分类加法计数原理与分步乘法计数原理公开课
分类加法与分步乘法计数原理-PPT
(2)4×3×2=24(种)
20
典例讲评
例4 要从甲、乙、丙3幅不同的画 中选出2幅,分别挂在左、右两边墙上 的指定位置,求共有多少种不同的挂 法?
3×2=6(种)
21
课堂小结
1.分类加法计数原理和分步乘法计数
原理,都是解决完成一件事的方法数的
计数问题,其不同之处在于,前者是针
例2 某班有男生30名,女生24名, 现要从中选出男、女生各一名代表班 级参加朗诵比赛,求共有多少种不同 的选派方法?
30×24=720(种)
19
例3 书架有三层,其中第一层放有4本 不同的计算机书,第二层放有3本不同的 文艺书,第三层放有2本不同的体育书. (1)从书架上任取1本书,有多少种不 同的取法? (2)从书架的第一,二,三层各取1本 书,有多少种不同的取法?
33
开始
子模块1 18条执行路径
子模块2 45条执行路径
A
子模块3 28条执行路径
子模块4 38条执行路径
子模块5 43条执行路径
7371条
结束
178次
34
例5 随着人们生活水平的提高,某 城市家庭汽车拥有量迅速增长,汽车牌 照号码需要扩容.交通管理部门出台了一 种汽车牌照组成方法,每一个汽车牌照 都必须有3个不重复的英文字母和3个不 重复的阿拉伯数字,并且3个字母必须合 成一组出现,3个数字也必须合成一组出 现.那么这种办法共能给多少辆汽车上牌 照?
3种
N=5×4×3=60(种)
40
5. 用5种不同颜色给图中A,B,C,D四 个区域涂色,每个区域只涂一种颜色, 相邻区域的颜色不同,求共有多少种不 同的涂色方法?
54
A C3
第一节 分类加法计数原理与分步乘法计数原理 课件(共40张PPT)
角度 涂色、种植问题 [例3] (1)如图,图案共分9个区域,有6 种不同颜色的涂料可供涂色,每个区域只能 涂1种颜色的涂料,其中2和9同色,3和6同 色,4和7同色,5和8同色,且相邻区域的颜色不相同, 则不同的涂色方法有( ) A.360种 B.720种 C.780种 D.840种
1.如图,小明从街道的E处出发,先到F处与小红 会合,再一起到位于G处的老年公寓参加志愿者活动, 则小明到老年公寓可以选择的最短路径条数为( )
A.24 B.18
C.12
D.9
解析:从E点到F点的最短路径有6条,从F点到G点 的最短路径有3条,所以从E点到G点的最短路径有6×3= 18(条),故选B.
4.从0,1,2,3,4,5这六个数字中,任取两个不 同数字相加,其和为偶数的不同取法的种数是______.
解析:从0,1,2,3,4,5六个数字中,任取两数 和为偶数可分为两类,①取出的两数都是偶数,共有3种 方法;②取出的两数都是奇数,共有3种方法,故由分类 加法计数原理得共有N=3+3=6(种).
考点1 分类加法计数原理
1.如图,某货场有两堆集装箱,一
堆2个,一堆3个,现需要全部装运,每
次只能取其中一堆最上面的一个集装箱,则在装运的过
程中不同取法的种数是( )
A.6
B.10
C.12
D.24
解析:将题图中左边的集装箱从上往下分别记为
1,2,3,右边的集装箱从上往下分别记为4,5.分两种
情况讨论:若先取1,则有12345,12453,12435,
答案:D
3.现安排一份5天的工作值班表,每天有一个人值
1.1.1《分类加法计数原理与分步乘法计数原理》课件(优秀经典公开课比赛课件)
[学习目标] 1.通过实例,能总结出分 类加法计数原理、分步乘法计数原理(重 点). 2.正确地理解“完成一件事情” 的含义,能根据具体问题的特征,选择 “分类”或“分步”(易混点). 3.会用 分类加法计数原理或分步乘法计数原理 分析和解决一些简单的实际问题(难点).
05798415
10×10× 10× 10=104 分析: 10× 9 × 8 × 7=5040
变式: 若要求最后4个数字不重复,则又有多少种不同 的电话号码?
例4、 书架上第1层放有4本不同的计算机书,第 2层放有3本不同的文艺书,第3层放有2本不同的 体育杂志.
(1)从书架上任取1本书,有多少种不同的取法?
2)首先要根据具体问题的特点确定一个分步的标准, 然后对每步方法计数.
例2、设某班有男生30名,女生24名。现要从中选出 男、女生各一名代表班级参加比赛,共有多少种不 同的选法?
例3、浦江县的部分电话号码是05798415××××,后 面每个数字来自0~9这10个数,问可以产生多少个不同
的电话号码? 分析:
区别二
每类办法都能独立完成
这件事情。
每一步得到的只是中间结果,
任何一步都不能能独立完成 这件事情,缺少任何一步也
不能完成这件事情,只有每 个步骤完成了,才能完成这 件事情。
各类办法是互斥的、
区别三 并列的、独立的
各步之间是相关联的
课堂练习
如图,从甲地到乙地有2条路,从乙地到丁地 有3条路;从甲地到丙地有4条路可以走,从丙 地到丁地有2条路。从甲地到丁地共有多少种 不同地走法?
不同的二次函数?其中图象过原点的二次函 数有多少个?图象过原点且顶点在第一象限 的二次函数又有多少个?
分类计数与分步计数原理的区别和联系:
6.1 分类加法计数原理与分步乘法计数原理第1课时PPT课件(人教版)
探究一
探究二
探究三
素养形成
当堂检测
解:(1)分四类:第1类,从一班学生中选1人,有7种选法;第2类,从二班 学生中选1人,有8种选法;第3类,从三班学生中选1人,有9种选法;第4 类,从四班学生中选1人,有10种选法. 由分类加法计数原理知共有不同的选法N=7+8+9+10=34(种). (2)分四步:第1、2、3、4步分别从一、二、三、四班学生中选一 人任组长.
加法计数原理知共有不同的选法
N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).
探究一
探究二
探究三
素养形成
当堂检测
反思感悟 1.使用两个原理的原则 使用两个原理解题时,一定要从“分类”“分步”的角度入手.“分类”是 对于较复杂应用问题的元素分成互相排挤的几类,逐类解决,用分 类加法计数原理;“分步”就是把问题分化为几个互相关联的步骤,然 后逐步解决,这时可用分步乘法计数原理. 2.应用两个计数原理计数的四个步骤 (1)明确完成的这件事是什么. (2)思考如何完成这件事. (3)判断它属于分类还是分步,是先分类后分步,还是先分步后分类. (4)选择计数原理进行计算.
探究二探Leabharlann 三素养形成当堂检测
变式训练2要从教学楼的一层走到三层,已知从一层到二层有4个扶 梯可走,从二层到三层有2个扶梯可走,则从一层到三层有多少种不 同的走法? 解:第1步,从一层到二层有4种不同的走法; 第2步,从二层到三层有2种不同的走法. 根据分步乘法计数原理知,从教学楼的一层到三层的不同走法有
探究一
探究二
探究三
素养形成
当堂检测
反思感悟 1.分类加法计数原理的推广 分类加法计数原理:完成一件事有n类不同的方案,在第1类方案中 有m1种不同的方法,在第2类方案中有m2种不同的方法,……,在第n 类方案中有mn种不同的方法,那么完成这件事共有 N=m1+m2+m3+…+mn种不同的方法. 2.能用分类加法计数原理解决的问题具有如下特点 (1)完成一件事有若干种方案,这些方案可以分成n类; (2)用每一类中的每一种方法都可以单独完成这件事; (3)把各类的方法数相加,就可以得到完成这件事的所有方法数.
数学112《分类加法计数原理与分步乘法计数原理》课件
例2.给程序模块命名,需要用3个字符,其中首个字 符要求用字母A~G或U~Z,后两个要求用数字1~9, 问最多可以给多少个程序命名?
分析:要给一个程序模块命名,可以分三个步骤:第一步, 选首字符;第二步,先中间字符;第三步,选末位字符。
解:首字符共有7+6=13种不同的选法, 中间字符和末位字符各有9种不同的选法
例5.计算机编程人员在编
开始
写好程序以后要对程序进
行测试。程序员需要知道
到底有多少条执行路(即 子模块1 程序从开始到结束的线),18条执行路径 以便知道需要提供多少个
子模块2 45条执行路径
子模块3 28条执行路径
测试数据。一般的,一个
A
程序模块又许多子模块组
成,它的一个具有许多执
行路径的程序模块。问: 这个程序模块有多少条执
解:(1)5名学生中任一名均可报其中的任一项,因此每 个学生都有4种报名方法,5名学生都报了项目才能算完成
这一事件故报名方法种数为4×4×4×4×4= 45 种 .
(2)每个项目只有一个冠军,每一名学生都可能获得 其中的一项获军,因此每个项目获冠军的可能性有5种
故有n=5×5×5×5= 54 种 .
子模块3 28条执行路径
而第步可由子模块1
A
或子模块2或子模块3
来完成;第二步可由
子模块4或子模块5来 完成。因此,分析一
子模块4 38条执行路径
子模块5 43条执行路径
条指令在整个模块的
执行路径需要用到两
个计数原理。
结束
2)在实际测试中,程序 员总是把每一个子模块看 成一个黑箱,即通过只考 察是否执行了正确的子模 块的方式来测试整个模块。18条子执模行块路1 径 这样,他可以先分别单独 测试5个模块,以考察每 个子模块的工作是否正常。 总共需要的测试次数为:
公开课分类加法计数原理与分步乘法计数原理课件
• 分类加法计数原理 • 分步乘法计数原理 • 分类加法计数原理与分步乘法计
数原理的比较 • 公开课总结与展望
目录
01
分类加法计数原理
定义与理解
定义
分类加法计数原理是指将一个问题分成若干个互斥的子问题,每个子问题有一 个明确的解决策略,然后将这些子问题的解合并起来得到原问题的解。
分类加法计数原理的实例
实例1
在组合数学中,将一个复杂组合问题 分解为若干个简单的组合问题,然后 分别计算这些简单问题的解,最后将 这些解相加得到原问题的解。
实例2
在统计学中,将一个复杂统计问题分 解为若干个简单的统计问题,然后分 别计算这些简单问题的解,最后将这 些解相加得到原问题的解。
02
分步乘法计数原理
解析
根据分步乘法计数原理,学生可以选择不同的交通方式有$m_1$种方法,选择不 同的住宿方式有$m_2$种方法,因此总共有$m_1 times m_2$种不同的春游方 案。
03
分类加法计数原理与分步乘
法计数原理的比较
两者之间的联系
分类加法计数原理和分步乘法计数原 理都是基本的计数原理,用于解决组 合数学中的计数问题。
定义与理解
定义
分步乘法计数原理是指完成一件事情,需要分成$n$个步骤,做第$1$步有$m_1$种不同的方法,做第$2$步有 $m_2$种不同的方法,……,做第$n$步有$m_n$种不同的方法,则完成这件事情有$m_1 times m_2 times ldots times m_n$种不同的方法。
理解
理解
分类加法计数原理的核心思想是将复杂问题分解为简单问题,然后分别解决这 些简单问题,最后将结果合并。
6.1分类加法计数原理与分步乘法计数原理课件(人教版)
6.1 分类加法计数原理 与分步乘法计数原理
1.理解分类加法计数原理与分步乘法 计数原理.(重点) 2.会用这两个原理分析和解决一些简 单的实际计数问题.(难点)
1.核糖核酸(RNA)分子有碱基按一定顺序排列而成。 已知碱基有4种,但由成百上千个碱基组成的RNA分 子的种数非常巨大。为什么?
B 果将这 2 个新节目插人节目单中,那么不同的插法种数为( )
A.12
B.20
C.36
D.120
解析:利用分步计数原理,第一步插入第一个新节目,有 4 种方法,第二步插 入第二个新节目,此时有 5 个空,故有 5 种方法.因此不同的插法共有 45 20 种.故选 B.
2.如图,用 4 种不同的颜色对 A,B,C,D 四个区域涂色,要求相邻的两个区
工程学
如果这名同学只能选一个专业,那么他共有多少种选择?
解:这名同学可以选择 A,B 两所大学中的一所. 在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法. 因为没有一个强项专业是两所大学共有的, 所以根据分类加法计数原理, 这名同学可能的专业选择种数为 N 5 4 9 .
完成一件事需要两个步骤,做第 1 步有 m 种不同的方
法,做第 2 步有 n 种不同的方法,那么完成这件事共有 N
=m×n种不同的方法.
例 1 在填写高考志愿表时,一名高中毕业生了解到,A,B
两所大学各有一些自己感兴趣的强项专业,如下表.
A 大学
B 大学
生物学
数学
化学
会计学
医学
信息技术学
物理学
法学Biblioteka 例5 给程序模块命名,需要用3个字符,其中首字符要求用字母 A~G或U~Z,后两个字符要求用数字1~9,最多可以给多少个程 序模块命名?
第十章 第一节 分类加法计数原理与分步乘法计数原理 课件(共30张PPT)
学科素养: 数学建模、数学抽象.
知识·分步落实
⊲学生用书 P165
两个计数原理
分类加法计数原理
分步乘法计数原理
条 完成一件事有两__类__不__同__方__案__,在第 1 完成一件事需要两__个__步__骤__,做
件 类方案中有 m 种不同的方法,在第 2 第 1 步有 m 种不同的方法,做
法,所以由分步乘法计数原理得直线有 5×4=20(条).]
4.书架的第 1 层放有 4 本不同的语文书,第 2 层放有 5 本不同的数学书, 第 3 层放有 6 本不同的体育书.从第 1,2,3 层分别各取 1 本书,则不同的 取法种数为________.
解析: 由分步乘法计数原理知,从第 1,2,3 层分别各取 1 本书,不 同的取法共有 4×5×6=120(种).
(2)区域 3 有 4 种选法,区域 1 有 3 种选法,区域 2 有 2 种选法,区域 4 从区域 1,2 所选颜色中选有 2 种选法,区域 5 可选剩下的一种和区域 1,2 所选被区域 4 选剩下的一种,有 2 种选法,共有 4×3×2×2×2=96 种.
答案: 144;96
用分步乘法计数原理解决问题的三个步骤
类方案中有 n 种不种的方法
第 2 步有 n 种不同的方法
结 完成这件事共有 N=m__+__n_种不同的 完成这件事共有 N=_m_·_n_种不
论 方法
同的方法
[注意] 分类的关键在于要做到“不重不漏”;分步的关键在于要正确 设计分步的程序,即合理分类,准确分步.在分类与分步之前要确定题目中 是否有特殊条件限制.
1.分类加法计数原理中,完成一件事的方法属于其中一类,并且只属于 其中一类.
2.分步乘法计数原理中,各个步骤相互依存,步与步之间“相互独立, 分步完成”.
【公开课教案】分类加法计数原理与分步乘法计数原理教学设计
自选课题:分类加法计数原理与分步乘法计数原理一、教学设计1.教学内容解析“分类加法计数原理和分步乘法计数原理”(以下简称“两个计数原理”)是人教A版高中数学课标教材选修2-3“第一章计数原理”第1.1节的内容,教学需要安排4个课时,本节课为第1课时.计数就是数数.原理是在大量观察、实践的基础上,经过抽象、归纳、概括而得出具有普遍意义的基本规律.两个计数原理不仅是继续学习排列、组合和二项式定理的理论依据,更是处理计数问题的两种基本思想方法,在本章中是奠基性的知识.从认知基础的角度看,两个计数原理实际上是学生从小学就开始学习的加法运算与乘法运算的拓展应用,是体现加法与乘法运算相互转化的典型例证.从思想方法的角度看,运用分类加法计数原理解决问题是将一个复杂的计数问题分解为若干“类别”,再分类解决;运用分步乘法计数原理解决问题则是将一个复杂的计数问题分解为若干“步骤”,先对每个步骤分类处理,再分步完成.综合运用两个计数原理就是将综合问题分解为多个单一问题,再对每个单一问题各个击破.也就是说,两个计数原理的灵魂是划归与转化的思想、分类与整合的思想和特殊与一般的思想的具体化身.从数学本质的角度看,以退为进,以简驭繁,化难为易,化繁为简,是理解和掌握两个计数原理的关键,运用两个计数原理是知识转化为能力的催化剂.因此,本课的主要任务是如何依托学生已有的认知基础总结得出两个计数原理,并能初步领会应用原理简捷地解决计数问题的要领.根据以上分析,本节课的教学重点确定为:教学重点:归纳出两个计数原理,并能初步用其解决一些简单的实际问题.2.学生学情分析计数问题学生并不陌生,在不同的学段都有相应的接触,特别是在高中数学《必修2》中学习“古典概型”时,学生又学会了用列举法解决最简单的计数问题;同时在学习和生活中,学生已经不自觉地会使用“分类”和“分步”的方法来思考和解决问题,这些都是学生学习两个计数原理的认知基础.两个计数原理虽简单朴素,易学好懂,但如何让学生借助已有的数学活动经验,抽象概括出两个计数原理,并领悟其中重要的数学思想方法,实现认知的飞跃,则是本课必须要突破的难点所在.为此,抓住以下两个要点尤为重要:一是要通过典型丰富的实例来帮助学生完成归纳提炼的过程,加强学生应用两个计数原理解决问题的意识——这是有效提升学生抽象概括能力的契机;二是要在解决问题的过程中,始终突出两个计数原理的核心要素,即弄清“完成一件事”的含义和区分“分步”与“分类”的特征——这是如何选择两个计数原理的关键.根据以上分析,本节课的教学难点确定为:教学难点:根据实际问题的具体特征,正确理解“完成一件事”的含义;准确区分“分类”和“分步”.3.教学目标设置(1)通过给出的具体实例,学生经历两个计数原理的抽象概括的发现过程,能归纳出两个计数原理,并能说出两个计数原理的联系与区别,体会从特殊到一般的思维过程;(2)根据具体的问题情境,学生能描述“完成一件事”的具体含义,说出“分类”与“分步”的区别,总结出应用两个计数原理的基本步骤;(3)通过变式练习、引例探究和列举实例,学生会正确选择和应用两个计数原理解决一些简单的实际问题,领悟运用两个计数原理所包含的划归与转化、分类与整合和特殊与一般的思想方法,以及以退为进的思维策略.4.教学策略分析本节课是概念原理课的教学典范.拟定采取以退为进的教学策略,采用“情景引入—问题诱导—实例探究—抽象概括—原理应用—归纳总结—拓展铺垫”的探究发现式教学方法,紧紧围绕如何抽象、怎样概括、如何归纳和怎么应用等问题展开,通过典型丰富的实例引导学生归纳出两个计数原理,并能学会初步应用.具体教学策略分成如下五个环节:第一环节:创设情境,提出问题.从“神十的身份证号码”出发,引出“人造天体的编号问题”,通过问题设疑,引导学生在不断思考中获取两个计数原理的发现过程;第二环节:实例探究,归纳原理.从以退为进的实例出发,通过先“两类”后“多类”,先“分类”后“分步”,先“加法”后“乘法”的逐步过渡,引导学生在加法与乘法相互转化的过程中提炼归纳两个计数原理;第三环节:演练反馈,巩固提升.从选择两个原理解决计数问题的关键出发,通过“各取”“任取”等关键词的辨别,引导学生真正弄清“完成一件事”的具体含义,领会准确区分“分步”和“分类”的操作要领;第四环节:归纳小结,认知升华.从放手让学生自主小结出发,通过提纲挈领的表格式小结,引导学生进一步加深对两个计数原理本质的认识;第五环节:课后检测,拓展铺垫.从引发学生进一步思考出发,通过设置有关高考科目改革的热点思考题,为后继学习排列组合做好铺垫,激发学生进一步学习的欲望.其教学流程如下:二、课堂实录1.创设情境,提出问题开场白:中国梦,航天梦.近年来,我国科技发展突飞猛进,“神十”的发射更是让世人瞩目,下面我们就一起来回顾这令人激动的时刻.视频:“神十”升天,飞入太空.画外音:“神十”升天,国人欢呼,世界瞩目.你知道他的“身份证号码”吗?它的国际编号为2013-029A.人造天体的编号规则:①发射年份+四位编码;②四位编码前三位为阿拉伯数字,第四位为英文字母;③前三位数字不能同时为0;④英文字母不得选用I,O(I易与1混淆,O易与0混淆).按照这样的编号规则,2013年的人造天体所有可能的编码有多少种?师:欣赏完激动人心的视频,我们来看看这个问题的设问方式,“按照这样的编号规则,2013年的人造天体所有可能的编码有多少种?”这就是一个典型的计数问题.所谓计数就是数数.其实类似的问题有很多:幼儿园时我们数有多少个鸭子?我们班有多少同学?甚至我们穿校服上衣和裤子有多少种不同的搭配种数等等,我们将这种方法数的计算问题都称之为计数问题.师:小时候,我们是怎么数的呀?生:一个一个的数.师:刚才这个问题“一个一个的去数”可以吗?比较复杂.看来我们有必要探究更有效的计数方法.这个问题研究四位编码比较复杂,怎么办?我们不妨先退回来研究一位、两位的情形,从中探索出规律,从而解决四位的情形.【评析】以学生关心的知识背景切入本节课,以视频演示烘托气氛,提高了学生主动参与学习的积极性,同时点题:如何有效的计数.2.实例探究,归纳原理(1)师生共同探究,得出分类加法计数原理问题1:如果用一个大写的英文字母或一个阿拉伯数字给卫星编号,那么总共能够编出多少种不同的号码?生:26+10=36种师:对的.这就是加法运算.问题2:从甲地到乙地,可以乘火车,也可以乘汽车.一天中,火车有26班,汽车有10班.那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?生:一共有26+10=36种不同的走法.师:对,那这两个计数问题有什么共同特点呢?生:这两个问题告诉我们,计数是可以分类的:问题1按英文字母和阿拉伯数字分成两类,问题2按交通工具分成两类.将每类的方法数相加就得到了问题的答案.师:梳理同学们的总结,我们列成表格,将共性总结成一个命题,即如果完成一件事有两类不同方案,在第一类方案中有种不同的方法,在第二类方案中有种不同的方法,那么完成这件事共有N m n=+种不同的方法.根据特点给它起个名字,就叫分类加法计数原理.原理是在大量观察的基础上经过归纳、概括而得出的基本规律.同学们还要特别注意:这里的关键词是完成一件事,分类,加法,每类中的任一种方法都能独立完成这件事.【评析】让学生体会知识获得的过程,通过独立思考、自主探究、合作交流归纳出原理.师:同学们试一试,能用自己得到的原理解决具体的问题吗?例1 在填写高考志愿时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学 B大学生物学数学化学会计学医学信息技术学物理学法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?生:这名同学可以选择A,B两所大学中的一所,而且只能选择一个专业,又由于A大学有5种不同的选择,B大学有4种不同的选择,所以共有5+4=9种不同的选择.师:对.如果还有C大学呢?变式:在填写高考志愿时,一名高中毕业生了解到,A,B,C三所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学 B大学 C大学生物学数学新闻学化学会计学金融学医学信息技术学人力资源学物理学法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?生:5+4+3=12.师:看来加法原理不仅对完成一件事有两类不同方案适用,也对分三类方案适用,对分n类同样适用.生:一般地,如果完成一件事有n 类不同方案,在第1类方案中有1m 种不同的方法,在第2类中有2m 种不同的方法…,在第n 类中有n m 种不同的方法,那么完成这件事共有种12n N m m m =+++不同方法.【评析】例题及变式训练由易到难,循序渐进,而且为学生自主生成加法原理的一般形式做好了铺垫.师:下面,我们看大家能否用这个原理解决更复杂的问题!(2)类比转化探究,得出分步乘法计数原理问题3:如果用前六个大写英文字母中的一个和1~9九个阿拉伯数字中的一个,组成编码形如A 1,B 2的方式给卫星编号,那么总共能编出多少个不同的号码?【评析】承上启下,既巩固加法原理,又为乘法原理做铺垫,然后落脚在“分步,乘法”这两个特征上,有利于原理的主动生成.生:6×9=54.师:请谈谈你的具体想法.生:完成编号这件事我先确定数字,再确定字母.数字有9种选择,字母有6种选择.因而共有96=54(种).师:那你是着眼于完成这件事的过程,先确定数字,再确定字母,需分步,用乘法解决.那交换两个步骤可以吗?显然可以.那54对不对呢?哪位同学能用分类加法计数原理帮他检验一下.生:按照题意,按字母分类:以A 开头有9个,以B 开头有9个,如此类推,以F 开头有9个,所以共有9+9+9+9+9+9=96=54种不同的号码.师:那你是着眼于完成这件事结果,根据首字母不同,分六类,用加法原理解决.看来54是此题的答案确定无疑!师:从此题中我们感觉到“分步相乘”,那类似问题都能这样吗?下面看一个新问题.问题4:从甲地到丙地,要从甲地先乘火车到乙地,再于次日从乙地乘汽车到丙地.一天中,火车有3班,汽车有2班,那么两天中,从甲地到丙地共有多少种不同的走法?生:从甲地到丙地需 2 步完成,第一步,由甲地去乙地有 3 种方法;第二步,由乙地去丙地有 2 种方法,所以从甲地到丙地共有3 ×2 = 6种不同的方法.【评析】从加法原理过渡到乘法原理,让学生检验分步相乘的合理性与简洁性.师:类比加法计数原理,归纳问题3和问题4的共同特点,我们可以得到什么结论?生:如果完成一件事需要两个步骤,做第一步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N m n=⨯种不同的方法.师:我们称它分步乘法计数原理.同学们还要特别注意:这里的关键词是完成一件事,分步,乘法,每步中的任一种方法都不能独立的完成这件事,只有各个步骤都完成才算做完这件事情.【评析】让学生从感性体验上升到理性认识,通过独立思考、自主探究、合作交流归纳出原理.师:请用你们得到的原理解决下面的问题.例2 某班有男生30名,女生24名,现要从中选出男、女生各一名代表班级参加公益活动,共有多少种不同的选法?师:你把选代表这件事分成两步,你是先确定男生人选,再确定女生人选,所以分两步用乘法原理.那先确定女生人选,再确定男生人选是否可以呢?生:都可以,只要能达到完成这件事的目的就行.变式:某班有男生30名,女生24名,任课老师10名,现要从中选出男、女生各一名代表班级参加公益活动,还要从中选派1名老师作领队,组成代表队,共有多少种不同选法?生:再乘以10.师:由此你们又可以得到什么结论呢?生:一般地,如果完成一件事要n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法…,做第n 步有n m 种不同的方法,那么完成这件事共有种12n N m m m =⨯⨯⨯不同方法.【评析】例题及变式训练由易到难,循序渐进,而且为学生自主生成乘法原理的一般形式做好了铺垫.师:我们已经归纳了两个计数原理,他们的共性是:为了计数.区别是:因为问题特征不同,有时需要分类,有时需要分步.希望以后用原理解决问题时,要清楚的用原理表达完成一件什么事,怎么完成,是分步还是分类呢?下面我们来做几个练习.3.演练反馈,巩固提升练1 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.(1)从书架的第1,2,3层各取一本书,有多少种不同取法?(2)从书架中任取1本书,有多少种不同的取法?变式:从书架中取2本不同种类的书,有多少种不同的取法?【评析】设问循序渐进,突出强调解题时,弄清完成一件事的要求至关重要,只有这样才能正确区分“分类”和“分步”(区分的关键是对“完成一件事”的理解).师:还记得人造天体编号的问题吗?请同学们试一试,我们现在能解决了吗?练2 【引例回放】“神十”的国际编号为2013-029A.人造天体的编号规则:①发射年份+四位编码;②四位编码前三位为阿拉伯数字,第四位为英文字母;③前三位数字不能同时为0;④英文字母不得选用I,O(I易与1混淆,O易与0混淆).这样的编号规则,2013年的人造天体所有可能的编码有多少种?生:(1010101)2423976.⨯⨯-⨯=师:同学们很好的解决了这个问题.随着科技的发展,以后人造天体更多了,超过了23976,怎么解决呢?生:可增加位数.生:还可以增加每一位的选择.师:非常棒.【评析】呼应引例,开放探究,巩固两个计数原理.师:计数原理有广泛的应用,在生活中需要计数,在科学实践中也需要计数,那么大家想一想:你在生活中学习中遇到哪些分类计数问题和分步计数问题呢?练3 【应用访谈】你能举出生活中或其它学科中的运用两个原理的计数问题吗?生:武汉市的汽车牌照以鄂A开头,后面有五位.我分5步,第一步确定第一位,第二步确定第二位,…,第五步确定第五位,又因为每一步既可以选择字母,又可以选择数字,由加法原理有26+10=36种选择,再由乘法原理共有5363636363636⨯⨯⨯⨯=种不同的选择.生:身份证后4位是随机数,就可以分成4步完成,第1,2,4位上有0~9十种选择,第3位上有5种选择,所以共有⨯⨯⨯=种不同的选择.10105105000生:开运动会时,有5个同学要报四个体育项目,每位同学只能报其中一种,每位同学有4种选法,所以共有5⨯⨯⨯⨯=种不同的444444选法.生:氢元素有3种同位素,氯元素有2种同位素,所以HCl的分子质量共有3×2=6种.生:…师:大家举得例子漂亮极了.看来数学来自生活,又应用于生活,数学是有用的!同学们,生活丰富多彩,世界奥秘无穷,在知识的天空里,让我们借助数学的力量,像“神十”一样展翅飞翔吧!师:这节课同学们举出了很多实例,老师也给出了一些实例,根据以上的计数实例,我们收获了什么?4.归纳小结,认知升华生:在计数问题中,有的是用分类加法计数原理,有的是用分步乘法计数原理,而有的是既用分类加法计数原理,又用分步乘法计数原理.生:当我们遇到复杂问题时,先把复杂的问题化为一些简单的问题,然后通过一系列的简单问题得到一些规律,然后用规律解决复杂问题.生:经过小组讨论,我们总结了两点.第一是今天学到了计数问题的解决办法:列举法和两个计数原理.在应用这两个计数原理的时要小心审题,正确选择原理.第二是我们不仅学到知识本身,还学到了研究问题的方法,我们先是从实际问题中归纳出原理,然后再运用于实际之中,让我们感受生活中处处有数学.生:…师:我们今天探讨了一个问题就是如何计数?得出了计数方法的两个原理.这两个计数原理是怎么来的?是我们从实际生活中归纳出来的.那么应用这两个计数原理的关键是什么?就是关注它们的应用场合:有的要分类,有的要分步,有的既要分类又要分步.这两个计数原理的不同点是:分类加法原理中每类中的任一种方法都能独立的完成这件事.分步乘法计数原理中,每步中的任一种方法都不能独立的完成这件事,只有各个步骤都完成才算做完这件事情.它们的异同点如下表:【评析】学生在谈收获的同时,就是学生主动建构知识的过程,加深了对本章知识的理解和思想方法的掌握.5.课后检测,拓展铺垫附:板书设计1.1 分类加法计数原理与分步乘法计数原理⎧⎪⎧⎨⎨⎪⎩⎩列举法计数问题分类加法计数原理两个计数原理分步乘法计数原理三、课后反思1.可取之处(1)情境线、知识线、数学思想线三线交融,构建有效课堂.通过创设情境,引导学生探究知识,并在探究的过程中,促进学生数学思维的养成和发展.我感悟到:只有发挥数学的内在力量,教给学生数学的思想,才能为学生谋取长远利益.(2)好实例,好导引,好舞台三好合一,促进学生自主发展.教师精选实例,精心设计变式,通过问题引导,给学生展示思想的舞台.特别值得一提的是,深挖问题三的功能,让学生在发现、验证、探究、升华的过程中快乐学习,进而实现教学的自然衔接与自然生成.我感悟出:经典的实例,巧妙的设问是促进学生自主发展的有效方法.(3)从数学、生活、学科三个角度看两个原理,拓展了学生的科学视野.开放探究的过程,极大的调动了学生的积极性.我感悟出:生活、学科中的数学问题,能将学生的思维引入更广阔的空间.课堂的生成、学生的参与意识、应用意识超过我的想象.2.改进之处遗憾的是对学生的回答和交流,有些地方的定评不是很到位;受课堂45分钟的时间限制,很多同学还想发言交流,意犹未尽,怎么利用它?这将是我要进一步探索的.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、分类计数原理(加法原理)
做一件事情,完成它可以有n类 办法,在第一类办法中有m1种不同的 方法,在第二类办法中有m2种不同的 方法,……,在第n类办法中有mn 种不同的方法。那么完成这件事共 有N=m1+m2+…+mn 种不同的方法。
计数原理
导入新课 实际问题
从甲地到乙地有3条路,从乙地到丁地有2条路; 从甲地到丙地有3条路,从丙地到丁地有4条路, 问:从甲地到丁地有多少种走法?
甲地
乙地
丙地
丁地
要回答这个问题,就要用到计数的两个基本原理
分类计数原理与分步计数原理.
分类计数原理与分步计数原理
问题一:从甲地到乙地,可以乘火车, 也可以乘汽车,一天中,火车有3班,汽车 有2班.那么一天中,乘坐这些交通工具从 甲地到乙地共有多少种不同的走法?
从甲地到乙 地有3条路, 从乙地到丁地 有2条路;从 甲地到丙地有 3条路,从丙 地到丁地有4 条路,问:从 甲地到丁地有 多少种走法?
实际问题
甲
乙
丙
丁
练习 如图,一蚂蚁沿着长方体的棱,从一个顶点 爬到相对的另一个顶点的最近路线共有多少条?
D1
A1 D
A
C1
B1 C
B解:如图,ຫໍສະໝຸດ 总体上看,如,蚂蚁从顶点A爬到顶例3:
某班级有男三好学生5人,女三好学生4人
(1)从中任选一人去领奖, 有多少种不同 的选法?
(2) 从中任选男、女三好学生各一人去参 加座谈会,有多少种不同的选法?
例4:某城市电话号码由8位组 成,其中从左边算起的第1位只用 6或8,其余7位可以从前10个自然 数0,1,2,…,9中任意选取,允
例2:
两个袋子里分别装有40个红球与60个白球, 从中取一个白球和一个红球,有多少种取法?
解:取一个白球和一个红球可以分成
两步来完成:
60
第一步从装白球的袋子里取一个白球,
个
有60种
第二步从装红球的袋子里取一个红球,
40 个
有40种
共60*40=2400
练习 一个三位密码锁,各位上数字由0,1,2,3,4,5, 6,7,8,9十个数字组成,可以设置多少种三位数的 密码(各位上的数字允许重复)?首位数字不为0的 密码数是多少?首位数字是0的密码数又是多少?
许数字重复。试问:该城市最多 可装电话多少?
练习1
1、书架的第1层放有4本不同的计算机书, 第2层放有3本不同 的文艺书,第3层放有2 本不同的体育书. (1)从书架上任取1本书,有多少种不同
的取法? 4+3+2=9(种)
(2)从书架的第1、2、3层各取1本书,有
多少种不同的取法?4 ×3 ×2=24(种)
(1)从书架上任取一本,有多少种取法? 分类 10+9+8
(2)从书架上任取语数外各一本,有多少种取法? 分步 10×9×8
3、在所有的两位数中,个位数字大于十位数字的两 位数共有多少个?分类(按十位分) 8+7+6+5+4+3+2+1
4.某中学的一幢5层教学楼共有3处楼梯,问从1楼到 5楼共有多少种不同的走法?分步 3×3×3×3
分析: 按密码位数,从左到右 依次设置第一位、第二位、第三
位, 需分为三步完成; 第一步, m1 = 10; 第二步, m2 = 10; 第三步, m3 = 10. 根据乘法原理, 共可以设置 N = 10×10×10 = 103 种三位数的密码。
分类计数与分步计数原理的区别和联系:
联系
区别一
加法原理
条,由B村去C村的道路有2条。从A村
经B村去C村,共有多少种不同的走法?
北
北
A村
中 南
B村 南 C村
解: 从A村经 B村去C村有2步, 第一步, 由A村去B村有3种方法, 第二步, 由B村去C村有3种方法, 所以 从A村经 B村去C村共有 3 ×2 = 6
种不同的方法。
问题3:用前6个大写英文字母和1~9个阿拉伯
例1:两个袋子里分别装有40个红球,60个白
球,从中任取一个球,有多少种取法?
解:取一个球的方法可以分成两类:
一类是从装白球的袋子里取一个白球
40 个
有40种取法;
另一类是从装红球的袋子里取一个红球
有60种取法。
60 个
因此取法种数共有 40+60=100(种)
问题2:如图,由A村去B村的道路有3
数字,以A1,A2,,B1,B2的方式给教室的座位编 号.
1
A1
1
2
A2
2
3
A3
3
4
A4
4
A
5
A5 9种
B
5 9种
6
A6
6
7
A7
7
8
A8
8
9
A9
9
6 × 9 =54
2、分步计数原理 (乘法原理)
做一件事情,完成它需要分成n个 步骤,做第一步有m1种不同的方法, 做第二步有m2种不同的方法,……, 做第n步有mn种不同的方法,那么完 成这件事有N=m1×m2×…×mn种不 同的方法。
乘法原理
分类计数原理和分步计数原理,回答的都是关于
完成一件事情的不同方法的种数的问题。 完成一件事情共有n类 完成一件事情,共分n个 办法,关键词是“分类” 步骤,关键词是“分步”
区别二
每类办法都能独立完成
这件事情。
每一步得到的只是中间结果,
任何一步都不能独立完成 这件事情,缺少任何一步也
不能完成这件事情,只有每 个步骤完成了,才能完成这 件事情。
2、由数字1,2,3,4,5,6 可以组成多少个四位数?(各位 上的数字不重复)
6 ×5 ×4 ×3=360(个)
3、一种号码锁有4个拨号盘, 每个拨号盘上有从0到9共10个数 字, 这4个拨号盘可以组成多少 个四位数字的号码?
10 ×10 ×10 ×10=10 4
注意
有些较复杂的问题往往不是单纯 的“分类”“分步”可以解决的, 而要将“分类”“分步”结合起来 运用.一般是先“分类”,然后再 在每一类中“分步”, 综合应用分 类计数原理和分步计数原理.请看 下面的例题:
各类办法是互斥的、
区别三 并列的、独立的
各步之间是相关联的
点评:
加法原理看成“并联电路”;
m1
A
m2
B
……
mn
乘法原理看成“串联电路”
A m1
B m2 …... mn
判断下列用分类 还是分步原理,并说出式子 1、从5名同学中选出正副班长各一名,则不同的任职 方案有多少种? 分步 5×4
2、三层书架上,上层放着10本不同的语文书,中层 放着9本不同的数学书,下层放着8本不同的英语书,