主板维修教程之CPU供电电路原理及检修
cpu供电电路原理及故障浅析
cpu供电电路原理及故障浅析CPU(CentralProcessingUnit)是一种集中处理系统的核心部件,也被称为中央处理器。
CPU的供电电路是其功能的关键模块,依赖其可靠的稳定供电能力,为电脑的运行提供强劲的动力支持。
因此,对CPU供电电路的原理及故障现象的浅析显得愈发重要。
CPU供电电路原理就是向CPU提供功率,实现CPU功能的执行和运行。
总体来说,CPU供电电路有两个部分组成,即供电电路和保护电路。
其中,供电电路的作用是调节电源电压,给CPU提供安全稳定的电源;保护电路的作用则是保护CPU免受不正常电压的损坏,当电压超过正常范围时,保护电路会立即切断电源,避免CPU发生损坏。
CPU供电电路故障一般由两个部分组成,一部分是由于电源不稳定而引发的故障,另一部分是由于保护电路故障而引发的故障。
常见的电源故障现象有:CPU发热过热,电源过载,周期运行超时等。
而保护电路故障可用常见的有:电源电压过低,过压保护引起的电源切断等。
可以看到,稳定的CPU供电电路对电脑的运行有着十分重要的作用,因此我们应该采取适当的方法和技术来保护各种电路,确保电脑的稳定工作。
首先,应检查电源的稳定性和负载能力,确保它具有足够的输出能力,以及充分的热量分配和散热系统,这样可以有效地减少CPU的发热量,降低CPU的过热可能性。
其次,我们应检查供电路中的安全保护电路。
比如,它应检查主板上电源连接的正负电压变化,当电压超出正常范围时才会关闭电源,以防止电路短路。
此外,还可以采用一些新的保护措施来防止CPU供电电路故障,如使用自动化热传感器,增加热传感器的数量,采用智能风扇系统等,以确保CPU的正常工作,确保电路的稳定和安全。
总而言之,稳定的CPU供电电路对电脑的性能有着十分重要的作用,因此我们应该采取必要的措施来确保CPU供电电路的可靠性,以保护电脑的正常运行。
cpu供电电路原理及故障浅析
cpu供电电路原理及故障浅析CPU是计算机中常见的重要元件,电路设计者需要对它有一定的了解才能设计出合理可靠的电路。
其中供电电路是CPU的关键,它负责CPU的供电、保护与控制。
本文将对CPU的供电电路原理、组成、结构和故障浅析进行介绍。
一、CPU供电电路原理CPU的供电电路原理是将较低的电压转换成CPU所需的电压,并保证稳定的输出电压。
它的基本结构包括电源,变压器,电容器,稳压器,电感,热保护器等元件,其工作原理是将较低的电压转换成 CPU 需的电压,并通过稳压器对输出电压进行稳定。
二、CPU供电电路组成CPU供电电路的组成元件主要有电源、变压器、电容器、稳压器、电感、热保护器等。
1、电源:CPU供电电路的起点是电源,电源的主要作用是将市电转换成可以供给CPU使用的电压。
电源可分为交流电源和直流电源,它的输出电压根据不同的类型有所不同。
2、变压器:变压器是一种输出电压与输入电压之间可以变换的电路元件。
变压器是通过交叉绕组,利用交流电磁感应原理,使输出电压与输入电压的比值产生改变,从而达到输出电压满足CPU的要求。
3、电容器:电容器的作用是稳定CPU的电压。
当输入的电压大于稳定电压时,电容器可以吸收有效的电量,当输入的电压小于稳定电压时,电容器可以释放存储的电量,从而保证CPU的电压稳定的工作。
4、稳压器:稳压器是一种电路元件,主要作用是通过改变负载来保持输出电压不变。
稳压器可以抑制输入电压的变化,从而保证CPU输出电压的稳定性。
5、电感:电感是一种电路元件,它可以抑制CPU供电线路中的电流变化,从而有效抑制CPU供电电路输出中的噪音。
6、热保护器:热保护器的作用是当CPU的温度升高时,热保护器可以关断电路,避免CPU过热而发生损坏。
三、CPU供电电路故障浅析CPU供电电路故障的表现主要有电压过高或过低、功率过大或过小等现象。
造成故障的原因有多种,主要有下文列出的。
1、电容器失效:电容器的失效可能是由于过载,过载会使电容器效率大大降低,从而影响CPU供电电路的正常工作。
cpu主供电电路的工作原理及分析解析
cpu主供电电路的工作原理及分析解析CPU(中央处理器)是计算机的核心部件,负责执行各种指令和处理数据。
为了保证CPU正常运行,主供电电路起着至关重要的作用。
本文将详细介绍CPU主供电电路的工作原理及分析解析。
一、主供电电路的基本组成CPU主供电电路主要由以下几个部分组成:1. 电源:供应电流和电压给CPU的电源单元。
2. 电源单元:负责将电源提供的直流电转换为CPU需要的稳定电压。
3. 电压调节器:根据CPU的工作状态和需求,调节电压的大小,保证CPU供电的稳定性。
4. 电容器:用于储存电能,平衡电压波动,提供稳定的电流给CPU。
5. 稳压模块:用于控制电压的稳定性,防止电压过高或过低对CPU造成损害。
二、主供电电路的工作原理主供电电路的工作原理如下:1. 电源提供直流电:电源将交流电转换为直流电,并提供给电源单元。
2. 电源单元转换电压:电源单元将直流电转换为CPU需要的稳定电压。
通常情况下,CPU需要的电压为1.2V、1.8V或3.3V。
3. 电压调节器调节电压:根据CPU的工作状态和需求,电压调节器调节电压的大小。
当CPU处于高负载状态时,电压调节器会提供更高的电压以满足CPU的需求;当CPU处于低负载状态时,电压调节器会降低电压以节省能量。
4. 电容器平衡电压波动:电容器储存电能,当电压波动时,电容器会释放或吸收电能,以平衡电压的波动,保持供电的稳定性。
5. 稳压模块控制电压稳定性:稳压模块监测电压的稳定性,并根据需要进行调整。
如果电压过高或过低,稳压模块会采取相应的措施,如调节电压调节器的输出电压或关闭电源,以保护CPU的安全运行。
三、主供电电路的分析解析在分析主供电电路时,需要考虑以下几个关键因素:1. 电源的质量:电源的质量直接影响CPU的供电稳定性。
优质的电源能够提供稳定的电流和电压,减少电压波动,保护CPU的正常工作。
2. 电压调节器的性能:电压调节器的性能决定了其对电压的调节能力。
电脑主板CPU供电电路的维修
电脑主板CPU供电电路的维修CPU供电电路是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,满足正常工作的需要。
CPU供电电路通常采用PWM(PtilseWidthMedulation脉冲带宽调制)开关电源,该部分电路主要是由PWM电源管理芯片、场效应管(MOSFET管)、储能线圈和滤波电容'等元器件完成。
CPU供电电路的电路框图如下图所示。
一、CPU 供电电路的工作原理不同的CPU需要的工作电流和工作电压是不同的,P3CPU有内核和外核两种供电电压,内核供电电压Vcore为1.2V-2V,外核供电电压为固定的2.5V(外核供电电压一般由三端稳压器得到):P4CPU的供电电压有内核供电电压Vcore(通常为1.O5V-1.5V)和AGTL总线终端电压VTT(针对不同型号的CPU有1.8V、1.5V、1.l25V,这个供电电压一般由北桥供电电路提供,电路比较简单)。
CPU的核心电压供电电路是最容易损坏的电路,因此在维修工作中所指的CPU供电电路一般都是指核心供电电路(Vcore电路)。
主板上所用的PWM电源管理芯片都有几个电压识别控制踹(通常为VIDO-VID4),这些引脚通常与CPU相连(如不接CPU,则这几个控制端默认为高电平),通过控制这些引脚的电平,就可以控制输出的直流电压值,即CPU的供电电压。
不同型号的CPU在出厂时已通过对相应的VIDO-VID引脚悬空和短按的方法设定了CPU的供电电压值,如不接CPU则VIDO-VID4引脚为默认高电平,电源PWM电源管理芯片停止工作。
接上CPU后,电源电路中的PWM电源管理芯片就会先判断CPU需要多高的供电电压,然后就会通过改变驱动脉冲输出端脉冲信号的占空比(即单位时间内场效应管的导通时间和总时间之比)来控制场效应管的导通,从而控制输出电压,如下右图所示。
由于单个MOSFET管的输出电流通常为20A左右,而对于一些耗电量大的CPU(如Pentium4、AthlonXP系列CPU)其需要电流通常高于45A,这时就需要将多个供电电路并联起来为CPU供电,有几路供电电路并联就称为“几相”供电。
主板维修-CPU供电电路ppt课件
由于CPU核心电压较低,且有着越来越低的趋势,ATX电源供给主板 的12V和5V直流电不能直接供给给CPU,所以需要一定的供电电路来 进行高电流电压到低电流电压的转换(即DC-DC转换),这些转换 电路就是CPU供电电路。
CPU供电电路的功能:为CPU提供电能,保证CPU在高频,大电流工 作状态下稳定的运行。同时由于CPU功耗非常大,从低负荷到满负 荷,电流变化非常大,为了保证CPU能够在快速负荷变化中,不会 因为电流供应不上而无法工作,CPU供电电路要求具有非常快速的 大电流响应能力。
可编辑ppt
1
CPU供电电路组成
CPU供电电路主要有电源管理芯片,场效应管(上下管),电感, 滤波电容等元件组成。
可编辑ppt
2
CPU三相核心供电电路
可编辑ppt
3
上下管的区分
1.上管D极与P4 12V相通。 2.上管S极接下管D极。 3.下管S极接地。 4.上下管G极都通电源IC。
CPU核心供电测试点
8
上下管形式: 1.一个上管、一个下管 2.一个上管、两个下管 3.两个上管、两个下管
可编辑ppt
9
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!感谢你的观看!
可编辑ppt
5
CPU核心供电短路维修方法
1.电解电容有无击穿损坏。 2.上下管有无击穿。 3.黑色钽电容有无击穿。 4.检测电源IC有无短路损坏。 5.南北桥有无短路。
插上P4就掉电。 1.上下管有无击穿。 2.滤波电解电容有无击穿。
3.电源IC有无短路损坏。
可编辑ppt
6
可编辑ppt
7
可编辑ppt
1.上管S极 2.下管D极 3.供电电感 4.电容正极
CPU单相供电电路详解及检查维修流程
板通电后,电源IC(又叫PWM Control)开始工作,发出 脉冲信号,使得两个场效应管轮流导通,当负载两端的 电压VCORE(如CPU需要的电压)要降低时,通过MosfET 场效应管
的开关作用,外部电源对L2电感进行充电并达到所需的 额定电压。 当负载两端的电压升高时,通过 MosfET场效应管的开关作用,外部电源供电断开,电感 L2释放出刚才充入的能量,这时的L
本文一共三个部分:CPU主供电电路构成、CPU单相供电 电路的工作原理(以HIP6021电源IC为例)、CPU单相供 电电路维修流程详解。感谢深圳红警电脑维修培训学校 提供技术资料对本
文的支持。 供电电路大致构成 CPU主供电是CPU 工作的一个重要条件,大多由电源IC、场效应管、电感线 圈、电容等组成,有时会再加入稳压二极管、三极管组 成CPU主供电路。 电脑主板主
PU核心电压(Vcore)不正常。而这有两种情况:第一是: CPU核心电压偏高或偏低: 电压偏高查Q1是 否击穿或查反馈电路。 电压偏低查Q2击 穿或电容漏电以及短路。 第二种
是:无供电 首先测量Q1 D极5V是否正常: 如果不正常就修复ATX 5V到Q1 D极之间的电路(通常情况 下很少坏)如果正常就继续第二个维修步骤: 查Q1 G极控制波形:如果
正常就需要更换Q1和Q2,如果不正常就继续第三个维修 步骤: 查电源IC的12V供电:如果不正常 就更换12V供电保险电阻或查ATX12V到IC之间的线路,如 果正常就继续第四个维修
步骤: 检查VID0-VID4电路,如果不正常就 需要更换5V上拉排阻或与之相关的监控芯片、I/O、缓冲 器。如果正常就继续第五个维修步骤: 查IC周围电路:如果正常就更换掉电
电1.5V,内存3.3V(也有北桥、南桥通过这种方式供电)。 电路工作原理 CPU单相供电电路工作原理详解: ATX5V经过Lin加到Q1的D极,12V功过电容滤波直接加到 HIP30
cpu主供电电路的工作原理及分析解析
cpu主供电电路的工作原理及分析解析一、引言CPU(Central Processing Unit,中央处理器)作为计算机的核心部件,其正常运行离不开稳定的电源供应。
而CPU主供电电路作为CPU电源的核心部份,起着将电源输入转换为CPU工作所需的电压和电流的重要作用。
本文将详细介绍CPU主供电电路的工作原理以及进行分析解析。
二、CPU主供电电路的组成1. 电源输入:CPU主供电电路通常由电源输入、滤波电路、稳压电路和保护电路等组成。
电源输入是CPU主供电电路的起点,它接收来自计算机电源的直流电,并通过滤波电路进行初步滤波。
2. 滤波电路:滤波电路主要由电容和电感组成,其作用是过滤掉输入电源中的噪声和干扰信号,确保供给CPU的电源电压干净、稳定。
3. 稳压电路:稳压电路是CPU主供电电路的核心部份,其作用是将经过滤波的电源电压进行进一步调整,使其稳定在CPU所需的工作电压范围内。
稳压电路通常采用稳压二极管、稳压三极管、稳压芯片等元件来实现。
4. 保护电路:保护电路是为了保护CPU主供电电路和CPU本身不受电源异常、过压、过流等因素的影响。
保护电路通常包括过压保护、过流保护、过温保护等功能。
三、CPU主供电电路的工作原理1. 电源输入:CPU主供电电路通过电源输入接收来自计算机电源的直流电。
计算机电源通常将交流电转换为直流电,并通过电源线输出给CPU主供电电路。
2. 滤波电路:滤波电路通过电容和电感对输入电源进行滤波处理。
电容可以对高频噪声进行滤波,而电感则可以对低频噪声进行滤波。
通过滤波电路,CPU主供电电路可以获得一个相对稳定、干净的电源电压。
3. 稳压电路:稳压电路是CPU主供电电路的核心部份。
稳压电路通过稳压二极管、稳压三极管、稳压芯片等元件,对滤波后的电源电压进行进一步调整,使其稳定在CPU所需的工作电压范围内。
稳压电路可以根据CPU的工作状态和负载变化,自动调整输出电压和电流。
4. 保护电路:保护电路起到保护CPU主供电电路和CPU本身的作用。
电脑维修-主板维修-CPU供电维修
.CPU主供电不正常维修方法当诊断卡不跑代码,我们首先要查CPU主供电是否正常。
一、检修思路1.量 CPU旁边场效应管的D极是否正常。
上管有12V,下管有 1.5V 左右。
2.如不是这两个电压,就是CPU主供电不正常了。
3.高的 12V 我们不管,我们只管那个 1.5V 的。
主供电不正常分为几种情况,一种是电压为0,一种是偏低,还有偏高的。
4.电压为 0 的检修方法,我们先摸一下场效应管是否发烫,表面有无烧焦的痕迹和异味,电解电容有无漏液等,如有直接换掉。
5.接着我们断电量主供电点的对地阻值是否为 0 欧左右,正常插 CPU应为 10 欧,不插为 30 欧。
6.如为 0 欧,肯定是有短路的了,有可能北桥短路, CPU短路,滤波电容短路,场效应管击穿。
7.如阻值正常,我们看场效应管的 G极是否有正常的高电平,如没有是不是 G极对地短路,可断电量对电阻值。
8.G 极对地短路不是场效应管就是电源 IC。
断开脚量就知道是哪个了。
9.G 极没短路电压又没有,查电源芯片的工作条件是否具备,具备了就直接更换。
10.G极正常, D极又没对电短路。
那就是上管没有12V 电压了,场管全部开路是不可能的。
二、检修步骤主供电为 0用手触摸场管、电源芯片,用眼看相关元件有无外观问题,如电容漏液等↓断电查供电点有无对地短路有→逐步排除可能短路的元件,如场管、CPU、北桥(有无发烫)、电容等↓无查所有下管的G极是否都有高电平有→查上管的12V 供电↓无断电量所有下管的G极,有无对地短路的是→断开脚判断是场效管还是电源IC↓无查电源 IC 工作条件是否正常否→查不正常的原因↓正常换电源 IC主供电偏低↓断电量所有下管的G极是否对地短路是→断开脚判断是场效管还是电源IC↓否有场管未工作,须用手去感知温度没温度→换那个↓查不出来断电量场管三个引脚的对地阻值,找出不同的,换掉.三、根据诊断卡代码查故障1.如果一开机只有电压、时钟显示,而没有代码显示就检查CPU有无损坏。
简述cpu三项供电电路原理,结构及故障检测维修流程方法
简述cpu三项供电电路原理,结构及故障检测维修流程方法 CPU的三项供电电路包括核心供电电路、缓存供电电路和输入输出供电电路。
这三个电路分别为CPU的核心部分、缓存部分和输入输出部分提供稳定的电源供应,以确保CPU正常运行。
核心供电电路是CPU最重要的供电电路,它为CPU的核心部分提供电源。
核心供电电路通常由多个电压稳压器组成,这些电压稳压器负责将输入的高压电源转换为CPU核心部分所需的低压电源,并保持电压的稳定性。
核心供电电路中还包括滤波电路,它能够滤除输入电源中的噪音和干扰,确保CPU核心部分得到稳定而干净的电源供应。
缓存供电电路为CPU的缓存部分提供电源。
缓存是CPU内部的一种高速存储器,它用于临时存储CPU的指令和数据,以提高CPU的运行效率。
缓存供电电路通常也由电压稳压器和滤波电路组成,它们的设计和工作原理与核心供电电路类似。
输入输出供电电路为CPU的输入输出部分提供电源。
输入输出部分是CPU与外部设备进行通信和数据交换的接口,包括各种输入输出端口和控制电路。
输入输出供电电路通常也由电压稳压器和滤波电路组成,以确保输入输出部分正常工作。
在进行CPU故障检测维修时,一般遵循以下流程方法:1. 检查电源供应:首先检查CPU的电源供应情况,确保电源线正常连接,电源开关打开,以及电源电压和电流是否符合CPU的要求。
如果有问题,需要修复或更换电源。
2. 检查供电电路:检查核心供电电路、缓存供电电路和输入输出供电电路的稳压器和滤波电路是否正常工作。
如果发现故障,需要修复或更换这些电路的元件。
3. 检查故障指示灯:一些CPU可能配有故障指示灯,可以根据指示灯的状态来判断故障原因。
检查故障指示灯的亮灭情况,并参考CPU的说明书来判断故障原因。
4. 检查其他部件:如果以上步骤没有找到故障原因,需要进一步检查CPU的其他部件,如散热器、风扇等是否正常工作。
如果发现故障,需要修复或更换这些部件。
5. 检查软件配置:最后,还需要检查CPU的软件配置是否正确。
主板供电电路检修
主板供电电路检修一、开机电路的构成及工作原理图中Q1、Q2为场效应管,VFB为电压反馈CPU主供电路的构成:大多数电路由电源IC、场效应管、电感线圈、电容等构成,少数主板加入二极管、三极管组成CPU主供电工作原理:红色5V通过C1、L1第一次滤波后送到由电源IC、场效应管组成的脉宽调制电路中,由电源IC控制场管导通、截止,Q1导通时红5V通过D极流向S极给CPU供电,Q1截止时Q2导通,电路中电流下降,电感线圈向外释放能量,继续给CPU供电。
二、电源IC工作异常检修流程1.查电源IC的12V或5V供电2.查电源IC的VID0-4是否受到控制,CPU座VID0-4和电源IC的VID0-4大多是直接相连,有时会通过电阻或门电路后再相连3.更换电源IC4.查电源IC的外围元件,贴片电容、电阻、三极管5.列换带有监控功能的芯片,主要监控温度,故障率极低,有些集成在I/O或南桥三、CPU主供电的检修流程测量Q1的D极供电,如果不正常检查相关的供电线路;正常继续测量Q1的G极的控制电压,如果正常更换Q1或检查其输出极所连元器件;不正常查电源IC与Q1的G极之间所连的元件,如果不正常更换相关的损坏的元件;正常说明电源IC工作异常,按照电源IC工作异常的检修流程进行检修。
四、易坏元器件电容、场效应管(如果软击穿,直接换场管)、电源IC五、CPU内外核介绍CPU内外核供电主要用在370主板和CPU上,大多数370主板需要内外核供电,少数只需要内核,没有外核供电1、判断主板是否需要外核供电的方法大多数支持图拉丁CPU(赛扬三代)的主板没有外核供电,如810、815EPT等;测量外核测试点,对地打阻值,如果为无穷大说明主板不需要外核供电。
内核供电电压:1.4V-1.8V之间正常;外核电压:2.4V-2.8V之间正常2、主板1.5V或2.5V电压供电方式注:3.3V或5V一般由电源线直接提供,图中画有虚线地方可能经过元器件常见主板开机电路图一、开机线路图1、VIA大多由南桥开机,有83977EFI/O的由I/O开机2、inter主板较,83627高进高出,8702、8712低进低出3、SIS开机电路4、VIA多,370、462主板常见故障现象:无法软关机,开机不稳定时好时坏,多为门电路坏二、I/O开机图1、132门电路容易损坏2、83627I/O中第67脚有3.3V高电平(点PWR不机,且67脚有3.3V电压为I/O 坏,少数为南桥坏)3、83627第67脚为0V,查南桥待机电压,拆下I/O测4、83627第67脚为0V-1V,I/O坏5、83627I/O损坏的故障现象:不开机、能开机不能关机、复位灯常亮主板接口电路维修一、主板键盘、鼠标口维修说明:1、4针是信号线,对地打阻值数值600左右,且相差不大,6针为供电脚,大多由电源红线提供,有时也会通过跳线再与供电相连,其它针为地线或空脚上图是键盘、鼠标接口的电路图,紫线供电是为了实现键盘开机,网络唤醒,挂起到内存等功能(跟开机有关的电路都是由紫线供电)2、键盘、鼠标口损坏检修(1)、如果对阻值比正常值高,屈向于无穷大:查电感、保险(故障率高)、I/O、南桥(故障率低)、跳线(2)、比正常值低,屈向于短路:查电容、I/O或南桥(3)、如果对阻值正常,可能为接口、BIOS、I/O或南桥损坏二、主板USB接口说明:1针为供电脚,大多由红线提供,因此常与鼠标键盘的供电同路,2、3针为信号线,对地阴值500左右,且相差不大,4针为地线电阻器的识别分类及测量一、单位:欧姆(Ω)1MΩ=1000kΩ1kΩ=1000Ω符号:“R”国内符号国际符号二、电阻的种类:贴片电阻金属膜电阻碳膜电阻水泥电阻特殊电阻1、贴片电阻:符号:“R”,“RN”(黑底白字)贴片电阻分为单个贴片电阻和排阻单个贴片电阻排阻(“RN RA RP NR”表示,有8脚、10脚、16脚)2、金属膜电阻:符号:“RJ”外型小,功率小,1/8W,1/4W3、碳膜电阻:符号:“RT”外型大,功率大一些,1/2W,1W,3W4、水泥电阻:外型更大,功率最大,5W,10W三、读取阻值:贴片电阻上面白字如:103 472 330 220等,数值的前两位是有效数,第三位是倍数,例: 103 有效数是10,3是倍数,它的阻值是 10Ω*103=10kΩ 472 有效数是47,2是倍数,它的阻值是 10Ω*102=4.7kΩ四位数电阻:前三位为有效数,第四位为倍数,计算方法同上(1001 1002 4705)含有字母的电阻:R39 3R3 33R R330 56R0 10R0,R在这里是小数点的意思,如果R 在第一位则去掉R,按三位计算色环电阻读取阻值:色环电阻四道色环,一、二道为有效数,三道为倍数,四道为误差值R=AB*10C五道色环,一、二、三道为有效数,四道为倍数,五道为误差值R=ABC*10D即无金色也无银色的色环电阻叫精确电阻四、电阻的作用:电阻串联:起降压限流的作用电阻并联:起分压分流作用电阻并联:电路各部分电压相等。
电脑主板cpu供电
Cpu供电原理与维修
Cpu供电作用?
给cpu提供电压的电路-------高压供电 具体是把12v 降
压 1.xv
不同cpu电压是不同的,478接口一般为1.7v、1.5v 775接口一般为1.3v
Cpu功耗接近100w P=U*I I=P/U=100W/1V=100A 1000W/220V=5A
电脑的耗电量不固定。 不同cpu电压是不同的,478接口一般为1.
不同cpu电压是不同的,478接口一般为1.
1000W/220V=5A
电脑功率(耗电量)主要取决于cpu、硬盘 典放电。 775接口一般为1. 1)mos管损坏--------测量储能电感对地短路,拆下下管不短路则为mos管坏。 Cpu功耗接近100w P=U*I I=P/U=100W/1V=100A Mos管-------任意两脚不直通(显示<10)则好
12v经过小电感、电容(耐压16v)滤波送到上管D极,芯片根据cpu类型控制上管导通的时间,12v电压经上管D极到s极经过储能电感 给cpu滤波电容充电。 2)北桥坏--------测量储能电感对地短路,拆下下管还短路则为北桥损坏
1000W/220V=5A
电脑耗电量? 测量:上管D极接四脚电源插座,下管S极接地。
1000W/220V=5A 看数量:上管一个,下管两个 最易损坏------电容(电容鼓包、漏液) 测量:上管D极接四脚电源插座,下管S极接地。 当电流经过储能电感时,电能 磁能,储存在磁芯里。
拔下cpu辅助供电线,开机风扇一直转。 场效应管、储能电感、电容、控制芯片
cpu供电组成(识别):
场效应管、储能电感、电容、控制芯片
1)mos管损坏--------测量储能电感对地短路,拆下下管 不短路则为mos管坏。
电脑维修-主板维修-CPU-供电维修
主供电为0断电查供电点有无对地短路J无查所有下管的G极是否都有高电平J无断电量所有下管的G极,有无对地短路的J无查电源IC工作条件是否正常J正常电容等是T断开脚判断是场效管还是电源IC否T查不正常的原因CPU主供电不正常维修方法当诊断卡不跑代码,我们首先要查 CPI主供电是否正常。
一、检修思路1. 量CPL旁边场效应管的D极是否正常。
上管有12V,下管有1.5V左右。
2. 如不是这两个电压,就是 CPL主供电不正常了。
3. 高的12V我们不管,我们只管那个1.5V的。
主供电不正常分为几种情况,一种是电压为 0, —种是偏低,还有偏高的。
4. 电压为0的检修方法,我们先摸一下场效应管是否发烫,表面有无烧焦的痕迹和异味,电解电容有无漏液等,如有直接换掉。
5. 接着我们断电量主供电点的对地阻值是否为 0欧左右,正常插CPI应为10欧,不插为30欧。
6. 如为0欧,肯定是有短路的了,有可能北桥短路,CPU S路,滤波电容短路,场效应管击穿。
7. 如阻值正常,我们看场效应管的 G极是否有正常的高电平,如没有是不是 G极对地短路,可断电量对电阻值。
8. G极对地短路不是场效应管就是电源IC。
断开脚量就知道是哪个了。
9. G极没短路电压又没有,查电源芯片的工作条件是否具备,具备了就直接更换。
10. G极正常,D极又没对电短路。
那就是上管没有 12V电压了,场管全部开路是不可能的。
、检修步骤用手触摸场管、电源芯片,用眼看相关元件有无外观问题,如电容漏液等有T逐步排除可能短路的元件,如场管、CPU北桥(有无发烫)有T查上管的12V供电主供电偏低断电量所有下管的G极是否对地短路是T断开脚判断是场效管还是电源ICJ否有场管未工作,须用手去感知温度没温度T换那个J查不出来断电量场管三个引脚的对地阻值,找出不同的,换掉三、根据诊断卡代码查故障1如果一开机只有电压、时钟显示,而没有代码显示就检查 CPU 有无损坏。
2. 如果诊断卡不跑代码或跑到 00、FF 、C0 D1 E0 CF 、F0、F8、01、02停止,一般是主板南北桥、 BIOS I/O 或CPI 有问题。
cpu供电电路原理及故障浅析
cpu供电电路原理及故障浅析
1CPU供电电路简介
CPU供电电路是现代计算机存储系统中重要的部件之一,它负责定义和管理系统中各个电路的工作状态,保证每个部件能够顺利操作。
CPU供电电路由电源和供电单元组成,由电源为系统提供电力,供电单元根据系统需要,为各个组件提供必要的电压。
2CPU供电电路原理
CPU供电电路有两个主要组件,即电源和供电件。
电源件向整个电路提供能量,常用的电源件包括变压器、稳压电源、正压电源以及可变电源等。
而供电件负责把电源件的电压调整到不同的等级以供各个部件使用,电路中比较常见的供电件有直流-交流转换器、电容、电感等元器件。
3CPU供电电路故障浅析
CPU供电电路往往受到外界温度变化、雷击、开关操作等因素影响,容易出现故障现象。
常见的故障类型有:电源欠压、电路噪声增加、电源电压抖动、供电单元输出电压不稳定、端口过载、电路走火等。
对于上述故障,最好的办法就是检测故障原因,进行处理,去除外界的干扰,防止此类故障的进一步发生。
总之,CPU供电电路是计算机系统中重要的部件,它负责不同电路单元之间的电压调整及电源提供,但容易受外界因素影响而出现故
障,因此,系统维护者应持续关注CPU供电电路状态,及时保养、检测,减少故障的发生。
第十二 CPU供电电路分析及故障检修
2.CPU供电电路的组成: 主板的CPU供电电路主要由电源管理芯片,电感线圈, 场效应管(MOSFET管)和电解电容等元器件组成. (1)电源管理芯片 电源管理芯片主要负责识别CPU供电幅值,产生相应 的短矩波,推动后级电路进行功率输出.常用电源管理 芯片的瑾有HIP6301,IS6537,RT9237,ADP3168, KA7500,TL494等. 主要电源管理芯片有的是双列直插芯片,而有的是表 面贴装式封装,其中HIP630x系列芯片是比较经典的电 源管理芯片,由著名芯片设计公司Intersil设计.它支持 两/三/四相供电,支持VRM9.0规范,电压输出范围是 1.1V-1.85V,能为0.025V的间隔调整输出,开关频率高 达80KHz,具有电源大,纹波小,内阴小等特点,能精 密调整CPU供电电压.下面发HIP6301为例,讲解电源 管理芯片各个引脚的功能.
场效应管击穿,用万用表打在蜂鸣档上就可以判 断出是哪个场效应管击穿.通过测ATX电源的接 口对地数值也可以判断出来是5V不是12V击穿根 据电容的特征去修. 一般CPU主供电电路所有与之相关电路都设置 在CPU插座附近.不会在主板上的任何地方设置 它的主供电电路.电压识别管脚VID0—VID4, 也就是说CPU需要量多大的电压,需要多大的电 流.如P3的CPU需要的电压稍高,P4CPU需要 的电压比较低,针对不同频率的CPU需要的电压 也是一样的,所以这个主板CPU需要多大的电压 必需要将自己的信息告诉电源管理芯片,电源管 理芯片经过内部编程之后,输出CPU所需要正确 电压.相知道CPU供电电压是多少,自己去下载 CPU底视图,里面有教你如何测CPU供电.
(3)滤波电容 CPU供电电路中的电容一般采用的就是大家通常所讲 的"普通电容". 在电路中电容具有"隔直通交" 特性,它的作用包括以下几方面:一是滤波,大部分都 用在了直流转换之后的滤波电路中,利用其充放电特性, 在储能电感的配合下,将脉冲直流电变成较为平滑的直 流电,一般说来大容量电容适用于滤除低频杂波,而小 容量电容滤除较高频杂波的效果比较好;三是信号去耦, 防止信号在电路间串扰;三是信号耦合,用于将两个电 路的直流电位进行隔离时使信号在电路间传送. 在单相供电电路中,电容和电感线圈的规格越高以及 场效应管的数量越多,就代表了供电电路的品质越好. 一般情况下,日系的SANY(三洋),Rubycon(红宝 石),KZG电容比较优秀,台系的TAICON,OST, TEAPO,CAPXON等品片的电容也可以考虑.少数高 端的超频版主板还会采用化学稳定性极好的固态电容, 彻底杜绝了电容爆浆现象的发生.
CPU主供电电路的维修
CPU主供电电路的维修(以ECS 945PL-A为例)该主板的CPU主供电电路采用的电源管理芯片是RT9245及四个驱动芯片RT9603,是一个四相供电设计。
主供电的上管是09N03,下管是06N03,均为N沟道的MOS管。
一般CPU主供电电路出现的故障有如下几种:1、接上ATX电源的4P12V接头,上电会马上断电2、无CPU主供电3、CPU主供电电压不正常第一种情况:首先检测CPU主供电上管是否击穿(这是最常遇到的),如果击穿了建议更换掉上管后,和他同一组的下管及驱动IC以及电源芯片一起换掉(上管击穿后12V将有可能直接供给驱动IC将驱动IC烧坏,然后再通过驱动IC到电源芯片烧坏电源芯片, 可能当时没有烧坏,但对于芯片的品质可能受到了一定的破坏,为防止使用没多久再次损坏可一起更换掉)上管如果正常,那可能是4P12V对地了,这种情况遇到的不多,如果遇到也是相当好修的,一般就是4P12V的滤波电容击穿对地短路了,把这些电容一个一个拆掉测试,拆到哪个后不对地短路了那就是那个电容击穿,更换掉这个电容就OK第二种情况:无CPU主供电这也是非常常见的故障,这个故障我们首先测试看4P12V是否送到CPU主供电的上管了即测试09N03的D极是否有12V的电压,如果没有查4P12V到主供电的上管间的电路,这之间会有一个磁芯电感,看是否开路,看PCB板是否有断线。
主供电的上管有12V电压后,检测电源管理芯片和驱动芯片的工作电压是否正常即RT9245的28脚有无5V电压,RT9603的4脚与1脚是否有12V电压,如果哪个没有电压查相连的10欧姆电阻及二极管R609,R607,D20这些电正常后我们需要测量RT9245的11脚DVD信号是否有1.2V的电压,这是RT9245的开关信号,没有RT9245就不会工作,该电压是12V经R613与R623分压并受PWR_GD 信号控制,PWR_GD信号是由VTT_OUT_R产生,VTT_OUT_R是由V_FSB_VTT经CPU 转换而来,V_FSB_VTT又是由VDDQ产生的,这些信号一级一级追就是了。
cpu供电电路原理及故障浅析
cpu供电电路原理及故障浅析
在计算机的结构中,CPU的供电系统是比较重要的一部分,它主要负责提供CPU需要的电量和电压。
CPU供电电路主要包括电源管理电路和电压保护电路,它们的安全性和可靠性直接影响着CPU的工作状态。
CPU供电电路的原理是,经过电源部件(如变压器和滤波器)调节后,电源能量被转化为适合CPU内部组件使用的电能,并控制电压以保证其波动较小,以免影响CPU内部组件的正常工作。
电源管理电路的作用是控制CPU的输入电流和电压,确保合乎规定的电压、电流比例,确保CPU的正常工作。
它由许多小型元件组成,如电压稳压、电流稳压、电压变换器、限流电阻等。
电压保护电路的作用是检测CPU输入电压是否超出规定的上下限,以及电流是否超出规定限值。
它由双稳压器、电压检测器、热控报警器和可编程电压控制器等元件组成,当电压或电流超过预设值时,电路会自动关闭电源,以确保CPU的正常工作。
CPU供电电路的不良现象主要表现为电源不稳定、电源跳闸、电压调节失灵等。
其中,常见的故障有电源管理电路及元件损坏,以及电压保护电路及元件损坏。
电源部件的损坏可以引起电源偏置,从而影响CPU的正常工作。
要进行CPU供电电路的故障检测和修复,应先检查电源系统的输出电压和电流,以及电源部件的工作情况,能量情况是否正常。
此外,也需要检查电压保护电路的电压调节模式和元件工作情况。
如果检测
到任何不正常情况,应第一时间进行维修和更换,以确保CPU的正常工作状态。
综上所述,CPU供电电路是确保CPU正常工作的重要环节,因此在使用中一定要注意保持其安全性和可靠性。
如果出现故障,及时进行检查和维修,确保CPU正常工作。
电脑维修-cpu 供电原理与维修(详)
CPU供电电路原理及检修一、CPU供电电路原理CPU供电电路通常采用PWM开关电源方式供电,即由电源管理芯片根据CPU的电压需要,向MOS管发出脉冲控制信号,控制MOS管的导通和截止,再通过电感储能、电容滤波,向CPU输出稳定的核心工作电压。
当电脑开机后,ATX电源会输出各路电压供给主板,同时也输出+5V(或+12V)电压给电源管理芯片。
接着ATX电源检测到各路电压都正常的情况下(指各路负载正常,没有短路等),第八脚会输出PG信号(为高电平,比其它电压大约延时0.5秒左右),此信号经过主板处理后会送到电源管理芯片的PGGOOD引脚。
电源管理芯片在接收到PG信号后,内部开始工作,然后根据CPU提供VID信号,向MOS管输出相应的PWM脉冲控制信号(脉冲信号的宽度决定MOS管输出电压的高低),控制MOS管轮流导通和截止,输出CPU所需要的电压。
但此时的电压是脉动的矩形波,所以后面需要串接电感和并接电容,目的是为了把脉动直流滤波成平滑稳定的直流,以供给CPU工作。
二、CPU供电电路组成1) 电源管理芯片电源管理芯片负责识别CPU电源幅值,推动后级电路进行功率输出,常用电源管理芯片的型号有:HIP6301、ISL6537、RT9237、ADP3168、KA7500、TL494等。
HIP630X系列芯片是比较典型的电源管理芯片。
由著名芯片设计公司Intersil设计。
它支持两/三/四相供电,支持VRM 9.0规范,电压输出范围是1.1V ~ 1.85V,能以0.025V的间隔调整输出,开关频率高达80kHz,具有电流大、纹波小、内阻小等特点,能精密调整CPU供电电压。
2) 电感线圈电感线圈是由导线在铁氧体磁芯环或磁棒上绕制而成的。
有线圈式、直立式、和固态式等几种。
CPU 供电电路中电感线圈主要包括两种:滤波电感:对电流进行滤波。
储能电感:它和MOS管、电容配合为CPU供电。
另外根据线圈蓄能的特点,实际电路中常利用电感和电容组成低通滤波系统,过虑供电电路中的高频杂波,以便向CPU干净的供电电流。
CPU供电原理与维修(详)
CPU供电电路原理及检修一、CPU供电电路原理CPU供电电路通常采用PWM开关电源方式供电,即由电源管理芯片根据CPU的电压需要,向MOS管发出脉冲控制信号,控制MOS管的导通和截止,再通过电感储能、电容滤波,向CPU输出稳定的核心工作电压。
当电脑开机后,ATX电源会输出各路电压供给主板,同时也输出+5V(或+12V)电压给电源管理芯片。
接着ATX电源检测到各路电压都正常的情况下(指各路负载正常,没有短路等),第八脚会输出PG信号(为高电平,比其它电压大约延时0.5秒左右),此信号经过主板处理后会送到电源管理芯片的PGGOOD引脚。
电源管理芯片在接收到PG信号后,内部开始工作,然后根据CPU提供VID信号,向MOS管输出相应的PWM脉冲控制信号(脉冲信号的宽度决定MOS管输出电压的高低),控制MOS管轮流导通和截止,输出CPU所需要的电压。
但此时的电压是脉动的矩形波,所以后面需要串接电感和并接电容,目的是为了把脉动直流滤波成平滑稳定的直流,以供给CPU工作。
二、CPU供电电路组成1) 电源管理芯片电源管理芯片负责识别CPU电源幅值,推动后级电路进行功率输出,常用电源管理芯片的型号有:HIP6301、ISL6537、RT9237、ADP3168、KA7500、TL494等。
HIP630X系列芯片是比较典型的电源管理芯片。
由著名芯片设计公司Intersil设计。
它支持两/三/四相供电,支持VRM 9.0规范,电压输出范围是1.1V ~ 1.85V,能以0.025V的间隔调整输出,开关频率高达80kHz,具有电流大、纹波小、内阻小等特点,能精密调整CPU供电电压。
2) 电感线圈电感线圈是由导线在铁氧体磁芯环或磁棒上绕制而成的。
有线圈式、直立式、和固态式等几种。
CPU 供电电路中电感线圈主要包括两种:滤波电感:对电流进行滤波。
储能电感:它和MOS管、电容配合为CPU供电。
另外根据线圈蓄能的特点,实际电路中常利用电感和电容组成低通滤波系统,过虑供电电路中的高频杂波,以便向CPU干净的供电电流。
cpu主供电电路的工作原理及分析
cpu主供电电路的工作原理及分析一、工作原理:CPU主供电电路是计算机中非常重要的一个部分,它负责为CPU提供稳定的电源供应。
CPU主供电电路的工作原理可以简单分为以下几个步骤:1. 交流电转直流电:首先,交流电从电源输入端进入电源转换器,经过整流和滤波等处理,将交流电转换为稳定的直流电。
2. 电源转换器:直流电进入电源转换器,根据CPU的工作状态和需求,通过调节电压和电流等参数,将电源输出调整到适合CPU工作的范围。
3. 电源滤波:为了保证供电的稳定性和纯净性,电源输出端会连接一些滤波电路,用于滤除电源中的噪声和干扰信号,确保供电的稳定性。
4. 电源保护:为了保护CPU和电源本身的安全,电源会设置一些保护机制,如过流保护、过压保护、过热保护等,一旦出现异常情况,电源会自动切断供电,以避免损坏CPU等硬件。
5. 供电稳定性:CPU对供电的要求非常高,稳定的电源可以确保CPU正常工作,提高计算机的性能和稳定性。
因此,CPU主供电电路还会通过稳压电路等手段,保持供电的稳定性,避免电压波动对CPU的影响。
二、分析:1. 电源转换效率:CPU主供电电路的转换效率对计算机的能耗和发热量有着直接的影响。
高效的电源转换器可以将输入的电能转换为CPU需要的电能,减少能量的损耗,提高电源的效率。
2. 电源稳定性:CPU对电源的稳定性要求非常高,电压波动或电流不稳定会导致CPU工作异常甚至损坏。
因此,电源滤波和稳压电路等设计非常重要,能够有效地去除电源中的噪声和干扰,保持供电的稳定性。
3. 电源保护机制:电源保护机制对CPU的安全起着重要作用。
过流、过压、过热等异常情况可能会对CPU造成损坏,因此,电源需要设置相应的保护机制,在出现异常情况时及时切断供电,保护CPU和电源本身的安全。
4. 散热设计:CPU主供电电路在工作过程中会产生一定的热量,如果散热不良,会导致CPU温度过高,影响计算机的性能和寿命。
因此,电源的散热设计也是需要考虑的因素之一,保证电源的稳定供电的同时,也要保证散热效果良好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主板维修教程之CPU供电电路原理及检修.txt两人之间的感情就像织毛衣,建立的时候一针一线,小心而漫长,拆除的时候只要轻轻一拉。
主板维修教程之CPU供电电路原理及检修显示器在不亮,检修重点在CPU主供电电路,CPU主供电电路是在维修中最易损坏的一个区域,它损坏后测试卡显示FF00。
主板可以加电,但CPU不工作,因为CPU需要一个稳定供电电流,才能工作。
CPU主供电损坏的特征,如一些网吧的,个人用户,单位用户可以很明显的看到周围电容鼓包漏液,电容防爆槽爆开,接到这样的主板,首先将鼓包漏液的电容进行更换,更换的耐压值可以大一点,容量可以误差不超过20%。
场效应管击穿,用万用表打在蜂鸣档上就可以判断出是哪个场效应管击穿。
通过测ATX 电源的接口对地数值也可以判断出来是5V不是12V击穿根据电容的特征去修。
一般CPU主供电电路所有与之相关电路都设置在CPU插座附近。
不会在主板上的任何地方设置它的主供电电路。
电压识别管脚VID0—VID4,也就是说CPU需要量多大的电压,需要多大的电流。
如P3的CPU需要的电压稍高,P4CPU需要的电压比较低,针对不同频率的CPU需要的电压也是一样的,所以这个主板CPU需要多大的电压必需要将自己的信息告诉电源管理芯片,电源管理芯片经过内部编程之后,输出CPU所需要正确电压。
相知道CPU供电电压是多少,自己去下载CPU底视图,里面有教你如何测CPU供电。
整个工作流程:主电的产生,电路由电源控制芯片(CPU的供电芯片U1)、声效应管(其中场效应管Q1是起电压调整作用,Q2为续流稳压作用),滤波电容(C1~CN)、电感(L1、L2)、稳压二极管(D)和一些帖片电阻电容元件等构成。
其中电源控制器的供电为12V,由ATX电源的黄线直接提供。
场效应管的供电为5V,由ATX电源红线提供(P4以上的主板由附加电源共色线提供12V)。
主板空载:主板空载,就是主板在未装CPU的情况下,按PS—ON键,U1由于得到一个12V供电电压,控制场效应管通过电感、电容会产生一个功率很低的主电压或者U1不工作,这时电压输出为零,其主要原因是CPU没有提供一个电压识别信号,来控制电源管理器产生CPU所需要的电压。
根据不同品牌不同型号的主板,此电压值一般有以下几种可能:0.?V、1.?V、2.0V、5.0V。
原因是因为在未装CPU的情况下,电源控制器的电压识别管脚(VID0~~VID4)没有得到CPU加过来的电压识别指令,无电平信号。
所以电源控制器芯片内部电路就不能完全工作,也就是说电源控制器输出时不知把该电压控制在多少伏,同时电源控制器也不会向场效应管的G极输出脉冲控制电压,场效应管就不会工作。
所以主板在空载的情况下,只会输出以上几个不同的电压值。
即使偶尔在空载时,能测出2.0V电压值,此时的电压功率也是很小的,因为场效应管没有完全工作。
主板插上CPU:当主板装上CPU之后,CPU的5个电压识别管脚就会自动的固定一组电压识别指令信号,将电平信号加到电源控制器的电压识别引脚上,这时电源控制器内部电路就会完全工作,然后根据CPU加来不同的电压识别指令信号,氢电压自动的调整在CPU工作时所需要的电压。
它是通过向场效应管G极输出脉冲控制电压,让两个场效应管轮流导通,使其工作在开关状态。
其具体工作原理如下:当主板在加电的瞬间,12V、5V、3.3V等电压进入主板,这时CPU的5个电压识别管脚就会提供固定的一组电压识别指令,给电源管理器,电源管理器在供电和VID信号的作用下,其芯片内部电路完全工作。
当电源管理器的高端门向场效应管Q1的栅极(G极)输出高电平,此时Q1导通,同时,电源管理器的低端门向场效应管Q2栅极(G极)输出低电平,Q2截止。
电源Vcc的5V通过Q1调整,由电感电容滤波加入负载CPU,这时电感L2产生一个感应电动势(左正、右负),阻止电流增大,电感这时处于一个储能状态,电感具滤波储能的作用,当Q1截止,Q2导通,电感为阻止电流变小,也会产生一个感应电动势(左负、右正),给电容充电。
当Q1属于截止状态的时候它内部存储的电容经过CPU消耗以后经过Q2形成一个回路,Q2在这个位置主要起到一个储留和保护的作用。
往往它这个特定的作用决定它不是一个容易受损坏的一个元件,当这个电感的电流或电压增大,最容易烧坏我们的场效应管,当下一周期到来时,重复上面的动作,这样周而复始,CPU就会得到恒定的电压能量。
因此,通过Q1,Q2的导能和截止,电感和电容滤波整流,产生CPU所需要的稳定电压。
这就是它的一个整体的工作流程。
这是多项供电中的供电中的单项原理,370主板接口的内核电压1.5V和2.5V的产生,各个主板是不同的1、直接通过电源管理芯片外的电阻产生,一般1.5V电流比较大,不会使用这种方法2、电源管理芯片输出并控制场效应管G极和三极管B极,一般在场效应管D极或三极管C极上接5V或是3.3V电压,S极输出。
3、1.5V与2.5V线性模块降压等得到,一般输入电压为3.3V。
478的CPU只有一个供电CPU通过电源识别管脚告诉电源管理芯片所需要的电压,电源管理芯片控制场效应管,通过电感,电容产生CPU所需要的电压。
在478中,CPU需要电流很大,一对场效应管不能满足要求,需要并联4个或6个场效应管,俗称多项供电。
! 像现在的CPU供电电路,一般是三对场效应管,这属于多项工作原理,三组供电,在现在一般的CPU工作功率达到了80瓦,所需要的电流是非常大的。
这时为CPU能在高频大电流下稳定的运行,稳定的工作,必需采用多项供电,那这就是多项供电中的单项工作原理。
在以后遇到主板,检修CPU主供电电路的时候,同样只要会单项中的原理,多项供电检修原理是一样的。
在主板插上CPU以后,测示卡显示的是FF00,那就证明CPU没有工作,CPU没有工作,第一个检查的就是它的工作条件——供电主板上的所有设备,要想保证其工作稳定或工作正常,首要问题就是它的动力源也就是供电源必需,其次时钟也就是芯脉跳动必需正常,检修它的复位是否正常。
在主板的Q1X极,场效应管的X极就可以测定供电是是否正常。
将万用表打在直流20V 档上,红表笔接地,黑表笔点测试点Q2的D极或者说点Q1的X极;或者点电感线圈L2,即可判断出供电电压是否正常。
那哪个才是Q1哪个才是Q2,Q1D极接的是红色5V或者12V,这时将万用表打在蜂鸣档上,一支表笔放在ATX电源的黄SE12V里面,另一支去连接Q1的D极,点哪个D极,响有蜂鸣声哪个就是Q1。
当找到Q1,那Q2就容易找到,当我们确定Q1以后,,红表笔点入Q1的X极,黑表笔在它旁边找跟Q2的地极哪个相连或蜂鸣,那就可以确定出它的单组供电,确定出一项供电。
那像有些主板它属于三相供电,在主板中多项供电也主是单项供电的并联,为了增大电流采取了并联关系,现在多数主板的供电电路都采用了两项电路,或多项设计,用力满足CPU 高功耗的需求,使功率达到80瓦,工作电流达到50A。
采用多项供电不仅可以为CPU提供足够可靠的电能,还可通过分流的使作用使每项场效应管的负载减少,为主板的稳定运行创造一个良好的工作环境,三项供电电路采用Intel公司一个特定的工作模式。
怎么样才能找到CPU供电电路中的电源管理芯片?只要确定出一项供电以后,用万用表打在蜂鸣档上,一支表笔接差场效应管Q1控制极(G极),另一支表笔和旁边的芯片去连接一下,连通以后即可知道它是不是电源管理芯片。
找到电源管理芯片,就不用找电压识别管脚。
如何检修CPU供电路:1、测Q1的D极5V或12V,他是由ATX电源的红色5V或黄SE12V直接提供。
如果不正常,查电源红线或黄SE线到D极。
如果正常,进行下一步工作。
2、测Q1的G极3~5V控制电压,由电源管理芯片提供,如果正常,场效应管坏,更换场效应管。
如果不正常,把Q1的G极悬空,测电源芯片的输出端电压。
3、测电源芯片输出电压,如果没输出,查电源芯片的供电12V或5V,由ATX电源提供,如果没有供电,查相关线路。
如果有供电,换电源芯片。
4、测PG电源源好5V(电源灰线),如果正常,换电源芯片,如果不正常,更换与电源灰线相连的芯片。
注:常坏是电源控制芯片和场效应管以及R1限渡电阻,一般CPU供电中15V,主供电会无输出时,电源控制芯片坏的可能性最,如果具有基某中一项输出不正常,则是输出此项的场效应管坏的最多(如Q3的1.5V输出)。
一般在1.5,2.5V都有情况,主供电如果没有,一般是Q1或Q2、D1损坏比较多。
在有2.5V主供电的情况下,如果1.5V没有,百分之八十是控制1.5V输出场效应管损坏;如果有2.5V不输出的话,与修1.5V同样;如果1.5V,2.5V主供电同时没有,而且电源芯片供电正常时(12V、5V),百分之八十是芯片坏了。
由于主供电电路中的采用的是多项并联的关系,它每单项的供电,单项场效应管损坏,都会导致整个CPU供电电路的不稳定。
所以要检修中不要盲目的去折看供电电路中的场效应管,可用断路法来排除,首先将场效管断开一组,然后再判断其好坏这个就是CPU主供电电路的检修流程。
这就是整个CPU供电电路的检修流程。
CPU不工作,测试卡只跑00、CF、C0、FF等。
不能跑到C1但有些朋友还问,为什么CPU供电都正常了,为什么测试卡还是跑FF或00呢,为什么CPU还没有工作呢?这可就要按我们的维修规则了,先修供电,再修时钟,后修复位。
就算你CPU供电正常了,但时钟不正常或复位不正常,也会导致CPU不工作南桥没供电,供电偏高或偏低,也会导致CPU不工作。
北桥没供电,供电偏高或仿低,也会导致CPU不工作。
南桥、北桥虚焊、不良,也会导致CPU不工作内存没供电也会导致CPU不工作(相对板来说)。
CPU座的数据线,如果有一条和北桥开路,或短路,也会导致CPU不工作。
最好有一个CPU 灯座,放到CPU插座上,一通电,就知道哪条数据线开路,短路等,总比你一根根的去量CPU 的数据线。
CPU频率跳线不对,也会不工作。
BIOS坏CPU也会不工作,对于CPU不工作的原因还有很多,这些需要大家在维修经验中慢慢总结。
CPU 主供电的检修流程图注:常坏的元器件是电源控制芯片和场效应管以及R1限流电阻,一般CPU供电中15V,25V,主供电全无输出时电源控制芯片损坏的可能性最大,如果只有其中一项输出不正常,则是输出此项的场效应管坏的最多(如Q3的15V输出)。