二次函数第一节课

合集下载

二次函数第一课时教学课件优质课件

二次函数第一课时教学课件优质课件
续的教学提供基础。
教学中多采用实例
通过具体的实例,让学生更好地 理解二次函数的概念和应用。
组织小组讨论
让学生分组讨论二次函数的性质和 特点,培养学生的合作精神和沟通 能力。
教学手段
使用多媒体教学
通过PPT、视频、动画等 多种形式,让学生更加直 观地了解二次函数的相关 知识。
使用黑板讲解
在黑板上详细讲解二次函 数的公式、性质和图形, 让学生更好地理解重点和 难点。
综合练习
结合实际生活问题,比如抛物线形状的桥梁设计 等,让学生进行函数建模和分析。
小结与作业布置
小结回顾
回顾本节课学习的重点内容,比如二次函数的表达式、图像和性质等。
作业布置
布置一些具有代表性的习题,让学生进行自我检测和巩固。
05 教学评价与反思
学生表现评价
课堂参与度
01
学生是否积极参与课堂讨论,对二次函数概念的理解是否深入
教学环节衔接情况
教师对教学环节的衔接是否流畅,课堂节奏是否把握得当。
改进措施与展望
调整教学策略
针对学生掌握程度,调整教学策略,加强 二次函数概念的讲解。
拓展学习资源
提供更多学习资源,如网络课程、习题等 ,让学生有更多练习机会。
增加实例应用
引入更多二次函数在生活中的应用实例, 增强学生对二次函数的理解。
加强师生互动
增加师生互动环节,了解学生学习中的困 惑,及时调整教学策略。
THANKS
感谢观看
使用网络资源
引导学生通过网络查找二 次函数的相关资料,拓展 学生的知识面和视野。
04 教学过程设计
导入新课
复习导入
通过回顾一次函数的性质和概念,引出二次函数的定义。

二次函数复习课第一课时PPT

二次函数复习课第一课时PPT
二次函数复习课第一课时 PPT
本节课为二次函数复习课的第一课时,将重点回顾二次函数的定义及基本形 式,并介绍二次函数的图像特征和性质。
二次函数的图像特征
对称性
二次函数的图像以顶点为对称轴对称。
顶点坐标
顶点坐标为(x,y),其中y为二次函数的最 小值(当开口向上时)或最大值(当开口 向下时)。
开口方向
焦点
焦点是图像上的特殊点,与 抛物线的形状有关。
对称轴
对称轴是二次函数图像的对 称线,通过顶点且垂直于准 线。
二次函数的变形与图像
1
垂直方向缩放
通过改变二次系数a的绝对值,可以
水平方向平移
2
改变二次函数图像的形状与开口大 小。
通过改变二次函数中x的常数项或线
性项,可以使图像左右移动。
3
对称轴变化
通过改变二次函数中x的线性项,可 以改变图像关于y轴的对称轴位置。
3
注意事项
注意事项包括仔细阅读题目、画出 准确的图像以及验证计算结果等。
二次函数的应用举例
抛物线轨迹
抛物线轨迹的运动可以用二次函数来描述, 如投射运动、弹道等。
面积与最大值
通过优化二次函数来求解相关问题,如求最 大面积。
二次函数拟合及其应用
拟合
通过将实际数据点与二次函数图像相拟合, 可以预测用于经济学、物理 学、工程学等领域中的数据模型和问题求 解。
二次函数的常见错误及纠错方法
1
常见错误
常见错误包括图像方向、顶点坐标
纠错方法
2
计算错误等。
纠错方法包括通过复习基本概念、
练习题目以及请教老师等。
当二次系数a为正数时,图像开口向上; 当a为负数时,图像开口向下。

人教版数学九年级上册《二次函数》第一课时教案

人教版数学九年级上册《二次函数》第一课时教案
四、展示点评点拨升华达成反思
例1、下列函数中,哪些是二次函数?若是,分别指出二次项系数,一次项系数,常数项.
例2、函数
(1)当m为何值时,y是x的二次函数?
(2)当m为何值时,y是x的一次函数?
【反思节点2】怎么判定一个函数是否为二次函数?
五、整合提高建构体系内化反思
【生活问题数学化】:一农民用40m长的篱笆围成一个一边靠墙的长方形菜园,和墙垂直的一边长为 ,菜园的面积为 ,

二、学案引导自主学习目标反思
问题2n个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队数n有什么关系?
问题3某种产品现在的年产量是20 t,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?
3.等式的右边最高次数为__________,可以没有一次项和常数项,但不能没有二次项.
4.没有特殊要求的话,x的取值范围是________.
二次函数的特殊形式:
当b=0时,y=_________
当c=0时,y=_________
当b=0,c=0时,y=__________
【反思节点1】二次函数必须满足的条件是什么?
(1)求y与x之间的函数关系式,并说出自变量的取值范围。
(2)当x=12m时,计算菜园的面积。
(3)当菜园的面积是 时,求x。
【反思节点3】如何求函数值及自变量的值?
【小结】知识网络
六、达标检测反馈矫正总结反思
1.下列函数中是二次函数的是()
A. B. C. D.
2.若函数 是关于x的二次函数,则()
思考:函数有什么共同特点?板书二次函数
一般地,形如

人教版数学九年级上册22 二次函数(第一课时)课件

人教版数学九年级上册22 二次函数(第一课时)课件

4
【典例】下列各式中,y 是 x 的二次函数的是( )
A.y=x12
B.y=2x+1
C.y=x2+x-2
D.y2=x2+3x
分析:y=x12中,x12为分式,不是二次函数,故 A 不符题意;y=2x+1 中,x 的
次数为 1,是一次函数,故 B 不符题意;y=x2+x-2 符合二次函数的定义,是二次
函数解析式是 y=3x+2 或 y=33+215
5x+5+23
5或 y=33-215
5x+5-23
5 .
(2) 若 函 数 y = (m2 - m - 2)xm2 - 5m - 4 + (m + 1)x + m 为 二 次 函 数 , 则
m2-5m-4=2, m2-m-2≠0.
解得 m=6.故当 m=6 时,函数 y=(m2-m-2)xm2-5m-4+(m
• (1)求直线AB的解析式; • (2)若设点P的横坐标为x,矩形PKDH的面积为S,求S关于x的函数解析
式.
17
解:(1)如图所示,∵OE=CD=80 m,OC=ED=100 m,AE=60 m,BC=70 m, ∴OA=20 m,OB=30 m,即 A(0,20)、B(30,0).设直线 AB 的解析式为 y=kx+b(k≠0),
►如果我们不曾相遇,你的梦里就不会有我的出现,我们都在不断地 和陌生人擦肩;如果人生不曾相遇,我的生命里就不会有你的片段,我 们都在细数着自己的日子。 ►当离别的脚步声越来越清晰,我们注定分散两地,继续彼此未完的 人生,如果我说放不下,短短一个月的光景,你是否愿意相信,我的 真诚,我的执着,只源于内心深处那一份沉沉的不舍。
►为你理想的人,否则,爱的只是你在他身上找到的你的影子。 ►有时候,我们愿意原谅一个人,并不是我们真的愿意原谅他,而是我们 不愿意失去他。不想失去他,惟有假装原谅他。不管你爱过多少人,不管 你爱得多么痛苦或快乐。最后,你不是学会了怎样恋爱,而是学会了,怎 样去爱自己。

二次函数第一课时PPT省公开课获奖课件说课比赛一等奖课件

二次函数第一课时PPT省公开课获奖课件说课比赛一等奖课件
上述三个问题中旳函数解析式具有哪些共同旳 特征?
经化简后都具有y=ax²+bx+c 旳形式. (a,b,c是常数, a≠0 )
下列函数中,哪些是二次函数?
(1)y=3x-1
(2)y=3x2
(3)y=3x3+2x2
(4)y=2x2-2x+1
(5)y=x-2&x)
y ax2 bx c(其中a,b, c是常数),
二次函数旳概念
温故知新
复习: 1、什么是函数?
在某个变化过程中,有两个变量x 和y , 假如对于x 旳每一个可取旳值,都有唯一一 种y 值与它相应,那么y 称为x 旳 函数。 2、什么叫做一次函数?
形如y=kx+b (k、b为常数,k≠0)
3、函数有哪些表达措施?
解析法 列表法 图象法
合作学习,探索新知 :
请用合适旳函数解析式表达下列问题情 境中旳两个变量 y 与 x 之间旳关系:
(1)圆旳面积 y ( cm2)与圆旳半径 x ( cm ) y =πx2
(2)某商店1月份旳利润是2万元,2、3月 份利润逐月增长,这两个月利润旳月平 均增长率为x,3月份旳利润为y
y = 2(1+x)2
合作学习,探索新知 :
当a, b, c满足什么条件时
(1)它是二次函数? (1)a 0
(2)它是一次函数? (2)a 0,b 0
(3)它是正百分比函数?(3)a 0,b 0, c 0
例题精讲
例1 m取哪些值时,函数 y=(m2-m)x2+mx+(m+1)是以x为自变量旳二次
函数?
2: m取何值时,函数y=(m+1)xm2 2m 1
(3)拟建中旳一种温室旳平面图如图,假如

二次函数第一课时教学课件

二次函数第一课时教学课件

进阶题
设计涉及二次函数图像、 最值和实际应用的练习题 ,提升学生解题能力。
解析与答案
对每道练习题进行详细解 析,并提供标准答案,帮 助学生理解解题思路和方 法。
学生互动与讨论
学生互评
让学生互相评价彼此的练习题解答, 促进相互学习和借鉴。
分享心得
教师点评
教师对学生的互动与讨论进行点评, 给予指导和建议,促进学生全面发展 。
鼓励学生分享学习二次函数的体会和 心得,激发学习热情。
06 总结与回顾
本课时的重点回顾
01
02
03
04
二次函数的定义和表达 式
二次函数的开口方向和 顶点坐标
二次函数的对称性和单 调性
二次函数与一元二次方 程的关系
学生需掌握的知识点
能够理解二次函数的定义和表达式, 并能够进行简单的二次函数计算。
二次函数的系数
要点一
总结词
二次函数的系数决定了函数的开口方向、开口大小、对称 轴和顶点位置。
要点二
详细描述
系数$a$决定了二次函数的开口方向和开口大小,当 $a>0$时,函数图像开口向上,当$a<0$时,函数图像开 口向下。同时,系数$a$也决定了抛物线的开口大小,绝 对值越大,开口越小。系数$b$和$a$共同决定了二次函数 的对称轴位置,对称轴的方程为$x=-frac{b}{2a}$。而系 数$b$和$c$则共同决定了抛物线的顶点位置,顶点的坐标 为$left(-frac{b}{2a}, c-frac{b^2}{4a}right)$。
能够理解二次函数与一元二次方程的 关系,并能够利用二次函数解决一些 实际问题。
能够理解二次函数的开口方向、顶点 坐标、对称性和单调性,并能够根据 这些性质判断二次函数的图像。

[初三数学]《二次函数》第1课时教学设计

[初三数学]《二次函数》第1课时教学设计
(二)上述三个函数解析式具有哪些共同特征?
让学生充分发表意见,提出各自看法。
教师归纳总结:上述三个函数解析式经化简后都具y=ax²+bx+c (a,b,c是常数, a≠0)的形式.
板书:我们把形如y=ax²+bx+c(其中a,b,C是常数,a≠0)的函数叫做二次函数(quadratic funcion)
称a为二次项系数,b为一次项系数,c为常数项,
请讲出上述三个函数解析式中的二次项系数、一次项系数和常数项。
注意:切不可忽视a≠0.
学生思考问题,列出关系式。
学生小组合作交流。
学生发表自己的见解,总结归纳二次函数的定义。
让学生体会引入二次函数概念的显示背景,感受其实际意义,激发学生的学习兴趣。
通过归纳、分析,使学生明白二次函数的特征,理解其解析的特点。
(1) (2) (3)
3、若函数 为二次函数,则m的值为。
(二)实际问题中的二次函数:
1、如图,一张正方形纸板的边长为2cm,将它剪去4个全等的直角三角形(图中阴影部分)。设AE=BF=CG=DH=x(cm) ,四边形EFGH的面积为y(cm2),求:
(1)y关于x的函数解析式和自变量x的取值范围。
二次函数(第1课时)教学设计
教师行为
学生学习活动
设计意图
活动1:创设情境,导入新课:
问题1、现有一根12m长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时 ,它的面积最大,他说的有道理吗?
问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?
3、如果函数y=(k+2)xk²-2是y关于x的二次函数,则k值为多少?

第1讲 二次函数的图像及性质

第1讲 二次函数的图像及性质

第1讲二次函数的图形及性质题型1:二次函数的概念1.下列函数表达式中,一定为二次函数的是()A.y=5x−1B.y=ax2+bx+c C.y=3x2+1D.y=x2+1x题型2:利用二次函数定义求字母的值2.已知y=(m+1)x|m−1|+2m是y关于x的二次函数,则m的值为()A.−1B.3C.−1或3D.0题型3:二次函数的一般形式3.二次函数y=2x2﹣3的二次项系数、一次项系数和常数项分別是()A.2、0、﹣3B.2、﹣3、0C.2、3、0D.2、0、3A.2B.﹣2C.﹣1D.﹣4题型4:根据实际问题列二次函数4.一个矩形的周长为16cm,设一边长为xcm,面积为y cm2,那么y与x的关系式是【变式4-1】如图,用长为20米的篱笆(AB+BC+CD=20),一边利用墙(墙足够长),围成一个长方形花圃.设花圃的宽AB为x米,围成的花圃面积为y米2,则y关于x的函数关系式是.【变式4-2】某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y (单位:元)与每件涨价x(单位:元)之间的函数关系式是()A.y=(200﹣5x)(40﹣20+x)B.y=(200+5x)(40﹣20﹣x)C.y=200(40﹣20﹣x)D.y=200﹣5x题型5:自变量的取值范围5..若y=(a−2)x2−3x+4是二次函数,则a的取值范围是()A.a≠2B.a>0C.a>2D.a≠0【变式5-1】函数y=√x+2的自变量取值范围是()x−1A.x≥−2B.−2≤x<1C.x>1D.x≥−2且x≠1【变式5-2】若y=(m+1)x m2−2m−1是二次函数,则m=,其中自变量x的取值范围是.22.1.2二次函数y=ax2的图像和性质二次函数y=ax2(a≠0)的图象用描点法画出二次函数y=ax2(a≠0)的图象,如图,它是一条关于y轴对称的曲线,这样的曲线叫做抛物线.二次函数y=ax2(a ≠0)的图象的画法用描点法画二次函数y=ax 2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x 的值,然后计算出对应的y 值,这样的对应值选取越密集,描出的图象越准确.注意:用描点法画二次函数y=ax 2(a≠0)的图象,该图象是轴对称图形,对称轴是y 轴.画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.题型1:利用描点法作函数图像1.在直角坐标系中,画出函数y =2x 2的图象(取值、描点、连线、画图).【变式1-1】在如图所示的同一平面直角坐标系中,画出函数y =2x 2,y =x 2,y =﹣2x 2与y =﹣x 2的图象.x y =2x 2 y =x 2 y =﹣2x 2 y =﹣x 2x ya>0a<0题型2:二次函数y=ax2的图像2.在同一坐标系中画出y1=2x2,y2=﹣2x2,y3=x2的图象,正确的是()A.B.C.D.【变式2-1】下列图象中,是二次函数y=x2的图象的是()A.B.C.D.【变式2-2】如图,在同一平面直角坐标系中,作出函数①y=3x2;②y=;③y=x2的图象,则从里到外的三条抛物线对应的函数依次是()A.①②③B.①③②C.②③①D.③②①题型3:二次函数y=ax2的性质3.抛物线y=﹣3x2的顶点坐标为()A.(0,0)B.(0,﹣3)C.(﹣3,0)D.(﹣3,﹣3)【变式3-1】抛物线,y=x2,y=﹣x2的共同性质是:①都开口向上;②都以点(0,0)为顶点;③都以y轴为对称轴.其中正确的个数有()A.0个B.1个C.2个D.3个【变式3-2】.对于函数y=4x2,下列说法正确的是()A.当x>0时,y随x的增大而减小B.当x>0时,y随x的增大而增大C.y随x的增大而减小D.y随x的增大而增大【变式3-3】二次函数y=﹣3x2的图象一定经过()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限题型4:函数图像位置的识别4.已知a≠0,b<0,一次函数是y=ax+b,二次函数是y=ax2,则下面图中,可以成立的是()A.B.C.D.【变式4-1】函数y=ax2与y=ax+a,在第一象限内y随x的减小而减小,则它们在同一平面直角坐标系中的图象大致位置是()A.B.C.D.【变式4-2】在图中,函数y=﹣ax2与y=ax+b的图象可能是()A.B.C.D.题型5:函数值的大小比较5.二次函数y1=﹣3x2,y2=﹣x2,y3=5x2,它们的图象开口大小由小到大的顺序是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y1<y3题型6:简单综合-三角形面积6.求直线y=3x+4与抛物线y=x2的交点坐标,并求出两交点与原点所围成的三角形面积.22.1.3二次函数y=a(x-h)²+k的图像和性质二次函数y=ax2+c(a≠0)的图象(1)(2)0 a>0 a<题型1:二次函数y=ax²+k的图象1.建立坐标系,画出二次函数y=﹣x2及y=﹣x2+3的图象.向上向下题型2:二次函数y=ax²+k的性质2.抛物线的开口方向是()A.向下B.向上C.向左D.向右【变式2-2】抛物线y=2x2+1的对称轴是()A.直线x=B.直线x=﹣C.直线x=2D.y轴题型3:二次函数y=a(x-h)²的图象3.画出二次函数(1)y=(x﹣2)2(2)y=(x+2)2的图象.课堂总结:题型4:二次函数y=a(x-h)²的性质4.对于二次函数y=﹣(x﹣1)2的图象,下列说法不正确的是()A.开口向下B.对称轴是直线x=1C.顶点坐标为(1,0)D.当x<1时,y随x的增大而减小题型5:二次函数y=a(x-h )²+k 的图象和性质5.对于二次函数y =﹣5(x +4)2﹣1的图象,下列说法正确的是( ) A .图象与y 轴交点的坐标是(0,﹣1) B .对称轴是直线x =4C .顶点坐标为(﹣4,1)D .当x <﹣4时,y 随x 的增大而增大 【变式5-1】再同一直角坐标系中画出下列函数的图象 (1)y =(x ﹣2)2+3 (2)y =(x +2)2﹣3【变式5-2】画函数y =(x ﹣2)2﹣1的图象,并根据图象回答: (1)当x 为何值时,y 随x 的增大而减小.(2)当x 为何值时,y >0.【变式5-3】写出下列二次函数图象的开口方向、对称轴和顶点坐标. (1)y =5(x +2)2﹣3;(2)y =﹣(x ﹣2)2+3;(3)y =(x +3)2+6.二次函数的平移 1.平移步骤:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标; ⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下: ()2y a x h k =-+()h k ,2y ax =()h k ,2.平移规律:在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左h k加右减,上加下减”.题型6:二次函数几种形式之间的关系(平移)6.将抛物线y=(x﹣3)2﹣4先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的函数表达式为()A.y=(x﹣4)2﹣6B.y=(x﹣1)2﹣3C.y=(x﹣2)2﹣2D.y=(x﹣4)2﹣2【变式6-1】将抛物线向上平移2个单位长度,再向右平移1个单位长度,能得到抛物线y =2(x﹣2)2+3的是()A.y=2(x﹣1)2+1B.y=2(x﹣3)2+1C.y=﹣2(x﹣1)2+1D.y=﹣2x2﹣1【变式6-2】将二次函数y=x2﹣3的图象向右平移3个单位,再向上平移5个单位后,所得抛物线的表达式是.题型7:利用增减性求字母取值范围7.抛物线y=(k﹣7)x2﹣5的开口向下,那么k的取值范围是()A.k<7B.k>7C.k<0D.k>0【变式7-1】已知点(x1,y1)、(x2,y2)是函数y=(m﹣3)x2的图象上的两点,且当0<x1<x2时,有y1>y2,则m的取值范围是()A.m>3B.m≥3C.m≤3D.m<3【变式7-2】二次函数y=(x﹣h)2+k(h、k均为常数)的图象经过P1(﹣3,y1)、P2(﹣1,y2)、P3(1,y3)三点.若y2<y1<y3,则h的取值范围是.题型8:识别图象位置8.如果二次函数y=ax2+c的图象如图所示,那么一次函数y=ax+c的图象大致是()A.B.C.D.【变式8-1】在同一平面直角坐标系中,函数y=ax2+bx与y=ax+b的图象不可能是()A.B.C.D.【变式8-2】已知m是不为0的常数,函数y=mx和函数y=mx2﹣m2在同一平面直角坐标系内的图象可以是()A.B.C.D.题型9:比较函数值的大小9.已知二次函数y=(x﹣1)2+h的图象上有三点,A(0,y1),B(2,y2),C(3,y3),则y1,y2,y3的大小关系为()A.y1=y2<y3B.y1<y2<y3C.y1<y2=y3D.y3<y1=y2题型10:简单综合问题10.已知抛物线y=(x﹣5)2的顶点为A,抛物线与y轴交于点B,过点B作x轴的平行线交抛物线于另外一点C.(1)求A,B,C三点的坐标;(2)求△ABC的面积;(3)试判断△ABC 的形状并说明理由.【变式10-1】如图,在平面直角坐标系中,抛物线y =ax 2+3与y 轴交于点A ,过点A 与x 轴平行的直线交抛物线y =x 2于点B 、C ,求BC 的长度.【变式10-2】在同一坐标系内,抛物线y =ax 2与直线y =x +b 相交于A ,B 两点,若点A 的坐标是(2,3).(1)求B 点的坐标;(2)连接OA ,OB ,AB ,求△AOB 的面积.22.1.4 二次函数y=ax 2+bx+c 的图象与性质二次函数一般式与顶点式之间的相互关系 1.顶点式化成一般式从函数解析式我们可以直接得到抛物线的顶点(h ,k),所以我们称为顶点式,将顶点式去括号,合并同类项就可化成一般式. 2.一般式化成顶点式. 2()y a x h k =-+2()y a x h k =-+2()y a x h k =-+2y ax bx c =++2222222b b b b y ax bx c a x x c a x x c a a a a ⎡⎤⎛⎫⎛⎫⎛⎫=++=++=++-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦22424b ac b a x a a -⎛⎫=++⎪⎝⎭代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.题型1:一般式化成顶点式-配方法1.将二次函数y=x2−4x+5用配方法化为y=(x−ℎ)2+k的形式,结果为()A.y=(x−4)2+1B.y=(x−4)2−1C.y=(x−2)2−1D.y=(x−2)2+1题型2:一般式化成顶点式-应用2.已知:二次函数y=x2﹣2x﹣3.将y=x2﹣2x﹣3用配方法化成y=a(x﹣h)2+k的形式,并求此函数图象与x轴、y轴的交点坐标.题型3:公式法求顶点坐标及对称轴3.已知二次函数 y =−12x 2+bx +3 ,当 x >1 时,y 随x 的增大而减小,则b 的取值范围是( ) A .b ≥−1B .b ≤−1C .b ≥1D .b ≤10a >0a <题型4:二次函数y=ax2+bx+c图像与性质4.若二次函数y=ax2+bx+c的图象如图所示,则下列说法不正确的是()A.当1<x<3时,y>0B.当x=2时,y有最大值C.图像经过点(4,−3)D.当y<−3时,x<0【变式4-2】二次函数y=ax2+bx+c的部分图象如图所示,当x>0时,函数值y的取值范围是()A.y⩽9B.y⩽2C.y<2D.y⩽3 4题型5:利用二次函数的性质比较函数值5.函数y=﹣x2﹣2x+m的图象上有两点A(1,y1),B(2,y2),则()A.y1<y2B.y1>y2几种常考的关系式的解题方法题型6:二次函数y=ax2+bx+c图像与系数的关系6.已知二次函数y=ax2+bx+c(a≠0,a,b,c为常数),如果a>b>c,且a+b+c=0,则它的图象可能是()A.B.C.D.【变式6-1】已知函数y=ax2+bx+c(a≠0)的对称轴为直线x=−4.若x1,x2是方程ax2+bx+c=0的两个根,且x1<x2,1<x2<2,则下列说法正确的是A.x1x2>0B.−10<x1<−9C.b2−4ac<0D.abc>0【变式6-2】如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),,有下列结论:①b<0;②a+b>0;③4a+2b+3c<0;④无且对称轴为直线x=12,0).其中正确结论有()论a,b,c取何值,抛物线一定经过(c2aA.1个B.2个C.3个D.4个【变式6-3】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C;对称轴为直线x=−1,点B的坐标为(1,0),则下列结论:①AB=4;②b2−4ac>0;③b>0;④a−b+c<0,其中正确的结论有()个.A.1个B.2个C.3个D.4个7.二次函数y=ax2+bx+c(a≠0)中x,y的部分对应值如下表:x…﹣2﹣1012…y…0﹣4﹣6﹣6﹣4…则该二次函数图象的对称轴为()A.y轴B.直线x=12C.直线x=1D.直线x=32题型8:利用二次函数的性质求字母的范围8.已知二次函数y=x2+bx+1当0<x<12的范围内,都有y≥0,则b的取值范围是A.b≥0B.b≥﹣2C.b≥﹣52D.b≥﹣32a题型9:利用二次函数的性质求最值9.二次函数y=−x2+2x+4的最大值是.题型10:给定范围内的最值问题10.已知二次函数y=ax2+bx+1.5的图象(0≤x≤4)如图,则该函数在所给自变量的取值范围内,最大值为,最小值为.。

二次函数的图像与性质(第一课时)优质课件

二次函数的图像与性质(第一课时)优质课件
对称轴与抛物 线的交点叫做 抛物线的顶点.
抛物线y=x2在x轴的上方(除顶点外), 顶点是它的最低点,开口向上, 当x=0 时,函数y的值最小,最小值是0.
【内容】独立完成探究点一的针对练习、 探究点二。(5min)
【要求】1.独立思考,认真分析总结; 2.标记好自己的疑难问题,以便讨论 探究; 3.自主独立做题,2min时间到后学 科组长组织组员针对疑难问题及 小组任务进行讨论交流。
2.2 二次函数的图像与性质(一)
我们把物体抛射时所经过的路线叫做抛物线.
1.经历探索二次函数y=x2 的图像的作法
和性质的过程,获得利用图像研究函数性质 的经验;
2.能够利用描点法作出二次函数y=x2的图 像,并能根据图像认识和理解二次函数y=x2 的性质;
3.能够作出二次函数 y=-x2的图像,并能 够y=x2比较出与 的图像的异同,初步建立二 次函数表达式与图像之间的联系.
【内容】快速、独立完成训练案“自测反馈”(8min) 【要求】1.独立思考,认真分析总结
2.标记好自己的疑难问题,以便课后讨论探究
探究内容 展示小组
14组小2源自2组组 合3
6组

4
5组
能力提升1
1组
能力提升2
3组
【要求】1.独立完成训练案的填空题;2.标记好自己的疑难
问题,以便讨论 ;3.针对疑难,自由探讨,互帮互助.
2、剩余时间思考探究案中其他问题,并把你认为正确的答 案写在学案上。
1.列表时注意自变量X的取值是否有意义.
(1)反比例函数: y
2
x
(x≠0)
(2)圆的面积公式:S r 2 (r≥0)
(3)二次函数: y=-x2 (x取全体实数)

二次函数(第一课时)说课稿

二次函数(第一课时)说课稿

二次函数(第一课时)说课稿《二次函数》说课一、教材分析:1.教材的地位和作用二次函数是初中阶段研究的最重要的函数,在历年来的中考题中占有较大比例。

同时,二次函数和一元二次方程、一元二次不等式有着密切的联系,进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。

而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象及性质做铺垫。

所以这节课在整个教材中具有承上启下的重要作用。

2.教学目标知识目标:1、分析确定二次函数关系式2、确定二次函数关系式中各项的系数能力目标:1、通过讲练结合,培养学生解决实际问题的能力。

2、通过设置问题情境,提高学生分析和解决问题的能力。

情感目标:分组学习方式,培养学生与他人沟通交流、团结合作的能力。

3.重点难点重点:1、分析确定二次函数关系式2、确定二次函数关系式中各项的系数难点:通过实例分析、确定二次函数关系的表达式二、教法与学法分析:1.教法分析(1)采用引导探索的方法,激发学生的学习兴趣。

(2)教师精讲、学生多练,体现了以学生为主体、教师为主导的教学原则。

(3)引导学生发现问题,自主学习,从而体验到独立获取知识的喜悦感。

(4)通过“导入”“探索”“归纳”“运用”“总结”突破重点和难点。

2.学法分析(1)主动学习法:举出例子,提出问题,让学生在独立学习和团结合作中获得感性认识的同时,教师层层深入,启发学生积极思维,主动探索知识,培养学生思维想象的综合能力。

反馈补救法:在练习中,注意观察学生对学习的反馈情况,以实现“培优扶差,满足不同。

”3.教学手段采用多媒体辅助教学,实物投影、小测纸等手段,及时反馈相关信息。

三、教学过程:(一)回顾复习一次函数、正比例函数的一般形式是什么?探索新知请用适当的函数解析式表示下列问题情境中的两个变量y 与x之间的关系:(1)圆的面积y()与圆的半径x(cm)(1)____________________(2)____________________(3)____________________(4)____________________【设计意图:此题由简单的图形公式列关系式逐步过渡到具体应用列关系式,让学生经历由简单到复杂的过程,从而降低学生学习的难度。

二次函数__第一课二次函数的概念

二次函数__第一课二次函数的概念

二次函数第一课教学目标:1.使学生理解二次函数的概念.2.使学生掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围.3.为分散后面教学的难点,可在本节解决较简单的用待定系数法确定二次函数解析式的问题.重点:对二次函数概念的理解.难点:由实际问题确定函数解析式和确定自变量的取值范围.一、知识回顾:1、什么叫函数?它有几种表示方法?2、我们学过那些函数?它们的图像分别是什么?二、试一试:1、正方体的棱长为x(cm),那么它的表面积y(cm2)与x的关系式是_______2、化工厂在一月份生产某种产品200吨,三月份生产y吨,则y与月平均增长率x自变量的关系是_________3、有一个矩形,它的长与宽的和为30cm,设长为L,矩形面积为S,则S与L的函数关系是________三、概念引入在y=6x2、y=200x2+400x+200、s=-L2+30L 这三个式子中,虽然含有一项的、二项的、三项的,但它们都是用自变量的二次多项式来表示的,且自变量的最高次都是二次.二次函数的概念:形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数叫做x的二次函数注意:(1)必须a≠0,否则就不是二次函数,而b、c两数可以是0(2)在y=ax2+bx+c(a≠0)中,x的取值范围是全体实数但当自变量表示实际意义时,自变量的取值范围就不一定是全体实数四、知识运用练习1:下列函数中,哪些是二次函数?(1)y=3x-1 (2)y=3x2(3)y=33+2x2 (4)y=2x2-2x+1(5)y=x-2+x (6)y=x2-x(1+x)例1:m取何值时,y= (m2-1)x m(m-1)是二次函数?练习2. m取哪些值时,函数是以x为自变量的二次函数?)1()(22+++-=mmxxmmy3.已知函数是二次函数,求m 的值例2.写出下列各函数关系,并判断它们是什么类型的函数.(1)写出正方体的体积V (cm 3)与正方体棱长a (cm )之间的函数关系;(2)写出圆的面积y (cm 2)与它的周长x (cm )之间的函数关系;(3)某种储蓄的年利率是1.98%,存入10000元本金,若不计利息税,求本息和y (元)与所存年数x 之间的函数关系;(4)菱形的两条对角线的和为26cm ,求菱形的面积S (cm 2)与一对角线长x (cm )之间的函数关系.例3:已知二次函数y=ax 2+bx 。

二次函数的图象与性质(第一课时) 课件(共34张PPT)北师大版初中数学九年级下册

二次函数的图象与性质(第一课时) 课件(共34张PPT)北师大版初中数学九年级下册
(g为定值)
此外,二次函数在建筑学上也有重要应用,如抛物线型隧道、抛物线型拱桥、抛物线型吊桥、抛物线型弯道等.要确定这些抛物线的形状,需要对地质、地形、气象、水力、材料等因素进行综合分析.
这节课 你学到了什么?
同学们再见!
授课老师:
时间:2024年9月15日
1.某一物体的质量为m,它运动时的能量E与它的运动速度v之间的关系是:
(m为定值)
2.导线的电阻为R,当导线中有电流通过时,单位时间所产生的热量Q与电流强度I之间的关系是:
(R为定值)
Q=RI2
3.g表示重力加速度,当物体自由下落时,下落的距离s与下落时间t之间的关系是:
二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线 y=x2.
开口向上
(2)图象与x轴有交点吗?如果有,交点坐标是什么?
有,(0,0)
是,对称轴是 y 轴.
(-2,4)和(2,4);
(-3,9)和(3,9)等等.
(-1,1)和(1,1);
(3)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点.
探究1 请作出二次函数 y=x2 的图象.
x


y


-3
-2
-1
0
1
2
3
(2)在直角坐标系中描点.
(3)用光滑的曲线顺次连接各点,便得到函数 y=x2 的图象.
y=x2
x

-3
-2
-1
0
1
2
3

y

9
4
1
0
1
4
9

(1)你能描述图象的形状吗?

二次函数第一课时教案

二次函数第一课时教案

二次函数第一课时教案教案标题: 二次函数第一课时教案教学目标:1. 理解二次函数的定义及其一般形式;2. 能够识别二次函数的图像特征,包括顶点、开口方向和对称轴;3. 能够通过顶点坐标和开口方向确定二次函数的图像;4. 能够根据给定的二次函数方程,求解其顶点、开口方向和对称轴。

教学重点:1. 二次函数的定义及其一般形式;2. 二次函数图像的特征和确定方法。

教学准备:1. 教师准备:教学投影仪、黑板、白板笔;2. 学生准备:课本、作业本、笔。

教学过程:步骤一: 导入新知识1. 教师通过引入实际问题(例如:抛物线的形状、跳水运动员的轨迹等),激发学生对二次函数的兴趣。

2. 教师提问学生,让学生思考并回答:你们对二次函数有什么了解?步骤二: 介绍二次函数的定义及一般形式1. 教师给出二次函数的定义:二次函数是指具有形如 f(x) = ax^2 + bx + c 的函数,其中 a、b、c 是常数且a ≠ 0。

2. 教师解释二次函数的一般形式,指出 a、b、c 的含义。

步骤三: 讨论二次函数图像的特征1. 教师引导学生观察并讨论二次函数图像的特征,包括顶点、开口方向和对称轴。

2. 教师解释顶点的概念,并指出顶点的坐标对应二次函数的最值。

3. 教师解释开口方向的概念,并指出 a 的正负决定了二次函数的开口方向。

4. 教师解释对称轴的概念,并指出对称轴与顶点的横坐标相等。

步骤四: 确定二次函数图像的方法1. 教师通过示例演示如何通过顶点坐标和开口方向确定二次函数的图像。

2. 教师提供练习题,让学生自行确定二次函数的图像。

步骤五: 求解二次函数的顶点、开口方向和对称轴1. 教师介绍如何根据给定的二次函数方程,求解其顶点、开口方向和对称轴。

2. 教师通过示例演示求解过程,并解释关键步骤。

3. 教师提供练习题,让学生独立求解二次函数的顶点、开口方向和对称轴。

步骤六: 总结与拓展1. 教师与学生一起总结本节课所学内容,并强调重点。

二次函数第一课时教案

二次函数第一课时教案

二次函数第一课时教案二次函数第一课时教案【教学目标】1. 掌握二次函数的定义和特点;2. 能够识别二次函数的图像,了解二次函数的单调性和最值;3. 能够根据二次函数的图像确定二次函数的解析式;4. 培养学生观察能力和问题解决能力。

【教学重点】1. 二次函数的定义和特点;2. 二次函数的图像特征;3. 二次函数的解析式。

【教学难点】1. 二次函数的图像特征的判断;2. 根据二次函数的图像确定其解析式。

【教学过程】一、引入新知识(15分钟)1. 提问:你还记得什么是一次函数吗?一次函数的特点是什么?2. 解释:一次函数是指函数中最高次项是一次幂的函数,一次函数的图像是直线。

3. 师生互动:请举例说明一次函数。

二、学习新知识(30分钟)1. 定义二次函数:函数中最高次项是二次幂的函数称为二次函数。

记作y=ax²+bx+c,其中a≠0。

2. 二次函数图像的特征:(1)抛物线开口向上或向下;(2)对称轴:过抛物线顶点的直线称为对称轴;(3)最值:如果抛物线开口向上,那么最小值为顶点的纵坐标;如果抛物线开口向下,那么最大值为顶点的纵坐标;(4)单调性:抛物线在对称轴两侧的单调性相反。

三、巩固练习(25分钟)小组活动:请同学们分组完成以下问题。

1. 判断二次函数y=2x²+3x+1的图像特征。

2. 画出二次函数y=-x²+4的图像并标注顶点和最值。

3. 判断二次函数y=-3x²+6x+9的图像特征。

四、总结归纳(10分钟)1. 请同学们总结二次函数的定义和特点。

2. 请同学们总结二次函数图像的判断方法。

【教学反思】通过引入一次函数的概念,激发了学生的学习兴趣和初步认识二次函数的需求。

然后通过定义二次函数和讲解图像特征,使学生对二次函数有了初步的认识。

最后通过小组活动让学生掌握了判断二次函数图像特征的方法,并且能够根据已知的图像确定二次函数的解析式。

整个教学过程中有启发式提问和小组合作学习,注重学生的实际操作和思考,培养了学生的观察能力和问题解决能力。

第1课二次函数(学生版)九年级数学上册讲义(浙教版)

第1课二次函数(学生版)九年级数学上册讲义(浙教版)

第1课 二次函数学习目标1.理解二次函数的概念,掌握二次函数的标准形式2.会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围.3.会用待定系数法求二次函数的表达式.知识点01 二次函数函数的概念1.形如c bx ax y ++=2(其中c b a ,,是 ,0≠a )的函数叫做 ,称a 为 ,b 为 ,c 为 .注意:二次项系数0a ≠,而b c ,可以为零.二次函数的自变量的取值范围是 .2.二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.知识点02 根据实际问题列二次函数表达式根据实际问题确定二次函数关系式关键是读懂题意,理解题意,建立二次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定.知识点03 待定系数法求二次函数的表达式用待定系数法求二次函数的表达式步骤:(1)设二次函数的表达式;(2) 根据已知条件,得到关于待定系数的方程组。

(3)解方程组,求出待定系数的值,从而写出函数的解析式。

知识精讲目标导航能力拓展考点01 二次函数函数的概念【典例1】若y=(a+1)x|a+3|﹣x+3是关于x的二次函数,则a的值是()A.1 B.﹣5 C.﹣1 D.﹣5或﹣1【即学即练1】如果函数y=(m﹣2)是二次函数,则m的值为.考点02 根据实际问题列二次函数表达式【典例2】如图所示,用长为21米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃,为便于进出,开了3道宽为1米的门.设花圃的宽AB为x米,面积为S平方米,则S与x的之间的函数表达式为;自变量x的取值范围为.【即学即练2】某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率x,第3年的销售量为y台,则y关于x的函数解析式为()A.y=5000(1+2x)B.y=5000(1+x)2C.y=5000+2x D.y=5000x2考点03 待定系数法求二次函数的表达式【典例3】已知二次函数y=x2+bx+c,当x=1时y=3;当x=﹣1时,y=1,求这个二次函数的解析式.【即学即练2】二次函数y=ax2+bx﹣3中的x,y满足如表x…﹣1012…y…0﹣3m﹣3…(1)求这个二次函数的解析式;(2)求m的值.分层提分题组A 基础过关练1.下列函数中,属于二次函数的是()A.y=2x﹣3 B.y=(x+1)2﹣x2 C.y=2x(x+1)D.y =﹣2.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为40米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米,围成的苗圃面积为y平方米,则y关于x的函数关系式为()A.y=x(40﹣x)B.y=x(18﹣x)C.y=x(40﹣2x)D.y=2x(40﹣2x)3.已知函数y=ax2+bx,当x=1时,y=﹣1;当x=﹣1时,y=2,则a,b的值分别是()A .,﹣B .,C.1,2 D.﹣1,24.如果二次函数y=ax2+bx,当x=1时,y=2;当x=﹣1时,y=4,则a,b的值是()A.a=3,b=﹣1 B.a=3,b=1 C.a=﹣3,b=1 D.a=﹣3,b=﹣15.已知二次函数y=1﹣5x+3x2,则二次项系数a=,一次项系数b=,常数项c=.6.如果函数y=(m﹣1)x2+x(m是常数)是二次函数,那么m的取值范围是.7.矩形的周长为12cm,设其一边长为xcm,面积为ycm2,则y与x的函数关系式及自变量x的取值范围是.8.当系数a,b,c满足什么条件时,函数y=ax2+bx+c是二次函数?是一次函数?是正比例函数?9.已知二次函数y=﹣x2+bx+3,当x=2时,y=3,求这个二次函数的解析式.题组B 能力提升练10.下列函数表达式中,一定为二次函数的是()A.y=2x﹣5 B.y=ax2+bx+c C.h=D.y=x2+11.已知二次函数y=ax2+bx+1,若当x=1时,y=0;当x=﹣1时,y=4,则a、b的值分别为()A.a=1,b=2 B.a=1,b=﹣2 C.a=﹣1,b=2 D.a=﹣1,b=﹣212.一台机器原价100万元,若每年的折旧率是x,两年后这台机器约为y万元,则y与x的函数关系式为()A.y=100(1﹣x)B.y=100﹣x2C.y=100(1+x)2D.y=100(1﹣x)213.n个球队参加篮球比赛,每两队之间进行一场比赛,比赛的场次数m与球队数n(n≥2)之间的函数关系是.14.一个二次函数y=(k﹣1)+2x﹣1.(1)求k值.(2)求当x=0.5时y的值?15.y与x2成正比例,并且当x=﹣1时,y=﹣3.求:(1)y与x的函数关系式;(2)当x=4时,y的值;(3)当时,x的值.题组C 培优拔尖练16.下列具有二次函数关系的是()A.正方形的周长y与边长x B.速度一定时,路程s与时间tC.正方形的面积y与边长x D.三角形的高一定时,面积y与底边长x17.若函数y=mx+4是二次函数,则m的值为()A.0或﹣1 B.0或1 C.﹣1 D.118.若y与x2成正比例,且当x=2时,y=4,则当x=﹣3时,y的值为()A.4 B.9 C.12 D.﹣519.一个二次函数,当x=0时,y=﹣5;当x=﹣1时,y=﹣4;当x=﹣2时,y=5,则这个二次函数的关系式是()A.y=4x2+3x﹣5 B.y=2x2+x+5 C.y=2x2﹣x+5 D.y=2x2+x﹣520.如图,在靠墙(墙长为20m)的地方围建一个矩形的养鸡场,另三边用竹篱笆围成,如果竹篱笆总长为50m,设鸡场垂直于墙的一边长x(m),求鸡场的面积y(m2)与x(m)的函数关系式,并求自变量的取值范围.21.在y=ax2+bx+c中,当x=2时y的值是﹣15,x=1时y的值是﹣9,x=﹣1时y的值是﹣3,求a,b、c的值.22.已知二次函数y=ax2+(km+c),当x=3时,y=15;当x=﹣2时,y=5,试求y与x之间的函数关系式.23.已知y=y1+y2,y1与x成正比例,y2与x2成正比例,当x=1时,y=6,当x=3时,y=8,求y关于x 的解析式.。

二次函数的图象与性质(第1课时) 教学设计

二次函数的图象与性质(第1课时) 教学设计

第二章 二次函数《二次函数的图象与性质(第1课时)》教学设计教学目标1.经历探索二函数2x y ±=的图象的画法和性质的过程,获得利用图象研究函数性质的经验.2.能够利用描点法画函数2x y ±=的图象,能根据图象认识和理解二次函数2x y ±=的性质.能比较2x y ±=图象和性质的异同.3.发展学生的观察、归纳、猜测、验证的能力,培养学生运用数形结合的思想解决问题能力.4.运用类比的方法学习二次函数的性质,培养学生掌握学习数学知识的通性通法,发展学生核心素养.教学重点:画出函数2x y ±=的图象,并根据图象认识和理解二次函数2x y ±=的性质.教学难点:探索二次函数2x y ±=增减性. 教学过程(一)创设问题情境,引入新课[师]我们在学习了正比例函数,一次函数与反比例函数的定义后,研究了它们各自的图象特征.知道正比例函数的图象是过原点的一条直线.一般地一次函数的图象是不过原点的一条直线,反比例函数的图象是双曲线.上节课我们学习了二次函数的一般形式为c bx ax y ++=2(其中c b a 、、均为常数且0≠a ).那么它的图象是否也为直线或双曲线呢?本节课我们将一起来研究有关问题.(二)新课讲解 1、作函数2x y =的图象[师]一次函数的图象是一条直线.二次函数的图象是什么形状呢?让我们先看最简单的二次函数2x y =.大家还记得画函数图象的一般步骤吗? [生]记得. 列表,描点,连线.[师]非常正确,下面就请同学们跟我按下面的步骤作出2x y =的图象. (1)列表:(2)在直角坐标系中描点.(3)用光滑的曲线连结各点,便得到函数图象.[师]同学们有没有什么疑惑?[生]老师,为什么要用光滑的曲线来连接各点呢?在作一次函数图象时我们都是直接用直线来连接各点的,我这里画出的是折线图,难道不对吗? [师]这个问题提得好.二次函数图象是到底用直线连接还是用光滑的曲线来连接更为合理呢?不知同学们考虑这个问题没有:列表时我们取的点都是整数点,在整数点之间还有许多小数的点并未取,如自变量1与2之间还有无数个小数,假设我们把点取得更多一些我们就能看出二次函数图象的真正面貌了.不妨取20个点试试,再取50个点试试.[生]老师,我明白了,取的点足够多时我们就能看出其本来面貌的. 2、议一议对于二次函数2x y =的图象,(1)你能描述图象的形状吗?与同伴进行交流. (2)图象与x 轴有交点吗?如果有,交点坐标是什么? (3)当0<x 时,随着值的增大,的值如何变化?当0>x 时呢? (4)当x 取什么值时,y 的值最小?最小值是什么?你是如何知道的? (5)图象是轴对称图形吗?如果是,它的对称轴是什么?请找出几对对称点,并与同伴进行交流.[生](1)图象的形状是一条曲线,就像抛出的物体所进行的路线的倒影. (2)图象与x 轴有交点,交于原点,交点坐标就是(0,0).(3)当0<x 时,图象在y 轴的左侧随着x 值的增大,y 的值逐渐减小;当0>x 时,图象在y 轴的右侧,随着x 值的增大,y 的值逐渐增大.(4)观察图象可知,当x=0时,y 的值最小,最小值为0.(5)观察图象是轴对称图形,它的对称轴是y 轴,从刚才的列表中可找到对应点(-1,1)和(1,1);(-2,4)和(2,4);(-3,9)和(3,9). [师]大家分析判断能力很棒,下面我们系统地总结一下. 3、2x y =的图象的性质[师]二次函数________2的图象是一条x y =,它的开口________,且关于______对称.对称轴与抛物线的交点是抛物线的________,它是图象的_________.同学们在补充一下:挑选一名学生在交互一体机上书写.其余学生在学案上完成下表:4、做一做PPT 显示:2x y-=二次函数图象是什么形状?先想一想,然后作出它的图象.它与二次函数2x y =的图象有什么关系?与同伴进行交流. [师]请大家按照画图的步骤作出函数2x y -=的图象.[生]2x y -=的图象如右图:形状还是抛物线,只是它的开口方向向下,它与2x y =的图象形状相同,方向相反,这两个图形可以看作是关于x [师]下面我们试着讨论2x y -=的图象的性质.挑选一名学生在交互一体机上书写.其余学生在学案上完成下表:[师]大家总结得非常棒.5、2x=图象的比较.y=函数与的2xy-我们观察函数2x=的图象,并完成下表:y=与2xy-(三)课堂小结分享一下本节课的收获. 先在小组内分享,再挑选学生利用板中板把自己的收获展示出来.(四)布置作业必做题:一、习题2.2 第1、2题.二、利用网络搜索生活中见到的抛物线图片. 拓展提升(选做):已知二次函数2xy ,若x≥m 时,y最小值为0,求实数 m 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求 :y关于 x的函数解析式和自变量x的取值范围 ;
分析:S四边形EFGH=S正方形ABCD-4×SRt△AEH
解:由题意,得
2
y 2 4
2
1 2
x(2 x)
2–X X
y 2x 4x 4
(0 x 2 )
X 2–X
2–X X X 2–X
例题讲解:
求 :y关于 x的函数解析式和自变量x的取值范围 ;
需要细心考 虑哦!
例2:m取何值时,y= (m2-1)xm(m-1) 是二次函数?
解:因为函数y= (m2-1)xm(m-1) 是二次函数
所以m2-m=2,
解得m1=2,m2=-1 但当m=-1时, m2-1=0 而m=2时, m2-1≠0 综上所述,m=2

驶向胜利 的彼岸
解:∵△AEH≌△BFE≌△CGF≌△DHG ∴EH=FE=GF=HG ∵∠AEH=∠BFE ∴∠AEH+∠BEF=90° ∴菱形EFGH为正方形
HG HG
2 2 2
∴四边形EFGH为菱形 ∵∠BFE+∠BEF=90° 即∠HEF=90°
2–X
2
X
DH
2
2
DG
X 2–X
x (2 x)
观察与交流
y=6x2① y=-x2+8x② y=240x2+120x+976③
y是x的函数吗?y是x的一次函数?反比例函数?它 们与一次函数、反比例函数有什么不同?
在上面的问题中,函数都是用自变量的二次式 表示的。
6.1
二次函数
2、定义: 一般地,形如y=ax² +bx+c(a,b,c是常数,a≠ 0)的函数叫做x的二次函数。其中x是自 变量,y是x的函数.
待定系数法
解 得 , p 1 2, q 1 5 .
二 次 函 数 解 析 式 为 y x 12 x 15
2
试一试:
已知二次函数y=ax² +bx+3, 当x=2时,函数 值为3, 当x= -2时, 函数值为2, 求这个二次 函数的解析式.
二次函数解析式为:y 1 8 x
2
1 4
x3

作业:
课本P 8习题6.1 1、2、4
结束寄语
生活是数学的源泉.
探索是数学的生命线.
下课了
(1) y=3x2 -6x+4
解: 1、y=3x2-6x+4
二次项系数: 3 一次项系数: -6 常数项: 4 是二次函数.
(2) s=-2t2+3
(2) s=-2t² +3 是二次函数.
2
2x 4x 4
2
2–X X X 2–X
y 2 x 4 x 4 (0 x 2 )
二次函数的解析式y=ax² +bx+c (其中a,b,c是常数,a≠0)
注意:当二次函数
表示某个实际问
题时,还必须根据题
意确定自变量的取 值范围.
试一试:
温馨提示:同桌 交对,互相帮助!
驶向胜利 的彼岸
例题讲解:
例3 如图,一张正方形纸板的边长为2cm,将它剪去4 个全等 的直角三角形 (图中阴影部分 )。设AE=BF= CG=DH=x(cm),四边形 EFGH的面积为y(cm2) 求 :y关于 x的函数关系式和自变量x的取值范围 ;
2–X X
X
2–X
2–X X X 2–X
例题讲解:
用20米的篱笆围一个矩形的花圃
(如图), 设连墙的一边为x,矩形的面积为y, 求:(1) 写出y关于x的函数关系式并写出自变量x的取
值范围
(2) 当x=3时,矩形的面积为多少? 解 : y x(20 2 x) (1)
2 x 2 0 x (o<x<10)
2
(2)当x=3时
y 2 3 20 3 42 m
二次项系数: -2 一次项系数: 0
常数项:
3
(3) v=10π r²
(3) v=10π r² 是二次函数.
二次项系数: 10π 一次项系数: 0 常数项: 0
(4) y=(x+3)² -x²
(4) y=(x+3)² =x2+6x+9-x2 -x²

y=6x+9
不bx+c
二次函数的一般形式: y=ax2+bx+c (其中a、b、c是常数,a≠0)
a是二次项系数 b是一次项系数 C是常数项
二次函数的特殊形式: 当b=0时, y=ax2+c 当c=0时, y=ax2+bx 当b=0,c=0时, y=ax2
例1、下列函数中,哪些是二次函数?若是, 分别指出二次项系数,一次项系数,常数项. (1) y=3x2 -6x+4 (2) s=-2t2+3
函数 y a x b x c(其中a、b、c为常数),当a、 b、c满足什么条件时,
2
(1)它是二次函数; (2)它是一次函数; (3)它是正比例函数; 当 a 0 时,是二次函数; 当 a 0, b 0 时,是一次函数; 当 a 0, b 0, c 0 时,是正比例函数;
问题3
要给边长为xm 的正方形房间铺设地板,已 知某种地板的价格为每平方米240元,踢脚线 的价格为每米30元,其他费用为1000元,门宽 0.8m,那么总费用y为多少元? 在这个问题中,地板费用与房间地面的面 240x2 元; 积有关,为 踢脚线的费用与房间地面的周长有关, 为 30(4x-0.8) 元, 其他费用固定不变,为1000元.所以总费用 与房间的边长x(m)间的函数关系式是: y=240x2+30(4x-0.8)+1000 即y=240x2+120x+976③
2 2
x
答:当x=3时,矩形的面积为42m2。
例题讲解: 例4:已知二次函数y=x² +px+q,当x=1时,函 数值为4,当x=2时,函数值为- 5, 求这个二次 函数的关系式.
解 : 把 x=1,y=4和 x=2,y=-5分 别 代 入 函 数 y x px q, 得 :
2
1 p q 4 4 2 p q 5
(3) v=10π r²
(5)y=ax2+bx+c
(4) y=(x+3)² -x² 1 (6) y=x+ __ x
4 5 6
1
2
3
驶向胜利的 彼岸
思考:你认为判断一个函数是二次 函数的关键是什么? 判断一个函数是否是二次函数的关键 是:右边是关于自变量的整式,并且自 变量的最高指数是否为2次.
知识运用
(5)y=ax2+bx+c
不是二次函数.
1 (6) y=x+ __
x
1 (6) y=x+ __ x
不是二次函数.
问题:
问题1 :正方体的六个面是全等的正方形,设正方 体的棱长为x,表面积为y,显然对于x的每一个值,y 都有唯一一个对应值,即y是x的函数,它们的具体关 y=6x2① . 系可以表示为
问题2
用16m 长的篱笆围成长方形的生 物园饲养小兔,怎样围可使小兔的活 动范围较大? 设长方形的长为x,则宽为(8-x), 如果将面积记为y,那么变量y与x间 的函数关系式为: y=x(8-x) . 即: y= -x2+8x②
相关文档
最新文档