海上风电机组基础结构第一章

合集下载

海上风电送出系统及工程技术

海上风电送出系统及工程技术

海上风电送出系统及工程技术本章概括性地介绍海上风电场的发电系统构成和主要设备,重点介绍了其送电系统构成、主要设备和功能特性,以及海上风电送出工程的系统并网技术、海上变电站、换流站技术和海底电缆线路技术。

2.1 海上风力发电系统简介2.1.1 系统构成目前,海上风力发电系统的典型接线图如图2-1所示。

图2-1 海上风力发电系统典型接线图从图2-1可以看出,风力发电机由风能驱动,发出电能,是海上风力发电系统最为重要的系统构件。

电能通过在机舱或基座内的变压器将电压抬升(如690V/35kV)之后汇入海底集电系统。

海底集电系统是连接各风电机组形成的电气系统,主要由连接各风电机组的海底电缆及开关设备构成,其作用是汇集各风电机组发出的电能,输送至陆上或海上升压站。

2.1.2 主要设备及功能特性据前文所述,海上风力发电系统包括海上风电机组及海底集电系统两个部分。

风电机组由风轮、传动系统、偏航系统、液压系统、制动系统、发电机、控制与安全系统、机舱、塔架和基础、升压设备等组成,典型结构如图2-2所示。

海底集电系统由连接各风电机组的海底集电电缆、开关设备等组成。

(1)风轮。

由叶片和轮毂、滑环组成,是风电机组获取风能的关键部件,叶片是由复合材料制成的薄壳结构,分为根部、外壳、龙骨三个部分;轮毂固定在主轴上,内装有变桨系统,与机舱经滑环连接;滑环为旋转部件(叶片和轮毂)与固定部件(机舱)提供电气连接。

(2)传动系统。

由主轴、齿轮箱和联轴节组成(直驱式除外),主轴连接轮毂与齿轮箱,承受很大力矩和载荷;齿轮箱连接主轴与发电机,叶轮转速一般为15~25r/min,发电机(非直驱式)额定转速一般为1500~1800r/min,齿轮箱增速比通常为1∶100左右。

(3)偏航系统。

由风向标传感器、偏航电动机、偏航轴承和齿轮等组成。

偏航轴承连接机舱底架与塔筒齿轮环内齿,并与偏航电机啮合实现机舱偏航对风;偏航电动机驱动机舱转动对风,偏航速度一般为1°/s,通常有3~5台,通过减速箱或变频器降速。

海上风电机组基础结构-第一章

海上风电机组基础结构-第一章
特点
基础的整体性好,承载能力较高,对打桩设备要 求较低。导管架的建造和施工技术成熟,基础结 构受到海洋环境载荷的影响较小,对风电场区域 的地质条件要求也较低。
1.1.2 国内海上风电发展概况
我国海上风电发展前景
根据我国2012年8月发布的《可再生能源“十二五”规划》: 2015年中国海上风电将达到5GW,海上风电成套技术将形 成并建立完整的产业链;
2015年后将实现规模化发展,达到国际先进水平;
2020年海上风电将达到30GW。
截止到2012年8月,我国已开展前期工作和拟建的海上风电 项目约24个。
我国海上风能资源
我国海上可开发和利用的风能储 量约2×105MW,海上风能资源 丰富,有巨大的蕴藏量和广阔的 发展前景,特别是东部沿海水深 50m内的海域面积辽阔,距电力 负荷中心很近,随着开发技术的 成熟,海上风电必将成为我国东 部沿海地区可持续发展的重要能 源来源。
江苏省海上风电开发布局图
1.1.1 国外海上风电发展概况
1.1.1 国外海上风电发展概况
丹麦
丹麦发展海上风电也较早,全国有6%的用电来自近海风电场。1991 年丹麦在波罗的海洛兰岛西北沿海附近建成了世界上第一个海上风 电场,安装11台450kW风电机组,1995年又建成10台500kW海上风 电机组,2003年还建成了当时世界上最大的近海风电场,共安装80 台2.0MW风电机组。出于对环境的考虑,丹麦的海上风电场只关注 那些偏远的水深在5~11m之间的海域,所选的区域须在国家海洋公 园、海运路线、微波通道、军事区域等之外,距离海岸线7到40km, 使岸上的视觉影响降到最低。根据丹麦政府能源计划法案,2030年 以前丹麦风力发电量将占全国总发电量的50%,其中,近四分之一 的风力发电量是由海上风电供给,最近,丹麦政府提出到2050年全 部摆脱对化石能源的依赖。

海上风力发电机PPT课件

海上风力发电机PPT课件

适用情况:水深一般小于10m,任何地质条 件的海床。优点在于:结构简单,造价低;抗 风暴和风浪袭击性能好,其稳定性和可靠 性是所有基础中最好的。
4、吸力式基础
该基础分为单注及多注吸力式沉箱基础等。吸 力式基础通过施工手段将钢裙沉箱中的水抽出 形成吸力。想比前面介绍的单桩基础,该基础 利用负压方法进行,可大大节省钢材用量和海 上施工时间,具有较良好的应用前景。
2、多桩基础 (1)普通多桩基础 (2)三脚桩基础
(1)普通多桩基础
普通多桩基础,根据实 际的地质条件和施工 难易程度还可以做成5 根桩, 外围桩一般做成 一定角度的倾斜。这 种基础与单桩基础 没 有本质上的区别,其适 用范围、优缺点和单 桩基础都相差无几。
(2)三脚桩基础
三脚桩基础,采用标准的三腿 支撑结构,由中心柱、三根插 入海床一定深度的圆柱钢管 和斜撑结构构成,钢管桩通过 特殊灌浆或桩模与上部结构 相连,其中心柱提供风机塔架 的基本支撑。这种基础由单 塔架结构简化演变而来,同时 增强了周围结构的刚度和强 度。
(3)高产出。海上风电场允许单机容低,通过更高的转动速度及电压,可获取更高 的能量产出
三、海上风力发电机组三个主要部分
(1)塔头(风轮和机舱) (2)塔架 (3)基础(水下结构与地基)
四、海上风力发电基础的形式
1、单桩基础 2、多桩基础 (1)普通多桩基础 (2)三脚桩基础 3、重力式基础 4、吸力式基础 5、悬浮式基础
5、悬浮式基础
它是漂浮在海面上的盒式箱体,风电设备的支撑塔 柱固定在盒式箱体上。在水深大于50m时,采用其 它形式的基础形式不经济时,就考虑浮体结构,浮体 根据锚固系统的不同而采取不同的形状,一般为矩 形、三角形或圆形。目前,还没有海上风电场应用 这种基础,但待浅海海域开发完毕,风电场向深海发 展的时候,浮体支撑必然有其广阔的应用前景。

海上风电机组基础结构课件

海上风电机组基础结构课件

能源安全
海上风力发电可以减少对 化石燃料的依赖,提高能 源安全性。
经济发展
海上风力发电项目可以促 进当地经济发展,提高就 业率,同时为政府带来税 收收入。
海上风电机组的基础结构类型
单桩基础
单桩基础由一个大型桩柱 和上部结构组成,通过桩 柱将机组重量传递到海底 地基。
导管架基础
导管架基础由一个或多个 导管架组成,上面安装有 叶片和机舱等设备。
疲劳分析
考虑到海上风电机组运行过程中承受的疲劳载荷 ,对关键部位进行疲劳分析和优化。
结构设计的优化
材料选择
选择高强度、轻质、耐腐蚀的材料,提高基础结构的性能和耐久 性。
构造优化
通过优化基础结构的构造方式,提高整体性能和稳定性。
细节处理
对关键部位进行细节处理,如加强筋、倒角等,提高结构的安全性 和可靠性。
安装质量控制
验收质量控制
在安装过程中,进行质量检验和监督,确 保安装精度和质量。
在验收时,进行质量检验和评估,确保基 础结构的质量和安全性。
安装过程中的问题及解决方案
定位精度问题
在安装过程中,可能存在定位精度不足的问题,导致安装 困难。解决方案是使用高精度的GPS等定位设备,提高定 位精度。
支撑架稳定性问题
浮体基础
浮体基础由浮体和锚链组 成,通过锚链将机组固定 在指定位置。
海上风电机组的基础结构材料
高强度钢材
用于制造桩柱、导管架和锚链 等结构件。
铝合金
用于制造叶片和其他轻量化部件。
复合材料
用于制造机舱罩、导流罩等部件, 具有轻量化和抗腐蚀等优点。
02
海上风电机组基础结构设 计
结构设计原则
安全性
海上风电机组基础结构应能够承 受极端自然环境和地震等自然灾 害的影响,确保结构安全性和稳

8专题五:海上风电机组支撑结构分析

8专题五:海上风电机组支撑结构分析

3.1 计算方法-环境载荷
3.1.1 风 3.1.2 波浪 3.1.3 流 3.1.4 冰 3.1.5 地震 3.1.6 冲刷、海生物、雪等其它
3.1.2 计算方法-环境载荷-波-波浪理论
•随机波
随机波浪模型是反映真实海洋状态特征的最好描述,其假设波面位移服从均值为零的正态过 程,该过程具有平稳性和各态历经性。随机波浪模型把实际海况描述为无限多个频率不等、 方向不同,振幅变化及相位杂乱的微幅简谐波叠加而成的不规则波系。一般用波谱、有效波 高H s、谱峰周期T p和平均波向来描述。波谱,主要包括Pierson-Moskowitz(简称P-M谱), Bretschneider双参数谱,JONSWAPS谱
风电机组关键结构部件有限元分析培训
专题五:
海上风电机组支撑结构分析
孙政策博士 中国船级社(CCS)
内容
1. 海上风电机的基本结构 2. 海上风电机支撑结构的种类 3. 海上风电机支撑结构的计算方法和特点 4. 海上支撑结构计算实例
1 海上风电机的基本结构
2 海上风电机支撑结构的种类
2.1 现用结构 2.2 基础型式 2.3 组合型式 2.4 发展结构 2.5 影响结构型式选择的因素
•P-Y曲线 •T-Z曲线 •Q-Z曲线
3.3 计算方法-计算工况
•要考虑海上风电机可能出现的最危险条件 •根据海上风电机的设计状态(建造、安装、工作、自 存等)来确定各个条件的组合。
3.3 计算方法-计算工况
3.3 计算方法-计算工况-详细描述
•中国船级社海上风电机规范(即将出版) •Germanischer Lloyd, Rules & Regulations, IV Non Marine Technology, Part 2 Regulations for the Certification of Offshore Wind Energy Conversion Systems, 1995. • Rekommandation for Teknisk Godkendelse af Vinmoller pa Havet, 2. December 2001. Danish Energy Agency • IEC/TC88 61400-3 Edition 1: Safety requirements for offshore wind turbines - under development • ISO 19900-19909, Offshore Structures – under development

(完整版)海上风电场+风机基础介绍

(完整版)海上风电场+风机基础介绍

海上风电场风机基础介绍技术服务中心业务筹备部前言近年来,国家对清洁能源特别是风电的发展在政策上给予了很大支持,使得中国风电得到蓬勃发展。

风力发电作为新能源领域中技术最成熟、最具规模化开发条件和商业化发展前景的发电方式,获得了迅猛发展。

随着风电机组从陆地延伸到海上,海上风电正成为新能源领域发展的重点。

本文结合国内外海上风电场具体的风机基础,对现有的海上机组的基础类型逐一介绍,目的是对海上风机基础形成一个初步的了解,为公司日后的海上服务业务做铺垫。

为人类奉献白云蓝天,给未来留下更多资源。

2目录1 风机基础类型--------------------------------------- 4 1.1 重力式基础----------------------------------------- 4 1.2 单桩基础------------------------------------------- 6 1.3 三脚架式基础--------------------------------------- 8 1.4 导管架式基础-------------------------------------- 10 1.5 多桩式基础---------------------------------------- 111.6 其他概念型基础------------------------------------ 122 海上风力发电机组基础维护 -------------------------- 14为人类奉献白云蓝天,给未来留下更多资源。

3为人类奉献白云蓝天,给未来留下更多资源。

4 1 风机基础类型1.1 重力式基础重力式基础,顾名思义是是靠重力来追求风机平衡稳定的基础,重力式基础主要依靠自身质量使风机矗立在海面上,其结构简单,造价低且不受海床影响,稳定性好。

缺点是需要进行海底准备,受环境冲刷影响大,且仅适用于浅水区域。

海上风电风机基础结构形式及安装技术

海上风电风机基础结构形式及安装技术

海上风电风机基础结构形式及安装技术摘要:海上风力发电是未来主要风能趋势,且海岸滩涂风力储量丰富,具有巨大开发潜力。

但是海上存在复杂区域条件和不稳定地形,直接开发很容易引起海底土壤侵蚀和液化,这直接影响到海上风力发电机基础安全性和稳定性。

针对现有风力发电机基础,本文分析现有海上风力发电机基础结构形成,探讨其施工安装技术。

关键词:风机基础;单桩基础;安装技术前言:随着传统热能发展停滞,新能源增长会成为全球趋势。

由于热力和煤炭资源不足,清洁能源成为全球能源领域的热门话题。

风力发电作为清洁、无污染的可再生能源,越来越受到人们关注,本文将对海上风电风机进行分析探讨。

1 现状风能具有可持续发展,是一种清洁无污染能源,是未来能源发展方向。

面对我国当前环境污染现实和环境保护以及节能减排的迫切需要,海上风电将进入发展黄金时代。

故此,近年来将是海上风电发展爆发阶段。

海上风电机组安装,现已建成许多套,在基础上对风力发电机进行综合提升[1]。

2 基础结构形式通常,海上风力发电机形态基础结构主要包括重力基础、单桩基础、高桩承台基础、多桩基础及导管架式基础、吸力锚基础,详见下表。

2.3 高桩承台基础高桩承台基础需要根据实际地质条件和施工难度施工,其外围桩通常从一定角度向内倾斜。

地基应用于风电设备建造前,它是由基桩和上部承载平台组成,是沿海码头常见结构。

优点是对水平位移受力和阻力有利;缺点是基底较长,整体结构较重,因此适合于深度小于20米浅海海域。

2.4 多桩基础多桩基础使用多个钢堆,管道方向上部连接在钢桁架基础部分,基础上部连接在塔筒上。

多桩基础主要用于大规模风力发电园区和水深海域,在许多国家都有使用。

适合水深300米内海洋地区,不适合海底岩石多发地区情况。

多桩基础在海上石油和生产平台建设上非常成熟,可以应用于大众化和海上风能。

其优点包括质量轻、基础强度高、安装技术成熟,适用于深海;缺点是需要大量钢材,生产时间长,成本相对高,安装易受到天气影响[3]。

海上风电机组结构

海上风电机组结构

海上风电机组结构海上风力发电是一种在全球范围内广泛应用的可再生能源,而风电机组的结构是整个系统的核心部分。

本文将详细介绍海上风电机组结构的各个主要组成部分。

1.风轮风轮是风电机组的核心部件,它利用风力带动发电机工作。

一般来说,风轮包括叶片和轮毂两部分。

此外,根据不同的设计,风轮还可以包含刹车装置和测风设备等其他部件。

这些部件能够有效地吸收并利用风能,提高风电机组的效率。

2.塔筒塔筒是风电机组的另一重要部件,它负责将风轮吸收到的能量传输到发电机。

一般来说,塔筒包括底座、中间段和顶端三部分。

此外,塔筒还需具有防腐蚀和耐久性,并能承受很大的力量。

它不仅支撑着整个风电机组的结构,还将风能转化为电能的过程中的关键环节。

3.齿轮箱齿轮箱是连接风轮和发电机的关键部件,它可以将风轮的高速转动变为发电机的工作转速,从而将动能转化为电能。

此外,齿轮箱还需具有很高的准确性和稳定性,从而保证电力的质量。

齿轮箱的设计和制造需要经过精密的计算和实验验证,以确保其性能达到最优。

4.发电机发电机是风电机组的核心部件,它负责将动能转化为电能。

根据不同的设计,发电机包括的部件也不尽相同。

例如,水平轴风电机组通常使用的是三相异步发电机或双馈异步发电机,而垂直轴风电机组则可能使用的是直线发电机或旋转发电机。

5.控制系统控制系统是保证风电机组正常工作的关键,它负责监测风电机组的运作状态,并对其进行及时维护和修复。

控制系统一般由各种传感器、控制器和执行器等组成,能够实时监测和控制风电机组的各个部件。

6.变压器变压器是将电压转换成用户所需电压的重要设备,它可以将高压电变为低压电,保证用电的安全性和稳定性。

对于海上风电机组来说,变压器也是必不可少的设备之一,因为它需要将海上与陆地电网连接起来,实现电能的传输和分配。

7.支撑结构支撑结构包括机座、横梁等部件,它们负责支撑整个机组的工作,并保证其稳定的运转。

这些部件的设计和制造也需要经过精密的计算和实验验证,以确保其能够承受住各种恶劣环境和载荷条件下的运行。

海上风电机组基础

海上风电机组基础
目前的主要任务是要减少重量以便减少成 本。有关具体数据如下: 1、海上漂浮式基础,可用于水深120-700
米的深海; 2、风机重量 138吨; 3. 纤绳 100米; 4. 排水量 5300立方米; 5. 水线直径 6米; 6.钢制塔和钢质水下结构;
海上风电机组基础类型
机组基础中,88%的 欧洲海上风电机组采 用单桩基础,8.5%的 机组选择重力桩,3% 的机组选择三桩基础, 还有两个漂浮机组, 两台样机基础。
序号
1 2 3 4 5 6 Байду номын сангаас 8 9 10 10 合计
项目名称
建设容量(万kW)
江苏如东30MW潮间带试验风电场 江苏如东150MW潮间带示范风电场 江苏如东30MW潮间带试验风电场扩容 江苏如东150MW潮间带示范风电场扩容
江苏响水海上试验项目 上海东海大桥海上风电示范项目
天津龙源滨海风电场 福建福清湘电5MW试验机组 山东潍坊联合动力3MW和6MW试验机组 上海东海大桥华锐5MW和上海电气3.6MW试验机组
三、福建近海风电基础勘测设计特点
福建海域极端的海洋水文气象条件
➢ 复杂的海洋水文气象条件:受台湾海峡地形的影响福建省中部海域最 大潮差高达8米;近海海域波浪类型是混合浪,涌浪的波高波长强度 强;每年影响我省的台风5~7个,台风除了带来狂风巨浪、降水、雷 电等恶劣气候影响之外,每个台风来临前后的影响使得我省每年海上 风电可施工的窗口时间短。
海上风电基础
海上风电基础
• 一、海上风电的发展现状 • 二、海上风电基础类型 • 三、福建近海风电基础勘测设计特点 • 四、工程实例
一、海上风电的发展现状
海上风电的优势:
• 海上风场 风力强劲,发电量大 • 海上风电场不占用土地,不扰民 • 海上风电场视觉、噪音影响较小 • 海上便于较大型风电设备,有利于提高风电场效益 • 我国海上风电场距电力负荷中心较近,限电少

海上风电场风机基础结构形式探讨

海上风电场风机基础结构形式探讨

海上风电场风机基础结构形式探讨徐荣彬【摘要】分类介绍了国内外各种海上风电基础形式.风机基础是其上部结构的重要支撑结构,如何寻找一个既保证安全又经济的基础,是许多国家的重要研究课题之一.【期刊名称】《建材技术与应用》【年(卷),期】2011(000)007【总页数】3页(P7-9)【关键词】风力发电;海上风电;风机基础【作者】徐荣彬【作者单位】广东省电力设计研究院,广东,广州,510000【正文语种】中文【中图分类】TM614引言随着全球不可再生能源如煤炭、石油的日益减少,利用可再生能源呈现方兴未艾之势,风力发电规模越来越大,在我国的海岸及沙漠边缘的风力发电机组越来越多。

目前,已建的风力发电机组均为陆上发电机组,而海上风力发电比陆上风力发电更具有不占用陆地面积、风速比陆地大、风的方向较稳定等优点。

海上风电场风机基础是将风机稳固在海上的重要建筑物,风机基础处在海洋环境,不仅要承受结构自重、风荷载,还要承受波浪、水流力等;同时,风机本身对基础刚度、基础倾角和振动频率等均有非常严格的要求。

目前,很多国家在探索经济安全的海上风电基础形式,这对于我国的海上风电发展很有借鉴意义。

1 单桩基础(Monopile)单桩基础是最简单的基础结构,如图1所示。

它由焊接钢管组成,桩与塔筒之间的连接可以是焊接法兰连接,也可以是套管法兰连接。

单桩基础通过侧面土壤的压力传输风机荷载,插入深度取决于海床地质类型,一般深至海床下10~20 m,直径根据负荷的大小而定,一般在3~5 m,壁厚约为桩直径的1 %。

2 多桩基础多桩基础形式如图2所示。

根据实际的地质条件和施工难易程度,可以做成不同根数的桩,外围桩一般整体向内有一定角度的倾斜。

图1 单桩基础示意图图2 多桩基础示意图3 三脚桩基础(Tripod)三脚桩基础(见图3)采用标准的三腿支撑结构,由中心柱、3根插入海床一定深度的圆柱钢管和斜撑结构组成。

钢管桩通过特殊灌浆或桩模与上部结构相连,可以采用垂直或倾斜管套,中心柱提供风机塔架的基本支撑,类似于单桩基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

能源总量
据估计到达地球的太阳能中只有大约2%转化为风能,全球的风能 约为2.74×109MW,其中可利用的风能为2×107MW,比地球 上可开发利用的水能总量还要大10倍。
风能提水 风能动力
风能概况
风能的特征
风能、太阳能和生物质能发展速度最快,产业前景 也最好。风力发电相对于太阳能、生物质能等新能 源技术更为成熟、成本更低、对环境破坏更小,被 称为最接近常规能源的新能源,因而成为产业化发 展最快的清洁能源技术。
基础
由于海上风电机组的基础处于海 上,增加了许多额外载荷和不确 定因素, 因而设计较为复杂, 结 构形式也由于不同的海况而多样 化, 因而, 基础设计成了海上风 电场设计的关键技术之一。
内容及计划
本课程主要内容
第一章:绪论
(陈达)
第二章:海上风电机组基础结构环境荷载 (江朝华)
第三章:桩承式基础 第四章:重力式基础
班牙用电量的16%来自风电,
德国用电量的8%来自风电, 风电已成为欧洲国家能源转
欧洲风能发展目标
型的重要支撑,这为全球能 欧洲风能利用协会将在欧洲的近海岸地
源结构转型树立了榜样。
区进行风能开发利用,希望在2020年风
能发电能够满足欧洲居民的全部用电需
求。
中国风电装机发展
中国风电装机发展
中国风电装机容量
叶片
通常海上风电机组上安装有3 片叶片, 而叶片的尺寸大小直接 决定了海上风力发电机的功率 大小。
风机
风机是风力发电的核心部分, 主 要由转子、风速计、控制器、 发电机、变速器等部分组成。
塔身
塔身一般由空心的管状钢材制成 , 设计主要考虑在各种风况下的 刚性和稳性, 根据安装地点的风 况、水况和风轮半径条件决定塔 身的高度, 使风叶片处于风力资 源最丰富的高度。
我国风力发电始于上世纪80年代,自 从2006年1月1日开始实施可再生能源
2007年
法后,中国风电市场前期稳步发展、 后期迅猛发展。如今在全球的风能发 展中,中国风力发电的发展速度最快, 至 2012 年 6 月 , 我 国 并 网 风 电 达 到 52.58GW , 国 家 电 网 调 度 范 围 达 到 50.26GW,超过美国跃居世界第一。 2012年8月发布的《可再生能源发展 “十二五”规划》提出到2015年,风 电累计并网运行达1×105MW。
国外海上风电总体情况
目前国际上已建成且投入商业运行的海上风电场基本上 都在欧洲,这主要是由于欧洲基本不受台风的影响,发 展海上风电场具有优势条件。自20世纪80年代起,欧洲 开始积极探讨海上风电开发的可行性。
瑞典
瑞典于1990年安装了第一台实验性海上风电机组,离岸 350m,水深6m,容量为220kW,该机组1998年停运。 1997年开始在海上建立5台600kW的风电机组。2000年, 兆瓦级风电机组开始在海上应用示范,并规划筹建11座 海上风电场,至2008年已建成15座海上风电场。
(陈达) (陈达)
第五章:浮式基础
(陈达)
第六章:海上风电机组基础防腐蚀
(江朝华)
第一章:绪论
1.1 海上风电发展概况
1.1.1 国外海上风电发展概况 1.1.2 国内海上风电发展概况 1.2 海上风电机组基础结构的分类和组成 1.2.1 桩承式基础 1.2.2 重力式基础 1.2.3 浮式基础
风能概况
1.1.1 国外海上风电发展概况
丹麦
丹麦发展海上风电也较早,全国有6%的用电来自近海风电场。1991 年丹麦在波罗的海洛兰岛西北沿海附近建成了世界上第一个海上风 电场,安装11台450kW风电机组,1995年又建成10台500kW海上风 电机组,2003年还建成了当时世界上最大的近海风电场,共安装80 台2.0MW风电机组。出于对环境的考虑,丹麦的海上风电场只关注 那些偏远的水深在5~11m之间的海域,所选的区域须在国家海洋公 园、海运路线、微波通道、军事区域等之外,距离海岸线7到40km, 使岸上的视觉影响降到最低。根据丹麦政府能源计划法案,2030年 以前丹麦风力发电量将占全国总发电量的50%,其中,近四分之一 的风力发电量是由海上风电供给,最近,丹麦政府提出到2050年全 部摆脱对化石能源的依赖。全Biblioteka 风电装机发展全球风电装机发展
全球风电装机容量
截止2011年底,全球风电装
机 容 量 达 到 了 2.38×105MW ,
累计装机容量实现了21%的
年增长。全球75个国家有商
业运营的风电装机,其中22
个国家的装机容量超过1GW,
风电正在以超出预期的发展
速度不断增长。目前,丹麦
用电量的28%来自风电,西
内陆局部风丰 丰富区。
富区:
一些地区由于湖 泊和特殊地形的 影响,形成一些 风能丰富点,如 鄱阳湖附近地区、 湖北的九宫山和 利川以及湖南八 面山等地区,适 合建设零星的中 小型风电场。
海上风能丰富区
中国海上风资源
海上风电优势
海上风电具有不占用土地资源、 受环境制约少、风电机组容量更 大、年利用小时数更高、更具规 模化开发的特点,使得近海风力 发电技术成为近来研究和应用的 热点。
我国海上风能资源
我国海上可开发和利用的风能储 量约2×105MW,海上风能资源 丰富,有巨大的蕴藏量和广阔的 发展前景,特别是东部沿海水深 50m内的海域面积辽阔,距电力 负荷中心很近,随着开发技术的 成熟,海上风电必将成为我国东 部沿海地区可持续发展的重要能 源来源。
江苏省海上风电开发布局图
1.1.1 国外海上风电发展概况
海上风电机组基础结构 陈达
参考书目录:
教材
《海上风电机组基础结构》陈达 等编著
推荐参考书
《海上风电机组地基基础设计理论 与工程应用 》王伟、杨敏 编著
《制备技术-海上风力发电机组-制造 方法》吴佳梁、李成锋编著
《海上风力发电机组-几何参数设计》 吴佳梁、李成锋 编著
海上风电场的构成
一个完整的海上风电场由一定规模数量的单个风电机组和海 底输电设备构成。单个的风电机组包括叶片、风机、塔身和 基础部分。
2050年
中国风资源
“三北”地区
东北、华北、西北可开发利用的风能储量约2亿kW,约占全国陆 地可利用储量的79%。该地区地形平坦,没有破坏性风速,是我 国连成一片的最大风能资源区,有利于大规模开发风电场。
沿海及其岛屿地区
包括山东、广西和海南、江苏等省市沿海近10km宽地带,约占 全国陆地可利用储量的4%。东南沿海及其岛屿是我国风能最佳
相关文档
最新文档