基础训练:空间直角坐标系
高一数学空间直角坐标系试题答案及解析
高一数学空间直角坐标系试题答案及解析1.已知点A(﹣3,1,﹣4),则点A关于x轴的对称点的坐标为()A.(﹣3,﹣1,4)B.(﹣3,﹣1,﹣4)C.(3,1,4)D.(3,﹣1,﹣4)【答案】A【解析】根据在空间直角坐标系中关于x轴对称的点的坐标是横标不变,纵标和竖标变为原来的相反数,写出点A关于x轴对称的点的坐标.解:∵在空间直角坐标系中关于x轴对称的点的坐标横标不变,纵标和竖标变为原来的相反数,∵点A(﹣3,1,﹣4),∴关于x轴对称的点的坐标是(﹣3,﹣1,4),故选A.点评:本题是一个空间直角坐标系中坐标的变化特点,关于三个坐标轴对称的点的坐标特点,关于三个坐标平面对称的坐标特点,我们一定要掌握,这是一个基础题.2.求证:以A(﹣4,﹣1,﹣9),B(﹣10,1,﹣6),C(﹣2,﹣4,﹣3)为顶点的三角形是等腰直角三角形.【答案】见解析【解析】先利用空间两点的距离公式分别求出AB,AC,BC的长,然后利用勾股定理进行判定是否为直角三角形,以及长度是否有相等,从而判定是否是等腰直角三角形.证明:,,,∵d2(A,B)+d2(A,C)=d2(B,C)且d(A,B)=d(A,C).∴△ABC为等腰直角三角形.点评:本题主要考查了两点的距离公式和勾股定理的应用,考查空间想象能力、运算能力和推理论证能力,属于基础题.3.如图,长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3,A'C'于B'D'相交于点P.分别写出C,B',P的坐标.【答案】C,B',P各点的坐标分别是:(0,4,0),(3,4,3),.【解析】别以OA,OC,OD′作为空间直角坐标系的x轴,y轴,z轴,建立空间直角坐标系,如图.根据长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3和长方体在坐标系中的位置,写出B′点的顶点坐标是(3,4,3)和C的坐标,根据中点的坐标公式写出中点P的坐标.解:分别以OA,OC,OD′作为空间直角坐标系的x轴,y轴,z轴,建立空间直角坐标系,如图,根据长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3,则C点的坐标为(0,4,0),D′点的坐标为(0,0,3),B'点的坐标为(3,4,3),由中点坐标公式得:P的坐标为.故答案为:C,B',P各点的坐标分别是:(0,4,0),(3,4,3),.点评:本题考查空间中点的坐标,考查在坐标系中表示出要用的点的坐标,考查中点坐标公式,是一个基础题,这种题目是以后利用空间向量解决立体几何的主要工具.4.在空间直角坐标系中,点,过点P作平面xOy的垂线PQ,则Q的坐标为()A.B.C.D.【答案】D【解析】过点P作平面xOy的垂线PQ,则P,Q两个点的横标和纵标相同,只有竖标不同,在xoy平面上的点的竖标为0,写出要求点的坐标.解:空间直角坐标系中,点,过点P作平面xOy的垂线PQ,则P,Q两个点的横标和纵标相同,只有竖标不同,在xoy平面上的点的竖标为0,∴Q(1,,0)故选D.点评:不同考查空间中点的坐标,是一个基础题,这种题目一般不会单独出现,它只是立体几何与空间向量中所出现的题目的一个小部分.5.坐标原点到下列各点的距离最小的是()A.(1,1,1)B.(1,2,2)C.(2,﹣3,5)D.(3,0,4)【答案】A【解析】利用两点间的距离分别求得原点到四个选项中点的距离,得出答案.解:到A项点的距离为=,到B项点的距离为=3到C项点的距离为=到D项点的距离为=5故选A点评:本题主要考查了两点间的距离公式的应用.属基础题.6.点(2,0,3)在空间直角坐标系中的位置是在()A.y轴上B.xOy平面上C.xOz平面上D.第一卦限内【答案】C【解析】从选项中可以看出,此题是考查空间坐标系下坐标平面上点的特征,此点的纵坐标为0,故此点是直角坐标系中xOz平面上的点.解:∵点(2,0,3)的纵坐标为0∴此点是xOz平面上的点故应选C点评:空间直角坐标系下,xOy平面上的点的竖坐标为0,xOz平面上的点的纵坐标为0,yOz平面上的点的横坐标为0,本题考查是空间直角坐标系中点的坐标中三个分量与在坐标系中的位置的对应关系.7.已知点A(1,2,1),B(﹣1,3,4),D(1,1,1),若=2,则||的值是.【答案】.【解析】设出P点的坐标,根据所给的=2和A、B两点的坐标求出P点的坐标,写出向量的坐标,利用求模的公式得到结果.解:设P(x,y,z),∴=(x﹣1,y﹣2,z﹣1).=(﹣1﹣x,3﹣y,4﹣z)由=2得点P坐标为P(﹣,,3),又D(1,1,1),∴||=.点评:认识向量的代数特性.向量的坐标表示,实现了“形”与“数”的互相转化.以向量为工具,几何问题可以代数化,代数问题可以几何化.空间向量在立体几何中作用不可估量.8.在空间直角坐标系中,在Ox轴上的点P1的坐标特点为,在Oy轴上的点P2的坐标特点为,在Oz轴上的点P3的坐标特点为,在xOy平面上的点P4的坐标特点为,在yOz平面上的点P5的坐标特点为,在xOz平面上的点P6的坐标特点为.【答案】(x,0,0),(0,y,0),(0,0,z),(x,y,0),(0,y,z),(x,0,z).【解析】考查空间坐标系中坐标轴与坐标平面上点的坐标的结构,Ox轴上的点只有横坐标不为0;Oy轴上的点只有纵坐标不为0;Oz轴上的点只有竖坐标不为0;在xOy平面上的点竖坐标一定为0;yOz平面上的点横坐标一定为0;xOz平面上的点纵坐标一定为0;解:由空间坐标系的定义知;Ox轴上的点P1的坐标特点为(x,0,0),在Oy轴上的点P2的坐标特点为(0,y,0),在Oz轴上的点P3的坐标特点为(0,0,z),在xOy平面上的点P4的坐标特点为(x,y,0),在yOz平面上的点P5的坐标特点为(0,y,z),在xOz平面上的点P6的坐标特点为(x,0,z).故答案应依次为(x,0,0),(0,y,0),(0,0,z),(x,y,0),(0,y,z),(x,0,z).点评:考查空间坐标系的定义,训练对空间坐标系中坐标轴上的点的坐标结构与坐标平面上的点的坐标结构.9.已知空间三点的坐标为A(1,5,﹣2),B(2,4,1),C(p,3,q+2),若A,B,C三点共线,则p= ,q= .【答案】3;2【解析】根据所给的三个点的坐标,写出两个向量的坐标,根据三个点共线,得到两个向量之间的共线关系,得到两个向量之间的关系,即一个向量的坐标等于实数倍的另一个向量的坐标,写出关系式,得到结果.解:∵A(1,5,﹣2),B(2,4,1),C(p,3,q+2),∴=(1,﹣1,3),=(p﹣1,﹣2,q+4)∵A,B,C三点共线,∴∴(1,﹣1,3)=λ(p﹣1,﹣2,q+4),∴1=λ(p﹣1)﹣1=﹣2λ,3=λ(q+4),∴,p=3,q=2,故答案为:3;2点评:本题考查向量共线,考查三点共线与两个向量共线的关系,考查向量的坐标之间的运算,是一个基础题.10.求到两定点A(2,3,0),B(5,1,0)距离相等的点的坐标(x,y,z)满足的条件.【答案】6x﹣4y﹣13=0即为所求点所满足的条件.【解析】直接利用空间坐标系中两点间的距离公式得关于x,y的方程式,化简即可得所求的点的坐标(x,y,z)满足的条件.解:设P(x,y,z)为满足条件的任一点,则由题意,得,.∵|PA|=|PB|,平方后化简得:6x﹣4y﹣13=0.∴6x﹣4y﹣13=0即为所求点所满足的条件.点评:本题主要考查了点、线、面间的距离计算,以及空间几何体的概念、空间想象力,属于基础题.11.如图,长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3,A'C'于B'D'相交于点P.分别写出C,B',P的坐标.【答案】C,B',P各点的坐标分别是:(0,4,0),(3,4,3),.【解析】别以OA,OC,OD′作为空间直角坐标系的x轴,y轴,z轴,建立空间直角坐标系,如图.根据长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3和长方体在坐标系中的位置,写出B′点的顶点坐标是(3,4,3)和C的坐标,根据中点的坐标公式写出中点P的坐标.解:分别以OA,OC,OD′作为空间直角坐标系的x轴,y轴,z轴,建立空间直角坐标系,如图,根据长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3,则C点的坐标为(0,4,0),D′点的坐标为(0,0,3),B'点的坐标为(3,4,3),由中点坐标公式得:P的坐标为.故答案为:C,B',P各点的坐标分别是:(0,4,0),(3,4,3),.点评:本题考查空间中点的坐标,考查在坐标系中表示出要用的点的坐标,考查中点坐标公式,是一个基础题,这种题目是以后利用空间向量解决立体几何的主要工具.12.在xOy平面内的直线x+y=1上确定一点M;使M到点N(6,5,1)的距离最小.【答案】点M的坐标为(1,0,0)时到点N(6,5,1)的距离最小.【解析】先设点M(x,1﹣x,0),然后利用空间两点的距离公式表示出距离,最后根据二次函数研究最值即可.解:设点M(x,1﹣x,0)则=∴当x=1时,.∴点M的坐标为(1,0,0)时到点N(6,5,1)的距离最小.点评:本题主要考查了空间两点的距离公式,以及二次函数研究最值问题,同时考查了计算能力,属于基础题.13.试解释方程(x﹣12)2+(y+3)2+(z﹣5)2=36的几何意义.【答案】在空间中以点(12,﹣3,5)为球心,球半径长为6的球面.【解析】题中式子可化为:,只要利用两点间的距离公式看看它所表示的几何意义即可得出答案.解:在空间直角坐标系中,方程(x﹣12)2+(y+3)2+(z﹣5)2=36即:方程表示:动点P(x,y)到定点(12,﹣3,5)的距离等于定长6,所以该方程几何意义是:在空间中以点(12,﹣3,5)为球心,球半径长为6的球面.点评:本题主要考查了球的性质和数形结合的数学思想,是一道好题.14.已知点P的坐标为(3,4,5),试在空间直角坐标系中作出点P.【答案】见解析【解析】找出P点在横轴和纵轴上的投影,以这两个投影为邻边的矩形的一个顶点是点P在xOy坐标平面上的射影,过这个射影对应的点作直线垂直于xOy坐标平面,并在此直线的xOy平面上方截取5个单位,得到要求的点.解:由P(3,4,5)可知点P在Ox轴上的射影为A(3,0,0),在Oy轴上射影为B(0,4,0),以OA,OB为邻边的矩形OACB的顶点C是点P在xOy坐标平面上的射影C(3,4,0).过C作直线垂直于xOy坐标平面,并在此直线的xOy平面上方截取5个单位,得到的就是点P.点评:本题考查空间直角坐标系,考查空间中点的坐标,是一个基础题,解题的关键是能够想象出空间图形,是一个送分题目.15.设点B是点A(2,﹣3,5)关于xOy面的对称点,则A、B两点距离为()A.10B.C.D.38【答案】A【解析】点B是A(2,﹣3,5)关于xoy平面对称的点,B点的横标和纵标与A点相同,竖标相反,写出点B的坐标,根据这条线段与z轴平行,得到A、B两点距离.解:点B是A(2,﹣3,5)关于xoy平面对称的点,∴B点的横标和纵标与A点相同,竖标相反,∴B(2,﹣3,﹣5)∴AB的长度是5﹣(﹣5)=10,故选A.点评:本题看出空间中点的坐标和两点之间的距离,本题解题的关键是根据关于坐标平面对称的点的特点,写出坐标,本题是一个基础题.16.点P(x,y,z)满足=2,则点P在()A.以点(1,1,﹣1)为圆心,以2为半径的圆上B.以点(1,1,﹣1)为中心,以2为棱长的正方体上C.以点(1,1,﹣1)为球心,以2为半径的球面上D.无法确定【答案】C【解析】通过表达式的几何意义,判断点P的集合特征即可得到选项.解:式子=2的几何意义是动点P(x,y,z)到定点(1,1,﹣1)的距离为2的点的集合.故选C.点评:本题考查空间两点间距离公式的应用,空间轨迹方程的求法.17.点P(1,2,3)关于y轴的对称点为P1,P关于坐标平面xOz的对称点为P2,则|P1P2|= .【答案】2【解析】由题意求出P关于坐标平面xOz的对称点为P2的坐标,即可求出|P1P2|.解:∵点P(1,2,3)关于y轴的对称点为P1,所以P1(﹣1,2,﹣3),P关于坐标平面xOz的对称点为P2,所以P2(1,﹣2,3),∴|P1P2 |==2.故答案为:2点评:本题是基础题,考查空间点关于点、平面的对称点的求法,两点的距离的求法,考查计算能力.18.已知x,y,z满足(x﹣3)2+(y﹣4)2+z2=2,那么x2+y2+z2的最小值是.【答案】27﹣10.【解析】利用球心与坐标原点的距离减去半径即可求出表达式的最小值.解:由题意可得P(x,y,z),在以M(3,4,0)为球心,为半径的球面上,x2+y2+z2表示原点与点P的距离的平方,显然当O,P,M共线且P在O,M之间时,|OP|最小,此时|OP|=|OM|﹣=﹣=5,所以|OP|2=27﹣10.故答案为:27﹣10.点评:本题考查空间中两点间的距离公式的应用,考查计算能力.19.如图所示,过正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的边长为2,OP=2,连接AP、BP、CP、DP,M、N分别是AB、BC的中点,以O为原点,射线OM、ON、OP分别为Ox轴、Oy轴、Oz轴的正方向建立空间直角坐标系.若E、F分别为PA、PB的中点,求A、B、C、D、E、F的坐标.【答案】A(1,﹣1,0),B(1,1,0),C(﹣1,1,0),D(﹣1,﹣1,0),E(,﹣,1),F().【解析】由题意直接写出B的坐标,利用对称性以及中点坐标公式分别求出A、B、C、D、E、F 的坐标.解:如图所示,B点的坐标为(1,1,0),因为A点关于x轴对称,得A(1,﹣1,0),C点与B点关于y轴对称,得C(﹣1,1,0),D与C关于x轴对称,的D(﹣1,﹣1,0),又P(0,0,2),E为AP的中点,F为PB的中点,由中点坐标公式可得E(,﹣,1),F().点评:本题考查空间点的坐标的求法,中点坐标公式的应用,对称知识的应用,考查计算能力.20.已知空间直角坐标系O﹣xyz中的点A(1,1,1),平面α过点A且与直线OA垂直,动点P(x,y,z)是平面α内的任一点.(1)求点P的坐标满足的条件;(2)求平面α与坐标平面围成的几何体的体积.【答案】(1)x+y+z=3.(2)【解析】(1)通过平面α过点A且与直线OA垂直,利用勾股定理即可求点P的坐标满足的条件;(2)求出平面α与坐标轴的交点坐标,即可利用棱锥的体积公式求出所求几何体体积.解:(1)因为OA⊥α,所以OA⊥AP,由勾股定理可得:|OA|2+|AP|2=|OP|2,即3+(x﹣1)2+(y﹣1)2+(z﹣1)2=x2+y2+z2,化简得:x+y+z=3.(2)设平面α与x轴、y轴、z轴的点分别为M、N、H,则M(3,0,0)、N(0,3,0)、H(0,0,3).所以|MN|=|NH|=|MH|=3,所以等边三角形MNH的面积为:=.又|OA|=,故三棱锥0﹣MNH的体积为:=.点评:本题考查空间想象能力,计算能力,转化思想,空间两点距离公式的应用.。
空间直角坐标系试题(含答案)
空间直角坐标系一、选择题1.在空间直角坐标系中, 点P(1,2,3)关于x 轴对称的点的坐标为( )A .(-1,2,3)B .(1,-2,-3)C .(-1, -2, 3)D .(-1 ,2, -3)2.在空间直角坐标系中, 点P(3,4,5)关于yOz 平面对称的点的坐标为( )A .(-3,4,5)B .(-3,- 4,5)C .(3,-4,-5)D .(-3,4,-5)3.在空间直角坐标系中, 点A(1, 0, 1)与点B(2, 1, -1)之间的距离为( )A .6B .6C .3D .24.点P( 1,0, -2)关于原点的对称点P /的坐标为( )A .(-1, 0, 2)B .(-1,0, 2)C .(1 , 0 ,2)D .(-2,0,1)5.点P( 1, 4, -3)与点Q(3 , -2 , 5)的中点坐标是( )A .( 4, 2, 2)B .(2, -1, 2)C .(2, 1 , 1)D . 4, -1, 2)6.若向量a 在y 轴上的坐标为0, 其他坐标不为0, 那么与向量a 平行的坐标平面是( )A . xOy 平面B . xOz 平面C .yOz 平面D .以上都有可能7.在空间直角坐标系中, 点P(2,3,4)与Q (2, 3,- 4)两点的位置关系是( )A .关于x 轴对称B .关于xOy 平面对称C .关于坐标原点对称D .以上都不对8.已知点A 的坐标是(1-t , 1-t , t), 点B 的坐标是(2 , t, t), 则A 与B 两点间距离的最小值为( )A .55B .555C .553D . 511 9.点B 是点A (1,2,3)在坐标平面yOz 内的射影,则OB 等于( )A .14B .13C .32D .1110.已知ABCD 为平行四边形,且A (4,1,3),B (2,-5,1),C (3,7,-5),则点D 的坐标为 ( )A .(27,4,-1) B .(2,3,1) C .(-3,1,5) D .(5,13,-3)11.点),,(c b a P 到坐标平面xOy 的距离是( ) A .22b a + B .c C .c D .b a + 12.已知点)11,2,1(-A ,)3,2,4(B , )15,,(y x C 三点共线,那么y x ,的值分别是( )A .21,4B .1,8C .21-,-4 D .-1,-8 13.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是( )A .26B .3C .23D .36 二、填空题14.在空间直角坐标系中, 点P 的坐标为(1, 3,2),过点P 作yOz 平面的垂线PQ, 则垂足Q 的坐标是________________.15.已知A(x, 5-x, 2x-1)、B (1,x+2,2-x ),当|AB|取最小值时x 的值为_______________.16.已知空间三点的坐标为A(1,5,-2)、B (2,4,1)、C (p ,3,q+2),若A 、B 、C 三点共线,则p =_________,q=__________.17.已知点A(-2, 3, 4), 在y 轴上求一点B , 使|AB|=7 , 则点B 的坐标为________________.三、解答题18.求下列两点间的距离:(1)A(1 , 1 , 0) , B(1 , 1 , 1);(2)C(-3 ,1 , 5) , D(0 , -2 , 3).19.已知A(1 , -2 , 11) , B(4 , 2 , 3) ,C(6 , -1 , 4) , 求证: ABC是直角三角形.20.求到下列两定点的距离相等的点的坐标满足的条件:(1)A(1 , 0 ,1) , B(3 , -2 , 1) ;(2)A(-3 , 2 , 2) , B(1 , 0 , -2).21.在四棱锥P-ABCD中,底面ABCD为正方形,且边长为2a,棱PD⊥底面ABCD,PD=2b,取各侧棱的中点E,F,G,H,写出点E,F,G,H的坐标.答案:1.B;2.A;3.A;4.B;5.C;6.B;7.B;8.C;9.B; 10.D; 11.C; 12.C; 13.A; 14. (0, 3,2); 15. 78; 16. 3 , 2; 17. (0, )0,293±; 18. 解: (1)|AB|=;1)10()11()11(222=-+-+- (2)|CD|=222)35()21()03(-+++--=.2219. 证明: ,||||||,14||,75||,89||222AB BC AC BC AC AB =+∴===ABC ∆∴为直角三角形.20. 解: (1)设满足条件的点的坐标为(x ,y , z) , 则222222)1()2()3()1()0()1(-+++-=-+-+-z y x z y x , 化简得4x-4y-3=0即为所求.(2)设满足条件的点的坐标为(x ,y , z) , 则222222)2()0()1()2()2()3(++-+-=-+-++z y x z y x , 化简得2x-y-2z+3=0即为所求.21. 解: 由图形知,DA ⊥DC ,DC ⊥DP ,DP ⊥DA ,故以D 为原点,建立如图空间坐标系D -xyz .因为E ,F ,G ,H 分别为侧棱中点,由立体几何知识可知,平面EFGH 与底面ABCD 平行, 从而这4个点的竖坐标都为P 的竖坐标的一半,也就是b ,由H 为DP 中点,得H (0,0,b )E 在底面面上的投影为AD 中点,所以E 的横坐标和纵坐标分别为a 和0,所以E (a ,0,b ), 同理G (0,a ,b );F 在坐标平面xOz 和yOz 上的投影分别为点E 和G ,故F 与E 横坐标相同都是a , 与G 的纵坐标也同为a ,又F 竖坐标为b ,故F (a ,a ,b ).。
【精品】高中数学 必修2_空间直角坐标系_讲义 知识点讲解+巩固练习(含答案)提高
空间直角坐标系【学习目标】通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置.通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式.【要点梳理】要点一、空间直角坐标系1.空间直角坐标系从空间某一定点O 引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系Oxyz ,点O 叫做坐标原点,x 轴、y 轴、z 轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别是xOy 平面、yOz 平面、zOx 平面.2.右手直角坐标系在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系.3.空间点的坐标空间一点A 的坐标可以用有序数组(x ,y ,z)来表示,有序数组(x ,y ,z)叫做点A 的坐标,记作A(x ,y ,z),其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标. 要点二、空间直角坐标系中点的坐标1.空间直角坐标系中点的坐标的求法通过该点,作两条轴所确定平面的平行平面,此平面交另一轴于一点,交点在这条轴上的坐标就是已知点相应的一个坐标.特殊点的坐标:原点()0,0,0;,,x y z 轴上的点的坐标分别为()()(),0,0,0,,0,0,0,x y z ;坐标平面,,xOy yOz xOz 上的点的坐标分别为()()(),,0,0,,,,0,x y y z x z .2.空间直角坐标系中对称点的坐标在空间直角坐标系中,点(),,P x y z ,则有点P 关于原点的对称点是()1,,P x y z ---;点P 关于横轴(x 轴)的对称点是()2,,P x y z --;点P 关于纵轴(y 轴)的对称点是()3,,P x y z --;点P 关于竖轴(z 轴)的对称点是()4,,P x y z --;点P 关于坐标平面xOy 的对称点是()5,,P x y z -;点P 关于坐标平面yOz 的对称点是()6,,P x y z -;点P 关于坐标平面xOz 的对称点是()7,,P x y z -.要点三、空间两点间距离公式1.空间两点间距离公式空间中有两点()()111222,,,,,A x y z B x y z ,则此两点间的距离 222121212||()()()d AB x x y y z z ==-+-+-.特别地,点(),,A x y z 与原点间的距离公式为222OA x y z =++.2.空间线段中点坐标空间中有两点()()111222,,,,,A x y z B x y z ,则线段AB 的中点C 的坐标为121212,,222x x y y z z +++⎛⎫ ⎪⎝⎭. 【典型例题】 类型一:空间坐标系例1.画一个正方体ABCD —A 1B 1C 1D 1,以A 为坐标原点,以棱AB 、AD 、AA 1所在直线为坐标轴,取正方体的棱长为单位长度,建立空间直角坐标系。
空间直角坐标系例题
空间直角坐标系例题于是,小明拿出他的笔记本,画了个大大的坐标系,X轴、Y轴、Z轴都清晰可见。
看着这些线条,朋友们个个眉头紧皱,心里想着:“这是什么鬼?难道我们要在这儿打坐?”小明哈哈大笑:“别担心,咱们就把这当成一个大地图,找到每一个宝藏点就行了!”听了这话,大家的紧张情绪稍微缓解了些,心想,这地图总比坐着干等要好得多。
于是,他们决定从坐标(1, 2, 3)开始。
小明指着地图,兴奋地说:“我们先往右走一格,然后向上走两格,最后再往前走三格。
”小伙伴们点点头,心里琢磨着,跟着小明的指引走,感觉就像在玩寻宝游戏一样,心里那个期待啊,简直要飞起来了。
一路上,他们嬉闹着,偶尔还会有小鸟飞过,仿佛在为他们的探险加油。
可是,事情并没有那么简单。
小明带着大家走到(1, 2, 3)时,发现眼前是一片空荡荡的地方。
哦,真是个意外,大家都愣住了。
小明耸耸肩:“没关系,这只是第一步。
我们去(4, 5, 6)看看。
”话音刚落,大家又开始朝新的坐标点进发。
这时候,小王调皮地说:“要是每个坐标都有宝藏,那我就发达了!”这话让大家都笑了,气氛一下子轻松了许多。
他们按照小明的计划继续前进。
走到(4, 5, 6)时,竟然看到了一棵巨大的老树,树下还有个破旧的箱子。
大家的心都提到了嗓子眼,难道这就是传说中的宝藏?小明激动地跑过去,打开箱子,发现里面竟然是一堆旧玩具和几本发黄的书。
虽然不是金银财宝,但大家还是围着箱子,乐呵呵地翻看起来。
小李拿起一个破损的玩具车,感慨道:“这让我想起小时候的快乐啊!”过了一会儿,大家决定继续探险,目标是(7, 8, 9)。
在路上,小王突然冒出一句:“这就像是在解密,每一个坐标点都是一个谜。
”大家纷纷点头,确实是这样。
他们就这样快乐地在坐标系中穿梭,偶尔碰到小动物,偶尔发出欢笑,仿佛整个世界都在和他们一起玩耍。
终于,他们到达了最后一个坐标点,(7, 8, 9)。
在这里,竟然发现了一片美丽的花丛,五颜六色的花朵让人目不暇接。
空间直角坐标系
空间直角坐标系空间直角坐标系是一种用来描述物体在三维空间中位置的坐标系统。
它是一种常见且重要的坐标系,被广泛应用于数学、物理、工程等各个领域。
本文将详细介绍空间直角坐标系的定义、特点和使用方法。
一、空间直角坐标系的定义空间直角坐标系是由三个相互垂直的坐标轴构成的,通常用x、y、z表示。
x轴和y轴在水平平面上,z轴垂直于水平平面向上延伸。
在这个坐标系中,每个点可以由一个有序的三元组(x, y, z)唯一确定。
其中,x表示点在x轴上的坐标值,y表示点在y轴上的坐标值,z表示点在z轴上的坐标值。
二、空间直角坐标系的特点1. 三维描述:空间直角坐标系能够准确描述物体在三维空间中的位置。
通过确定点在x、y、z轴上的坐标值,可以得知物体在坐标系中的具体位置。
2. 直角关系:空间直角坐标系中的三个坐标轴彼此垂直。
这意味着任意两个轴的夹角为直角,使得坐标系的描述更加简洁明了。
3. 正负号:在空间直角坐标系中,每个坐标轴都有正负号之分。
通过正负号的不同,可以识别出点在轴的正方向还是负方向上。
三、空间直角坐标系的使用方法1. 坐标表示:在空间直角坐标系中,可以通过坐标表示物体的位置。
例如,一个点的坐标为(2, 3, 4),表示该点在x轴上的坐标值为2,在y轴上的坐标值为3,在z轴上的坐标值为4。
2. 图形表示:使用空间直角坐标系,可以绘制出物体在三维空间中的图形。
例如,通过连接多个点可以绘制直线、曲线,通过连接多个面可以绘制立方体、圆柱体等。
3. 距离计算:在空间直角坐标系中,可以计算物体之间的距离。
根据勾股定理,可以计算出两点之间的直线距离。
例如,两点A(x1, y1,z1)和B(x2, y2, z2)之间的距离可以用以下公式表示:AB = √[(x2-x1)² + (y2-y1)² + (z2-z1)²]。
四、应用举例空间直角坐标系在许多领域有着广泛的应用。
以下是一些例子:1. 建筑设计:在建筑设计中,使用空间直角坐标系可以准确描述建筑物的位置、大小和形状,方便施工和规划工作。
知识要点空间直角坐标系
知识要点空间直角坐标系空间直角坐标系是用来描述三维空间中点位置的一种坐标系统。
它由三个坐标轴x、y、z构成,且彼此互相垂直,并在相交点处成为原点O。
在空间直角坐标系中,每个点的位置可由它在每个坐标轴上的投影来确定。
假设特定点P的坐标为(x,y,z),则在x轴上的投影为x,y轴上的投影为y,z轴上的投影为z。
空间直角坐标系的特点是可以将任意三维空间中的点表示为有序的数对(x,y,z),并且任意两点之间的距离可以用直线段来表示。
其基本特征有以下几点:1.原点O:空间直角坐标系的交点即为原点O,它的坐标为(0,0,0)。
2.坐标轴:空间直角坐标系有三个互相垂直的坐标轴,分别为x轴、y轴和z轴。
它们分别与三个方向对应:x轴正向为向右,y轴正向为向上,z轴正向为向外。
3. 坐标面:由三个坐标轴所确定的平面称为坐标面。
分别为xoy平面(z = 0)、xoz平面(y = 0)和yoz平面(x = 0)。
4.坐标轴方向:坐标轴方向有正负之分,规定沿着轴线正向的方向为正方向,反向则为负方向。
5.坐标轴长度:不同坐标轴的长度可以任选,但通常选择相等长度,方便计算。
在空间直角坐标系中,我们可以通过以下方法进行基本的空间点运算:1.点的移动:在坐标轴上,点的移动相当于坐标值的变化。
向右移动,坐标值加;向左移动,坐标值减;向上移动,坐标值加;向下移动,坐标值减;向外移动(离原点越来越远),坐标值加;向内移动(离原点越来越近),坐标值减。
2.点的关系:可以通过对比坐标值来判断两个点的相对位置。
若两点的x、y、z坐标值分别相等,则它们重合;若只有一个坐标值相等,则它们在同一坐标轴上;若有两个坐标轴的坐标值相等,则它们在同一平面上;若没有坐标值相等,则它们位于不同的坐标平面中。
3.点的中点坐标:求两点的中点坐标,可以将两个点的对应坐标分别相加然后除以24. 点的距离:可以根据勾股定理来求两点之间的距离。
设两点分别为P(x1, y1, z1)和Q(x2, y2, z2),则它们之间的距离d为:d =sqrt((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2)。
2.14空间直角坐标系ppt课件
求距离的步骤:①建立适当的坐标系,并写出 相关点的坐标;②代入空间两点间的距离公式 求值.
4.已知A(1,2,-1),B(2,0,2). (1)在x轴上求一点P,使|PA|=|PB|; (2)若xOz平面上的点M到A点的距离与到B点的 距离相等,求点M的坐标满足的条件.
解析: (1)由于点 P 在 x 轴上,故可设 P(a,0,0), 由|PA|=|PB|得 a-12+4+1= a-22+4, 即 a2-2a+6=a2-4a+8,解得 a=1, 所以点 P 的坐标为(1,0,0).
点P关于xOy平面对称后,它在x轴,y轴的分量 均不变,在z轴的分量变为原来的相反数, 所以点P关于xOy平面的对称点P2的坐标为(-2,1 ,-4). 设点P关于点A的对称点坐标为P3(x,y,z), 由中点坐标公式可得
-22+x=1 1+ 2 y=0 4+ 2 z=2
x=4
,解得y=-1 . z=0
一、空间直角坐标系
1.空间直角坐标系及相关概念
(1)空间直角坐标系:从空间某一定点
O 引三条两两垂直,且有相同单位长
度的数轴:_x_轴__、__y_轴__、__z_轴_____,这样
就建立了一个_空__间__直__角__坐__标__系__O__-__x_y_z___.
(2)相关概念:__点__O___叫做坐标原点,_x_轴__、__y_轴__、__z_轴____
互相垂直且有相同单位长 定点o• 度的数轴,这样就建立了空
y纵轴
间直角坐标系O-xyz.点O 横 x
叫坐标原点;
轴
2.两条确定一个坐标平
面,分别称为xoy面,yoz面,zox面
yoz面
xoy面
x
z
zox 面
空间直角坐标系
一、空间向量的基本概念
平面向量
空间向量
定义
具有大小和方向的量
表示法 几何表示:有向线段 AB 字母表示: a
向量的模
向量的大小 AB a
相等向量 相反向量 单位向量 零向量
长度相等且方向相同的向量 长度相等且方向相反的向量 模为1的向量,没有规定方向 模为0的向量,与任何向量共线
空间任意两个向量都可以平移到同一个平面内,
( x y z 1)
判断四点共面,或直线平行 于平面
1.下列命题中正确的有:B
(1) p xa yb p 与 a 、b 共面 ; (2) p 与 a 、b 共面 p xa yb ;
(3) MP x MA y MB P、M、A、B共面;
(4) P、M、A、B共面 MP xMA yMB ;
预备知识
数轴Ox上的点M
实数x
O
直角坐标平面上的点M
y
M
x
x
实数对(x,y)
y A(x,y)
Ox
x
一、空间直角坐标系 —Oxyz
z
竖轴
1
纵轴
o
1
1
y
x
右手直角坐标系
横轴
右手直角坐标系:在空间直角坐标系中,让 右手拇指指向 x 轴的正方向,食指指向 y 轴的 正方向,如果中指指向 z 轴的正方向,则称这 个坐标系为右手直角坐标系.
【温故知新】
平面向量基本定理:
如果e1,e2是同一平面内的两个不共线向量, 那么对于这一平面内的任一向量a,有且只有
一对实数1,2,使a=1e1+2 e2。
(e1、e2叫做表示这一平面内所有向量的一组基底。)
五、共面向量
2. 如果两个向量 a,不b 共线,
空间直角坐标系
空间直角坐标系一、主讲知识【知识点讲解1】空间直角坐标系在空间选定一点O 和一个单位正交基底{i ,j ,k },以O 为原点,分别以i ,j ,k 方向为正方向,以它们的长为单位长度建立三条数轴:x 轴,y 轴,z 轴,它们都叫做坐标轴,这时我们就建立,O 叫做,i ,j ,k 都叫做。
对于空间任意一个向量p ,存在有序实数组{x ,y ,z },使得p =x e 1+y e 2+z e 3,则把x ,y ,z 称作向量p 在单位正交基底e 1,e 2,e 3下的坐标,记作。
【讲透例题1】例1、已知PA 垂直于正方形ABCD 所在的平面,M 、N 分别是AB 、PC 的中点,并且PA =AD =1,建立适当坐标系,求向量MN →的坐标.【相似题练习1】如图在边长为2的正方体ABCD -A 1B 1C 1D 1中,取D 点为原点建立空间直角坐标系,O ,M 分别是AC ,DD 1的中点,写出下列向量的坐标.AM →=________,OB 1→=________.向量运【小结】建系时要充分利用图形的线面垂直关系,选择合适的基底,在写向量的坐标时,考虑图形的性质,充分利用向量的线性运算,将向量用基底表示.【知识点梳理2】空间向量坐标运算1、空间向量的坐标运算空间向量a ,b ,其坐标形式为a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).算向量表示坐标表示加法a +b a +b =减法a -b a -b =数乘λa λa =数量积a ·ba ·b =2、空间向量的平行、垂直及模、夹角设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示坐标表示加法a +b (a 1+b 1,a 2+b 2,a 3+b 3)减法a -b (a 1-b 1,a 2-b 2,a 3-b 3)数量积a·ba 1b 1+a 2b 2+a 3b 3共线a =λb (b ≠0,λ∈R )a 1=λb 1,a2=λb 2,a 3=λb 3垂直a·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模|a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23【讲透例题2】例1、已知()1,2,1a =- ,()1,2,1a b +=-- ,则b = ()A .(2,-4,2)B .(-2,4,-2)C .(-2,0,-2)D .(2,1,-3)【相似题练习2】1、已知空间三点()1,0,3A ,()1,1,4B -,()2,1,3C -,若//AP BC,且AP =uu u v P 的坐标为()A .()4,2,2-B .()2,2,4-C .()4,2,2-或()2,2,4-D .()4,2,2--或()2,2,4-2、(1)设a =(1,-1,3),b =(-2,1,2),则a +2b =________.(2)设a =(1,-1,1),b =(-2,0,1),则cos 〈a ,b 〉=________.(3)已知点A (-1,2,0),B (-1,0,2),则|AB →|=________.3、已知四点()1,2,1A -,()1,1,3B -,12,,12C ⎛⎫- ⎪⎝⎭,(),,0D x y ,且//AB CD ,则x ,y 的值分别为()A .3,1B .4,52-C .3,-1D .1,14、与向量()1,3,2a =-平行的一个向量的坐标是()A .1,1,13⎛⎫ ⎪⎝⎭B .(-1,-3,2)C .13-,,-122⎛⎫⎪⎝⎭D .)5、已知点A (1,2,3),B (0,1,2),C (﹣1,0,λ),若A ,B ,C 三点共线,则λ=__.6、已知向量(1,2,1),(1,1,1)a b =-=-- ,则a 与b的夹角为()A .90︒B .60︒C .45︒D .30°7、下列向量中与向量()010a =,,平行的向量是()A .()100b =,,B .()010c =-,,C .()111d =--,,D .()001e =-,,8、已知向量()1,0,1a =r,()2,0,2b =- ,若()()2ka b a kb +⋅+= ,则k 的值等于()A .1B .35C .25D .159、在空间直角坐标系O ﹣xyz 中,点A (2,﹣1,3)关于yOz 平面对称的点的坐标是()A .(2,1,3)B .(﹣2,﹣1,3)C .(2,1,﹣3)D .(2,﹣1,﹣3)10、若向量a =(1,1,x ),b =(1,2,1),c =(1,1,1),且满足条件(c -a )·(2b )=-2,则x =________.11、已知(1,1,2),(6,21,2)a b m λλ=+=-.(1)若//a b,分别求λ与m 的值;(2)若||a =(2,2,)c λλ=--垂直,求a.二、课堂练习1.已知向量a =(0,2,1),b =(-1,1,-2),则a 与b 的夹角为()A.0°B.45°C.90°D.180°2.设O 为坐标原点,M (5,-1,2),A (4,2,-1),若OM →=AB →,则点B 应为()A.(-1,3,-3)B.(9,1,1)C.(1,-3,3)D.(-9,-1,-1)3.若△ABC的三个顶点坐标分别为A(1,-2,1),B(4,2,3),C(6,-1,4),则△ABC的形状是() A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形4.已知a=(2,-3,1),则下列向量中与a平行的是()A.(1,1,1)B.(-4,6,-2)C.(2,-3,5)D.(-2,-3,5)5.已知向量a=(1,1,0),b=(-1,0,2),且k a+b与2a-b互相垂直,则k的值是()A.1 B.15C.35D.756.已知a=(1-t,1-t,t),b=(2,t,t),则|a-b|的最小值为()A.5 5B.555C.355D.1157.已知A(-2,3,1),B(2,-5,3),C(8,1,8),D(4,9,6),求证:四边形ABCD为平行四边形.空间向量研究立体几何距离、夹角一、主讲知识【知识点讲解1】距离问题空间距离的向量求法分类向量求法两点距设A 、B 为空间中的任意两点,则d =|AB |点线距设直线l 的单位方向向量为u ,A ∈l ,P ∉l ,设AP →=a ,则点P 到直线l 的距离d =|a |2-(a ·u )2点面距已知平面α的法向量为n ,A ∈α,P ∉α,则点P 到平面α的距离为d =|AP →·n ||n |【讲透例题1】例1、如图,△BCD 与△MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,AB =2 3.求点A 到平面MBC 的距离.【相似题练习1】1、在长方体OABC -O 1A 1B 1C 1中,OA =2,AB =3,AA 1=2,求O 1到直线AC 的距离.2、在棱长为a 的正方体1111ABCD A B C D -中,M 是1AA 的中点,则点1A 到平面MBD 的距离是()A .66a B .36a C .34a D .63a 3、如图所示,ABCD -EFGH 为边长等于1的正方体,若P 点在正方体的内部且满足312423AP AB AD AE =++ ,则P 点到直线AB 的距离为________.4、四棱柱ABCD -A 1B 1C 1D 1中,A 1A ⊥平面ABCD ,AA 1=3,底面是边长为4且∠DAB =60°的菱形,AC ∩BD =O ,A 1C 1∩B 1D 1=O 1,E 是O 1A 的中点,则点E 到平面O 1BC 的距离为()A .2B .1C .32D .35、如图,已知四边形ABCD 为矩形,四边形ABEF 为直角梯形,FA AB ⊥,1AD AF FE ===,2AB =,AD BE ⊥.(1)求证:BE DE ⊥;(2)求点F 到平面CBE 的距离.【知识点讲解2】求两条异面直线所成的角空间角的向量求法【讲透例题2】例1、如图,在三棱柱OAB -O 1A 1B 1中,平面OBB 1O 1⊥平面OAB ,∠O 1OB =60°,∠AOB =90°,且OB =OO 1=2,OA =3,求异面直线A 1B 与AO 1所成角的余弦值的大小.【相似题练习2】1、已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为()A .105B .155C .32D .332、在直三棱柱111ABC A B C -中,190,2∠=︒==ACB CA CC CB ,则直线1BC 与直线1AB 夹角的余弦值为()AB .53CD .353、在正四棱锥P ABCD -中,侧棱PA =,底面边长AB =,O 是P 在平面ABCD 内的射影,M 是PC 的中点,则异面直线OP 与BM 所成角为()A .30B .45C .60D .904、如图,在三棱锥P ABC -中,已知12PA PB AC ===2AB BC ==,平面PAB ⊥平面ABC ,则异面直线PC 与AB 所成角的余弦值为()A .66B .53C .33D .63【知识点讲解3】直线与平面所成的角空间角的向量求法【讲透例题3】例1、如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.【相似题练习3】1、在正方体ABCD A 1B 1C 1D 1中,若F ,G 分别是棱AB ,CC 1的中点,则直线FG 与平面A 1ACC 1所成角的正弦值等于()A.23B .54C .33D .362、在三棱锥P ABC -中,PA ⊥平面ABC ,90BAC ∠=︒,D ,E ,F 分别是棱AB ,BC ,CP 的中点,1AB AC ==,2PA =,则直线PA 与平面DEF 所成角的正弦值为()A .255B .55C .35D .2353、如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,AD DC ⊥,//AB DC ,2DCPD AB AD ===,Q 为PC 的中点,则直线PC 与平面BDQ 所成角的正弦值为__________.4、如图,在四棱锥P ABCD -中,PB ⊥底面ABCD ,底面ABCD 为梯形,//AD BC ,AD AB ⊥,且3,1PB AB AD BC ====.(1)若点F 为PD 上一点且13PF PD =,证明://CF 平面PAB ;(2)求直线PA 与平面BPD 所成角的正弦值.5、如图四棱锥P ABCD -的底面是正方形,PA PC =,点E 在棱PB 上,O 为AC 与BD的交点.(1)求证:平面AEC ⊥平面PDB ;(2)当E 为PB 的中点时,求证://OE 平面PDA ;(3)当APD △是正三角形时,且E 为PB 的中点时,求AE 与平面PBC 所成的角的正弦值.【知识点讲解4】平面与平面的夹角空间角的向量求法例1、如图,四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,AC ∩BD =O ,A 1C 1∩B 1D 1=O 1,四边形ACC 1A 1和四边形BDD 1B 1均为矩形.(1)证明:O 1O ⊥底面ABCD ;(2)若∠CBA =60°,求平面C 1OB 1与平面DOB 1的夹角的余弦值.【相似题练习4】1、(多选)三棱锥A BCD -中,平面ABD 与平面BCD 的法向量分别为12,n n ,若12,3n n π<>= ,则二面角A BD C --的大小可能为()A .6πB .3πC .23πD .56π2、如图,长方体ABCD ﹣A 1B 1C 1D 1的底面ABCD 是正方形,点E 为棱AA 1的中点,AB =1,AA 1=2.(1)求点B 到平面B 1C 1E 的距离;(2)求二面角B 1﹣EC 1﹣C 的正弦值.3、如图:直角梯形ABCD 中,AD //BC ,∠ABC =90°,E ,F 分别为边AD 和BC 上的点,且EF //AB ,AD =2AE =2AB =4FC =4,将四边形EFCD 沿EF 折起成如图的位置,使AD =AE .(1)求证:BC //平面DAE ;(2)求四棱锥D ﹣AEFB 的体积;(3)求面CBD 与面DAE 所成锐二面角的余弦值.4、如图,在直四棱柱1111ABCD A B C D -中,1// 22AD BC AB AD AB AD AA BC ⊥====,,(1)求二面角111C B C D --的余弦值;(2)若点P 为棱AD 的中点,点Q 在棱AB 上,且直线1B C 与平面1B PQ 所成角的正弦值为515,求AQ 的长.1.如图,在三棱锥V ABC -中,顶点C 在空间直角坐标系的原点处,顶点A ,B ,V 分别在x ,y ,z 轴上,D 是线段AB 的中点,且2AC BC ==,当60VDC ∠=︒时,异面直线AC 与VD 所成角的余弦值为________.2.在正四棱锥S ABCD -中,O 为顶点S 在底面上的射影,P 为侧棱SD 的中点,且SO OD =,则直线BC 与平面PAC 所成的角是________.3.在空间直角坐标系O xyz -中,已知(1,2,0)A -,6)B ,则向量AB与平面xOz 的法向量的夹角的正弦值为________.4.如图,在底面边长均为2,高为1的长方体1111ABCD A B C D -中,E 、F 分别为BC 、11C D 的中点,则异面直线1A E 、CF 所成角的大小为_______;平面1A EF 与平面1111D C B A 所成锐二面角的余弦值为__________.5.如图,在直三棱柱中111A B C -A BC 中,AB ⊥AC ,AB=AC=2,1AA =4,点D 是BC 的中点.(1)求异面直线1A B 与1C D 所成角的余弦值;(2)求平面1ADC 与1ABA 所成二面角的正弦值.6.如图所示,四边形ABCD 是直角梯形,ABC BAD 90∠∠== ,SA ⊥平面ABCD ,SA AB BC 2===,AD 1=.()1求SC 与平面ASD 所成的角余弦值;()2求平面SAB 和平面SCD 所成角的余弦值.7、如图,在三棱锥V -ABC 中,顶点C 在空间直角坐标系的原点处,顶点A ,B ,V 分别在x ,y ,z 轴上,D 是线段AB 的中点,且AC =BC =2,∠VDC =3π,求异面直线AC 与VD 所成角的余弦值.空间向量在立体几何中的应用一、主讲知识【知识点讲解1】求平面的法向量平面的法向量的定义直线l ⊥α,取直线l 的方向向量a ,则向量a 叫做平面α的法向量.【讲透例题1】例1、四边形ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =2,AD =1.在如图所示的坐标系A -xyz 中,分别求平面SCD 和平面SAB 的一个法向量.【相似题练习1】1、已知三点A (1,0,1),B (0,1,1),C (1,1,0),求平面ABC 的一个法向量.2、若直线l 的方向向量为()1,0,2a = ,平面α的法向量为()2,0,4n =--,则()A .//l αB .l α⊥C .l α⊂D .l 与α斜交3、(多选)已知空间中三点()0,1,0A ,()2,2,0B ,()1,3,1C -,则下列说法正确的是()A .AB 与AC是共线向量B .与AB同向的单位向量是,055⎛⎫ ⎪ ⎪⎝⎭C .AB 和BC 夹角的余弦值是5511D .平面ABC 的一个法向量是()1,2,5-【知识点讲解2】利用空间向量证明线线平行、线面、面面平行线线平行设两条不重合的直线l 1,l 2的方向向量分别为u 1=(a 1,b 1,c 1),u 2=(a 2,b 2,c 2),则l 1∥l 2⇔u 1∥u 2⇔(a 1,b 1,c 1)=λ(a 2,b 2,c 2)线面平行设l 的方向向量为u =(a 1,b 1,c 1),α的法向量为n =(a 2,b 2,c 2),则l ∥α⇔u·n =0⇔a 1a 2+b 1b 2+c 1c 2=0面面平行设α,β的法向量分别为n 1=(a 1,b 1,c 1),n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2⇔(a 1,b 1,c 1)=λ(a 2,b 2,c 2)【讲透例题2】例1、在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .例2、在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是CC 1,B 1C 1的中点.求证:MN ∥平面A 1BD .【相似题练习2】1、如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为DD 1和BB 1的中点.求证:四边形AEC 1F 是平行四边形.2、若直线l 的方向向量为m ,平面α的法向量为n,则能使//l α的是()A .()1,2,1m =,()1,0,1n = B .()0,1,0m =,()0,3,0n = C .()1,2,3m =- ,()2,2,2n =-D .()0,2,1m = ,()1,0,1n =--4、已知两个不同的平面α,β的法向量分别是()11,2,2n = 和()23,6,6n =,则平面α,β的位置关系是________.5、已知()0,2,3A ,()2,1,6B -,()1,1,5C -.(1)求平面ABC 的一个法向量;(2)证明:向量()3,4,1a =-与平面ABC 平行.6、如图,四棱柱1111ABCD A B C D -的底面ABCD 是正方形,O 为底面中心,1A O ⊥平面ABCD,1AB =平面1OCB 的法向量n =________.【知识点讲解3】利用空间向量证明线线垂直、线面垂直、面面垂直线线垂直设直线l 1的方向向量为u =(a 1,a 2,a 3),直线l 2的方向向量为v =(b 1,b 2,b 3),则l 1⊥l 2⇔u ·v =0⇔a 1b 1+a 2b 2+a 3b 3=0线面垂直设直线l 的方向向量是u =(a 1,b 1,c 1),平面α的法向量是n =(a 2,b 2,c 2),则l ⊥α⇔u ∥n ⇔u =λn ⇔(a 1,b 1,c 1)=λ(a 2,b 2,c 2)(λ∈R )面面垂直设平面α的法向量n 1=(a 1,b 1,c 1),平面β的法向量n 2=(a 2,b 2,c 2),则α⊥β⇔n 1⊥n 2⇔n 1·n 2=0⇔a 1a 2+b 1b 2+c 1c 2=0【讲透例题3】例1、在正方体ABCD -A 1B 1C 1D 1E 为AC 的中点.求证:(1)BD 1⊥AC ;(2)BD 1⊥EB 1.例2、如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是B 1B ,DC 的中点,求证:AE ⊥平面A 1D 1F .例3、如图所示,在直三棱柱ABC -A 1B 1C 1中,AB ⊥BC ,AB =BC =2,BB 1=1,E 为BB 1的中点,证明:平面AEC 1⊥平面AA 1C 1C .【相似题练习3】1、若平面αβ⊥,且平面α的一个法向量为12,1,2n ⎛⎫=- ⎪⎝⎭ ,则平面β的法向量可以是()A .111,,24⎛⎫- ⎪⎝⎭B .(2,1,0)-C .(1,2,0)D .1,1,22⎛⎫ ⎪⎝⎭2、已知点P 是平行四边形ABCD 所在的平面外一点,如果()2,1,4AB =-- ,(4,2,0)AD =,(1,2,1)AP =-- .对于结论:①||6AD = ;②AP AD ⊥;③AP是平面ABCD 的法向量;④AP//BD .其中正确的是()A .②④B .②③C .①③D .①②3、(多选题)已知v为直线l 的方向向量,→→21,n n 分别为平面α,β的法向量(α,β不重合),那么下列选项中,正确的是()A .→1n ∥→2n ⇔α∥βB .→1n ⊥→2n ⇔α⊥βC .v∥→1n ⇔l ∥αD .v⊥→1n ⇔l ∥α4、(多选题)下列利用方向向量、法向量判断线、面位置关系的结论中,正确的是()A .两条不重合直线1l ,2l 的方向向量分别是()2,3,1a =-,()2,3,1b =-- ,则12//l l B .直线l 的方向向量()112a ,,=- ,平面α的法向量是()6,4,1u =-,则l α⊥C .两个不同的平面α,β的法向量分别是()2,2,1u =- ,()3,4,2v =-,则αβ⊥D .直线l 的方向向量()0,3,0a = ,平面α的法向量是()0,5,0u =-,则//l α-中,底面ABCD是正方形,PA⊥底面ABCD,E是PC的中点,已知5、如图,在四棱锥P ABCDPA=.2AB=,2⊥;(Ⅰ)求证:AE PD(Ⅱ)求证:平面PBD⊥平面PAC.。
空间直角坐标系(使用)
( x, y, z ) (3)z轴对称的点P3为__________;
关于谁对称谁不变
2、关于坐标平面对称
一般的P(x , y , z) 关于:
关于谁对称 谁不变
(1)xoy平面对称的点P1为__________; (x,y,-z) (-x,y, z) (2)yoz平面对称的点P2为__________;
空间 直角坐标系
(1) 空间直角坐标系
z D`
yOz平面
B`
C`
xOz A` 平面
O A x
C
y
xOy平面 B
三、空间直角坐标系中点的坐标
z
(x,y,z)
z
点A的坐标
A
3
A(3,4,3)
3 x
o
4
y
y
x
例1 在空间直角坐标系中,作出点(5,4,6)
6
z
(5,4,6) 1
O 5
4
1
y
x
四、对称点
P2y P
x
A
A1
O A3 A2 O
A4
B
思考1:取1m为长度单位,如何求圆拱所在圆 y 的方程?
P2 P
x2+(y+10.5)2=14.52
x A A1 A2 O A3 A4 B
思考4:利用这个圆的方程可求得点P2的纵坐 标是多少?
例二:已知内接于圆的四边形的对角线互相 垂直,求证:圆心到一边的距离等于这条边 y 所对边长的一半.
(1) 在空间直角坐标系中,任意一点 P(x,y,z)到原点的距离:
z
| OP |
1.3.1 空间直角坐标系(原卷版)..
1.3空间向量及其运算的坐标表示1.3.1空间直角坐标系知识梳理知识点一空间直角坐标系1.空间直角坐标系及相关概念(1)空间直角坐标系:在空间选定一点O 和一个单位正交基底{i ,j ,k },以O 为原点,分别以i ,j ,k 的方向为正方向,以它们的长为单位长度建立三条数轴:x 轴、y 轴、z 轴,它们都叫做坐标轴,这时我们就建立了一个空间直角坐标系Oxyz .(2)相关概念:O 叫做原点,i ,j ,k 都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy 平面、Oyz 平面、Ozx 平面,它们把空间分成八个部分.2.右手直角坐标系在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系.知识点二空间一点的坐标在空间直角坐标系Oxyz 中,i ,j ,k 为坐标向量,对空间任意一点A ,对应一个向量OA →,且点A 的位置由向量OA →唯一确定,由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使OA →=x i +y j +z k .在单位正交基底{i ,j ,k }下与向量OA →对应的有序实数组(x ,y ,z )叫做点A 在此空间直角坐标系中的坐标,记作A (x ,y ,z ),其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标.知识点三空间向量的坐标在空间直角坐标系Oxyz 中,给定向量a ,作OA →=a .由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使a =x i +y j +z k .有序实数组(x ,y ,z )叫做a 在空间直角坐标系Oxyz 中的坐标,上式可简记作a =(x ,y ,z ).题型探究题型一、空间中点的位置及坐标特征1.若空间一点()21,1,11M a a +-+在z 轴上,则=a ()A .1B .0C .±1D .1-2.在空间直角坐标系中,点()2,0,3P 位于()A .x 轴上B .y 轴上C .xOy 平面上D .xOz 平面上3.已知点A '是点(2,9,6)A 在坐标平面Oxy 内的射影,则点A '的坐标为()A .(2,0,0)B .(0,9,6)C .(2,0,6)D .(2,9,0)4.已知点(),,P x y z ,若点P 在x 轴上,则点P 坐标为___________;若点P 在yOz 平面内,则点P 坐标为___________.若点P 在z 轴上,则点P 坐标为___________;若点P 在xOz 平面内,则点P 坐标为___________.题型二、求空间图形上的点的坐标1.如图,在长方体1111ABCD A B C D -中,3AB =,1AD =,12AA =,先建立空间直角坐标系,再求长方体各顶点的坐标.2.如图所示,在空间直角坐标系中,2BC =,原点O 是BC 的中点,点D 在平面yOz 内,且90BDC ∠=,30DCB ∠=,则点D 的坐标为().A .13(0)22--,,B .13(0)22-,,C .13(0)22-,,D .13(0)22,,3.如图,长方体ABCD A B C D ''''-中,底面ABCD 是边长为10的正方形,高AA '为12,点P 为体对角线BD '的中点,则P 点坐标为()A .()5,6,5B .()6,6,5C .()5,5,6D .()6,5,54.在如图所示的长方体1111ABCD A B C D -中,已知()10,2,2D ,()3,0,0B ,则点1C 的坐标为________.题型三、关于坐标轴、坐标平面、原点对称的点的坐标1.如图,分别求点()2,3,4,()1,2,3-关于各个坐标平面、坐标轴、原点对称的点的坐标.2.已知点(3,2,1)P -,分别写出它关于zOx 平面、x 轴、原点的对称点的坐标.3.(多选)下列各命题正确的是()A .点()1,2,3-关于平面xOz 的对称点为()1,2,3B .点1,1,32⎛⎫- ⎪⎝⎭关于y 的对称点为1,1,32⎛⎫- ⎪⎝⎭C .点()2,1,3-到平面yOz 的距离为1D .设{},,i j k 是空间向量单位正交基底且以i ,j ,k 的方向为x ,y ,z 轴的正方向建立了一个空间直角坐标系,若324m i j k =-+,则()3,2,4m =-4.已知()2,3,1A v μ--+关于x 轴的对称点是(),7,6A λ'-,则,,v λμ的值为()A .2,4,5v λμ=-=-=-B .2,4,5v λμ==-=-C .2,10,8v λμ=-==D .2,10,7v λμ===题型四、求空间两点的中点坐标1.在空间直角坐标系中,已知点(1,0,1)A -,(5,2,1)B ,则线段AB 的中点坐标是()A .(1,1,0)B .(4,2,2)C .(2,2,0)D .(2,1,1)2.在空间直角坐标系中,记点(1,1,2)M -关于x 轴的对称点为N ,关于yOz 平面的对称点为P ,则线段NP 中点坐标为()A .(1,0,0)B .(1,1,0)--C .(1,0,1)D .(0,0,0)3.已知三角形ABC 的三个顶点()()()2,0,00,3,00,0,4A B C ,,,则三角形的重心的坐标为___________.题型五、空间向量的坐标1.在空间直角坐标系中,已知点()4,3,5A -,()2,1,7B --,则AB =uu u r ______.2.如图,在直三棱柱ABC A 1B 1C 1的底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别为A 1B 1,A 1A 的中点,试建立恰当的坐标系求向量BN ,1BA ,1A B uuu r 的坐标.跟踪训练1.设z 为任一实数,则点()2,2,z 表示的图形是()A .z 轴B .与平面xOy 平行的一直线C .平面xOyD .与平面xOy 垂直的一直线2.在空间直角坐标系O xyz -中,已知点M 是点()3,4,5N 在坐标平面Oxy 内的射影,则的坐标是()A .()3,0,5B .()0,4,5C .()3,4,0D .()0,0,53.判断正误(1)空间直角坐标系中,在x 轴上的点的坐标一定是()0,,b c 的形式.()(2)空间直角坐标系中,在xOz 平面内的点的坐标一定是(),0,a c 的形式.()(3)空间直角坐标系中,点()1,3,2关于yOz 平面的对称点为()1,3,2-.()4.(多选)在空间直角坐标系中,下列结论中正确的是()A .x 轴上的点坐标可以表示为()0,,b c B .y 轴上的点坐标可以表示为()0,,0b C .xOz 平面上的点坐标可以表示为(),0,a c D .yOz 平面上的点坐标可以表示为()0,,b c 5.已知正方体ABCD A B C D ''''-的棱长为2,建立如图所示的空间直角坐标系,写出正方体各顶点的坐标.6.如图,在长方体1111ABCD A B C D -中,4AB =,3AD =,15AA =,点N 为棱1CC 的中点,以点A 为原点,分别以AB ,AD ,1AA 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.求点A ,B ,C ,D ,1A ,1B ,1C ,1D ,及N 的坐标.7.在空间直角坐标系中,分别求点(2,1,4)P -关于x 轴、xOy 平面、坐标原点对称的点的坐标.8.在空间直角坐标系下,点()3,6,2M -关于y 轴对称的点的坐标为()A .()3,6,2-B .()3,6,2---C .()3,6,2-D .()3,6,2--9.空间直角坐标系中,已知点()1,1,1M 关于x 轴的对称点为N ,则点N 的坐标为()A .()1,1,1--B .()1,1,1-C .()1,1,1--D .()1,1,1--10.在空间直角坐标系下,点()2,6,1M -关于平面yOz 对称的点的坐标为()A .()2,6,1B .()2,6,1-C .()2,6,1---D .()2,6,1--11.在空间直角坐标系Oxyz 中,点P (1,2,3)关于xOy 平面的对称点坐标是()A .(1,2,)3-B .1,23(,)--C .(1,2,3)-D .(1,2,3)--12.在空间直角坐标系O-xyz 中,点(3,2,5)A -关于xoz 平面对称的点的坐标为()A .(3,2,5)-B .(3,2,5)--C .(3,2,5)D .(3,2,5)-13.(多选)在空间直角坐标系中,已知点(),,P x y z ,下列叙述正确的是()A .点P 关于x 轴对称的点()1,,P x y z --B .点P 关于y 轴对称的点()2,,P x y z --C .点P 关于原点对称的点()3,,P x y z ---D .点P 关于yOz 平面对称的点()4,,P x y z -14.空间直角坐标系中的两点()()1,2,3,1,0,1P Q -,则线段PQ 的中点M 的坐标为()A .()0,2,4B .()0,1,2C .()2,2,2D .()2,2,2---15.已知()4,1,3A 、()2,4,3B --,则线段AB 中点的坐标是______.16.如图PA 垂直于正方形ABCD 所在的平面,,M N 分别是,AB PC 的中点,并且1==PA AB .试建立适当的空间直角坐标系,求向量MN 的坐标.17.如图所示,在正方体ABCD —A 1B 1C 1D 1中建立空间直角坐标系,若正方体的棱长为1,则AB 的坐标为____,1DC 的坐标为____,1B D 的坐标为_______.18.(多选)如图,在正三棱柱111ABC A B C -中,已知ABC 的边长为2,三棱柱的高为111,,BC B C 的中点分别为1,D D ,以D 为原点,分别以1,,DC DA DD 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,则下列空间点及向量坐标表示正确的是()A .()10,3,1AB .()11,0,1C C .()10,3,1AD =-D .()13,3,1B A =-高分突破1.点()1,2,3P -在坐标平面Oxy 内的射影的坐标为()A .()1,2,3B .()1,2,3---C .()1,2,0D .()0,0,3-2.如图,在长方体1111ABCD A B C D -中,3AD =,4DC =,12DD =,以DA ,DC ,1DD 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则点1B 的空间直角坐标为()A .()4,3,2B .()2,4,3C .()3,4,2D .()3,2,43.已知空间向量(1,2,3)a =-,则向量a 在坐标平面xOz 上的投影向量是()A .(0,1,2)-B .(1,2,0)-C .(0,2,3)D .(1,0,3)-4.在空间直角坐标系中,点()2,1,2M -和点()2,1,2N --的位置关系是()A .关于x 轴对称B .关于z 轴对称C .关于xOz 平面对称D .关于yOz 平面对称5.若点()(),,0P x y z xyz ≠关于xOy 的对称点为A ,关于z 轴的对称点为B ,则A 、B 两点的对称是()A .关于xOy 平面对称B .关于x 轴对称C .关于y 轴对称D .关于坐标原点对称6.笛卡尔是世界著名的数学家,他因将几何坐标体系公式化而被认为是解析几何之父.据说在他生病卧床时,还在反复思考一个问题:通过什么样的方法,才能把“点”和“数”联系起来呢?突然,他看见屋顶角上有一只蜘蛛正在拉丝织网,受其启发建立了笛卡尔坐标系的雏形.在如图所示的空间直角坐标系中,单位正方体顶点A 关于x 轴对称的点的坐标是()A .()1,1,1--B .()1,1,1C .()1,1,1-D .()1,1,1---7.在空间直角坐标系O xyz -,点()1,2,5A -关于平面yoz 对称的点B 为()A .()1,2,5--B .()1,2,5--C .()1,2,5---D .()1,2,5-8.向量(1,2,0),(1,0,6)OA OB ==-,其中C 为线段AB 的中点,则点C 的坐标为()A .(0,2,6)B .(2,2,6)--C .(0,1,3)D .(1,1,3)--9.在空间直角坐标系中,点(1,4,3)P -与点Q (3,2,5)-关于点M 对称,则点M 的坐标为()A .(4,2,2)B .(2,1,2)-C .(2,1,1)D .(4,1,2)-10.已知点1M ,2M 分别与点(1,2,3)M -关于x 轴和z 轴对称,则12M M =()A .(2,0,6)-B .(2,0,6)-C .(0,4,6)-D .(0,4,6)-11.(多选)已知正方体1111ABCD A B C D -的棱长为2,建立如图所示的空间直角坐标系Dxyz ,则()A .点1C 的坐标为(2,0,2)B .()12,2,2C A =--C .1BD 的中点坐标为(1,1,1)D .点1B 关于y 轴的对称点为(-2,2,-2)12.(多选)已知四边形ABCD 的顶点分别是()312A -,,,()121B -,,,()113C --,,,()353D -,,,那么以下说法中正确的是()A .()233AB =--,,B .A 点关于 x 轴的对称点为()312-,,C .AC 的中点坐标为()201--,,D .D 点关于xOy 面的对称点为()353--,,13.点(),,P a b c 到坐标平面yOz 的距离是______.14.在空间直角坐标系中,点P 的坐标为()2,4,3-,过P 作xOz 平面的垂线,垂足为Q ,则Q 点的坐标为______.15.在空间直角坐标系中,点()1,4,2M --在xOz 平面上的射影的坐标是______,点M 关于原点对称的点的坐标是______.16.若点()2,3,1A v μ--+关于x 轴的对称点为(),5,6A λ'-,则λ=___________,μ=___________,=v ___________.17.在空间直角坐标系中,已知点(,,)P x y z ,下列叙述中,正确的序号是_______.①点P 关于x 轴的对称点是1(,,)P x y z -②点P 关于yOz 平面的对称点是2(,,)P x y z --③点P 关于y 轴的对称点是3(,,)P x y z -④点P 关于原点的对称点是4(,,)P x y z ---18.已知()3,1,2a =-,a 的起点坐标是()2,0,5-,则a 的终点坐标为______.19.已知(357)A -,,、(243)B -,,,设点A 、B 在yOz 平面上的射影分别为1A 、1B ,则向量11A B 的坐标为________.20.已知三棱锥P ABC -中,PA ⊥平面ABC ,AB AC ⊥,若3PA =,1AB =,2AC =,先建立空间直角坐标系.(1)求各顶点的坐标;(2)若点D 在线段PC 上靠近点P 的三等分点,求点D 的坐标.21.如图,在长方体1111ABCD A B C D -中,AB 4=,3AD =,15AA =,N 为棱1CC 的中点,分别以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系.(1)求点1111,,,,,,,A B C D A B C D 的坐标;(2)求点N 的坐标.22.如图,正方体OABC D A B C ''''-的棱长为a ,E ,F ,G ,H ,I ,J 分别是棱C D '',D A '',A A ',AB ,BC ,CC '的中点,写出正六边形EFGHIJ 各顶点的坐标.23.已知三棱锥P ABC -中,PA ⊥平面ABC ,AB AC ⊥,若3PA =,2AB =,2AC =,建立空间直角坐标系.(1)求各顶点的坐标;(2)若点Q 是PC 的中点,求点Q 坐标;(3)若点M 在线段PC 上移动,写出点M 坐标.。
小学数学习题认识空间直角坐标系
小学数学习题认识空间直角坐标系在小学数学学习中,认识和理解空间直角坐标系是非常重要的一环。
空间直角坐标系是由三个坐标轴构成的,帮助我们在三维空间中定位点的位置。
通过学习和解答一些关于空间直角坐标系的习题,我们能够更好地理解和运用这一概念。
本文将通过几个习题,帮助读者更好地认识空间直角坐标系。
习题一:已知点A(2, 3, 4),请问它在空间直角坐标系中的位置在哪个象限?解析:在三维空间直角坐标系中,第一象限是x、y、z坐标轴都为正值的区域,第二象限是x坐标轴为负值、y、z坐标轴为正值的区域,依此类推。
根据已知点A的坐标(2, 3, 4),我们可以看出它在x、y、z轴上的值都为正值,因此点A在第一象限。
习题二:已知点B(-2, 4, -3),请问它在空间直角坐标系中的位置在哪个象限?解析:根据已知点B的坐标(-2, 4, -3),我们可以看出它在x、z轴上的值为负值,而y轴的值为正值。
因此,点B在第二象限。
习题三:已知点C(0, 0, 0),请问它在空间直角坐标系中的位置在哪个象限?解析:根据已知点C的坐标(0, 0, 0),我们可以看出它在x、y、z轴上的值都为零。
根据坐标轴的定义,零点是位于坐标轴的原点,因此点C并不位于任何一个象限。
通过以上习题,我们可以更好地认识和理解空间直角坐标系。
空间直角坐标系是由x、y、z轴构成的,可以帮助我们在三维空间中定位点的位置。
根据点的坐标值,我们可以确定点所在的象限。
熟练掌握空间直角坐标系的概念和运用,对于数学学习和解题都有着重要的作用。
在实际生活中,空间直角坐标系的应用非常广泛。
例如,在地理学中,我们可以利用空间直角坐标系来表示和定位地球上的特定地点;在建筑学中,设计师可以利用空间直角坐标系来规划和定位建筑物的位置和结构。
因此,通过学习空间直角坐标系,我们能够培养空间思维能力,并应用于实际问题的解决中。
总结起来,通过解答相关的数学习题,我们可以更好地认识和理解空间直角坐标系。
空间直角坐标系[课时1].ppt
三个坐标平面将空间分为八个部分,称其每个部
分为卦限,它们分别是: 第一卦限 x>0,y>0,z>0,
第二卦限 x<0,y>0,z>0, 第三卦限 x<0,y<0,z>0, 第四卦限 x>0,y<0,z>0,
Ⅲ
yoz
z
面
o
zox 面
Ⅳ
xoy 面
y
Ⅱ Ⅰ Ⅵ
Ⅶ Ⅷ
x
Ⅴ
第五卦限 x>0,y>0,z<0,
x 1 + x 2 y1 + y 2 z 1 + z 2 M( , , ) 2 2 2
4-1.已知 ABCD 为平行四边形,且 A(4,1,3),B(2,-5,1), C(3,7,-5),求顶点 D 的坐标. 解:∵平行四边形的对角线互相平分, ∴AC 的中点即为 BD 的中点,
又 AC 的中点
7 ,4,-1, O2
规律:关于谁对称谁不变,其余的相反。
1.已知点 A(-3,1,-4),则点 A 关于原点的对称点坐标
为( C ) A.(1,-3,-4)
C.(3,-1,4)
B.(-4,1,-3)
D.(4,-1,3) )
2.已知点 A(-3,1,4),则 A 关于 x 轴的对称点的坐标为( A A.(-3,-1,-4) C.(3,-1,4) B.(3,-1,-4) D.(-3,-1,4)
o
y
x
P2 (1,1, 1)
P (1, 1, 1) 1
五、空间点的对称问题:
点M(x,y,z)是空间直角坐标系O-xyz中的一点 (1)与点M关于x轴对称的点: (2)与点M关于y轴对称的点: (3)与点M关于z轴对称的点:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.3 空间直角坐标系
1.点(2,1,0)A -在空间直角坐标系的位置是【 】
A. z 轴上
B. xOy 平面上
C. xO z 平面上
D. yOz 平面上
2.点B 是点)3,2,1(A 在坐标平面yoz 内的射影,则||OB 等于【 】 A.14 B. 13 C. 32 D.11
3.已知线段AB 的两个端点的坐标分别为)4,3,9(-A 和)1,2,9(B ,则线段AB 【 】
A.与平面xoy 平行
B. 与平面xoz 平行
C. 与平面zoy 平行
D. 与平面xoy 获zoy 平行
4.已知三角形ABC 的顶点A (2,2,0),B (0,2,0),C (0,1,4),则三角形ABC 是
【 】
A .直角三角形
B .锐角三角形
C .钝角三角形
D .等腰三角形
5.点(1,3,5)P 关于原点对称的点的坐标是 .
6.连接平面上两点111(,)P x y ,222(,)P x y 的线段12P P 的中点M 的坐标为1212
(,)22x x y y ++,那么,
已知空间中两点1111(,,)P x y z ,2222(,,)P x y z ,线段12P P 的中点M 的坐标为 .
7.已知A (2,5,-6),在y 轴上求一点B ,使得|AB |=7;
8.在空间直角坐标系中,给定点(1,2,3)M -,求它关于坐标平面、坐标轴和原点的对称点的坐标.
参考答案
1. B
2. B
3. C
4. A
5.
(1,3,5)--- 6. 12
2212(,,)222
x x y y z z +++ 7. B (0,2,0)或B (0,8,0).
8. 点(1,2,3)M -关于平面xO y 、平面yO z 、平面xOz 的对称点的坐标分别是(1,2,3)--、(1,2,3)--、(1,2,3).点(1,2,3)M -关于
x 轴、y 轴、z 轴、原点的对称点的坐标分别是(1,2,3)-、(1,2,3)---、(1,2,3)-,(1,2,3)--.。