宽禁带半导体技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宽禁带半导体技术
李耐和
概述
根据半导体材料禁带宽度的不同,可分为宽禁带半导体材料与窄禁带半导体材料。
若禁带宽度Eg<2ev (电子伏特),则称为窄禁带半导体,如锗(Ge)、硅(Si)、砷化镓(GaAs)以及磷化铟(InP);若禁带宽度Eg>2.0-6.0ev,则称为宽禁带半导体,如碳化硅(SiC)、氮化镓(GaN)、4H碳化硅(4H-SiC)、6H碳化硅(6H-SiC)、氮化铝(AIN)以及氮化镓铝(ALGaN)等。
宽禁带半导体材料具有禁带宽度大、击穿电场强度高、饱和电子漂移速度高、热导率大、介电常数小、抗辐射能力强以及良好的化学稳定性等特点,非常适合于制作抗辐射、高频、大功率和高密度集成的电子器件;而利用其特有的禁带宽度,还可以制作蓝、绿光和紫外光器件和光探测器件。
因此,美国、日本、俄罗斯等国都极其重视宽禁带半导体技术的研究与开发。
从目前宽禁带半导体材料和器件的研究情况来看,研究重点多集中于SiC和GaN技术,其中SiC技术最为成熟,研究进展也较快;GaN技术应用广泛,尤其在光电器件应用方面研究比较深入。
目前,多家半导体厂商演示了具有高功率、高功率附加效率(PAE)、高增益以及较宽工作带宽的宽禁带半导体。
这些器件工作频率范围很宽,从不足1GHz到40GHz,而且性能优异。
虽然自20世纪90年代以来的10多年时间里,SiC器件的演示结果非常喜人,但是高性能宽禁带器件的产量一直很低。
一个主要原因就是无法得到理想的SiC基底――不但要具有足够高电阻系数,可以提供半绝缘特性,而且严重缺陷(如微孔)数量要足够低。
由于没有高质量的基底,就无法通过宽禁带材料的同质/异质外延生长获得制作微波与毫米波器件所需的高度一致性、具有足够高电子迁移率的大尺寸晶片。
值得一提的是,在过去的3年里,SiC基底研制进展迅速,不仅圆片直径有所加大,而且缺陷数量与电阻率都达到了大批量生产性能优异的宽禁带器件与MMIC(单片微波集成电路)的技术要求。
此外,宽禁带外延结构演示结果也令人满意。
例如,GaNHEMT(高电子迁移率晶体管)在2.1GHz时饱和功率输出174W,PAE高达54%,其150W输出功率(2.1GHz)的线性增益为12.9dB。
技术现状
在过去的几年里,由于美国政府以及商业部门的大力支持,宽禁带半导体技术取得迅速进展。
尤其是2002年美国国防先进研究计划局(DARPA)启动与实施的宽禁带半导体技术计划(WBGSTI),已成为加速改进SiC、GaN以及AIN等宽禁带半导体材料特性的重要催化剂。
在该计划第一阶段(2002-2004年)期间,市售SiC基底直径已由2英寸增加到3英寸;同时,部分供应商正在研制4英寸SiC基底,预计2006年商品化。
目前,至少一家供应商(如Cree公司)已经建立SiC器件与MMIC圆片代工厂,并出售高功率SiC器件。
表1则给出利用MBE(分子束外延)以及MOCVD (金属有机化合物气相沉积)技术生长的GaN外延层性能指标。
同样,在获得可再现高电子迁移率活性层以及在材料特性一致性方面也取得了令人满意的结果。
表1 WEGSTI第一阶段GaN外延生长结果。