排列组合与二项展开式

合集下载

35:排列组合和二项式定理高三复习数学知识点总结(全)

35:排列组合和二项式定理高三复习数学知识点总结(全)

排列、组合与二项式定理1.两个计数原理(1)分类计数定理(加法原理):如果完成一件事,有n 类方式,在第1类方式中有1m 种不同的方法,在第2类方式中有2m 种不同的方法,......,在第n 类方式中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法.(2)分步计数定理(乘法原理):如果完成一件事,需要完成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,......,做第n 步有n m 种不同的方法,那么完成这件事共有n m m m N ⨯⨯⨯= 21种不同的方法.(3)两个计数原理的区别分类计数原理与分步计数原理的区别关键在于看事件能否完成,事件完成了就是分类,分类后要将种数相加;事件必须要连续若干步才能完成的则是分步,分步后要将种数相乘.2.排列(1)排列的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(2)排列数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n A 表示.(3)排列数公式:)1()2)(1()!(!+---=-=m n n n n m n n A m n .特别地:①(全排列).123)2)(1(!⋅⋅--== n n n n A n n ②.1!0=3.组合(1)组合的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(2)组合数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号m n C 表示.(3)组合数公式:()()()()121!!!!m m n n m m n n n n m A n C A m m n m ---+===- .特别地:01n C =.(4)组合数的性质:①m n n m n C C -=;②11-++=m n m n m n C C C ;③11--=kn k n nC kC .4.解决排列与组合问题的常用方法通法:先特殊后一般(有限制条件问题),先组合后排列(分组问题),先分类后分步(综合问题).例:某校开设9门课程供学生选修,其中A 、B 、C 三门由于上课时问相同,至多选一门,学校规定,每位同学选修4门,共有多少种不同的选修方案?答:.75461336=+C C C (1)特殊元素、位置优先安排法:对问题中的特殊元素或位置优先考虑排列,然后排列其他一般元素或位置.例4-1:0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有几个?答:.3013131224=+C C C A (2)限制条件排除法:先求出不考虑限制条件的个数,然后减去不符合条件的个数.也适用于解决“至多”“至少”的排列组合问题.例4-2:从7名男同学和5名女同学中选出5人,若至少有2名女同学当选,问有多少种情况?答:.596)(471557512=+-C C C C(3)相邻问题“捆绑法”:将必须相邻的元素“捆绑”在一起,当作一个元素进行排列,待整个问题排好之后再考虑它们内部的排列数,它主要用于解决相邻问题.例4-3:5个男生3个女生排成一列,要求女生排一起,共有几种排法?答:6363A A =4320(4)不相邻问题“插空法”:先把无位置要求的元素进行排列,再把规定不相邻的元素插入已排列好的元素形成的“空档”中(注意两端).例4-4:5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法?答:5354A A (5)元素相同“隔板法”:若把n 个不加区分的相同元素分成m 组,可通过n 个相同元素排成一排,在元素之间插入1-m 块隔板来完成分组,共11--+m m n C 种方法.例4-5:10张参观公园的门票分给5个班,每班至少1张,有几种选法?答:.49C (6)元素不多“列举法”:即把符合条件的一一列举出来.例4-6:将数字1、2、3、4填入标号为1、2、3、4的四个方格内,每个方格填一个,则每个方格的标号与所填的数字均不相同的填法种数有种。

排列组合二项式定理概率基础知识点+思维导图练习

排列组合二项式定理概率基础知识点+思维导图练习

;展开
式共有项数为
项.
(2)二项展开式的通项 Tr1
,表示第
项.
(3)二项展开式中的二项式系数为
;项的系数是指
.
11、(1)对称性:与首末两端
的两项的二项式系数相等,即 Cnr
C nr n
(r
0,1, 2,, n)
18
(2)二项式系数最大的项在中间.当幂指数 n 为偶数时,最大的二项式系数为

最大二项式系数为第
项;当 n 为奇数时,最大的二项式系数为

最大的二项式系数为第
项.
(3)二项式系数之和为
.二项展开式中,各奇数项的二项式系数之和与各偶数
项的二项式系数之和相等,即:
==.源自12、若 (x 1)7 a0 a1x a2 x2 a7 x7 ,令
一、特殊元素特殊位置优先
,得 a0 a1 a2 a7
八、合理分类与分步策略 8、在一次演唱会上共有 10 名演员,其中 8 人能够唱歌,5 人会跳舞,现要演出一个 2
人唱歌 2 人伴舞的节目,有多少种选派方法?
九、构造模型策略 9、马路上有编号为 1,2,3,4,5,6,7,8,9 的九只路灯,现要关掉其中的 3 盏,但不能关掉相
邻的 2 盏或 3 盏,也不能关掉两端的 2 盏,求满足条件的关灯方法有多少种?
; Ann
;规定, 0!

7、组合数 Cnm 的含义:
8、计算: Cnm
=

9、组合数的性质
(1)Cnm
;(2)Cnm
C m1 n
10、(1)对于 n N * , (a b)n
;(3)Cn0 Cn1 Cn2 Cnn1 Cnn

排列组合二项式定理

排列组合二项式定理

排列:表达的是事件中元素是有顺序的或有区分的例如(1)在袋子中逐个取出。

排队有先后之分。

表达式:!()!n m n nn m n m A n A A n m --==-(表达n 个中选m 个进行排序)计算:1.解方程:3322126xx x A A A +=+ 2. 解不等式:2996x x AA -> (1)已知101095mA =⨯⨯⨯,那么m = ; (2)已知9!362880=,那么79A = ;(3)已知256n A =,那么n = ; (4)已知2247n n A A -=,那么n = .情况次数讨论:互斥分类——分类法 先后有序——位置法 反面明了——排除法相邻排列——捆绑法 分离排列——插空法 排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”例1求不同的排法种数:(1)6男2女排成一排,2女相邻; (2)6男2女排成一排,2女不能相邻; (3)4男4女排成一排,同性者相邻; (4)4男4女排成一排,同性者不能相邻.例2 某小组6个人排队照相留念.(1)若分成两排照相,前排2人,后排4人,有多少种不同的排法?(2)若分成两排照相,前排2人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种排法?(3)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法? (4)若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?(5)若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法? (6)若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?例3 7位同学站成一排(1)甲、乙两同学必须相邻的排法共有多少种? (2)甲、乙和丙三个同学都相邻的排法共有多少种?(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种? (4例4 (1)一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1列火车)?(2)将4位司机、4位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一位司机和一位售票员,共有多少种不同的分配方案?组合:表达事件中元素没有顺序或相互之间没有区分 例如(1)在袋子中一次拿出3个小球(没有顺序)(2)将三个相同的黄色小球排成一列(没有区分)表达式:(1)(2)(1)!m m n nm m A n n n n m C A m ---+== 规定: 01n C =.m n nmnC C -=. m n C 1+=m n C +1-m n C 计算:(1)设,+∈N x 求321132-+--+x x x x C C (2)解方程:3213113-+=x x C C ; (3)解方程:333222101+-+-+=+x x x x x A C C . 情况次数讨论:例1 (1)平面内有10 个点,以其中每2 个点为端点的线段共有多少条?(2)平面内有 10 个点,以其中每 2 个点为端点的有向线段共有多少条?例2 在 100 件产品中,有 98 件合格品,2 件次品.从这 100 件产品中任意抽出 3 件 .(1)有多少种不同的抽法?(2)抽出的 3 件中恰好有 1 件是次品的抽法有多少种? (3)抽出的 3 件中至少有 1 件是次品的抽法有多少种?例3 (1)6本不同的书分给甲、乙、丙3同学,每人各得2本,有多少种不同的分法?(2)从5个男生和4个女生中选出4名学生参加一次会议,要求至少有2名男生和1名女生参加,有多少种选法?】例4 4名男生和6名女生组成至少有1个男生参加的三人社会实践活动小组,问组成方法共有多少种?1注意区别“恰好”与“至少”从6双不同颜色的手套中任取4只,其中恰好有一双同色的手套的不同取法共有多少种 2特殊元素(或位置)优先安排将5列车停在5条不同的轨道上,其中a 列车不停在第一轨道上,b 列车不停在第二轨道上,那么不同的停放方法有种3“相邻”用“捆绑”,“不邻”就“插空”七人排成一排,甲、乙两人必须相邻,且甲、乙都不与丙相邻,则不同的排法有多少种 4、混合问题,先“组”后“排”对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能? 5、分清排列、组合、等分的算法区别(1)今有10件不同奖品,从中选6件分给甲一件,乙二件和丙三件,有多少种分法?(2) 今有10件不同奖品, 从中选6件分给三人,其中1人一件1人二件1人三件, 有多少种分法?(3) 今有10件不同奖品, 从中选6件分成三份,每份2件, 有多少种分法? 6、分类组合,隔板处理从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?二项式定理:⑴22202122222()2a b a ab b C a C ab C b +=++=++;⑵33223031222333333()33a b a a b ab b C a C a b C ab C b +=+++=+++二项式定理:01()()nn nr n r rn nn n n n a b C a C a b C a b C b n N -*+=+++++∈(1)右边的多项式叫()na b +的二项展开式, (2)它有1n +项,各项的系数(0,1,)rn C r n =叫二项式系数,(3)rn rr n C ab -叫二项展开式的通项,用1r T +表示,即通项1r n r rr nT C a b -+=. (4)二项式定理中,设1,ab x ==,则1(1)1n r rnn n x C x C x x +=+++++计算:(1)展开41(1)x+. 展开6. (2)求12()x a +的展开式中的倒数第4 求9(3x +的展开式常数项; 求9(3x +求7(12)x +的展开式的第4项的系数;求91()x x-的展开式中3x求60.998的近似值,使误差小于0.001. 解:66011666660.998(10.002)(0.002)(0.002)C C C =-=+-++-,展开式中第三项为2260.0020.00006C =,小于0.001,以后各项的绝对值更小,可忽略不计,∴66011660.998(10.002)(0.002)0.998C C =-≈+-=,一般地当a 较小时(1)1na na +≈+二项式定理的性质:(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵mn mn nC C -=). 直线2nr=是图象的对称轴. (2)增减性与最大值.∵1(1)(2)(1)1!kk nn n n n n k n k C C k k----+-+==⋅,∴k n C 相对于1k n C -的增减情况由1n k k -+决定,1112n k n k k -++>⇔<,当12n k +<时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值;当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项12n nC -,12n nC+取得最大值.(3)各二项式系数和: ∵1(1)1nr rn n n x C x C x x +=+++++,令1x =,则0122n r nn n n n nC C C C C =++++++例1 在()na b +证明:在展开式01()()n n nr n r rn nn n n n a b C a C a b C a b C b n N -*+=+++++∈中,令1,1a b ==-,则0123(11)(1)n n nn n n n nC C C C C -=-+-++-, 即02130()()n n n n C C C C =++-++,∴0213n n n n C C C C ++=++,例2.已知7270127(12)x a a x a x a x -=++++,求:(1)127a a a +++; (2)1357a a a a +++; (3)017||||||a a a +++.解:(1)当1x=时,77(12)(12)1x -=-=-,展开式右边为0127a a a a ++++∴0127a a a a ++++1=-,当0x =时,01a =,∴127112a a a +++=--=-,(2)令1x =, 0127a a a a ++++1=- ①令1x=-,7012345673a a a a a a a a -+-+-+-= ②①-② 得:713572()13a a a a +++=--,∴ 1357a a a a +++=7132+-.(3)由展开式知:1357,,,a a a a 均为负,0248,,,a a a a 均为正, ∴由(2)中①+② 得:702462()13a a a a +++=-+,∴ 70246132a a a a -++++=,∴017||||||a a a +++=01234567a a a a a a a a -+-+-+-702461357()()3a a a a a a a a =+++-+++= 例3 设()()()()231111nx x x x ++++++++=2012n n a a x a x a x ++++,当012254n a a a a ++++=时,求n例4 (江西卷)已知n展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于( ) A.4B.5C.6D.7(安徽卷)若(2x 3+x1)a的展开式中含有常数项,则最小的正整数n 等于 .例5 在10)32(y x -的展开式中,求:①二项式系数的和; ②各项系数的和;③奇数项的二项式系数和与偶数项的二项式系数和; ④奇数项系数和与偶数项系数和; ⑤x 的奇次项系数和与x 的偶次项系数和.分析:因为二项式系数特指组合数rn C ,故在①,③中只需求组合数的和,而与二项式y x 32-中的系数无关.解:设10102829110010)32(y a y x a y x a x a y x ++++=- (*),各项系数和即为1010a a a +++ ,奇数项系数和为0210a a a +++,偶数项系数和为9531a a a a ++++ ,x 的奇次项系数和为9531a a a a ++++ ,x 的偶次项系数和10420a a a a ++++ .由于(*)是恒等式,故可用“赋值法”求出相关的系数和. ①二项式系数和为1010101100102=+++C C C .②令1==y x ,各项系数和为1)1()32(1010=-=-.③奇数项的二项式系数和为910102100102=+++C C C ,偶数项的二项式系数和为99103101102=+++C C C .④设10102829110010)32(y a y x a y x a x a y x ++++=- ,令1==y x ,得到110210=++++a a a a …(1),令1=x ,1-=y (或1-=x ,1=y )得101032105=++-+-a a a a a (2)(1)+(2)得10102051)(2+=+++a a a ,∴奇数项的系数和为25110+;(1)-(2)得1093151)(2-=+++a a a ,∴偶数项的系数和为25110-.⑤x 的奇次项系数和为251109531-=++++a a a a ;x 的偶次项系数和为2511010420+=++++a a a a .。

高三数学排列,组合和二项式定理

高三数学排列,组合和二项式定理

精品学案:排列,组合和二项式定理高考大纲对排列,组合和二项式定理这一章的考试内容及考试要求为: 1.分类计数和分步计数原理; 2.排列组合公式3.组合组合数公式和组合数的两个性质 4.二项式定理和二项式展开式 考试要求掌握分类计数和分步计数原理,并能用他们解决一些简单的应用问题。

理解排列的意义,掌握排列的计数公式,并能用他解决一些简单的应用问题。

理解组合的意义,掌握组合的计数公式,并能用他解决一些简单的应用问题。

掌握二项式定理和他的展开式的性质,并能用他计算和证明一些简单的应用问题。

要点一计数原理1分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++种不同的方法2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法 要点二排列1.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....2.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号mn A 表示3.排列数公式:(1)(2)(1)mn A n n n n m =---+(,,m n N m n *∈≤)和m n A =!()!n n m -4阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=.要点三组合1组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合2.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号mn C 表示. 3.组合数公式:(1)(2)(1)!m m n nm m A n n n n m C A m ---+==或)!(!!m n m n C mn -=,,(n m N m n ≤∈*且4组合数的性质1:m n n m n C C -=.规定:10=n C ;2:m n C 1+=m n C +1-m n C要点四二项式定理1.正确理解二项式展开式中的第r +1项,第r +1项的二项式系数,第r +1项的系数之间的差别.2.二项系数的性质问题求二项式系数最大的项,可直接根据二项式系数的增减性与最大值性质,当为n 奇数时,中间两项的二项式系数最大;当n 为偶数时,中间一项的二项式系数最大,若求系数最大的项,则要根据各项系数的正、负变化情况并采用列不等式组、比较系数法求解.3.二项式的某项系数问题该问题解法多样,既可化归为二项式问题求解,又可从组合角度求解,一般地,三项式(a +b+c)n的展开式中,a p b q c r的系数为4.赋值法在二项展开式中的运用赋值法的模式是:对任意的x∈A,某式子恒成立,那么对A中的特殊值,该式子一定成立.特殊值如何选取?视具体问题而定,没有一成不变的规律,它的灵活性较强,一般x0=0, 1,-1取较多.一般地,多项式f(x)的各项系数和为f(1),奇次项系数和为1[(1)(1)]2f f--,偶次项系数和为1[(1)(1)]2f f+-.如二项式系数性质。

第11讲 排列组合和二项式定理,概率(2021高考数学 新东方内部

第11讲 排列组合和二项式定理,概率(2021高考数学   新东方内部

第11讲排列组合和二项式定理,概率(2021高考数学新东方内部第11讲排列、组合和二项式定理,概率(2021高考数学---新东方内部第一一章排列组合与二项式定理1.排列数公式成年男子n(n?1)(n?2)?(n?m?1)?Nn(m?n);an?Nn(n?1)(n?2)?2.1.(n?m)!如①1!+2!+3!+…+n!(n?4,n?n*)的个位数字为;(答:3)②满足a8x?6a8x?2的x=(答:8)组合数公式曼恩?(n?1)???(n?m?1)n!0c?M(m?n);指定0!?1,中国?一amm?(m?1)???2?1m!?n?m?!mnmnm如已知cn?cm?1?an?6,求n,m的值.(答:m=n=2)(了解)排列数、组合数的性质①cnmcnn?M1②cnm?cnm?1?cnm??1;kk?1.③kcn?ncn?1.1.④crr?crr?1.crr?r?cnr1.⑤NN(n?1)!?Nn11??⑥.(n?1)!n!(n?1)!2.解排列组合问题的依据是:分类和添加(每种方法都可以独立完成这项任务,相互独立,每次都得到最终结果,只有一种方法可以完成这项任务),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序的安排,无序的组合如①将5封信投入3个邮筒,不同的投法共有种;(答:35)②从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有种;(答:70)③ 从收集中?1,2,3? 和1,4,5,6? 如果将每个元素作为点的坐标,则它位于直角坐标系中中能确定不同点的个数是_;(答:23)④72的正约数(包括1和72)共有个;(答:12)⑤?a的一边ab上有4个点,另一边ac上有5个点,连同?a的一个顶点总共有10个点。

将这些点作为顶点可以形成三个三角形;(答复:cb90)⑥ 使用六种不同的颜色来分隔右图中的四个区域a、B、C和D,并且允许使用相同的颜色一颜色涂不同区域,但相邻区域不能是同一种颜色,则共有d种不同涂法;(答:480)⑦ 同一个房间里的四个人每人写一张新年贺卡,然后每人拿一张别人寄来的新年贺卡。

2023年新高考数学临考题号押题 押第4题 排列组合与二项式定理 学生版+解析

2023年新高考数学临考题号押题 押第4题 排列组合与二项式定理 学生版+解析

押新高考卷4题排 列 组 合 与 二 项 式 定 理考点 3年考题考情分析 排列组合与二项式定理 2022年新高考Ⅰ卷第13题2022年新高考Ⅱ卷第5题 2020年新高考Ⅰ卷第3题2020年新高考Ⅱ卷第6题排列组合与二项式定理均是以小题的形式进行考查,难度较易或一般,新高考冲刺复习中,分类加法原理、分步乘法原理,排列数及组合数,二项式定理、二项展开式系数都是重点复习内容,可以预测2023年新高考命题方向将继续对排列组合和二项式定理选其一展开命题.1.分类计数原理(加法原理)12n N m m m =+++ .2.分步计数原理(乘法原理12n N m m m =⨯⨯⨯ .3.排列数公式m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. 4.组合数公式mn C =m n m m A A =mm n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). 5.排列数与组合数的关系m m n n A m C =⋅! .6.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列.(1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m nn AA (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有k m k n k k A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有kk k n k n A A 11+-+-种.注:此类问题常用捆绑法; ③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有k h h h A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n n n m C A A 11++=种排法. (4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +.7.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有m n n n n n n mn n n mn n mn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有 m n n n n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--. 8.二项式定理 n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ; 二项展开式的通项公式r r n r n r b a C T -+=1)210(n r ,,, =.A.96种B.64种12.(2023·浙江嘉兴·统考模拟预测)同数”,例如“125,710”都是“叔同数押新高考卷4题排 列 组 合 与 二 项 式 定 理考点 3年考题考情分析 排列组合与二项式定理 2022年新高考Ⅰ卷第13题2022年新高考Ⅱ卷第5题 2020年新高考Ⅰ卷第3题2020年新高考Ⅱ卷第6题排列组合与二项式定理均是以小题的形式进行考查,难度较易或一般,新高考冲刺复习中,分类加法原理、分步乘法原理,排列数及组合数,二项式定理、二项展开式系数都是重点复习内容,可以预测2023年新高考命题方向将继续对排列组合和二项式定理选其一展开命题.1.分类计数原理(加法原理)12n N m m m =+++ .2.分步计数原理(乘法原理)12n N m m m =⨯⨯⨯ .3.排列数公式m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. 4.组合数公式mn C =m n m m A A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). 5.排列数与组合数的关系m m n n A m C =⋅! .6.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列.(1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有k m k n k k A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k k k n k n A A 11+-+-种.注:此类问题常用捆绑法; ③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有kh h h A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n n n m C A A 11++=种排法. (4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为n n m C +.7.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有m n n n n n n mn n n mn n mn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有 mn n n n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--. 8.二项式定理 n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ;二项展开式的通项公式r r n r n r b a C T -+=1)210(n r ,,,=.【分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224⨯⨯=种不同的排列方式,故选:B3.(2020·新高考Ⅰ卷高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种【答案】C【分析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解.【详解】首先从6名同学中选1名去甲场馆,方法数有16C;然后从其余5名同学中选2名去乙场馆,方法数有25C;最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C⋅=⨯=种.故选:C【点睛】本小题主要考查分步计数原理和组合数的计算,属于基础题.4.(2020·新高考Ⅱ卷高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.2种B.3种C.6种D.8种【答案】C【分析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可.【详解】第一步,将3名学生分成两个组,有12323C C=种分法第二步,将2组学生安排到2个村,有222A=种安排方法所以,不同的安排方法共有326⨯=种故选:C【点睛】解答本类问题时一般采取先组后排的策略.1.(2023·辽宁朝阳·校联考一模)6名老师被安排到甲、乙、丙三所学校支教,每名老师只去1所学校,甲校安排1名老师,乙校安排2名老师,丙校安排3名老师,则不同的安排方法共有( )A .30种B .60种C .90种D .120种 【答案】B【分析】按照分步计数原理求解.【详解】依题意,第一步,从6名老师中随机抽取1名去甲校,有16C 种方法;第二步,从剩下的5名老师中抽取2名取乙校,有25C 种方法;第三部,将剩余的3名老师给丙校,有33C 种方法;总共有123653C C C 60= 种方法; 故选:B.2.(2023·湖南湘潭·统考二模)2022年男足世界杯于2022年11月21日至2022年12月17日在卡塔尔举行.现要安排甲、乙等5名志愿者去A ,B ,C 三个足球场服务,要求每个足球场都有人去,每人都只能去一个足球场,则甲、乙两人被分在同一个足球场的安排方法种数为( )A .12B .18C .36D .48 【答案】C【分析】先按3,1,1或2,2,1分组,再安排到球场.【详解】将5人按3,1,1分成三组,且甲、乙在同一组的安排方法有13C 种,将5人按2,2,1分成三组,且甲、乙在同一组的安排方法有23C 种,则甲、乙两人被分在同一个足球场的安排方法种数为()123333C C A 36+=. 故选:C3.(2023·广东佛山·统考二模)“基础学科拔尖学生培养试验计划”简称“珠峰计划”,是国家为回应“钱学森之问”而推出的一项人才培养计划,旨在培养中国自己的学术大师.已知浙江大学、复旦大学、武汉大学、中山大学均有开设数学学科拔尖学生培养基地,某班级有5位同学从中任选一所学校作为奋斗目标,则每11.(2023·广东·统考一模)如图,在两行三列的网格中放入标有数字1,2,3,4,5,6的六张卡片,每格只放一张卡片,则“只有中间一列两个数字之和为5”的不同的排法有( )A .96种B .64种C .32种D .16种【答案】B 【分析】分3步完成,每步中用排列求出排法数,再利用分步计数原理即可求出结果.【详解】根据题意,分3步进行,第一步,要求“只有中间一列两个数字之和为5”,则中间的数字只能为两组数1,4或2,3中的一组,共有222A 4=种排法;第二步,排第一步中剩余的一组数,共有1142A A 8=种排法;第三步,排数字5和6,共有22A 2=种排法;由分步计数原理知,共有不同的排法种数为48264⨯⨯=.故选:B.12.(2023·浙江嘉兴·统考模拟预测)若一个三位数M 的各个数位上的数字之和为8,则我们称M 是一个“叔同数”,例如“125,710”都是“叔同数”.那么“叔同数”的个数共有( )A .34个B .35个C .36个D .37个【答案】C【分析】利用列举法求出所有组合,再计算能排列出多少个“叔同数”.【详解】三位数各位数的和为8可能的组合有116,125,134,224,233,017,026,035,044,008,其中三个数不同且都不为0可排出33A 6=个“叔同数”,没有0的3个数中有2个数相同,则排出13A 3=个“叔同数”,有1个0其余2个数为不同的非零数字可排出1222A A 4=个“叔同数”, 008只能排出800一个“叔同数”,所以它们排出的“叔同数”的个数共有366334442136+++++++++=,故选:C13.(2023·江苏连云港·统考模拟预测)现要从A ,B ,C ,D ,E 这5人中选出4人,安排在甲、乙、丙、丁4个岗位上,如果A 不能安排在甲岗位上,则安排的方法有( )A .56种B .64种C .72种D .96种【答案】D 【分析】根据A 是否入选进行分类讨论即可求解.【详解】由题意可知:根据A 是否入选进行分类:若A 入选:则先给A 从乙、丙、丁3个岗位上安排一个岗位有13C 3=种,再给剩下三个岗位安排人有34A 43224=⨯⨯=种,共有32472⨯=种方法; 若A 不入选:则4个人4个岗位全排有44A 432124=⨯⨯⨯=种方法,所以共有722496+=种不同的安排方法,故选:D .14.(2023·重庆万州·重庆市万州第二高级中学校考模拟预测)某社区活动需要连续六天有志愿者参加服务,每天只需要一名志愿者,现有甲、乙、丙、丁、戊、己6名志愿者,计划依次安排到该社区参加服务,要求甲不安排第一天,乙和丙在相邻两天参加服务,则不同的安排方案共有( )A .72种B .81种C .144种D .192种【答案】D【分析】先计算乙和丙在相邻两天参加服务的排法,排除乙和丙在相邻两天且甲安排在第一天参加服务的排法,即可得出答案.【详解】解:若乙和丙在相邻两天参加服务,不同的排法种数为2525A A 240=, 若乙和丙在相邻两天且甲安排在第一天参加服务,不同的排法种数为2424A A 48=,由间接法可知,满足条件的排法种数为24048192-=种.故选:D.15.(2023·重庆九龙坡·统考二模)《数术记遗》是《算经十书》中的一部,相传是汉末徐岳所著,该书记述了我国古代14种算法,分别是:积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算和计数.某学习小组有甲、乙、丙、丁四人,该小组要收集九宫算、运筹算、了知算、成数算、把头算、珠算6种算法的相关资料,要求每种算法只能一人收集,每人至少收集其中一种,则不同的分配方案种数有( )A .1560种B .2160种C .2640种D .4140种【答案】A。

高中数学高考总复习---排列组合、二项式定理知识讲解及考点梳理

高中数学高考总复习---排列组合、二项式定理知识讲解及考点梳理

高中数学高考总复习---排列组合、二项式定理知识讲解及考点梳理【高考展望】命题角度:该部分的命题就是围绕两个点展开.第一个点是围绕排列,组合展开,设计利用排列组合和两个基本原理求解的实际计数问题的试题,目的是考查对排列组合基本方法的掌握程度,考查分类与整合的思想方法,试题都是选择题或者填空题,难度中等或者偏易;第二点是围绕二项式定理展开,涉及利用二项式的通项公式计算二项式中特定项的系数、常数项、系数和等试题,目的是考查对二项式定理的掌握程度和基本的运算求解能力,试题也都是选择题或者填空题,难度中等.预计高考对该部分的考查基本方向不变,即考查简单的计数问题、二项式定理的简单应用,但由于排列,组合试题的特点,也不排除出现难度稍大的试题的可能.复习建议:该部分的复习以基本问题为主,要点有两个:一个是引导学生掌握解决排列,组合问题的基本思想,即分类与分步的思想,使学生在解题时有正确的思维方向;一个是掌握好二项展开式的通项公式的应用,这是二项式定理的考查核心.【知识升华】一、排列与组合1、分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理和分步有关,分类计数原理与分类有关.2、排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合,求共有多少种方法的问题.区别排列问题与组合问题要看是否与顺序有关,与顺序有关的属于排列问题,与顺序无关的属于组合问题.3、排列与组合的主要公式①排列数公式:)1()1()!(!+-⋅⋅⋅-=-=mnnnmnnA mn(m≤n)A nn=n! =n(n―1)(n―2) ·…·2·1.②组合数公式:12)1()1()1()!(!!⨯⨯⋅⋅⋅⨯-⨯+-⋅⋅⋅-=-=mmmnnnmnmnC mn(m≤n).③组合数性质:①mnnmnCC-=(m≤n). ②nnnnnnCCCC2210=+⋅⋅⋅+++③1314202-=⋅⋅⋅++=⋅⋅⋅++nnnnnnCCCCC4、分类应在同一标准下进行,确保“不漏”、“不重”,分步要做到“步骤连续”和“步骤独立”,并能完成事项.5、界定“元素与位置”要辩证地看待,“特殊元素”、“特殊位置”可直接优先安排,也可间接处理.6、解排列组合综合问题注意先选后排的原则,复杂的排列、组合问题利用分类思想转化为简单问题求解.7、常见的解题策略有以下几种:(1)特殊元素优先安排的策略;(2)合理分类与准确分步的策略;(3)排列、组合混合问题先选后排的策略;(4)正难则反、等价转化的策略;(5)相邻问题捆绑处理的策略;(6)不相邻问题插空处理的策略;(7)定序问题除法处理的策略;(8)分排问题直排处理的策略;(9)“小集团”排列问题中先整体后局部的策略;(10)构造模型的策略.二、二项式定理1、二项式定理(a +b)n =C 0n an +C1n an-1b+…+Crn an-rbr +…+Cnn bn,其中各项系数就是组合数Crn,展开式共有n+1项,第r+1项是Tr+1 =C rn an-rbr.2、二项展开式的通项公式二项展开式的第r+1项Tr+1=C rn an-rbr(r=0,1,…n)叫做二项展开式的通项公式。

排列组合和二项式定理及概率统计知识点

排列组合和二项式定理及概率统计知识点

排列组合二项定理 知识要点一、两个原理.1. 乘法原理、加法原理.2. 可.以有..重复..元素..的排列. 从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:nm 种)二、排列.1. ⑪对排列定义的理解.定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑫相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同.⑬排列数.从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号mn A 表示.⑭排列数公式:),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=注意:!)!1(!n n n n -+=⋅ 规定0! = 1111--++=⋅+=m n m n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10==n n n C C 2. 含有可重元素......的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于!!...!!21k n n n n n =.例如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1!3!3==n .三、组合.1. ⑪组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.⑫组合数公式:)!(!!!)1()1(m n m n C m m n n n A A C mn mmm n mn-=+--== ⑬两个公式:①;m n n mn CC -= ②mn m n m n C C C11+-=+①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m n C C C --=⋅一类是不含红球的选法有mn C )②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C 1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C mn 种,依分类原理有mn m n m n C C C11+-=+.⑭排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系. ⑮①几个常用组合数公式 n n nn n n C C C 2210=+++ 11111121153142011112++--++++++-+=+==++=+++=+++k n k n k n k n m n m m n m m m m m m n n n n n n n n C n C k nC kC C C C C C C C C C C C②常用的证明组合等式方法例. i. 裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n (利用!1)!1(1!1n n n n --=-) ii. 导数法. iii. 数学归纳法. iv. 倒序求和法.v. 递推法(即用m n m n m n C C C 11+-=+递推)如:413353433+=+++n n C C C C C . vi. 构造二项式. 如:nn n n n n C C C C 222120)()()(=+++证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中n x 的系数,左边为22120022110)()()(n n n n n n n n n n n n n n n n C C C C C C C C C C C +++=⋅++⋅+⋅+⋅-- ,而右边nn C 2= 四、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型: ①直接法.②排除法. n 个不同座位,例:A 、B 两个不能相邻,则有排列法种数为-2n A 2211A A n ⋅-. ③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,②有n 件不同商品,若其中A 、B 排在一起有2211A A n n ⋅--.③有n 件不同商品,若其中有二件要排在一起有112--⋅n n n A A . ④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.例如:n 个元素全排列,其中m 个元素互不相邻,不同的排法种数为多少?mm n m n m n A A 1+---⋅(插空法),当n – m+1≥m, 即m≤21+n 时有意义.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有n n A 种,)(n m m 个元素的全排列有m m A 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,共有m mn n A A 种排列方法.例如:n 个元素全排列,其中m 个元素顺序不变,共有多少种不同的排法?解法一:(逐步插空法)(m+1)(m+2)…n = n !/ m !;解法二:(比例分配法)m m n n A A /.⑦平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有k knnn n k n kn A C C C )1(-⋅.例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有3!224=C⑧隔板法:常用于解正整数解组数的问题.例如:124321=+++x x x x 的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为4321,,,x x x x 显然124321=+++x x x x ,故(4321,,,x x x x )是方程的一组解.反之,方程的任何一组解),,,(4321y y y y ,对应着惟一的一种在12个球之间插入隔板的方式(如图所示)故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数311C .注意:若为非负数解的x 个数,即用n a a a ,...,21中i a 等于1+i x ,有A a a a A x x x x n n =-+-+-⇒=+++1...11...21321,进而转化为求a 的正整数解的个数为1-+n n A C .⑨定位问题:从n 个不同元素中每次取出k 个不同元素作排列规定某r 个元素都包含在内,并且都排在某r 个指定位置则有rk r n r r A A --.x 2x 4例如:从n 个不同元素中,每次取出m 个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上:11--m n A ;不在某一位置上:11---m n m n A A 或11111----⋅+m n m m n A A A (一类是不取出特殊元素a ,有mn A 1-,一类是取特殊元素a ,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的) ⑩指定元素排列组合问题.i. 从n 个不同元素中每次取出k 个不同的元素作排列(或组合),规定某r 个元素都包含在内 。

排列组合和二项式

排列组合和二项式
2 AA.5+6+4=15 B.1 C.6×5×4=120 D. 3
2 在上题中,假如从中任取3本,数学,语文,英语各
一本,则不同取法旳种数是
( C)Βιβλιοθήκη 3 A. 1 + 1 + 1 = 3
B.5 + 6 + 4 =15
4 C. 5×6×4 = 120 D. 1
二、排列旳概念:
从n个不同元素中,任取m(m≤n)个元素(这里旳 被取元素各不相同)按照一定旳顺序排成一列,叫做 从n个不同元素中取出m个元素旳一种排列.
1
9、5个人排成一行,则甲排在正中间旳概率是( )。
5
10、某学生从6门课程中选修3门,其中甲、乙两门课程
至 少选一门,则不同旳选课方案共有( )。
(A) 4种
(B) 12种
(C) 16种
(D) 20种
11、正六边形中,由任意三个顶点连线构成旳
三角形旳个数为(
)。
(A)6
(B)20
(C)120 (D)720
相同元素分组问题:插空法(隔板法)
例5、从5双不同旳鞋子中取出4只,按下列条 件有多少种不同旳取法? (1)取出4只鞋恰好配成2双 (2)取出4只鞋至少配成1双 (3)任何2只都不能配成1双
分组问题:配对
五、二项式定理
(a b)n Cn0a n Cn1a n1b Cn2a n2b2
C
r n
第十五章 排列、组合与二项式定理
一、分类计数原理(加法原理):
完毕一件事情,有n类方式,
在第1类方式中有m1种不同旳措施, 在第2类方式中有m2种不同旳措施,……, 在第n类方式中有mn种不同旳措施。 那么完毕这件事共有N=m1+m2+…+mn种不同旳措施.

高中数学排列组合及二项式定理知识点

高中数学排列组合及二项式定理知识点

高中数学之排列组合二项式定理一、分类计数原理和分步计数原理:分类计数原理:如果完成某事有几种不同的方法,这些方法间是彼此独立的,任选其中一种方法都能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的和。

分步计数原理:如果完成某事,必须分成几个步骤,每个步骤都有不同的方法,而—个步骤中的任何一种方法与下一步骤中的每一个方法都可以连接,只有依次完成所有各步,才能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的积。

区别:如果任何一类办法中的任何一种方法都能完成这件事,则选用分类计数原理,即类与类之间是相互独立的,即“分类完成”;如果只有当n 个步骤都做完,这件事才能完成,则选用分步计数原理,即步与步之间是相互依存的,连续的,即“分步完成”。

二、排列与组合:(1)排列与组合的区别和联系:都是研究从一些不同的元素中取出n 个元素的问题; 区别:前者有顺序,后者无顺序。

(2)排列数、组合数:排列数的公式:)()!(!)1()2)(1(n m m n n m n n n n A m n ≤-=+---= 注意:①全排列:!n A n n =; ②记住下列几个阶乘数,1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;排列数的性质:①11--=m n m n nA A (将从n 个不同的元素中取出)(n m m ≤个元素,分两步完成:第一步从n 个元素中选出1个排在指定的一个位置上;第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置上)②m n m n m n A mA A 111---+=(将从n 个不同的元素中取出)(n m m ≤个元素,分两类完成:第一类:m 个元素中含有a ,分两步完成:第一步将a 排在某一位置上,有m 不同的方法。

第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置上)即有11--m n mA 种不同的方法。

第二类:m 个元素中不含有a ,从1-n 个元素中取出m 个元素排在m 个位置上,有m n A 1-种方法。

排列组合与二项式定理

排列组合与二项式定理


B. 24种 D. 36种
解析:因为恰有2人选修课程甲,共有C2 4 6 种结果,所以余下的两个人各有两种选法, 共有2 2 4种结果,根据分步计数原理知共 有6 4 24种结果.
2.(2011 重庆卷) 1 2x 的展开式中x 4的系数是
6
_________ .
r r 解析:展开式的通项为Tr 1 2r C6 x. 4 令r 4得展开式中x 4的系数是24 C6 240.
4 得常数1 1 C8 70; 4
当第一个括号中取2x 2时,则第二个括号必取
5
1 x2
5 项,由通项易知当r 5时,取得常数2 1 C8
112,所以展开式中常数项为 112 70 42.
【思维启迪】本题主要考查二项式定理的通项 公式及分类讨论的思想方法.解答两个因式 积的展开式问题主要有两种途径:
究;
6 近似计算:构造二项式,展开后根据精确度的要
求分析应取前几项,从哪项开始去掉后面的所有项.
拍卖预展 龙威
1.(2 011 全国大纲卷)4位同学每人从甲、乙、丙3 门课程中选修1门,则恰有2人选修课程甲的不同 选法共有 A. 12种 C. 30种
专题三
排列、组合、二项式 定理、概率与统计
1.计数原理 分类计数原理:完成一件事,有n类办法,在第1类办 法中有m1种不同的方法,在第2类办法中有m2种不同 的方法, ,在第n类办法中有mn种不同的方法,那么 完成这件事共有N m1 m2 mn种不同的方法. 分步计数原理:完成一件事,需要n个步骤,做 第1步有m1种不同的方法,做第2步有m2种不同的方法, ,做第n步有mn种不同的方法,那么完成这件事共有 N m1 m2 mn种不同的方法.

排列组合与二项展开式

排列组合与二项展开式
例题2
从6名男生和4名女生中选出4人参加数学竞赛, 要求男生和女生至少各选1人,则不同的选法共 有多少种?
例题3
在(x^2 + 3x + 2)^5的展开式中,求x^7的系数。
06 总结与展望
排列组合与二项展开式的重要性
数学基础
排列组合与二项展开式是数学的 基础内容,对于理解更高级的数 学概念和解决复杂问题具有重要 意义。
二项展开式典型例题
例题1
01
例题2
02
03
例题3
求(x + 2)^5的展开式中,x^3的 系数。
求(√x - 2/x^2)^6的展开式中的 常数项。
已知(1 + ax)^6的展开式中, x^3的系数是20,求a的值。
排列组合与二项展开式综合典型例题
1 2 3
例题1
在(x + 1/x^2)^5的展开式中,求常数项及x^3 的系数。
排列数公式
$A_n^m = n(n-1)(n-2)...(n-m+1)$
排列在二项展开式中的应用
在二项展开式中,每一项的系数可以通过排列数计算得出。 例如,在$(a+b)^n$的展开式中,第$k+1$项的系数就是 从$n$个元素中取$k$个元素的排列数$A_n^k$。
组合在二项展开式中的应用
组合定义
02 排列组合基本概念
排列的定义及公式
排列的定义
从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个 元素中取出m个元素的一个排列。
排列数公式
$A_n^m = n(n-1)(n-2)...(n-m+1)$,其中n是元素的总数,m是要取出的元素 个数。

高考排列组合及二项式定理知识总结与例题讲解(5分)

高考排列组合及二项式定理知识总结与例题讲解(5分)
练:在 的展开式中系数最大的项是多少?
解:假设 项最大,
,化简得到 ,又 , ,展开式中系数最大的项为
题型七:含有三项变两项;
例:求当 的展开式中 的一次项的系数?
解法①: , ,当且仅当 时, 的展开式中才有x的一次项,此时 ,所以 得一次项为
它的系数为 。
解法②:
故展开式中含 的项为 ,故展开式中 的系数为240.
2、 2、
2、4n
3、 的展开式中的有理项是展开式的第项
3、3,9,15,21
4、(2x-1)5展开式中各项系数绝对值之和是
4、(2x-1)5展开式中各项系数系数绝对值之和实为(2x+1)5展开式系数之和,故令x=1,则所求和为35
5、求(1+x+x2)(1-x)10展开式中x4的系数
5、 ,要得到含x4的项,必须第一个因式中的1与(1-x)9展开式中的项 作积,第一个因式中的-x3与(1-x)9展开式中的项 作积,故x4的系数是
解:设 展开式中各项系数依次设为
,则有 ①, ,则有 ②
将①-②得:
有题意得, , 。
练:若 的展开式中,所有的奇数项的系数和为 ,求它的中间项。
解: , ,解得
所以中间两个项分别为 , ,
题型六:最大系数,最大项;
例:已知 ,若展开式中第 项,第 项与第 项的二项式系数成等差数列,求展开式中二项式系数最大项的系数是多少?
练:求式子 的常数项?
解: ,设第 项为常数项,则 ,得 , , .
题型八:两个二项式相乘;
例:
解:
.
练:
解:
.
练:
解:
题型九:奇数项的系数和与偶数项的系数和;
例:

高中数学专题讲解排列组合及二项式定理

高中数学专题讲解排列组合及二项式定理

排列组合及二项式定理【基本知识点】1.二项式系数的性质:()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变量的函数()f r ,定义域是{0,1,2,,}n L ,(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵m n m n n C C -=). (2)增减性与最大值:当n 是偶数时,中间一项2nn C 取得最大值;当n 是奇数时,中间两项12n nC-,12n nC+取得最大值.(3)各二项式系数和:∵1(1)1n r r n nn x C x C x x +=+++++L L , 令1x =,则0122n r nn n n n n C C C C C =++++++L L【常见考点】一、可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数。

(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34(3)34二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. (4),,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种 (5)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3 位女生中有且只有两位女生相邻,则不同排法的种数是()【解析】:间接法6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,22223242C A A A =432种其中男生甲站两端的有1222223232A C A A A =144,符合条件的排法故共有288三.相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.(6)七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种(7)书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有种不同的插法(具体数字作答)【解析】:111789A A A =504(8)马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的 二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?【解析】:把此问题当作一个排对模型,在6盏亮灯的5个空隙中插入3盏不亮的灯35C 种方法,所以满足条件的关灯方案有10种.四.元素分析法(位置分析法):某个或几个元素要排在指定位置,可先排这个或几个元 素;再排其它的元素。

新课改地区高考数学一轮复习第十一章计数原理概率随机变量及其分布112排列组合与二项式定理课件新人教

新课改地区高考数学一轮复习第十一章计数原理概率随机变量及其分布112排列组合与二项式定理课件新人教

2021/4/17
机变量及其分布112排列组合与二项式定理课件新人教B
10
【常用结论】 1.(a+b)n的展开式的三个重要特征 (1)项数:项数为n+1. (2)各项次数:各项的次数都等于二项式的幂指数n,即a与b的指数和为n. (3)顺序:字母a按降幂排列,从第一项开始,次数由n逐项减1直到0;字母b按 升幂排列,从第一项开始,次数由0逐项增1直到n.
2021/4/17
机变量及其分布112排列组合与二项式定理课件新人教B
2
内容索引
必备知识·自主学习 核心考点·精准研析 核心素养测评
新课改地区高考数学一轮复习第十一章计数原理概率随
2021/4/17
机变量及其分布112排列组合与二项式定理课件新人教B
3
新课改地区高考数学一轮复习第十一章计数原理概率随
2021/4/17
机变量及其分布112排列组合与二项式定理课件新人教B
23
结束语
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念, 考试加油。
(4) kCkn=nCkn- 11 . (
)
(5) C
r an-rbr是(a+b)n的展开式中的第r项.
n
(
)
(6)二项展开式中某项的系数与该项的二项式系数一定相同. ( )
新课改地区高考数学一轮复习第十一章计数原理概率随
2021/4/17
机变量及其分布112排列组合与二项式定理课件新人教B
13
提示:(1)√.
【解析】选C. (x 1 )12 的展开式的第4项
3x
T4=
C

高二数学排列组合与二项式定理试题答案及解析

高二数学排列组合与二项式定理试题答案及解析

高二数学排列组合与二项式定理试题答案及解析1.的二项展开式中,项的系数是()A.45B.90C.135D.270【答案】C【解析】的二项展开式中,,令r=4得,项的系数是=135,选C。

【考点】二项展开式的通项公式点评:简单题,二项式展开式的通项公式是,。

2.设,则的值为【答案】-2.【解析】根据题意,由于,则令x=-1,则可知等式左边为-2,故可知=-2,因此答案为-2.【考点】二项式定理点评:主要是考查了二项式定理的运用,属于基础题。

3.已知二项式的展开式中第四项为常数项,则等于A.9B.6C.5D.3【答案】C【解析】根据题意,由于二项式的展开式中第四项为常数项,那么其通项公式为,故答案为5,选C.【考点】二项式定理点评:主要是考查了二项式定理中展开式的通项公式的运用,属于基础题。

4.已知,则 .【答案】66【解析】根据题意,由于,故可知,故可知答案为66.【考点】组合数公式点评:主要是考查了组合数性质的运用,属于基础题。

5.已知离散型随机变量的分布列如下表.若,,则,.【答案】【解析】由分布列性质可得,【考点】分布列期望方差点评:在分布列中各概率之和为1,借助于分布列结合期望方差公式可计算这两个量6.已知()能被整除,则实数的值为【答案】【解析】根据题意,由于,根据二项式定理展开式可知,那么由于()能被整除,且被11除的余数为2,那么可知2+a能被11整除,可知a==9,故答案为9.【考点】二项式定理的运用点评:主要是考查了二项式定理来解决整除问题的运用,属于基础题。

7. ( -)6的二项展开式中的常数项为_____.(用数字作答)【答案】-160【解析】由二项式定理得通项得,,取得常数项。

故选D。

【考点】二项式定理点评:在两项式定理中,通项是最重要的知识点,解决此类题目,必然用到它。

8. 4名同学到某景点旅游,该景点有4条路线可供游览,其中恰有1条路线没有被这4个同学中的任何1人游览的情况有A.36种B.72种C.81种D.144种【答案】D【解析】由题意可知4人选择了4条线路中的3条,不同的游览情况共有种【考点】排列组合点评:求解本题按照先分组后分配的思路求解9.已知,则二项式展开式中的系数为_________.【答案】10【解析】,展开的通项为,令,系数为【考点】定积分与二项式定理点评:定积分,其中,二项式的展开式第项是10.若N,且则()A.81B.16C. 8D.1【答案】A【解析】根据题意,由于,可知n=4,那么当x=-1时可知等式左边为 ,那么右边表示的为81,故答案为81,选A 【考点】二项式定理点评:主要是考查了二项式定理以及系数和的求解,属于基础题。

人教B版高中数学选择性必修第二册精品课件 复习课 第1课时 排列、组合与二项式定理

人教B版高中数学选择性必修第二册精品课件 复习课 第1课时 排列、组合与二项式定理
根据分类加法计数原理,共有32+8=40个.
答案:40
专题二
排列组合的应用
【例2】 6名女生(其中有1个领唱)和2名男生分成两排表演.
(1)每排4人,共有多少种不同的排法?
(2)领唱站在前排,男学生站在后排,每排4人,有多少种不同的排法?
解:(1)要完成这件事,可以分为三步:
第一步,从 8 人中选 4 人站在前排,另 4 人站在后排,共有C84 C44 种不同的排法;
(
)
A.122
B.135
C.154
D.165
(2)如图,给矩形A,B,C,D涂色,要求相邻的矩形涂色不同,现有4种不同的颜
色可供选择,则不同的涂法有(
A.72种
B.48种
C.24种
D.12种
)
解析:(1)可以组成7×8×8=448个三位数,
其中无重复数字的三位数有7×7×6=294个,
故有重复数字的三位数有448-294=154个.
3
答案:2
=
专题四
项的系数和问题
【例4】 (1)若(a+x)(1+x)4的展开式中x的奇数次项的系数之和为32,则
a=
.
(2)若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且(a0+a2+…+a8)2-
(a1+a3+…+a9)2=39,则实数m的值为
.
解析:(1)设(a+x)(1+x)4=a0+a1x+a2x2+a3x3+a4x4+a5x5,

排列组合二项式定理知识点以及典型例题总结排列组合二项式定理知识点

排列组合二项式定理知识点以及典型例题总结排列组合二项式定理知识点

排列组合二项式定理知识点以及典型例题总结考纲要求:1.知道分类计数原理与分步计数原理的区别,会用两个原理分析和解决一些简单的问题2.知道排列和组合的区别和联系,记住排列数和组合数公式,能用它们解决一些简单的应3.知道一些组合数性质的应用.4.了解二项式定理及其展开式5.记住二项式展开式的通项公式,并能够运用它求展开式中指定的项6.了解二项式系数的性质,能够利用二项式展开式的通项公式求出展开式中二项式系数最大的项.7.了解二项式的展开式中二项式系数与项的系数的区别知识点一:计数原理1.分类加法计数原理如果完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.两个基本计数原理的区别:分类计数原理——每一类办法都能把事单独完成;分步计数原理——缺少任何一个步骤都无法把事完成.2.分步乘法计数原理如果完成一件事,需分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1·m2·…·m n种不同的方法.知识点二:排列1.排列的定义:一般地,从n个不同的元素中,任取m(m≤n)个元素,按照一定顺序排成一列,叫作从n个不同元素中取出m 个元素的一个排列.如果m <n ,这样的排列叫作选排列.如果m =n ,这样的排列叫作全排列.2. 排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有排列的个数,叫作从n 个不同元素中取出m 个元素的排列数,用符号P mn 表示.3. 排列数的公式: (1) P m n =n ·(n -1)·(n -2)·…·(n -m +1);(2) P m n =()!!n n m -; 规定:0!=1.知识点三:组合1.组合的定义:一般地,从n 个不同元素中,任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2.组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号C mn 表示.3. 组合数公式: (1)()()()121P C P !m mn n m n n n n n m m ---+==(2)()!C !!m n n m n m =-(n ,m ∈N +,且m ≤n ) 4. 组合数性质:(1) C =C m n m n n -;(2) 111C +C C mm m n n n +++=知识点四:二项式定理1. 二项式定理(a +b )n =011222C C C C C n n n m n m nn n n n n n a a b a b a b b ---++++++, n ∈N +其中C m n (m =0,1,2,…,n )叫做二项式系数;T m +1=C m n m m n a b -叫做二项式展开式的通项公式.2. 二项式系数的性质:(1)每一行的两端都是1,其余每一个数都是它“肩上”两个数的和;(2)在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即C C r n r n n -=(3)如果二项式的幂指数n 是偶数,那么中间一项即第12n +项的系数最大;如果二项式的幂指数n 是奇数,那么中间两项即第12n +项和第32n +项的二项式系数相等且最大; (4)(a +b )n 的二项式系数之和为2n ,即012C C C ++C ++C m n n n n n n ++=2n ; (5)(a +b )n 的二项展开式中,奇数项的二项式系数之和等于偶数项的二项式系数之和,都等12n -,024C C C +n n n ++135C +C C n n n =++12n -=.题型一 分类加法计数原理例1 一个盒子里有4个不同的红球,3个不同的黄球和5个不同的蓝球.从盒子中任取一个球,有多少种不同的取法?分析:盒子中取出一个球就可以完成任务,所以考察分类加法计数原理.解答:从盒子中任取一个球,共有三类方案:第一类方案,从4个不同的红球中任取一球,有4种方法;第二类方案,从3个不同的黄球中任取一球,有3种方法;第三类方案,从5个不同的蓝球中任取一球,有5种方法.所以,选一个班担任升旗任务的方法共有:12+10+10=32(种)题型二分步乘法计数原理例2 一个盒子里有4个不同的红球,7个不同的黄球和5个不同的蓝球.从盒子中取红球、黄球和蓝球各一个,有多少种不同的取法?分析:盒子中各取出一个球需要分三步,所以考察分步乘法计数原理.解答:完成这件事需要分三步.第一步,从4个不同的红球中任取一球,有4种方法;第二步,从3个不同的黄球中任取一球,有3种方法;第三步,从5个不同的蓝球中任取一球,有5种方法.由分步乘法计数原理,从盒子中取红球、黄球和蓝球各一个共有⨯⨯435=60种不同的取法.例3 邮政大厅有4个邮筒,现将三封信逐一投入邮筒,共有多少种投法?分析:三封信逐一投入邮筒分成三个步骤,每个步骤投一封信,分别均有4种方法.解答:应用分步计数原理,投法共有44464⨯⨯=种.题型三分类分步混合运算例4 一个盒子里有4个不同的红球,7个不同的黄球和5个不同的蓝球.从盒子中任取2个颜色不同的球,有多少种不同的取法?分析分类计数原理与分步计数原理混合使用的问题,一般要“先分类,后分步”.解答:可按所选两球的颜色分为如下3类.第1类:红球、黄球各一个,有4×7=28种选法;第2类:红球、蓝球各一个,有4×5=20种选法;第3类:黄球、蓝球各一个,有7×5=35种选法.根据分类计数原理,不同的选法种数为N =28+20+35=83(种).知识点二 排列题型一 排列数公式的运用例5 已知221P P n n +-=10,则n 的值为( ). A .4 B .5 C .6 D .7解答:由221P P n n +-=10,得(n +1)n -n (n -1)=10,解得n =5.故选B .题型二 排列的运用例6 小华准备从7本世界名著中任选3本,分别送给甲、乙、丙3位同学,每人1本,共有多少种选法?分析 选出3本不同的书,分别送给甲乙丙3位同学,书的不同排序,结果是不同的.因此选法的种数是从7个不同元素中取出3个元素的排列数.解答:不同的送法的种数是 37P 765210=⨯⨯=.即共有210种不同送法.题型三 某元素一定在某位置例7 4名男生和3名女生排成一排照相,分别按下列要求,求各有多少种不同的排法.(1)男生甲一定在中间位置;(2)男生甲不在中间位置.分析 本题是有限制条件的排列问题,若有特殊元素优先考虑特殊元素,若有特殊位置,优先考虑特殊位置.(1)分两步完成:第一步,男生站在中间位置,有一种排法;第二步,排其他的元素,共有66P 种排法.所以,男生甲一定在中间位置共有661P 720⨯=种排法.(2)分两步完成:第一步,男生不在中间位置,有5种排法;第二步,排其他的元素,共有66P 种排法.所以,男生甲一定在中间位置共有665P 3600⨯=种排法. 题型四 某几个元素相邻例8 4名男生和3名女生排成一排照相,同学甲、乙相邻有多少种排法?分析:解决“相邻”问题采用的是“捆绑法”解答:第一步,把甲、乙看成一个元素,与其他5人共6个元素进行全排列;第二步,甲、乙二人进行全排列.即6262P P =720×2=1440(种).题型五 某几个元素不相邻例9 4名男生和3名女生排成一排照相,同学甲、乙不相邻有多少种排法?分析:解决“不相邻”问题采用的是“插空法”.解答:第一步,把甲、乙之外的5名同学进行全排列;第二步,在5名同学之间或两端共6个空中插入甲、乙两名同学.即5256P P =120×30=3600(种). 例10 4名男生和3名女生排成一排照相,男女同学相间排列,有多少种排法? 分析:“相间”是特殊的“不相邻”问题解答:第一步,男生全排列,有44P 种排法;第二步,女生全排列,有33P 种排法;第三步,相间插入有2中插入方法.即男女同学相间排列,有4343P P 2576⨯=种种排法.题型六 数字的排列问题例11 用数字0,1,2,3,4组成没有重复数字的三位数,求:(1)组成的三位数的个数;(2)组成的三位数中偶数的个数;分析:对数字进行排列时,如果数字中含有0,应区别对待.因为0作为特殊元素,不能在首位出现.解答:(1)应采用特殊位置优先法.因为0不能为首位(百位),所以首位的排法有14P 种,其他两位是从剩余的4个数字中选2个的一个排列,有24P 种,所以共有1244P P =48(种).(2)由于0的存在,应分两类:第一类个位是0,有24P 个;第二类,个位不是0,先确定个位,从2,4中选一个,有12P 种,再确定首位,有13P 种,剩余的一位是从3个数中选1个,有13P 种.所以共有21114233P P P P +=30(种). 知识点三 组合题型一 组合的应用例12 学校组织一项活动,要从5名男同学,3名女同学中选4名.共有多少种选法? 分析: 从5名男同学,3名女同学中选4名, 选出的4名同学任务是一样的,因此选法的种数是从8个不同元素中取出4个元素的组合数. 解答:不同的选法种数是488765C 704321⨯⨯⨯==⨯⨯⨯种. 题型二 一定包含或一定不包含某元素例13 学校组织一项活动,要从5名男同学,3名女同学中选4名.(1)若甲同学必须去,有多少种选法?(2)若甲同学一定不去,有多少种选法?分析:若甲同学必须去,再从其他7人中选3人即可.解答:(1)共有37765C 321⨯⨯=⨯⨯=35种选法. 分析:若甲同学一定不去,从其他7人中选4人即可.解答:(2)共有47C 35=种选法.题型三 至多、至少问题例14 学校组织一项活动,要从5名男同学,3名女同学中选4名.若男生甲、女生乙至少有一个被选中,有多少种选法?分析:至多、至少问题从正面解,一般情况先分类,再求解.当从正面求解困难时,可从对立面求解.解答:方法一 男生甲、女生乙至少有一个被选中,分成两类:第一类 男生甲、女生乙只有一个人被选中,有1326C C 260120=⨯=种选法; 第二类 男生甲、女生乙都被选中,有2226C C 21530=⨯=种选法.所以,男生甲、女生乙至少有一个被选中,共有120+30=150种不同的选法.题型四 组合数性质的的相关计算例15 若44511C C C n n n --=+,求n .分析:考察组合数的性质111C +C C m m m n nn +++=;C =C m n m n n-. 解答:45511C +C =C ,n n n --∴45C =C ,n n∴n =4+5=9.题型四 排列、组合混合应用例16 从6名男生和5名女生中选出3名男生和2名女生排成一行,有多少种不同排法? 分析:可以首先将男生选出,再将女生选出,然后对选出的5名学生排序.解 不同排法的总数为32565565454C C P 543212400032121⨯⨯⨯⋅⋅=⨯⨯⨯⨯⨯⨯=⨯⨯⨯(种). 知识点四 二项式定理题型一 求二项式展开式的指定项例17 求二项式103x x ⎛⎫- ⎪⎝⎭的展开式中第4项. 分析:.二项式103x x ⎛⎫- ⎪⎝⎭的展开式第4项,则n 的值为10,m 的值为3,可直接用二项式的通项T m +1=C m n m m n a b -求解.解答:T 4=T 3+1=337103C x x ⎛⎫- ⎪⎝⎭=-3240x 4, ∴第4项是-3240x 4.. 例18 求二项式103x x ⎛⎫- ⎪⎝⎭的展开式中含x 6的项. 分析:二项式103x x ⎛⎫- ⎪⎝⎭的展开式中含x 6的项,则n 的值为10,m 的值未知.此类问题应先写出二项式的通项,结合条件“含x 6的项”确定出m 的值.从而求出含x 6的项.解答: ∵T m +1=()1010210103C 3C m m m mm m x x x --⎛⎫-=- ⎪⎝⎭, 令10-2m =6,得m =2.∴含x 6的项为T 3=T 2+1=(-3)2210C x 6=405x 6. 例19 在二项式103x x ⎛⎫- ⎪⎝⎭的展开式,求: (1)常数项;(2)二项式系数最大的项.分析:(1)求常数项,因为不知道m 的值,要根据“常数项”之一条件确定m 的值.所以,与例18过程相似;(2)可计算出第10162+=项为二项式系数最大的项,其实就是求第6项,所以与例17过程相似.解答:(1)∵T m +1=()1010210103C 3C m m m mm m x x x --⎛⎫-=- ⎪⎝⎭, 10-2m =0,即m =5.∴展开式的第6项是常数项,即T 6=T 5+1=5555510103C =(3)C x x ⎛⎫-- ⎪⎝⎭=-61236. (2)∵n =10,∴展开式有11项,中间一项的二项式系数最大,中间一项为第6项. ∴T 6=T 5+1=5555510103C =(3)C x x ⎛⎫-- ⎪⎝⎭=-61236. 题型二 求二项式展开式的某一项系数与某一项的二项式系数.例20 求92)x -(的二项展开式中6x 的系数和该项的二项式系数. 分析:二项展开式中某项的的系数与这一项二项式系数是两个不同的概念. 某项的系数是除字母外的所有数乘积的结果,某项的二项式系数是该项的组合数,和其他无关. 解答: 92)x -(的展开式的通项公式为99199C (2)C (1)2m m m m m m m m T x x --+=-=-⋅⋅ 由9-m =6,得m =3.即二项展开式中含6x 的项为第4项.故这一项的系数是3339987C (1)2(8)672321⨯⨯⨯-⨯=⨯-=-⨯⨯.该项的二项式系数为39987C 84321⨯⨯==⨯⨯. 题型三 二项式各项系数和与二项式系数和例21 在(1-x )5的二项展开式中,各项系数和为____________;所有项的二项式系数之和为____________.分析:在二项式中令式子中的字母为1,可得各项系数和;所有项的二项式系数之和为2n ,即012C C C ++C ++C m n n n n n n ++=2n ,故所有项的二项式系数之和只和n 有关.解答:在(1-x )5中,令x =1,可得各项系数和为0.(1-x )5的二项式系数之和为25=32.。

排列组合与二项展开式

排列组合与二项展开式
(1)A51 A25=5x5x4=100 (2)5x6x6=180
(3)A31 A14x4=3x4x4=48 (4)A52+A21 A14XA14=20+32=52 (5)A52+ A14XA14=20+16=36
例2、(分书问题)现有6本不同的书,下列各有多少种分法。 (1)分成三份,一份1本,一份2本,一份3本 (2)分成三份,一份4本,其余两份各1本; (3)平均分成三份; 思考1、:若将上述三种分好的书再分给三个人又该怎么分? 2、若现有六本相同的书,分给三个人,每人至少一本又该怎么 分? 解 (1)C61 C25xC33=6x5x4x1/2=60 (2)C64 C12xC11/2!=6x5x2x1/(2x2)=15 (3)C62 C24xC22/3!=15x6x1/6=15
从n个不同的元素中取出m个元素按照一定的顺序排成一列叫做从n个不同的元素中取出m个元素的一个排列从n个不同的元素中取出m个不同元素并在一组叫做从n个不同的元素中取出m个不同元素的一个组合通项公式
排列组合与二项展开式 (复习)
旅管系 张燕
一、知识点梳理
1、记数方法: 用数字或字母代替事物,按一定顺序穷举所有可 (1)列举法: 能的方法 结果情况为有限个,且无法用其它方法记数的题 适合题型
7
三、学生练习

完成讲义中打钩部分习题
作业

1、完成例2的思考及练习中没打勾部分 2、做完并上交讲义:统计与概率
不同的方法,做步骤B有种不同的方法,则完成这件 事共有A.B种方法。

适合题型:
凡可以分步记数的问题
2、排列: 从n个不同的元素中取出m个元素,按照一定 的顺序排成一列,叫做从n个不同的元素中取 (1)定义: 出m个元素的一个排列, 记作:Anm 。 m An n(n 1)( n 2) (n m 1) (2)计算: (3)性质:① A 0n= 1 ②Ann= nx(n-1)x(n-2)x…x2x1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

② 、通项公式:Tk+1= Cn a b 其中(k=0,1,…,n)叫做第k+1项的二项式系数。 ③ 、二项式性质: n+1 (1)二项式展开共 项; (2)当n为偶数时, 中间一 项的二项式系数 最大; 中间两项 (3)当n为奇数时, 项二项式系数最大; (4)二项式展开时系数何为 ; 2n
二、典型例题
6
(2) 6 6 5 4 3 2 1 720 A
6
1 (3) 6 A6 6 720 4320 A
6
1 5 720 3600 (4) A5A6 (5)
(6)
AA
6
6
2 2
720 2 1440
AA
5
5
2
6
120 30 3600 (7) A7 2 5040 2 2520


例1、(数码类型问题)从0-5这6个数码中取出互 不相同的3个数码。 (1)无重复:能组成多少个无重复数字的三位数? (2)可重复:能组成多少个可重复的三位数? (3)奇数:能组成多少个无重复数字的三位奇数? (4)偶数:能组成多少个无重复数字三位偶数? (5)整除:能组成多少个能被5整除的无重复数字 的三位数? 解:
适合题型 凡可以分类记数的问题 (4)乘法原理: 完成一件事,需要分成A、B两个步骤,步骤A有种
不同的方法,做步骤B有种不同的方法,则完成这件 事共有A.B种方法。

适合题型:
凡可以分步记数的问题
2、排列: 从n个不同的元素中取出m个元素,按照一定 的顺序排成一列,叫做从n个不同的元素中取 (1)定义: 出m个元素的一个排列, 记作:Anm 。 m An n(n 1)( n 2) (n m 1) (2)计算: (3)性质:① A 0n= 1 ②Ann= nx(n-1)x(n-2)x…x2x1



例3、(排队问题)3个男同学、4个女同学排队,下列 情况各有多少种排放? (1)7人排一队;(2)甲排第1位;(3)甲不排 第1位;(4)甲不排第1位也不排第7位;(5)甲 与乙必须相邻;(6)甲与乙不能相邻;(7)从排 头算起,甲必须排在乙前面; 7 解(1) A7 7 6 5 4 3 2 1 5040
(1)A51 A25=5x5x4=100 (2)5x6x6=180
(3)A31 A14x4=3x4x4=48 (4)A52+A21 A14XA14=20+32=52 (5)A52+ A14XA14=20+16=36
ห้องสมุดไป่ตู้
例2、(分书问题)现有6本不同的书,下列各有多少种分法。 (1)分成三份,一份1本,一份2本,一份3本 (2)分成三份,一份4本,其余两份各1本; (3)平均分成三份; 思考1、:若将上述三种分好的书再分给三个人又该怎么分? 2、若现有六本相同的书,分给三个人,每人至少一本又该怎么 分? 解 (1)C61 C25xC33=6x5x4x1/2=60 (2)C64 C12xC11/2!=6x5x2x1/(2x2)=15 (3)C62 C24xC22/3!=15x6x1/6=15
7
三、学生练习

完成讲义中打钩部分习题
作业

1、完成例2的思考及练习中没打勾部分 2、做完并上交讲义:统计与概率


从n个不同的元素中取出m个不同元素并在一 3、组合: (1)定义: 组,叫做从n个不同的元素中取出m个不同元 素的一个组合 m 记作: C n 。 (2)计算: Cmn = nx(n-1)x(n-2)x…x(n-m+1)/m!

(3)性质:① C0n= 1 ④对偶法则: Cmn = Cnn-m
7
例4、按要求解下列各题。 2 6 ( ) 展开式中第几项为常数项; (1)求 3x
x
(2)已知, 3x 1) 7 a7 x 7 a6 x 6 ... a1 x a0 ( 求 a7 a6 ... a1 的值。 解: (1)设第K+1项为常数项则:
T
K 1
令6-3k/2=0 得 k=4,所以第5项为常数项
②Cnn= 1

⑤增一法则:Cmn+ Cm+1n= Cm+1n+1 4、二项式定理: ① (a+b)n=
C a
0 n
n
b
0
C a
1 n
n 1
b
1
... C a
k n
k n k k
nk
b ... C
k
n n
a
0 n
b (n N * )

排列组合与二项展开式 (复习)
旅管系 张燕
一、知识点梳理
1、记数方法: 用数字或字母代替事物,按一定顺序穷举所有可 (1)列举法: 能的方法 结果情况为有限个,且无法用其它方法记数的题 适合题型
把复杂的问题拆分成简单的问题,然后累加以达穷举的方 (2)累加法: 法。 适合题型 几何图形中,不走回头路的最短路径问题 :完成一件事,有A、B两类方式,在A类方式中有种不同 的方法,在B类方式中有种不同的方法,则完成这件事共 (3)加法原理: 有A+B种方法。
7 7 6
2 C (3x) ( ) C 3 (2) X x
k 6 k k 6 K K 6 6
k
6 K
K 2
(2)令x=1 得( 3x 1) a7 x a6 x ... a1 x a0 =
a7 a6 ... a1
=
(3 1 1) 2
7
相关文档
最新文档