v v f ,即⎰⎰=+00020,1d d v v v v a v v av 计算得032v Na =,带入上式得分布函数)(v f 为:⎪⎪⎩⎪⎪⎨⎧≥≤≤≤≤=)2(0)2(32)0(3/2)(0000020v v v v v v v v v v v f (2)该区间对应的)(v f 为常数32v N ,所以可通过计算矩形面积得该区间粒子数为:N v v v N N 31)5.12(32000=-=∆ (3) N 个粒子平均速率⎰⎰⎰⎰+===∞∞+∞-00020202d 32d 32d )(d )(v v v v v v v v v v v vf v v vf v 0911v = (4)同理05.0v 到01v 区间内粒子平均速率v v v v v vf v v v v v d 32d )(0005.02025.0⎰⎰===0367v 12-7 设N 个粒子系统在各速率区间对应的粒子数变化率为:Kdv dN = (为常量K v V ,0>>),0=dN (Vv >)(1) 画出速率分布函数图;(2)用N 和V 表示常量K ;(3)用V 表示出平均速率和方均根速率。

大学物理第12章光的干涉测试题(附答案及知识点总结)

大学物理第12章光的干涉测试题(附答案及知识点总结)

第12章 习题精选试题中相关常数:m 10μm 16-=,m 10nm 19-=,可见光范围(400nm~760nm )1、在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为π3,则此路径AB 的光程为:(A )λ5.1. (B )n /5.1λ. (C )λn 5.1. (D )λ3.[ ]2、在相同的时间内,一束波长为λ的单色光在空气中与在玻璃中:(A )传播路程相等,走过光程相等. (B )传播路程相等,走过光程不相等. (C )传播路程不相等,走过光程相等.(D )传播路程不相等,走过光程不相等.[ ]3、如图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n <<.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是:(A )e n 22. (B )2/22λ+e n . (C )λ+e n 22. (D ))2/(222n e n λ-.[ ]4、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是: (A )使屏靠近双缝. (B )使两缝的间距变小. (C )把两个缝的宽度稍微调窄. (D )改用波长较小的单色光源.[ ]5、在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大λ5.2,则屏上原来的明纹处:(A )仍为明条纹. (B )变为暗条纹.(C )既非明纹也非暗纹. (D )无法确定是明纹,还是暗纹.[ ]36、如图,用单色光垂直照射在观察牛顿环的装置上.当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹:(A )向右平移. (B )向中心收缩. (C )向外扩张. (D )向左平移.[ ]7、在牛顿环实验装置中,曲率半径为R 的平凸透镜与平玻璃板在中心恰好接触,它们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径k r 的表达式为:(A )R k r λ=k . (B )n R k r /k λ=. (C )R kn r λ=k . (D ))/(k nR k r λ=.[ ]8、用波长为λ的单色光垂直照射置于空气中的厚度为e 折射率为的透明薄膜,两束反射光的光程差=δ_______________.9、单色平行光垂直入射到双缝上.观察屏上P 点到两缝的距离分别为1r 和2r .设双缝和屏之间充满折射率为n 的介质,则P 点处光线的光程差为___________.10、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1)________________________________________. (2)________________________________________.11、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距_________;若使单色光波长减小,则干涉条纹间距_____________.12、在双缝干涉实验中,若两缝的间距为所用光波波长的N 倍,观察屏到双缝的距离为D ,则屏上相邻明纹的间距为_______________.S S 113、用波长为λ的单色光垂直照射如图所示的牛顿环装置,观察从空气膜上下表面反射的光形成的牛顿环.若使平凸透镜慢慢地垂直向上移动,从透镜顶点与平面玻璃接触至移动到两者距离为d 的过程中,移过视场中某固定观察点的条纹数目等于_______________.14、图a 为一块光学平板玻璃与一个加工过的平面一端接触,构成的空气劈尖,用波长为λ的单色光垂直照射.看到反射光干涉条纹(实线为暗条纹)如图b 所示.则干涉条纹上A 点处所对应的空气薄膜厚度为=e _________________.15、用波长为λ的单色光垂直照射如图示的劈形膜(321n n n >>),观察反射光干涉.从劈形膜尖顶开始算起,第2条明条纹中心所对应的膜厚度=e _______________________.16、波长为λ的平行单色光垂直照射到劈形膜上,若劈尖角为θ以弧度计),劈形膜的折射率为n ,则反射光形成的干涉条纹中,相邻明条纹的间距为__________________.17、波长为λ的平行单色光垂直照射到折射率为n 的劈形膜上,相邻的两明纹所对应的薄膜厚度之差是____________________.18、在双缝干涉实验中,双缝与屏间的距离m 2.1=D ,双缝间距mm 45.0=d ,若测得屏上干涉条纹相邻明条纹间距为,求光源发出的单色光的波长λ.19、在杨氏双缝干涉实验中,用波长nm 1.546=λ的单色光照射,双缝与屏的距离mm 300=D .测得中央明条纹两侧的两个第5级明条纹的间距为,求双缝间的距离.20、在双缝干涉实验中,波长nm 550=λ的单色平行光垂直入射到缝间距m 1024-⨯=a 的双缝上,屏到双缝的距离m 2=D .求:图b图an 1n 2 n 3(1)中央明纹两侧的两条第10级明纹中心的间距;(2)用一厚度为m 106.65-⨯=e 、折射率为58.1=n 的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处21、用白光垂直照射置于空气中的厚度为μm 50.0的玻璃片.玻璃片的折射率为50.1=n .在可见光范围内哪些波长的反射光有最大限度的增强22、波长nm 650=λ的红光垂直照射到劈形液膜上,膜的折射率33.1=n ,液面两侧是同一种介质.观察反射光的干涉条纹.(1)离开劈形膜棱边的第一条明条纹中心所对应的膜厚度是多少(2)若相邻的明条纹间距mm 6=l ,上述第1条明纹中心到劈形膜棱边距离x 是多少23、用波长为nm 600=λ的光垂直照射由两块平玻璃板构成的空气劈形膜,劈尖角rad 1024-⨯=θ.改变劈尖角,相邻两明条纹间距缩小了mm 0.1=∆l ,求劈尖角的改变量θ∆.24、曲率半径为R 的平凸透镜和平板玻璃之间形成空气薄层,如图所示.波长为λ的平行单色光垂直入射,观察反射光形成的牛顿环.设平凸透镜与平板玻璃在中心O 点恰好接触.求:(1)从中心向外数第k 个明环所对应的空气薄膜的厚度k e .(2)第k 个明环的半径用k r (用R 、波长λ和正整数k 表示,R 远大于上一问的k e .)25、图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是cm 400=R .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是.ROλO 1(1)求入射光的波长.(2)设图中cm 00.1=OA ,求半径为OA 范围内可观察到的明环数目.26、用波长nm 500=λ的单色光作牛顿环实验,测得第k 个暗环半径mm 4k =r ,第10+k 个暗环半径mm 610k =+r ,求平凸透镜的凸面的曲率半径R .总体要求:理解产生相干光的三个条件和获得相干光的两种方法.了解分波阵面法和分振幅法干涉的典型实验;掌握光程的概念以及光程差和相位差的关系;掌握杨氏双缝干涉条纹及薄膜干涉条纹(尤其是劈尖和牛顿环)的分布规律,利用相关公式计算条纹分布.第12章 参考答案1、A2、C3、A4、B5、B6、B7、B8、23λ+e 或23λ-e 9、)(12r r n - 10、(1)使两缝间距变小;(2)使屏与双缝之间的距离变大. 11、变小;变小 12、N D / 13、λ/2d 14、λ23 15、22n λ16、θλn 2 17、n2λ 18、解:nm 5.562/=∆=D x d λ. 19、解:mm 268.0/=∆==x D d λλ. 20、解:(1)m 11.0/20==∆a D x λ (2)零级明纹移到原第7级明纹处.21、解:nm 600=λ和nm 6.428=λ. 22、解:(1)λλk ne k =+2/2(明纹中心)现1=k ,1e e k =,则膜厚度mm 1022.1)4/(41-⨯==n e λ. (2)mm 32/==l x23、解:rad 100.442-⨯=-=∆θθθ.24、解:(1)第k 个明环,λλk e k =+212 4/)12(λ-=k e k .(2)λλk R r k =+21)2/(22,2/)12(λR k r k -= ,...2,1=k .25、解:(1)()cm 10512252×Rk r -=-=λ (或500 nm ). (2)λR r k 2212=-,对于cm 00.1=r ,5.505.02=+=λR r k .故在OA 范围内可观察到的明环数目为50个.26、解:()()m 410/2210=-=+λk k r r R .第12章 光的干涉一、基本内容1.单色光单色光是指具有单一频率的光波,单色光不是单种颜色的光.可见光的波长是(380~760)nm .虽然绝对单一频率的单色光不易得到,但可以通过各种方法获取谱线宽度很小的单色光.例如激光就可看作谱线宽度很小的单色光.2.相干光只有两列光波的振动频率相同、振动相位差恒定、振动方向相同时才会发生干涉加强或减弱的现象,满足上述三个条件的两束光称为相干光,相应的光源称为相干光源.3.半波损失光由光疏介质(即折射率相对小的介质)射到光密介质发生反射时,反射光的相位较入射光的相位发生π的突变,这一变化导致了反射光的光程在反射过程中增加了半个波长,通常称为“半波损失”.4.光程和光程差 (1)光程光波的频率v 是单色光的本质属性,与在何种介质中传播没有关系,而传播速度则与介质有关.在折射率为n 的介质中光速是真空中光速的n /1,由光速v u n n λ=可知,在折射率为n 的介质中,光波的波长n λ也是真空中波长的n /1.这样光在不同介质中经历同样的波数,但经历的几何路程却不同.所以有必要把光在折射率n 的介质中通过的几何路程折算到真空中所能传播的长度,只有这样才便于比较两束经过不同介质的光相位的变化.所以把光在折射率为n 的介质中通过的几何的路程r 乘以折射率n 折算成真空中所能传播的长度nr ,称nr 为光程.(2)光程差当采用了光程概念以后就可以把由相位差决定的干涉加强、减弱等情况用光程差来表示,为计算带来方便.即相位差π2λδϕ=∆(λ为真空中波长,δ为光程差),亦即λδϕπ2=∆. 二、基本规律光程差(含半波损失)是半波长偶数倍时干涉加强,干涉相长,明条纹中心;是半波长奇数倍时,干涉相消,暗条纹中心.1.杨氏双缝干涉结果(分波阵面干涉),只讨论同一介质中传播:等间隔明暗相间条纹. 光程差:Dxd =δ dD kx λ±=k ),2,1,0( =k 明条纹位置(k x —k 级干涉条纹位置,D —屏距,d —缝距) 2)12(k λd D k x -±= ),2,1( =k 暗条纹位置 条纹中心间距:λdD x =∆ 2.薄膜干涉结果(分振幅干涉)薄膜干涉基础公式相同,考虑从1n 入射到2n (21n n <),i 为入射角,d —薄膜厚度,此时要考虑“半波损失”,故反射加强(上表面亮纹位置)为λλδk i n n d =+-=2sin 222122 ),2,1( =k反射减弱(上表面暗纹位置)为(注意此处k 可以取0,厚度为0处是暗纹)2)12(2sin 222122λλδ+=+-=k i n n d ),2,1,0( =k注意,一定要先分析反射光是否存在“半波损失”的情况,不能死搬硬套,一般介质折射率中间大两边小或中间小两边大都有半波损失,而三种介质折射率大小顺序排列无半波损失.薄膜干涉光程差是入射角和厚度的函数.等倾干涉:对于上两式,如果薄膜厚度不变,而光线倾角(入射角i )变化,入射角i 相同的位置光线光程差相同,条纹花样相同,叫做等倾干涉.等厚干涉:对于上两式,所有光线以同一入射角i 入射,而薄膜厚度变化,则厚度相同的位置光线光程差相同,条纹干涉花样相同,叫做等厚干涉.对空气劈尖(上玻璃板下表面和下玻璃板上表面两束光反射)两侧介质相同,由于存在“半波损失”,所以上两式适用于在空气劈尖的上表面干涉.一般取垂直入射,0=i ,则在劈尖上表面干涉,光程差满足λλδk nd =+=22 ),2,1( =k 明条纹 2)12(22λλδ+=+=k nd ),2,1,0( =k 暗条纹n 代表劈尖内介质折射率.劈尖端点处是暗纹,相邻明纹(或暗纹)厚度差nd 2λ=∆,条纹线间距:θλn l 2=∆. 如果两侧介质不同,且满足折射率递增或递减顺序,则无半波损失,光程差满足λδk nd ==2 ),2,1,0( =k 明条纹2)12(2λδ-==k nd ),2,1( =k 暗条纹劈尖劈尖端点处是暗纹,相邻明纹(或暗纹)厚度差和条纹线间距与有半波损失时相同. 利用劈尖原理检测零件平整度,上表面放标准板,顶角在左侧,下板凹陷条纹向左弯,凸起向右弯.牛顿环的上表面干涉也是空气劈尖干涉,两侧介质相同,有半波损失,只不过牛顿环的空气厚度测量常转换成距透镜中心距离r 与透镜的曲率半径R 来表示牛顿环的明暗纹.2)12(k λR k r -=),2,1( =k (明环) λkR r =k ),2,1,0( =k (暗环)。

大学物理课后习题答案第十二章

大学物理课后习题答案第十二章

第12章 机械振动 习题及答案1、什么是简谐振动?哪个或哪几个是表示质点作简谐振动时加速度和位移关系的? (1)a =8x ;(2)a =12x 2 ;(3) a =−24x ;(4)a =−2x 2 .答:系统在线性回复力的作用下,作周期性往复运动,即为简谐振动。

对于简谐振动,有a =−ω02x ,故(3)表示简谐振动。

2、对于给定的弹簧振子,当其振幅减为原来的1/2时,下列哪些物理量发生了变化?变化为原来的多少倍?(1)劲度系数;(2)频率;(3)总机械能;(4)最大速度;(5)最大加速度。

解:当 A ′=12A 时,(1)劲度系数k 不变。

(2)频率不变。

(3)总机械能 E ′=12kA ‘2=14E(4)最大速度 V ’=−A ′ω0sin(ω0t +φ)∴ V m ′=−A ′ω=12V m (5) 最大加速度 a′=−A′ω02cos(ω0t +φ)∴ a m ′=−A′ω02=12a m3、劲度系数为1k 和2k 的两根弹簧,与质量为m 的小球按题图所示的两种方式连接,试证明它们的振动均为谐振动,并分别求出它们的振动周期.解:(1)图(a)中为串联弹簧,对于轻弹簧在任一时刻应有21F F F ==,设串联弹簧的等效倔强系数为串K 等效位移为x ,则有111x k F x k F -=-=串222x k F -=又有 21x x x +=2211k F k F k Fx +==串 所以串联弹簧的等效倔强系数为2121k k k k k +=串即小球与串联弹簧构成了一个等效倔强系数为)/(2121k k k k k +=的弹簧振子系统,故小球作谐振动.其振动周期为2121)(222k k k k m k mT +===ππωπ串 (2)图(b)中可等效为并联弹簧,同上理,应有21F F F ==,即21x x x ==,设并联弹簧的倔强系数为并k ,则有 2211x k x k x k +=并 故 21k k k +=并 同上理,其振动周期为212k k mT +='π4. 完全相同的弹簧振子,t =0 时刻的状态如图所示,其相位分别为多少?解:对于弹簧振子,t =0时,x =A cos φ ,v =−Asinφ (a ) x =x max ,故 cos φ=1v =0 ,故 sinφ=0 ∴ φ=0 (b )x =0 ,故 cosφ=0v <0 ,故 sinφ>0 ∴ φ=π2(c )x =0 ,故 cosφ=0(a)(b)(c)(d)v >0 ,故 sinφ<0 ∴ φ=3π2(d )x =−x max ,故 cos φ=−1v =0 ,故 sinφ=0 ∴ φ=π5、如图所示,物体的质量为m ,放在光滑斜面上,斜面与水平面的夹角为θ,弹簧的倔强系数为k ,滑轮的转动惯量为I ,半径为R 。

大学物理习题12第十二章答案

大学物理习题12第十二章答案

习题1212.1选择题(1) 已知一单色光照射在钠表面上,测得光电子的最大动能是 1.2 eV ,而钠的红限波长是540nm(A) 535nm . (B) 500nm .(C) 435nm . (D) 355nm . [ ] 答: D ;(2) 设用频率为ν1和ν2的两种单色光,先后照射同一种金属均能产生光电效应.已知金属的红限频率为ν0,测得两次照射时的遏止电压|U a 2| = 2|U a 1|,则这两种单色光的频率有如下关系: (A) ν2 = ν1 - ν0. (B) ν2 = ν1 + ν0.(C) ν2 = 2ν1 - ν0. (D) ν2 = ν1 - 2ν0. [ ] 答: C ;(3) 在康普顿效应实验中,若散射光波长是入射光波长的 1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为(A) 2. (B) 3. (C) 4. (D) 5. [ ] 答:D ;(4) 氢原子光谱的巴耳末系中波长最大的谱线用λ1表示,其次波长用λ2表示,则它们的比值λ1/λ2为:(A) 20/27. (B) 9/8.(C) 27/20. (D) 16/9. [ ] 答: C ;(5) 假定氢原子原是静止的,质量为1.67×10-27 kg ,则氢原子从n = 3 的激发状态直接通过辐射跃迁到基态时的反冲速度大约是 [ ](A) 4 m/s . (B) 10 m/s . (C) 100 m/s . (D) 400 m/s . 答: A ;(6) 电子显微镜中的电子从静止开始通过电势差为U 的静电场加速后,其德布罗意波长是 0.4 ÅU 约为(A) 150 V . (B) 330 V .(C) 630 V . (D) 940 V . [ ] 答: D ;(7) 如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同. (B) 能量相同.(C) 速度相同. (D) 动能相同. [ ] 答: A ;(8) 已知粒子在一维矩形无限深势阱中运动,其波函数为:a x ax 23cos 1)(π⋅=ψ, ( - a ≤x ≤a )那么粒子在x = 5a /6处出现的概率密度为(A) 1/(2a ). (B) 1/a .(C) a 2/1. (D) a /1 [ ]答: A ;(9) 关于不确定关系2x p x ∆∆≥,有以下几种理解:(a ) 粒子的动量不可能确定. (b ) 粒子的坐标不可能确定.(c ) 粒子的动量和坐标不可能同时准确地确定. (d ) 不确定关系不仅适用于电子和光子,也适用于其它粒子.其中正确的是: [ ] (A) (a ),(b ). (B) (c ),(d ). (C) (a ),(d ). (D) (b ),(d ).答: B ;(10) 设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图?[ ] 答: A 。

大学物理下课后题答案12章中国石油大学(华东)

大学物理下课后题答案12章中国石油大学(华东)

12章习题参考答案12-1答案:1-5 DBADC 6-10 CDDAD 11-15 DDDAB 12-2 1、E R 221π 2、Sq 022ε3、略4、3028Rqdεπ,方向为从O 点指向缺口中心点5、aq 08πε-12-3真空中一长为L 的均匀带电细直杆,总电量为q ,试求在直杆延长线上到杆的一端距离为d 的点P 的电场强度。

[解] 建立如图所示的坐标系Ox ,在距O 点为x 处取电荷元x Lqx q d d d ==λ,它在P 点产生的电场强度为()()x x d L Lq x d L qrq E d 41d 414d d 202020-+=-+==πεπεπε则整个带电直导线在P 点产生的电场强度为()d L d q x x d L Lq E L+=-+=⎰2041d 41πεπε故 ()i d L d qE+=04πε12-4用绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正电荷Q ,试求圆心处点O 的电场强度。

[解] 建立坐标系如图,在半圆环上取微元d l ,θd d R l =,则 l RQq d d π=, q d 在O 点的场强 20204d 4d d R lR Q R q E πεππε== 从对称性分析,y 方向的场强相互抵消,只存在x 方向的场强Ed Oxxq d d λ=θεπθθεπθd 4sin d sin 4sin d d 202302x RQ l RQ E E =⋅=⋅= 2020202x x 2d 4sin d R QR Q E E επθεπθπ===⎰⎰i R Q E o 222επ=12-5一半径为R 的无限长半圆柱面形薄筒,均匀带电,单位长度上的带电量为λ,试求圆柱面轴线上一点的电场强度E 。

[解] 建立坐标系如图,在无限长半圆柱面形薄筒上取l d 的窄条,l d 对应的无限长直线单位长度所带的电量为θπλθπλd d d ==R R q 它在轴线O 产生的场强的大小为RR qE 0202d 2d d επθλπε==因对称性y d E 成对抵消。

大学物理12-14课后习题解答

大学物理12-14课后习题解答

第十二章 恒定磁场 (Steady Magnetic Field)一、选择题12.1 均匀磁场的磁感强度B垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 (A) B r 22 . (B)B r 2 . S B •(C) 0. (D) 无法确定的量. [ B ]12.2 载流的圆形线圈(半径a 1 )与正方形线圈(边长a 2 )通有相同电流I .若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为(公式及图像表示法))135cos 45(cos 244,4a 2,002022110192 a I B a I B P ,(A) 1∶1 (B)2∶1(C)2∶4 (D) 2∶8 [ D ]12.3 如题图12.1,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分 Ll B d 等于(A) I 0 . (B)I 031. (C) 4/0I . (D) 3/20I . [ D ]II a bcdL120°题图12.1I 1I 212.4 如题图12.2,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直。

大平板的电流与线框中电流方向如图所示。

则在同一侧且对着大平板看,通电线框的运动情况是: (电流同相吸,异相斥) (A) 靠近大平板. (B) 顺时针转动.(C) 逆时针转动. (D) 离开大平板向外运动. [ B ]12.5 在匀强磁场中,有两个平面线圈,其面积A 1 = 2 A 2,通有电流I 1 = 2 I 2,它们所受的最大磁力矩之比M1 / M 2等于 M=PB (A) 1. (B) 2.(C) 4. (D) 1/4. [ C ]12.6 如题图12.3所示,无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于 (A)RI20 ; (B)RI0 ; (C)RI20 ;(D))11(20 R I; (E) )11(40R I 。

大学物理 第十二章 课后答案

大学物理 第十二章 课后答案

习题十二12-1 某单色光从空气射入水中,其频率、波速、波长是否变化?怎样变化?解: υ不变,为波源的振动频率;n n 空λλ=变小;υλn u =变小.12-2 在杨氏双缝实验中,作如下调节时,屏幕上的干涉条纹将如何变化?试说明理由. (1)使两缝之间的距离变小;(2)保持双缝间距不变,使双缝与屏幕间的距离变小; (3)整个装置的结构不变,全部浸入水中; (4)光源作平行于1S ,2S 联线方向上下微小移动; (5)用一块透明的薄云母片盖住下面的一条缝.解: 由λd D x =∆知,(1)条纹变疏;(2)条纹变密;(3)条纹变密;(4)零级明纹在屏幕上作相反方向的上下移动;(5)零级明纹向下移动.12-3 什么是光程? 在不同的均匀媒质中,若单色光通过的光程相等时,其几何路程是否相同?其所需时间是否相同?在光程差与位相差的关系式∆λπϕ∆2=中,光波的波长要用真空中波长,为什么?解:nr =∆.不同媒质若光程相等,则其几何路程定不相同;其所需时间相同,为C t ∆=∆.因为∆中已经将光在介质中的路程折算为光在真空中所走的路程。

12-4 如题12-4图所示,A ,B 两块平板玻璃构成空气劈尖,分析在下列情况中劈尖干涉条纹将如何变化?(1) A 沿垂直于B 的方向向上平移[见图(a)]; (2) A 绕棱边逆时针转动[见图(b)].题12-4图解: (1)由l 2λθ=,2λke k =知,各级条纹向棱边方向移动,条纹间距不变; (2)各级条纹向棱边方向移动,且条纹变密.12-5 用劈尖干涉来检测工件表面的平整度,当波长为λ的单色光垂直入射时,观察到的干涉条纹如题12-5图所示,每一条纹的弯曲部分的顶点恰与左邻的直线部分的连线相切.试说明工件缺陷是凸还是凹?并估算该缺陷的程度.解: 工件缺陷是凹的.故各级等厚线(在缺陷附近的)向棱边方向弯曲.按题意,每一条纹弯曲部分的顶点恰与左邻的直线部分连线相切,说明弯曲部分相当于条纹向棱边移动了一条,故相应的空气隙厚度差为2λ=∆e ,这也是工件缺陷的程度.题12-5图 题12-6图12-6 如题12-6图,牛顿环的平凸透镜可以上下移动,若以单色光垂直照射,看见条纹向中 心收缩,问透镜是向上还是向下移动?解: 条纹向中心收缩,透镜应向上移动.因相应条纹的膜厚k e 位置向中心移动.12-7 在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求: (1)若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长; (2)相邻两明条纹间的距离.解: (1)由λk d Dx =明知,λ22.01010.63⨯⨯=,∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm12-8 在双缝装置中,用一很薄的云母片(n=1.58)覆盖其中的一条缝,结果使屏幕上的第七级明条纹恰好移到屏幕中央原零级明纹的位置.若入射光的波长为5500oA ,求此云母片的厚度.解: 设云母片厚度为e ,则由云母片引起的光程差为 e n e ne )1(-=-=δ按题意 λδ7=∴610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ 12-9 洛埃镜干涉装置如题12-9图所示,镜长30cm ,狭缝光源S 在离镜左边20cm 的平面内,与镜面的垂直距离为2.0mm ,光源波长=λ7.2×10-7m ,试求位于镜右边缘的屏幕上第一条明条纹到镜边缘的距离.题12-9图解: 镜面反射光有半波损失,且反射光可视为虚光源S '发出.所以由S 与S '发出的两光束到达屏幕上距镜边缘为x 处的光程差为 22)(12λλδ+=+-=D x dr r第一明纹处,对应λδ=∴25105.44.0250102.72--⨯=⨯⨯⨯==d Dx λmm 12-10 一平面单色光波垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃板上.油的折射率为1.30,玻璃的折射率为1.50,若单色光的波长可由光源连续可调,可观察到5000 oA 与7000 oA 这两个波长的单色光在反射中消失.试求油膜层的厚度. 解: 油膜上、下两表面反射光的光程差为ne 2,由反射相消条件有λλ)21(2)12(2+=+=k k k ne ),2,1,0(⋅⋅⋅=k ①当50001=λoA 时,有2500)21(21111+=+=λλk k ne ②当70002=λoA 时,有3500)21(22222+=+=λλk k ne ③因12λλ>,所以12k k <;又因为1λ与2λ之间不存在3λ满足 33)21(2λ+=k ne 式即不存在 132k k k <<的情形,所以2k 、1k 应为连续整数,即 112-=k k ④ 由②、③、④式可得:51)1(75171000121221+-=+=+=k k k k λλ得 31=k2112=-=k k可由②式求得油膜的厚度为67312250011=+=n k e λoA12-11 白光垂直照射到空气中一厚度为3800 oA 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解: 由反射干涉相长公式有λλk ne =+22 ),2,1(⋅⋅⋅=k得122021612380033.14124-=-⨯⨯=-=k k k ne λ2=k , 67392=λoA (红色)3=k , 40433=λ oA (紫色)所以肥皂膜正面呈现紫红色.由透射干涉相长公式 λk ne =2),2,1(⋅⋅⋅=k所以k k ne 101082==λ当2=k 时, λ =5054oA (绿色)故背面呈现绿色.12-12 在折射率1n =1.52的镜头表面涂有一层折射率2n =1.38的Mg 2F 增透膜,如果此膜适用于波长λ=5500 oA 的光,问膜的厚度应取何值?解: 设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即λ)21(22+=k e n ),2,1,0(⋅⋅⋅=k ∴222422)21(n n k n k e λλλ+=+=)9961993(38.14550038.125500+=⨯+⨯=k k oA令0=k ,得膜的最薄厚度为996oA . 当k 为其他整数倍时,也都满足要求.12-13 如题12-13图,波长为6800oA 的平行光垂直照射到L =0.12m 长的两块玻璃片上,两玻璃片一边相互接触,另一边被直径d =0.048mm 的细钢丝隔开.求: (1)两玻璃片间的夹角=θ?(2)相邻两明条纹间空气膜的厚度差是多少? (3)相邻两暗条纹的间距是多少?(4)在这0.12 m 内呈现多少条明条纹?题12-13图解: (1)由图知,d L =θsin ,即d L =θ故43100.41012.0048.0-⨯=⨯==L d θ(弧度)(2)相邻两明条纹空气膜厚度差为7104.32-⨯==∆λe m(3)相邻两暗纹间距641010850100.421068002---⨯=⨯⨯⨯==θλl m 85.0=mm (4)141≈=∆l LN 条12-14 用=λ5000oA 的平行光垂直入射劈形薄膜的上表面,从反射光中观察,劈尖的 棱边是暗纹.若劈尖上面媒质的折射率1n 大于薄膜的折射率n (n =1.5).求: (1)膜下面媒质的折射率2n 与n 的大小关系;(2)第10条暗纹处薄膜的厚度;(3)使膜的下表面向下平移一微小距离e ∆,干涉条纹有什么变化?若e ∆=2.0 μm ,原来的第10条暗纹处将被哪级暗纹占据?解: (1)n n >2.因为劈尖的棱边是暗纹,对应光程差2)12(22λλ+=+=∆k ne ,膜厚0=e 处,有0=k ,只能是下面媒质的反射光有半波损失2λ才合题意;(2)3105.15.12500092929-⨯=⨯⨯==⨯=∆n e n λλmm (因10个条纹只有9个条纹间距)(3)膜的下表面向下平移,各级条纹向棱边方向移动.若0.2=∆e μm ,原来第10条暗纹处现对应的膜厚为)100.2105.1(33--⨯+⨯='∆e mm21100.55.12105.3243=⨯⨯⨯⨯='∆=∆--n e N λ现被第21级暗纹占据.12-15 (1)若用波长不同的光观察牛顿环,1λ=6000oA ,2λ=4500oA ,观察到用1λ时的第k 个暗环与用2λ时的第k+1个暗环重合,已知透镜的曲率半径是190cm .求用1λ时第k 个暗环的半径.(2)又如在牛顿环中用波长为5000oA 的第5个明环与用波长为2λ的第6个明环重合,求未知波长2λ.解: (1)由牛顿环暗环公式λkR r k =据题意有21)1(λλR k kR r +== ∴212λλλ-=k ,代入上式得2121λλλλ-=R r10101010210450010600010450010600010190-----⨯-⨯⨯⨯⨯⨯⨯=31085.1-⨯=m (2)用A 50001 =λ照射,51=k 级明环与2λ的62=k 级明环重合,则有2)12(2)12(2211λλR k R k r -=-=∴4091500016215212121212=⨯-⨯-⨯=--=λλk k oA 12-16 当牛顿环装置中的透镜与玻璃之间的空间充以液体时,第十个亮环的直径由1d =1.40×10-2m 变为2d =1.27×10-2m ,求液体的折射率.解: 由牛顿环明环公式2)12(21λR k D r -==空n R k D r 2)12(22λ-==液两式相除得n D D =21,即22.161.196.12221≈==D D n12-17 利用迈克耳逊干涉仪可测量单色光的波长.当1M 移动距离为0.322mm时,观察到干涉条纹移动数为1024条,求所用单色光的波长. 解: 由2λNd ∆=∆得 102410322.0223-⨯⨯=∆∆=N d λ710289.6-⨯=m 6289=oA12-18 把折射率为n =1.632的玻璃片放入迈克耳逊干涉仪的一条光路中,观察到有150条干涉条纹向一方移过.若所用单色光的波长为λ=5000oA ,求此玻璃片的厚度. 解: 设插入玻璃片厚度为d ,则相应光程差变化为λN d n ∆=-)1(2∴)1632.1(2105000150)1(210-⨯⨯=-∆=-n N d λ5109.5-⨯=m 2109.5-⨯=mm。

大学物理答案第12章

大学物理答案第12章

第十二章 电磁感应 电磁场和电磁波12-1 一根无限长平行直导线载有电流I ,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则( ) (A ) 线圈中无感应电流(B ) 线圈中感应电流为顺时针方向 (C ) 线圈中感应电流为逆时针方向 (D ) 线圈中感应电流方向无法确定题 12-1 图分析与解 由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B ).12-2 将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则( ) (A ) 铜环中有感应电流,木环中无感应电流 (B ) 铜环中有感应电流,木环中有感应电流 (C ) 铜环中感应电动势大,木环中感应电动势小 (D ) 铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流.因而正确答案为(A ).12-3 有两个线圈,线圈1对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且ti t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ). (A )2112M M = ,1221εε=(B )2112M M ≠ ,1221εε≠ (C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;tiM εd d 21212=.因而正确答案为(D ).12-4 对位移电流,下述说法正确的是( ) (A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷 (C ) 位移电流服从传导电流遵循的所有定律 (D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).12-5 下列概念正确的是( ) (A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比 (D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ).12-6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为t Φπ100sin 100.85⨯=,式中Φ的单位为Wb ,t 的单位为s ,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦN ξd d d d -=-=,其中ΦN ψ=称为磁链.解 线圈中总的感应电动势())V (π100cos 51.2d d t tΦN=-=ξ 当s 100.12-⨯=t 时,V 51.2=ξ.12-7 载流长直导线中的电流以tId d 的变化率增长.若有一边长为d 的正方形线圈与导线处于同一平面内,如图所示.求线圈中的感应电动势. 分析 本题仍可用法拉第电磁感应定律tΦd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SS B Φd 来计算.为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即B =B (x ),故取一个平行于长直导线的宽为d x 、长为d 的面元d S ,如图中阴影部分所示,则d S =d d x ,所以,总磁通量可通过线积分求得(若取面元d S =d x d y ,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tIM d d -=ξ求解.解1 穿过面元d S 的磁通量为x d xIS B Φd π2d d 0μ=⋅=因此穿过线圈的磁通量为2ln π2d π2d 200⎰⎰===ddIdx xIdΦΦμμ再由法拉第电磁感应定律,有tI d t Φd d 21ln π2d d 0)(μξ=-=解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为2ln π20dIΦμ=线圈与两长直导线间的互感为2ln π20d I ΦM μ==当电流以tId d 变化时,线圈中的互感电动势为 tI d t I Md d 21ln π2d d 0)(μξ=-=题 12-7 图12-8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2 、匝数N =160 匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值54.010C q -=⨯.问此均匀磁场的磁感强度B 的值为多少?分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱. 解 在线圈转过90°角时,通过线圈平面磁通量的变化量为NBS NBS ΦΦΦ=-=-=0Δ12因此,流过导体截面的电量为i i R R NBS R R Φq +=+=Δ则 ()T 050.0=+=NSR R q B i 12-9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2 ,10匝的小圆线圈,线圈中的磁场可看作是均匀的.今在1.0 ×10-2s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为1.0×10-2Ω,求通过线圈横截面的感应电荷.题 12-9 图分析 虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用NBS ψ=来计算线圈在始、末两个位置的磁链.解 (1) 在始、末状态,通过线圈的磁链分别为1011π2r ISμN S NB ψ==,2022π2r IS μN S NB ψ==则线圈中的平均感应电动势为V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS N t μψξ 电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为C 101.11821-⨯=∆=-=t RR q ξψψ12-10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?题 12-10 图分析 本题及后面几题中的电动势均为动生电动势,除仍可由tΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰lE v 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线O P 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或 端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫⎝⎛+=2π212即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2R v B .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰-由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0又因 E =E OP +E PO 即 E OP =-E PO =2R v B由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.12-11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.题 12-11 图分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是O A 棒与O B 棒上电动势的代数和,如图(b)所示.而E O A 和E O B 则可以直接利用第12-2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-rrABAB 221d d --=-=⋅⨯=⎰⎰-l B v因此棒两端的电势差为()r L lB ωE U AB AB 221--==当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则()r L BL ωE E E OB OA AB 221--=-=12-12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.题 12-12 图分析 如前所述,本题既可以用法拉第电磁感应定律tΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰lE v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OPOP E vl αB lo d cos 90sin ⎰=v()()l θB θωlod 90cos sin ⎰-=l()⎰==L L B l l B 022sin 21d sin θωθω由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E tΦE ++==-=0d d 显然,E QO =0,所以()221PQ B ωE E E QO PQ OP ==-=2)sin (21θωL B = 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效. 12-13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40 A .求杆中的感应电动势,杆的哪一端电势较高?题 12-13 图分析 本题可用两种方法求解. 方法1:用公式()l B d ⋅⨯=⎰lE v 求解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁感强度xIμB π20=. 方法2:用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式⎰⋅=SΦS B d 求得穿过该回路的磁通量,再代入公式tΦE d d -=,即可求得回路的电动势,亦即本题杆中的电动势.解1 根据分析,杆中的感应电动势为()V 1084.311ln 2πd 2πd d 50m1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰vv v I μx x μxl E ABAB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高.解2 设顺时针方向为回路AB CD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为x y xIμΦd 2πd d 0=⋅=S B 穿过回路的磁通量为11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===SIyμx y x I μΦΦ回路的电动势为V 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iyμt y x I μt ΦE 由于静止的导轨上电动势为零,所以V 1084.35-⨯-==E E AB式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.12-14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.题 12 -14 图分析 本题亦可用两种方法求解.其中应注意下列两点:(1)当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgefghefE E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.(2)用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =tξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgefl B l B d d v v()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μvv ()1202πl d d l I +=1vl μ由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为()ξξμξμ120020lnπ2d π21l Il x x Il l +=+=Φ⎰ 相应电动势为()()1120π2d d l ξξll I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为()1120π2l d d l l I μE +=v由E >0 可知,线框中电动势方向为顺时针方向.12-15 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tBd d 为常量.试证:棒上感应电动势的大小为2222d d ⎪⎭⎫ ⎝⎛-=l R l t B ξ题 12-15 图分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=l k l E d ξ计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由电磁感应定律,在r <R 区域,⎰⎰⋅-=⋅=S B tl E k d d dd ξ tB r E r k d d ππ22-=⋅ 解得该区域内感生电场强度的大小tBr E k d d 2=设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为()()222202/2d d d 2/d d 2d cos d l R l t B x r l R tB r xE lk k PQ -=-==⋅=⎰⎰θξx E证2 由法拉第电磁感应定律,有22Δ22d d d d d d ⎪⎭⎫⎝⎛-==-==l R l t B t B S t ΦE E PQ讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势? 该如何求解?12-16 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .题 12-16 图分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式IΦL =计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式tI E L Ld /d =计算L .式中E L 和t I d d 都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNI μB π20=由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为12200ln π2d π2d 21R R hI N μx h x NI μN N ψSR R ==⋅=⎰⎰S B 则1220ln π2R R h N μI ψL =若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍.12-17 如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为S 1 和S 2 ,磁导率分别为μ1 和μ2 ,管长为l ,匝数为N ,求螺线管的自感.(设管的截面很小)题 12-17 图分析 本题求解时应注意磁介质的存在对磁场的影响.在无介质时,通电螺线管内的磁场是均匀的,磁感强度为B 0 ,由于磁介质的存在,在不同磁介质中磁感强度分别为μ1 B 0 和μ2 B 0 .通过线圈横截面的总磁通量是截面积分别为S 1 和S 2 的两部分磁通量之和.由自感的定义可解得结果.解 设有电流I 通过螺线管,则管中两介质中磁感强度分别为I L N μnl μB 111==,I LN μnl μB 222== 通过N 匝回路的磁链为221121S NB S NB ΨΨΨ+=+=则自感2211221S μS μlN I ψL L L +==+=12-18 有两根半径均为a 的平行长直导线,它们中心距离为d .试求长为l 的一对导线的自感(导线内部的磁通量可略去不计).题 12-18 图分析 两平行长直导线可以看成无限长但宽为d 的矩形回路的一部分.设在矩形回路中通有逆时针方向电流I ,然后计算图中阴影部分(宽为d 、长为l )的磁通量.该区域内磁场可以看成两无限长直载流导线分别在该区域产生的磁场的叠加.解 在如图所示的坐标中,当两导线中通有图示的电流I 时,两平行导线间的磁感强度为()r d I μr I μB -+=π2π200 穿过图中阴影部分的磁通量为aa d l μr Bl ΦSad a-==⋅=⎰⎰-ln πd d 0S B 则长为l 的一对导线的自感为aad l μI ΦL -==ln π0 如导线内部磁通量不能忽略,则一对导线的自感为212L L L +=.L 1 称为外自感,即本题已求出的L ,L 2 称为一根导线的内自感.长为l 的导线的内自感8π02lμL =,有兴趣的读者可自行求解.12-19 如图所示,在一柱形纸筒上绕有两组相同线圈AB 和A ′B ′,每个线圈的自感均为L ,求:(1) A 和A ′相接时,B 和B ′间的自感L 1 ;(2) A ′和B 相接时,A 和B ′间的自感L 2 .题 12-19 图分析 无论线圈AB 和A ′B ′作哪种方式连接,均可看成一个大线圈回路的两个部分,故仍可从自感系数的定义出发求解.求解过程中可利用磁通量叠加的方法,如每一组载流线圈单独存在时穿过自身回路的磁通量为Φ,则穿过两线圈回路的磁通量为2Φ;而当两组线圈按(1)或(2)方式连接后,则穿过大线圈回路的总磁通量为2Φ±2Φ,“ ±”取决于电流在两组线圈中的流向是相同或是相反.解 (1) 当A 和A ′连接时,AB 和A ′B ′线圈中电流流向相反,通过回路的磁通量亦相反,故总通量为0221=-=ΦΦΦ,故L 1 =0.(2) 当A ′和B 连接时,AB 和A ′B ′线圈中电流流向相同,通过回路的磁通量亦相同,故总通量为ΦΦΦΦ4222=+=,故L IΦI ΦL 4422===. 本题结果在工程实际中有实用意义,如按题(1)方式连接,则可构造出一个无自感的线圈. 12-20 如图所示,一面积为4.0 cm 2 共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A·s-1时,线圈A 中感应电动势的大小和方向.题 12-20 图分析 设回路Ⅰ中通有电流I 1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M 21 =Φ21/I 1 ;也可设回路Ⅱ通有电流I 2 ,穿过回路Ⅰ的磁通量为Φ12 ,则21212I ΦM M == . 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS .反之,如设线圈A 通有电流I ,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径.解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度RIμN B B 200=,穿过小线圈A 的磁链近似为A BA A A A S RIμN N S B N ψ200== 则两线圈的互感为H 1028.6260-⨯===RSμN N I ψM A B A A (2)线圈A 中感应电动势的大小为V 1014.3d d 4-⨯=-=tIME A 互感电动势的方向和线圈B 中的电流方向相同.12-21 如图所示,两同轴单匝线圈A 、C 的半径分别为R 和r ,两线圈相距为d .若r 很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少?题 12-21 图解 设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁 感强度近似为()2/322202dR IR μB +=穿过线圈C 的磁通为()22/32220π2r dR IR μBS ψC +==则两线圈的互感为()2/3222202πdR R r μI ψM +== 若线圈C 的匝数为N 匝,则互感为上述值的N 倍.12-22 如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为2.0 cm 2 ,沿环每厘米绕有100 匝线圈,通有电流I 1 =4.0 ×10 -2A ,在环上再绕一线圈C ,共10 匝,其电阻为0.10 Ω,今将开关S 突然开启,测得线圈C 中的感应电荷为2.0 ×10 -3C .求:当螺绕环中通有电流I 1 时,铁磁质中的B 和铁磁质的相对磁导率μr .题 12-22 图分析 本题与题12-8 相似,均是利用冲击电流计测量电磁感应现象中通过回路的电荷的方法来计算磁场的磁感强度.线圈C 的磁通变化是与环形螺线管中的电流变化相联系的. 解 当螺绕环中通以电流I 1 时,在环内产生的磁感强度110I n μμB r =则通过线圈C 的磁链为S I n μμN BS N ψr c 11022==设断开电源过程中,通过C 的感应电荷为q C ,则有()RSI n μμN ψR ψR qc r c c 110201Δ1=--=-= 由此得T 10.02110===SN Rq I n B Cr μμ 相对磁导率1991102==I n S N Rq Cr μμ12-23 一个直径为0.01 m ,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为7.76 Ω.求:(1) 如把线圈接到电动势E =2.0 V 的电池上,电流稳定后,线圈中所储存的磁能有多少? 磁能密度是多少?*(2) 从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间?分析 单一载流回路所具有的磁能,通常可用两种方法计算:方法 1: 如回路自感为L (已知或很容易求得),则该回路通有电流I 时所储存的磁能221LI W m =,通常称为自感磁能. 方法 2: 由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即V w W Vm m d ⎰=,式中m w 为磁场能量密度,积分遍及磁场存在的空间.由于μB w m 22=,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布.上述两种方法还为我们提供了计算自感的另一种途径,即运用V w LI V m d 212⎰=求解L .解 (1) 密绕长直螺线管在忽略端部效应时,其自感lSN L 20μ=,电流稳定后,线圈中电流REI =,则线圈中所储存的磁能为 J 1028.3221522202-⨯===lRSE N μLI W m 在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管中,并为均匀磁场,故磁能密度m w 处处相等,3m J 17.4-⋅==SLW w mm (2) 自感为L ,电阻为R 的线圈接到电动势为E 的电源上,其电流变化规律⎪⎪⎭⎫ ⎝⎛-=-t LR R E I e 1,当电流稳定后,其最大值R E I m = 按题意⎥⎦⎤⎢⎣⎡=22212121m LI LI ,则R E I 22=,将其代入⎪⎪⎭⎫ ⎝⎛-=-t LRR E I e 1中,得 ()s 1056.122ln 221ln 4-⨯=+=⎥⎦⎤⎢⎣⎡--=RL R L t12-24 未来可能会利用超导线圈中持续大电流建立的磁场来储存能量.要储存1 kW·h 的能量,利用1.0T的磁场,需要多大体积的磁场? 若利用线圈中500 A 的电流储存上述能量,则该线圈的自感系数应该多大?解 由磁感强度与磁场能量间的关系可得302m 0.92/==μB W V m所需线圈的自感系数为H 2922==I W L m12-25 中子星表面的磁场估计为108T,该处的磁能密度有多大?解 由磁场能量密度21021098.32⨯==μB w m 3m /J12-26 在真空中,若一均匀电场中的电场能量密度与一 0.50T 的均匀磁场中的磁场能量密度相等,该电场的电场强度为多少?解 2021E εw e =,022μB w m =,按题意,当m e w w =时,0220221μB E ε=则1800m V 1051.1-⋅⨯==μεBE 12-27 设有半径R =0.20 m 的圆形平行板电容器,两板之间为真空,板间距离d =0.50 cm ,以恒定电流I =2.0 A 对电容器充电.求位移电流密度(忽略平板电容器的边缘效应,设电场是均匀的).分析 尽管变化电场与传导电流二者形成的机理不同,但都能在空间激发磁场.从这个意义来说,变化电场可视为一种“广义电流”,即位移电流.在本题中,导线内存在着传导电流I c ,而在平行板电容器间存在着位移电流I d ,它们使电路中的电流连续,即c d I I =.解 忽略电容器的边缘效应,电容器内电场的空间分布是均匀的,因此板间位移电流2πd R j I d Sd d =⋅=⎰S j ,由此得位移电流密度的大小222m A 9.15ππ-⋅===R I R I j c d d。

大学物理第十二章习题解答

大学物理第十二章习题解答

4π 0 r r R2 4π 0 R2
(3)金属球的电势

Q
1 (

r
1 )
4π 0 r r R2
U
R2 R1
E内

dr

R2 E外 dr
R2
Qdr
Qdr
R 4π 0 r r 2 R2 4π 0 r 2

Q
1 (
r
1 )

D Q
2πrl
(1)电场能量密度
D2
Q2
w
2 8π 2r 2l 2
薄壳中 dW wd Q2 2π rdrl Q2dr
8π 2r 2l 2
4π rl
(2)电介质中总电场能量
9
(3)电容:∵ ∴
Qr
Qr
D 4πr 3 , E外 4π 0r 3
(2)介质外 (r R2 ) 电势
Q
U r E外 dr 4π 0r
介质内 (R1 r R2 ) 电势

U r E内 dr r E外 dr
q 11
Q

( )
12-2 如附图所示,一导体球半径为 R1,外罩一半径为 R2 的同心薄球壳,外球壳所带总电荷 为 Q,而内球的电势为 U0,求此系统的电势和电场分布。
解:根据静电平衡时电荷的分布,可知电场分布呈球对称.设内球壳带电量为q 取同心球
面为高斯面,由高斯定理 E dS Er 4πr2 Er q / ε0 ,根据不同半径的高斯面内的电

R2 R1
E2
dl


q
Q
R2 E3 dl 4π 0 R1 4π 0 R2

大学物理习题答案第十二章

大学物理习题答案第十二章

[习题解答]12-1 在图12-6所示的电路中,电源的电动势分别为ε1= 1.0 V ,ε2 = 2.0 V 和ε3= 3.0 V ,内阻都忽略不计;各电阻的阻值分别为R 1 = 3.0 Ω,R 2 = 2.0 Ω和R 3 = 1.0 Ω。

求各支路的电流。

解 选择各支路上电流的标定方向和两个回路的绕行方向,如图12-6所示。

列出节点B 的节点电流方程式, (1)列出两个回路的回路电压方程式, (2). (3)以上三个方程式联立求解,可得,, .I 1和I 2为负值,表示这两个支路上电流的实际方向与所选标定方向相反。

12-2 三个电源的电动势分别为ε1 = 1.2 V ,ε 2= 1.5 V 和ε 3 = 2.0 V ,内阻为r 1 = r 2 = r 3 = 0.15 Ω,按图12-7所示方式联接。

已知电阻R =0.56 Ω,求各支路上的电流。

解 选择各支路上电流的标定方向,以及两个回路(分别标以1和2)绕行方向,如图12-7所示。

列出节点A 的节点电流方程式, (1)列出两个回路的回路电压方程式图12-6 图12-7, (2). (3)以上三个方程式联立求解,可得, , .12-4 计算:(1)电感为15 H的线圈在50 Hz和500 Hz频率时的感抗;(2)电容为15 μF的电容器在50 Hz和500 Hz频率时的容抗;(3)在多大频率时电感为15 H的线圈的感抗与电容为15 μF的电容器的容抗大小相等?解(1)感抗,.(2)容抗,.(3)感抗与容抗相等的频率:因为,所以,.12-5 计算:(1)将电感为10 H的线圈与电容为10 μF的电容器串联,接于频率为100 Hz的交流电路上的电抗;(2)将电感为10 H的线圈与电容为10 μF的电容器并联,接于频率为100 Hz的交流电路上的电抗。

解(1) LC串联的阻抗,.表现为正电抗。

(2) LC并联的阻抗, ,.表现为负电抗。

12-6 将RL串联电路接在电压峰值为50 V、角频率为1.0⨯103 rad⋅s-1 的交流电源两端。

大学物理第十二章 习题答案

大学物理第十二章 习题答案

第十二章 电磁感应及电磁场基本方程12–1 如图12-1所示,矩形线圈abcd 左半边放在匀强磁场中,右半边在磁场外,当线圈以ab 边为轴向纸外转过60º过程中,线圈中 产生感应电流(填会与不会),原因是 。

解:线圈以ab 边为轴向纸外转过60º过程中,尽管穿过磁感应线的线圈面积发生了变化,但线圈在垂直于磁场方向的投影的面积并未发生变化,因而穿过整个线圈的磁通量并没有发生变化,所以线圈中不会产生感应电流。

因而应填“不会”;“通过线圈的磁通量没有发生变化”。

12–2 产生动生电动势的非静电力是 力,产生感生电动势的非静电力是 力。

解:洛仑兹力;涡旋电场力(变化磁场激发的电场的电场力)。

12–3 用绝缘导线绕一圆环,环内有一用同样材料导线折成的内接正方形线框,如图12-2所示,把它们放在磁感应强度为B 的匀强磁场中,磁场方向与线框平面垂直,当匀强磁场均匀减弱时,圆环中与正方形线框中感应电流大小之比为___________。

解:设圆环的半径为a,圆环中的感应电动势1E 大小为2111d d d πd d d ΦB BS a t t t===E 同理,正方形线框中的感应电动势2E 大小为2212d d d 2d d d ΦB BS a t t t===E而同材料的圆环与正方形导线的电阻之比为12R R ==。

所以圆环与正方形线框中的感应电流之比为122I I a ==12–4 如图12-3所示,半径为R 的3/4圆周的弧形刚性导线在垂直于均匀磁感强度B 的平面内以速度v 平动,则导线上的动生电动势E = ,方向为 。

图12–5图12–4abdc图12–1Ba图12–2图12–3解:方法一:用动生电动势公式()d l =⨯⋅⎰B l v E 求解。

选积分路径l 的绕行方向为顺时针方向,建立如图12-4所示的坐标系,在导体上任意处取导体元d l ,d l 上的动生电动势为d ()d cos d B R θθ=⨯⋅B l =v v E所以导线上的动生电动势为3π3πd cos d 0BRBR θθ-===>⎰⎰v E E由于ε>0,所以动生电动势的方向为顺时方向,即bca 方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章 电磁感应 电磁场和电磁波12-1 一根无限长平行直导线载有电流I ,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则( )(A ) 线圈中无感应电流(B ) 线圈中感应电流为顺时针方向(C ) 线圈中感应电流为逆时针方向(D ) 线圈中感应电流方向无法确定题 12-1 图分析与解 由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B ).12-2 将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则( )(A ) 铜环中有感应电流,木环中无感应电流(B ) 铜环中有感应电流,木环中有感应电流(C ) 铜环中感应电动势大,木环中感应电动势小(D ) 铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流.因而正确答案为(A ).12-3 有两个线圈,线圈1对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且ti t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ).(A )2112M M = ,1221εε=(B )2112M M ≠ ,1221εε≠(C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;ti M εd d 21212=.因而正确答案为(D ).12-4 对位移电流,下述说法正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).12-5 下列概念正确的是( )(A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比(D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而正确答案为(B ).12-6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为tΦπ100sin 100.85⨯=,式中Φ的单位为Wb ,t 的单位为s ,求在s 100.12-⨯=t 时,线圈中的感应电动势. 分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦNξd d d d -=-=,其中ΦN ψ=称为磁链.解 线圈中总的感应电动势())V (π100cos 51.2d d t t ΦN=-=ξ 当s 100.12-⨯=t 时,V 51.2=ξ.12-7 载流长直导线中的电流以tI d d 的变化率增长.若有一边长为d 的正方形线圈与导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律tΦd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SS B Φd 来计算.为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即B =B (x ),故取一个平行于长直导线的宽为d x 、长为d 的面元d S ,如图中阴影部分所示,则d S =d d x ,所以,总磁通量可通过线积分求得(若取面元d S =d x d y ,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tI M d d -=ξ求解. 解1 穿过面元d S 的磁通量为x d x I S B Φd π2d d 0μ=⋅=因此穿过线圈的磁通量为2ln π2d π2d 200⎰⎰===d d Id x x Id ΦΦμμ再由法拉第电磁感应定律,有 tI d t Φd d 21ln π2d d 0)(μξ=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为2ln π20dI Φμ=线圈与两长直导线间的互感为2ln π20d I ΦM μ== 当电流以tI d d 变化时,线圈中的互感电动势为 tI d t I M d d 21ln π2d d 0)(μξ=-=题 12-7 图12-8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2 、匝数N =160 匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值54.010C q -=⨯.问此均匀磁场的磁感强度B 的值为多少?分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱.解 在线圈转过90°角时,通过线圈平面磁通量的变化量为NBS NBS ΦΦΦ=-=-=0Δ12因此,流过导体截面的电量为ii R R NBS R R Φq +=+=Δ 则 ()T 050.0=+=NSR R q B i 12-9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2 ,10匝的小圆线圈,线圈中的磁场可看作是均匀的.今在1.0 ×10-2s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为1.0×10-2Ω,求通过线圈横截面的感应电荷.题 12-9 图分析 虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用NBS ψ=来计算线圈在始、末两个位置的磁链.解 (1) 在始、末状态,通过线圈的磁链分别为1011π2r IS μN S NB ψ==,2022π2r IS μN S NB ψ== 则线圈中的平均感应电动势为 V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS N t μψξ 电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为C 101.11821-⨯=∆=-=t RR q ξψψ 12-10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?题 12-10 图分析 本题及后面几题中的电动势均为动生电动势,除仍可由t ΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰lE v 求解. 在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线O P 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2R v B .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0又因 E =E OP +E PO即 E OP =-E PO =2R v B由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.12-11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.题 12-11 图分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是O A 棒与O B 棒上电动势的代数和,如图(b)所示.而E O A 和E O B 则可以直接利用第12-2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-r r AB AB 221d d --=-=⋅⨯=⎰⎰-l B v 因此棒两端的电势差为 ()r L lB ωE U AB AB 221--== 当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则 ()r L BL ωE E E OB OA AB 221--=-= 12-12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.题 12-12 图分析 如前所述,本题既可以用法拉第电磁感应定律tΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰lE v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E vl αB lo d cos 90sin ⎰=v ()()l θB θωlo d 90cos sin ⎰-=l ()⎰==L L B l l B 022sin 21d sin θωθω 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E tΦE ++==-=0d d 显然,E QO =0,所以 ()221PQ B ωE E E QO PQ OP ==-=2)sin (21θωL B = 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.12-13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40 A .求杆中的感应电动势,杆的哪一端电势较高?题 12-13 图分析 本题可用两种方法求解.方法1:用公式()l B d ⋅⨯=⎰l E v 求解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁感强度xI μB π20=. 方法2:用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式⎰⋅=S ΦS B d 求得穿过该回路的磁通量,再代入公式tΦE d d -=,即可求得回路的电动势,亦即本题杆中的电动势.解1 根据分析,杆中的感应电动势为()V 1084.311ln 2πd 2πd d 50m 1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰v v v I μx x μxl E AB AB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高.解2 设顺时针方向为回路AB CD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为x y xI μΦd 2πd d 0=⋅=S B 穿过回路的磁通量为 11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===S Iy μx y x I μΦΦ 回路的电动势为V 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iy μt y x I μt ΦE 由于静止的导轨上电动势为零,所以V 1084.35-⨯-==E E AB式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.12-14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.题 12 -14 图分析 本题亦可用两种方法求解.其中应注意下列两点:(1)当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgef gh ef E E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.(2)用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =tξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgef l B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μv v ()1202πl d d l I +=1vl μ由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为 ()ξξμξμ120020ln π2d π21l Il x x Il l +=+=Φ⎰ 相应电动势为 ()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为()1120π2l d d l l I μE +=v 由E >0 可知,线框中电动势方向为顺时针方向.12-15 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tB d d 为常量.试证:棒上感应电动势的大小为 2222d d ⎪⎭⎫ ⎝⎛-=l R l t B ξ题 12-15 图分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=l k l E d ξ计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由电磁感应定律,在r <R 区域, ⎰⎰⋅-=⋅=SB tl E k d d d d ξ t B r E r k d d ππ22-=⋅ 解得该区域内感生电场强度的大小tB r E k d d 2= 设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为()()222202/2d d d 2/d d 2d cos d l R l t B x r l R tB r xE l k k PQ -=-==⋅=⎰⎰θξx E 证2 由法拉第电磁感应定律,有22Δ22d d d d d d ⎪⎭⎫ ⎝⎛-==-==l R l t B t B S t ΦE E PQ 讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势? 该如何求解? 12-16 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .题 12-16 图分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式I ΦL =计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式t I E L L d /d =计算L .式中E L 和t I d d 都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNI μB π20= 由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为12200ln π2d π2d 21R R hI N μx h x NI μN N ψS R R ==⋅=⎰⎰S B 则1220ln π2R R h N μI ψL = 若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍.12-17 如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为S 1 和S 2 ,磁导率分别为μ1 和μ2 ,管长为l ,匝数为N ,求螺线管的自感.(设管的截面很小)题 12-17 图分析 本题求解时应注意磁介质的存在对磁场的影响.在无介质时,通电螺线管内的磁场是均匀的,磁感强度为B 0 ,由于磁介质的存在,在不同磁介质中磁感强度分别为μ1 B 0 和μ2 B 0 .通过线圈横截面的总磁通量是截面积分别为S 1 和S 2 的两部分磁通量之和.由自感的定义可解得结果.解 设有电流I 通过螺线管,则管中两介质中磁感强度分别为I L N μnl μB 111==,I LN μnl μB 222== 通过N 匝回路的磁链为 221121S NB S NB ΨΨΨ+=+=则自感2211221S μS μlN I ψL L L +==+= 12-18 有两根半径均为a 的平行长直导线,它们中心距离为d .试求长为l的一对导线的自感(导线内部的磁通量可略去不计).题 12-18 图分析 两平行长直导线可以看成无限长但宽为d 的矩形回路的一部分.设在矩形回路中通有逆时针方向电流I ,然后计算图中阴影部分(宽为d 、长为l )的磁通量.该区域内磁场可以看成两无限长直载流导线分别在该区域产生的磁场的叠加.解 在如图所示的坐标中,当两导线中通有图示的电流I 时,两平行导线间的磁感强度为()r d I μr I μB -+=π2π200 穿过图中阴影部分的磁通量为 aa d l μr Bl ΦS a d a -==⋅=⎰⎰-ln πd d 0S B 则长为l 的一对导线的自感为aa d l μI ΦL -==ln π0 如导线内部磁通量不能忽略,则一对导线的自感为212L L L +=.L 1 称为外自感,即本题已求出的L ,L 2 称为一根导线的内自感.长为l 的导线的内自感8π02l μL =,有兴趣的读者可自行求解. 12-19 如图所示,在一柱形纸筒上绕有两组相同线圈AB 和A ′B ′,每个线圈的自感均为L ,求:(1) A 和A ′相接时,B 和B ′间的自感L 1 ;(2) A ′和B 相接时,A 和B ′间的自感L 2 .题 12-19 图分析 无论线圈AB 和A ′B ′作哪种方式连接,均可看成一个大线圈回路的两个部分,故仍可从自感系数的定义出发求解.求解过程中可利用磁通量叠加的方法,如每一组载流线圈单独存在时穿过自身回路的磁通量为Φ,则穿过两线圈回路的磁通量为2Φ;而当两组线圈按(1)或(2)方式连接后,则穿过大线圈回路的总磁通量为2Φ±2Φ,“ ±”取决于电流在两组线圈中的流向是相同或是相反.解 (1) 当A 和A ′连接时,AB 和A ′B ′线圈中电流流向相反,通过回路的磁通量亦相反,故总通量为0221=-=ΦΦΦ,故L 1 =0.(2) 当A ′和B 连接时,AB 和A ′B ′线圈中电流流向相同,通过回路的磁通量亦相同,故总通量为ΦΦΦΦ4222=+=,故L IΦI ΦL 4422===. 本题结果在工程实际中有实用意义,如按题(1)方式连接,则可构造出一个无自感的线圈. 12-20 如图所示,一面积为4.0 cm 2 共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A·s-1时,线圈A 中感应电动势的大小和方向.题 12-20 图分析 设回路Ⅰ中通有电流I 1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M 21 =Φ21/I 1 ;也可设回路Ⅱ通有电流I 2 ,穿过回路Ⅰ的磁通量为Φ12 ,则21212I ΦM M == . 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS .反之,如设线圈A 通有电流I ,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径.解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度RI μN B B200=,穿过小线圈A 的磁链近似为 A BA A A A S RI μN N S B N ψ200== 则两线圈的互感为 H 1028.6260-⨯===RS μN N I ψM A B A A (2)线圈A 中感应电动势的大小为 V 1014.3d d 4-⨯=-=t I ME A 互感电动势的方向和线圈B 中的电流方向相同.12-21 如图所示,两同轴单匝线圈A 、C 的半径分别为R 和r ,两线圈相距为d .若r 很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少?题 12-21 图解 设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁感强度近似为()2/322202d R IR μB +=穿过线圈C 的磁通为 ()22/32220π2r d R IR μBS ψC +==则两线圈的互感为 ()2/3222202πd R R r μI ψM +== 若线圈C 的匝数为N 匝,则互感为上述值的N 倍.12-22 如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为2.0 cm 2 ,沿环每厘米绕有100 匝线圈,通有电流I 1 =4.0 ×10 -2 A ,在环上再绕一线圈C ,共10 匝,其电阻为0.10 Ω,今将开关S 突然开启,测得线圈C 中的感应电荷为2.0 ×10-3 C .求:当螺绕环中通有电流I 1 时,铁磁质中的B 和铁磁质的相对磁导率μr .题 12-22 图分析 本题与题12-8 相似,均是利用冲击电流计测量电磁感应现象中通过回路的电荷的方法来计算磁场的磁感强度.线圈C 的磁通变化是与环形螺线管中的电流变化相联系的. 解 当螺绕环中通以电流I 1 时,在环内产生的磁感强度110I n μμB r =则通过线圈C 的磁链为S I n μμN BS N ψr c 11022==设断开电源过程中,通过C 的感应电荷为q C ,则有()RS I n μμN ψR ψR qc r c c 110201Δ1=--=-= 由此得 T 10.02110===SN Rq I n B C r μμ 相对磁导率 1991102==I n S N Rq C r μμ 12-23 一个直径为0.01 m ,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为7.76 Ω.求:(1) 如把线圈接到电动势E =2.0 V 的电池上,电流稳定后,线圈中所储存的磁能有多少? 磁能密度是多少?*(2) 从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间?分析 单一载流回路所具有的磁能,通常可用两种方法计算:方法 1: 如回路自感为L (已知或很容易求得),则该回路通有电流I 时所储存的磁能221LI W m =,通常称为自感磁能. 方法 2: 由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即V w W V m m d ⎰=,式中m w 为磁场能量密度,积分遍及磁场存在的空间.由于μB w m 22=,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布.上述两种方法还为我们提供了计算自感的另一种途径,即运用V w LI V m d 212⎰=求解L . 解 (1) 密绕长直螺线管在忽略端部效应时,其自感l S N L 20μ=,电流稳定后,线圈中电流RE I =,则线圈中所储存的磁能为 J 1028.3221522202-⨯===lRSE N μLI W m 在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管中,并为均匀磁场,故磁能密度m w 处处相等,3m J 17.4-⋅==SLW w m m (2) 自感为L ,电阻为R 的线圈接到电动势为E 的电源上,其电流变化规律⎪⎪⎭⎫ ⎝⎛-=-t L R R E I e 1,当电流稳定后,其最大值R E I m = 按题意⎥⎦⎤⎢⎣⎡=22212121m LI LI ,则R E I 22=,将其代入⎪⎪⎭⎫ ⎝⎛-=-t L RR E I e 1中,得 ()s 1056.122ln 221ln 4-⨯=+=⎥⎦⎤⎢⎣⎡--=R L R L t 12-24 未来可能会利用超导线圈中持续大电流建立的磁场来储存能量.要储存1 kW·h 的能量,利用1.0T的磁场,需要多大体积的磁场? 若利用线圈中500 A 的电流储存上述能量,则该线圈的自感系数应该多大?解 由磁感强度与磁场能量间的关系可得302m 0.92/==μB W V m 所需线圈的自感系数为H 2922==I W L m 12-25 中子星表面的磁场估计为108T,该处的磁能密度有多大?解 由磁场能量密度 21021098.32⨯==μB w m 3m /J 12-26 在真空中,若一均匀电场中的电场能量密度与一 0.50T 的均匀磁场中的磁场能量密度相等,该电场的电场强度为多少?解 2021E εw e =,022μB w m =,按题意,当m e w w =时,0220221μB E ε=则 1800m V 1051.1-⋅⨯==μεB E 12-27 设有半径R =0.20 m 的圆形平行板电容器,两板之间为真空,板间距离d =0.50 cm ,以恒定电流I =2.0 A 对电容器充电.求位移电流密度(忽略平板电容器的边缘效应,设电场是均匀的).分析 尽管变化电场与传导电流二者形成的机理不同,但都能在空间激发磁场.从这个意义来说,变化电场可视为一种“广义电流”,即位移电流.在本题中,导线内存在着传导电流I c ,而在平行板电容器间存在着位移电流I d ,它们使电路中的电流连续,即c d I I =.解 忽略电容器的边缘效应,电容器内电场的空间分布是均匀的,因此板间位移电流2πd R j I d Sd d =⋅=⎰S j ,由此得位移电流密度的大小 222m A 9.15ππ-⋅===R I R I j c d d。

相关文档
最新文档