水吸收丙酮常压填料吸收塔
填料塔清水吸收丙酮设计结果一览表
填料塔清水吸收丙酮设计结果一览表摘要:一、引言二、填料塔清水吸收丙酮设计概述三、设计结果一览表1.设计流量2.填料塔直径与高度3.填料层高度4.丙酮吸收液的喷淋密度5.液气比6.塔内压力分布7.温度分布8.设备材质与防腐措施四、设计结果的分析和讨论五、结论正文:一、引言本文主要介绍填料塔清水吸收丙酮的设计结果。
通过本设计,旨在实现对丙酮废气的有效处理,达到环保要求。
二、填料塔清水吸收丙酮设计概述填料塔清水吸收丙酮设计采用喷淋吸收剂的方法,将废气中的丙酮通过与吸收剂的接触,转化为无害物质。
设计过程中,主要考虑了流量、塔直径与高度、填料层高度、喷淋密度、液气比等因素,以保证系统的高效运行。
三、设计结果一览表1.设计流量:根据生产需要和处理能力,确定设计流量为10000m/h。
2.填料塔直径与高度:结合塔内流体动力学特性,确定填料塔直径为2m,高度为20m。
3.填料层高度:根据填料塔直径和高度,以及填料特性,确定填料层高度为15m。
4.丙酮吸收液的喷淋密度:为保证吸收效果,确定喷淋密度为1.5kg/m·s。
5.液气比:根据丙酮与吸收剂的化学反应特性,确定液气比为3:1。
6.塔内压力分布:设计压力分布为0.1MPa,以满足设备运行要求。
7.温度分布:为保证吸收剂的稳定性和吸收效果,设计温度分布为常温。
8.设备材质与防腐措施:设备主要材质采用不锈钢,以抵抗丙酮废气的腐蚀性。
同时,采取喷涂防腐漆等措施,提高设备的使用寿命。
四、设计结果的分析和讨论本次设计结果满足生产需要和环保要求。
在实际运行中,可通过调节喷淋密度、液气比等参数,进一步提高吸收效果。
此外,需定期检查设备运行情况,及时更换损坏的部件,保证设备的稳定运行。
五、结论本文详细介绍了填料塔清水吸收丙酮的设计结果。
水吸收丙酮填料吸收塔课程设计报告书
目录目录 (I)第1章概述 (1)1.1吸收塔的概述 (1)1.2吸收设备的发展 (1)1.3吸收过程在工业生产上应用 (2)第2章设计方案 (3)2.1设计任务 (3)2.2吸收剂的选择 (4)2.3吸收流程的确定 (5)2.4吸收塔设备的选择 (6)2.5吸收塔填料的选择 (7)第3章吸收塔的工艺计算 (11)3.1基础物性数据 (11)3.1.1液相物性数据 (11)3.1.2气相物性数据 (12)3.1.3气液相平衡数据 (12)3.2物料衡算 (12)3.3填料塔的工艺尺寸的计算 (14)3.3.1塔径的计算 (14)3.3.2填料层高度计算 (15)3.4填料层压降的计算zz (17)第4章塔内件及附属设备的计算 (18)4.1液体分布器的计算 (18)4.2选用DN 2.5Φ32无缝钢管 (18)4.2.1填料塔附属高度的计算 (19)4.3填料支撑板 (20)4.4填料压紧装置 (21)4.5气进出管的选择 (21)4.6液体除雾器 (22)4.7筒体和封头的设计 (23)4.8手孔的设计 (25)4.9法兰的设计 (25)第5章设计总结 (27)符号说明 (29)参考文献: (32)致谢 (33)第1章概述1.1吸收塔的概述气体吸收过程是化工生产中常用的气体混合物的分离操作,其基本原理是利用混合物中各组分在特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。
实际生产中,吸收过程所用的吸收剂常需回收利用。
故一般来说,完整的吸收过程应包括吸收和解吸两部分。
在设计上应将两部分综合考虑,才能得到较为理想的设计结果。
作为吸收过程的工艺设计,其一般性问题是在给定混合气体处理量、混合气体组成、温度、压力以及分离要求的条件下,完成以下工作:(1)根据给定的分离任务,确定吸收方案;(2)根据流程进行过程的物料和热量衡算,确定工艺参数;(3)依据物料及热量衡算进行过程的设备选型或设备设计;(4)绘制工艺流程图及主要设备的工艺条件图;(5)编写工艺设计说明书。
丙酮和水吸收塔化工原理课程设计
丙酮和水吸收塔化工原理-从结构、工艺过程和应用角度深度探讨丙酮和水吸收塔是一种常用的化工设备,广泛应用于化工、医药、食品等领域,具有吸收、分离、净化等功能。
本文将从结构、工艺过程和应用角度深度探讨丙酮和水吸收塔化工原理。
一、丙酮和水吸收塔结构丙酮和水吸收塔主要由塔壳、填料层、进料管道、排气管道、循环泵和控制系统组成。
塔壳一般为不锈钢或碳钢材质,填料层可以是泡沫塑料、陶粒或塑料制品。
进料管道和排气管道负责分别导入和排出气体。
循环泵则起到循环液体的作用,控制系统用于调节塔内气体温度和流速等参数。
二、丙酮和水吸收塔工艺过程丙酮和水吸收塔的工艺过程可以分为四个步骤:吸附、溶解、反应和分离。
1. 吸附当气体进入丙酮和水吸收塔时,它们就开始接触填料上涂有吸收剂的表面。
此时,气体中的废气开始与吸收剂发生接触,废气中的污染物开始逐渐被吸收剂吸附。
2. 溶解在吸附的基础上,当气体与吸收剂发生接触时,吸附剂会逐渐溶解。
目的是使废气在吸收剂中形成分子内的显著降解和溶解,在这一步骤中,需要预先调节液体和气体的比例,温度和压力等参数以确保溶解的发生。
3. 反应在液池中发生吸收剂与废气中污染物之间化学反应,使废气中的污染物逐渐被分解降解,从而减轻对环境负担。
4. 分离在经过吸附、溶解和反应之后,液池中的吸收剂会变得过度饱和。
这时,液池内的液体会通过流量调节阀流入分离器,使污染物与吸收剂分离。
而气体则经过排气管道排出丙酮和水吸收塔。
三、丙酮和水吸收塔应用丙酮和水吸收塔具有广泛的应用领域,如环境保护、化工生产、医药生产和食品加工等。
例如,在环境保护领域,丙酮和水吸收塔主要应用于废气处理。
在化工生产中,丙酮和水吸收塔主要用于去除废气中的有机气体,减轻对环境的污染。
在医药生产和食品加工领域,丙酮和水吸收塔则主要用于去除废气中的异味、二氧化碳等有害气体,提高晶体产品的纯度和质量。
综上所述,丙酮和水吸收塔化工原理是一种重要的工艺和设备,具有吸收、分离、净化等多种功能。
环境工程原理课程设计 丙酮吸收填料塔要点
故35℃时丙酮在空气中的扩散系数为:
3.1.3
由 可知:
常压下25℃时丙酮在水中的亨利系数为:
相平衡常数为:
溶解度系数为:
3.2
进塔气相摩尔比为:
出塔气相摩尔比为:
进塔惰性气体流量为:
该过程属低浓度吸收,平衡关系为直线,最小液气比可按下式计算,即:
对于纯吸收过程,进塔液相组成为:
气体质量通量为
液膜吸收系数由下式[10]计算:
由 ,查附表3得
则
由 , ,得
则
由
由 ,得
设计取填料层高度为
查附表4,对于环矩鞍填料, ,
取 ,则
计算得填料层高度为 ,故不需分段。
3.
3.
采用Eckert通用关联图计算填料层压降。
横坐标为
查附表5得,
纵坐标为
查附图1得
填料层压降为
3.
泛点率介于50%~80%之间,合理。
表4-1支承板波形尺寸mm
波形
波形尺寸
t
192
注:尺寸b是塔中间支承板宽度,在塔边缘支承板的尺寸b将随塔径不同而异,左右不对称。H为波高,t为波矩。
4.4
本设计选用丝网床层限制板,重量约为 ,限制板的外径选用690mm。
4.5
(1)气体进出口管径计算
工业上,一般气体进料流速为10~20m/s,本设计取流速为15m/s。
由标准GB/T 8163-99,选用 无缝钢管。
塔径的计算:
塔径圆整,取
泛点率校核:
(在允许范围内)
填料规格校核:
液体喷淋密度校核:
取最小润湿速率为
由表2-1可知:
经以上校核可知,填料塔直径选用 合理。
【优秀毕设】水吸收丙酮填料吸收塔的设计
吉林化工学院化工原理课程设计题目水吸收丙酮填料吸收塔的设计教学院化工与生物技术学院专业班级生工1101学生姓名学生学号 ********指导教师张卫华2013年12月 19 日课程设计任务书1、设计题目:水吸收丙酮过程填料吸收塔的设计;试设计一座填料吸收塔,用于脱除混于空气中的丙酮气体。
混合气体的处理量为1550(m3/h),其中含空气为96%,丙酮气为4%(mol分数),要求丙酮回收率为98%(mol分数),采用清水进行吸收,吸收剂的用量为最小用量的 1.5倍。
(25C°下该系统的平衡关系为y=1.75x)2、工艺操作条件:(1)操作平均压力常压(2)操作温度t=25℃(3)填料类型及规格自选。
3、设计任务:完成吸收工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统的工艺流程图和吸收塔的工艺条件图,编写设计说明书。
目录摘要 (III)第1章绪论 (1)1.1 吸收技术概况 (1)1.2吸收设备的发展 (1)1.3 吸收在工业生产中的应用 (7)1.3.1 吸收的应用 (7)1.3.2 塔设备在化工生产中的作用和地位 (8)1.3.3化工生产对塔设备的要求 (8)第2章设计方案 (9)2.1吸收剂的选择.............................................................102. 2吸收工艺流程的确 (11)2.2.1吸收工艺流..........................................................112.2.2吸收工艺流程图及工艺过程说明........................................122.3吸收塔设备及填料的选择 (12)2.3.1吸收塔的设备选择....................................................122.3.2填料的选择..........................................................132.4操作参数的选择 (14)2.4.1操作温度的选择 (14)2.4.2操作压力的选择 (14)第3章吸收塔的工艺计算 (15)3.1基础物性数据 (15)3.1.1液相物性数据 (15)3.1.2气相物性数据 (15)3.2物料衡算 (16)3.3填料塔的工艺尺寸的计算 (16)3.3.1塔径的计算 (16)3.3.2泛点率校核 (17)3.3.3填料规格校核 (17)3.3.4液体喷淋密度校核 (17)3.4填料塔填料高度计算 (18)3.4.1传质单元高度计算 (18)3.4.2传质单元数的计算 (19)3.4.3填料层高度的计算 (20)3.5填料塔附属高度计算 (20)3.6液体分布器计算和再分布器的选择和计算 (20)3.6.1液体分布器 (20)3.6.2布液孔数 (21)3.6.3 液体保持管高度 (22)3.7其他附属塔内件的选择 (22)3.7.1液体分布器 (23)3.7.2液体再分布器 (23)3.7.3填料支承板 (24)3.7.4填料压板与床层限制板 (24)3.7.5气体进出口装置与排液装置 (24)3.8吸收塔的流体力学参数的计算 (25)3.8.1吸收塔的压力降 (25)3.8.2吸收塔的泛点率 (27)3.8.3气体动能因子 (27)3.9附属设备的计算与选择 (27)3.9.1离心泵的选择与计算 (27)3.9.2进出管工艺尺寸的计算举例 (28)工艺设计计算结果汇总与主要符号说明 (29)对设计过程的评述和有关问题的讨论 (32)参考文献.......................................................... 错误!未定义书签。
清水吸收丙酮填料塔的设计
《化工原理》课程设计清水吸收丙酮填料塔的设计学院医药化工学院专业高分子材料与工程班级高分子材料与工程13(1)班姓名李凯杰学号 xx指导教师严明芳、龙春霞年月日设计书任务(一)设计题目试设计一座填料吸收塔,用于脱除空气中的丙酮蒸汽。
混合气体处理量为___4000____m3/h。
进口混合气中含丙酮蒸汽__6%__(体积百分数);混合气进料温度为35℃。
采用25℃清水进行吸收,要求:丙酮的回收率达到___95%___(二)操作条件(1)操作压力101.6 kPa(2)操作温度25℃(3)吸收剂用量为最小用量的倍数自己确定(4)塔型与填料自选,物性查阅相关手册。
(三)设计内容(1)设计方案的确定和说明(2)吸收塔的物料衡算;(3)吸收塔的工艺尺寸计算;(4)填料层压降的计算;(5)液体分布器简要设计;(6)绘制液体分布器施工图;(7)其他填料塔附件的选择;(8)塔的总高度计算;(9)泵和风机的计算和选型;(10)吸收塔接管尺寸计算;(11)设计参数一览表;(12)绘制生产工艺流程图(A3号图纸);(13)绘制吸收塔设计条件图(A3号图纸);(14)对设计过程的评述和有关问题的讨论。
目录前言 (1)第1章填料塔主体设计方案的确定 (2)1.1 装置流程的确定 (2)1.2 吸收剂的选择 (2)1.3 操作温度与压力的确定 (2)1.4 填料的类型与选择 (2)第2章基础物性数据与物料衡算 (2)2.1 基础物性衡算 (3)2.1.1 液相物性数据 (3)2.1.2 气相物性数据 (3)2.1.3 气液相平衡数据 (4)2.2 物料衡算 (4)第3章填料塔的工艺尺寸计算 (5)3.1 塔径的计算 (5)3.2 泛点率的校核 (6)3.3 填料规格校核 (7)3.4 液体喷淋密度校核 (7)3.5 填料塔填料高度的计算 (7)3.5.1 传质单元数的计算 (7)3.5.2 传质单元高度的计算 (8)3.5.3 填料层高度的计算 (9)3.6 填料塔附属高度的计算 (10)3.7 填料层压降的计算 (10)第4章填料塔附件的选择与计算 (11)4.1 液体分布器简要设计 (11)4.1.1 液体分布器的选型 (11)4.1.2 分布点密度计算 (11)4.1.3 布液计算 (12)4.2 液体收集及分布装置 (12)4.3 气体分布装置 (13)4.4 除沫装置 (14)4.5 填料支承及压紧装置 (14)4.5.1 填料支承装置 (14)4.5.2 填料限定装置 (14)4.6 裙座 (14)4.7 人孔 (15)第5章填料塔的流体力学参数计算 (15)5.1 吸收塔主要接管的计算 (15)5.1.1 液体进料管的计算 (15)5.1.2 气体进料管的计算 (16)5.2 离心泵和风机的计算与选型 (16)5.2.1 离心泵的计算与选型 (16)5.2.2 风机的计算与选取 (18)设计参数一览表 (20)对设计过程的评述和有关问题的讨论 (24)参考文献 (25)前言吸收是利用混合气体中各组分在液体中的溶解度的差异来分离气态均相混合物的一种单元操作。
环境工程原理课程设计 丙酮吸收填料塔
环境工程原理课程设计题目水吸收丙酮填料塔设计学院专业班级学生姓名学生学号指导教师2014年6月16日目录第一章设计任务书 (3)1.1 设计题目 (3)1.2 设计任务及操作条件 (3)1.3 设计内容 (3)1.4 设计要求 (3)第二章设计方案的确定 (4)2.1 设计方案的内容 (4)2.1.1 流程方案的确定 (4)2.1.2 设备方案的确定 (4)2.2 填料的选择 (5)第三章吸收塔的工艺计算 (6)3.1 基础物性数据 (6)3.1.1 液相物性数据 (6)3.1.2 气相物性数据 (6)3.1.3气液平衡相数据 (7)3.2 物料衡算 (7)3.3 填料塔塔径的计算 (8)3.3.1 泛点气速的计算 (8)3.3.2 塔径的计算及校核 (9)3.4.1 气相总传质单元数的计算 (10)3.4.2 气相总传质单元高度的计算 (10)3.5 填料塔流体力学校核 (12)3.5.1 气体通过填料塔的压降 (12)3.5.2 泛点率 (13)3.5.3 气体动能因子 (13)第四章塔内辅助设备的选择和计算 (13)4.1 液体分布器 (13)4.2 填料塔附属高度 (14)4.3 填料支承装置 (15)4.4 填料压紧装置 (15)4.5 液体进、出口管 (15)4.6 液体除雾器 (16)4.7 筒体和封头 (17)4.8 手孔 (17)4.9 法兰 (17)4.10 裙座 (19)第五章设计计算结果总汇表 (20)第六章课程设计总结 (23)参考文献 (24)附录 (25)第一章设计任务书1.1 设计题目水吸收丙酮填料塔设计1.2 设计任务及操作条件(1)气体处理量:1820 m3/h(2)进塔混合气含丙酮5%(V ol),进塔温度35℃(3)进塔吸收剂(清水)温度:25℃,吸收剂的用量为最小用量的1.3倍(4)丙酮回收率:90%(5)操作压力:常压(6)每天工作24小时,一年300天1.3 设计内容(1)确定吸收流程(2)物料衡算,确定塔顶塔底的气液流量和组成(3)选择填料、计算塔径、填料层高度、填料分层、塔高(4)流体力学特性校核:液气速度求取、喷淋密度校核、填料层压降计算(5)附属装置的选择与确定:液体喷淋装置、液体再分布器、气体进出口及液体进出口装置、栅板1.4 设计要求(1)设计说明书内容①目录和设计任务书②流程及流程说明③设计计算及结果总汇表④对设计成果的评价及讨论⑤参考文献(2)绘制填料塔设计图第二章设计方案的确定2.1 设计方案的内容2.1.1 流程方案的确定本工艺采用清水吸收丙酮,为易溶气体的吸收过程,由于逆流操作传质推动力大,传质速率快,分离效率高,吸收剂利用率高,故选用逆流操作,即气体自塔低进入由塔顶排出,液体自塔顶进入由塔底排出。
水吸收丙酮—空气常压填料-吸收塔的设计
化工原理课程设计题目:水吸收丙酮常压填料吸收塔学生姓名:学号:*********系别:化学与材料工程学院专业:高分子材料与工程指导教师:***起止日期:2014.12.30~2015.01.082015年01月08日目录概述及设计方案简介 (2)一、设计任务书及操作条件 (7)二、设计条件及主要物性参数 (8)三、设计方案的确定 (9)四、物料计算 (10)五、热量衡算 (12)六、气液平衡曲线 (14)七、吸收剂(水)的用量Ls (15)八、塔底吸收液浓度X1 (16)九、操作线方程 (17)十、塔径计算 (18)十一、填料层高度计算 (21)十二、填科层压降计算 (26)十三、液体分布器简要设计 (27)十四、填料吸收塔的辅助设备及选型 (27)十五、填料塔的设计结果概要 (29)十六、课程设计总结 (30)十七、设计一览表十八、主要符号说明 (31)十九、参考文献 (32)二十、附图(工艺流程图、主体设备设计条件图) (33)概述及设计方案简介一、介绍在化工、炼油、医药、食品及环境保护等工业部门,塔设备是一种重要的单元操作设备。
其作用实现气—液相或液—液相之间的充分接触,从而达到相际间进行传质及传热的过程。
它广泛用于蒸馏、吸收、萃取、等单元操作,随着石油、化工的迅速发展,塔设备的合理造型设计将越来越受到关注和重视。
塔设备有板式塔和填料塔两种形式,下面我们就填料塔展开叙述。
填料塔的基本特点是结构简单,压力降小,传质效率高,便于采用耐腐蚀材料制造等,对于热敏性及容易发泡的物料,更显出其优越性。
过去,填料塔多推荐用于0.6~0.7m以下的塔径。
近年来,随着高效新型填料和其他高性能塔内件的开发,以及人们对填料流体力学、放大效应及传质机理的深入研究,使填料塔技术得到了迅速发展。
气体吸收过程是化工生产中常用的气体混合物的分离操作,其基本原理是利用气体混合物中各组分在特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。
水-丙酮吸收塔设计
水-丙酮吸收塔设计•相关推荐水-丙酮吸收塔设计化工原理课程设计说明书参考设计任务书............................................ 摘要 ................................................ 第1章绪论 .........................................1.1吸收技术概况 .............................................1.2吸收设备的发展 ........................................... 1.3吸收在工业生产中的应用 ...................................第2章设计方案 ......................................2.1吸收剂的选择 ............................................. 2.2吸收流程的选择........................................... 2.3吸收塔设备及填料的选择 ................................... 2.4吸收剂再生方法的选择 .....................................2.5操作参数的选择 ...........................................第3章吸收塔的工艺计算 ..............................3.1基础物性数据 .............................................3.1.1液相物性数据....................................... 3.1.2气相物性数据 ....................................... 3.1.3气液相平衡数据 .....................................3.2物料衡算 ................................................. 3.3 填料塔的工艺尺寸的计算 ..................................3.3.1塔经的计算 ......................................... 3.4填料塔填料层高度的计算 ...................................3.4.1传质单元高度计算 ................................... 3.4.2传质单元数的计算 ................................... 5.2.3填料层高度 ......................................... 3.5塔附属高度的计算......................................... 3.6液体分布器的计算 .........................................3.6.1液体分布器......................................... 3.6.2布液孔数........................................... 3.6.3塔底液体保持管高度 ................................. 3.7其它附属塔内件选择 .......................................3.8吸收塔的流体力学参数计算 .................................3.8.1吸收塔的压力降 ..................................... 3.8.2吸收塔的泛点率 ..................................... 3.8.3气体动能因子 .......................................3.9附属设备的计算与选择.吉林化工学院化工原理课程设计工艺设计计算结果汇总与主要符号说明 ..................... 讨论主要参考文献 .......................................... 附录 ................................................ 结束语 ................................................摘要气液两相的分离是通过它们密切的接触进行的,在正常操作下,气相为连续相而液相为分散相,气相组成呈连续变化,气相中的成分逐渐被分离出来,属微分接触逆流操作过程。
水吸收丙酮
水吸收丙酮填料塔设计设计用水吸收丙酮常压填料塔,其任务及操作条件为①混合气(空气、丙酮蒸汽)处理量:??1450??。
②进塔混合气含丙酮 2.13%(体积分数);相对湿度: 70%;温度:??35℃;③进塔吸收剂(清水)的温度:25℃;④丙酮回收率:??93%;⑤操作压强:??常压操作。
[设计计算]一、吸收工艺流程的确定采用常规逆流操作流程.流程说明从略。
二、物料计算l. 进塔混合气中各组分的量近似取塔平均操作压强为101.325kPa,故:混合气量 n= 1450* *??= 57.38? ?(kmol/h)混合气中丙酮量n = 57.38×0.0213 =1.22??(kmol/h)? ?? ?? ?? ???m = 1.22×58=70.89??(kg/h)查[wiki]化工[/wiki]原理附录,35℃饱和水蒸气压强为5623.4Pa,则每kmoI相对湿度为70%的混合气中含水蒸气量= =0.0404 kmol水气/ kmol(空气十丙酮)混合气中水蒸气含量n==2.23 (kmol/h)? ?? ?? ?? ?? ?? ?m=2.23×18=40.14? ?(kg/h)混合气中空气量n=57.38一1.22—2.23=53.93(kmol/h)m=53.93×29=1563.97??(kg/h)2.混合气进出塔的摩尔组成? ?=0.0213? ?= =0.001523.混合气进出塔的比摩尔组成若将空气与水蒸气视为情气,则情气量n=53.93十2.23=56.16 (kmol/h)? ?? ? m=1563.97十40.14=1604.11??(kg/h)==0.0217? ?(kmol丙酮/kmol情气)==0.00152??(kmol丙酮/kmol情气)4.出塔混合气量出塔混合气量n=56.16十1.22*(1-0.93)=56.25 (kmol/h)? ?? ?? ?? ?m=1604.11十70.89*0.07=1609.07??(kg/h)三、热量衡算热量衡算为计算液相温度的变化以判明是否为等温吸收过程,假设丙酮溶于水放出的热量全被水吸收,且忽略气相温度变化及塔的散热损失(塔保温良好)。
(完整word版)水吸收丙酮—空气常压填料-吸收塔设计
化工原理课程设计题目:水吸收丙酮常压填料吸收塔学生姓名:学号:102412211系别:化学与材料工程学院专业:高分子材料与工程指导教师:任海波起止日期:2014.12.30~2015.01.082015年01月08日目录概述及设计方案简介 (2)一、设计任务书及操作条件 (7)二、设计条件及主要物性参数 (8)三、设计方案的确定 (9)四、物料计算 (10)五、热量衡算 (12)六、气液平衡曲线 (14)七、吸收剂(水)的用量Ls (15)八、塔底吸收液浓度X1 (16)九、操作线方程 (17)十、塔径计算 (18)十一、填料层高度计算 (21)十二、填科层压降计算 (26)十三、液体分布器简要设计 (27)十四、填料吸收塔的辅助设备及选型 (27)十五、填料塔的设计结果概要 (29)十六、课程设计总结 (30)十七、设计一览表十八、主要符号说明 (31)十九、参考文献 (32)二十、附图(工艺流程图、主体设备设计条件图) (33)概述及设计方案简介一、介绍在化工、炼油、医药、食品及环境保护等工业部门,塔设备是一种重要的单元操作设备。
其作用实现气—液相或液—液相之间的充分接触,从而达到相际间进行传质及传热的过程。
它广泛用于蒸馏、吸收、萃取、等单元操作,随着石油、化工的迅速发展,塔设备的合理造型设计将越来越受到关注和重视。
塔设备有板式塔和填料塔两种形式,下面我们就填料塔展开叙述。
填料塔的基本特点是结构简单,压力降小,传质效率高,便于采用耐腐蚀材料制造等,对于热敏性及容易发泡的物料,更显出其优越性。
过去,填料塔多推荐用于0.6~0.7m以下的塔径。
近年来,随着高效新型填料和其他高性能塔内件的开发,以及人们对填料流体力学、放大效应及传质机理的深入研究,使填料塔技术得到了迅速发展。
气体吸收过程是化工生产中常用的气体混合物的分离操作,其基本原理是利用气体混合物中各组分在特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。
水吸收丙酮的填料塔设计
江苏大学京江学院填料吸收塔课程设计说明书专业班级姓名班级序号指导老师日期成绩目录前言 (2)水吸收丙酮填料塔设计 (2)一任务及操作条件 (2)二吸收工艺流程的确定 (2)三物料计算 (3)四热量衡算 (4)五气液平衡曲线 (5)六吸收剂(水)的用量Ls (5)七塔底吸收液浓度X1 (6)八操作线 (6)九塔径计算 (6)十填料层高度计算 (9)十一填科层压降计算 (13)十二填料吸收塔的附属设备 (13)十三课程设计总结 (15)十四主要符号说明 (16)十五参考文献 (17)十六附图 (18)前言塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。
根据塔内气液接触部件的形式,可以分为填料塔和板式塔。
板式塔属于逐级接触逆流操作,填料塔属于微分接触操作。
工业上对塔设备的主要要求:(1)生产能力大(2)分离效率高(3)操作弹性大(4)气体阻力小结构简单、设备取材面广等。
塔型的合理选择是做好塔设备设计的首要环节,选择时应考虑物料的性质、操作的条件、塔设备的性能以及塔设备的制造、安装、运转和维修等方面的因素。
板式塔的研究起步较早,具有结构简单、造价较低、适应性强、易于放大等特点。
填料塔由填料、塔内件及筒体构成。
填料分规整填料和散装填料两大类。
塔内件有不同形式的液体分布装置、填料固定装置或填料压紧装置、填料支承装置、液体收集再分布装置及气体分布装置等。
与板式塔相比,新型的填料塔性能具有如下特点:生产能力大、分离效率高、压力降小、操作弹性大、持液量小等优点。
水吸收丙酮填料塔设计一任务及操作条件①混合气(空气、丙酮蒸汽)处理量:80003/m h。
②进塔混合气含丙酮15%(体积分数);相对湿度:70%;温度:25℃;③进塔吸收剂(清水)的温度25℃;④丙酮回收率:95%;⑤操作压力为常压。
二吸收工艺流程的确定采用常规逆流操作流程.流程如下。
三 物料计算(l). 进塔混合气中各组分的量近似取塔平均操作压强为101.3kPa ,故: 混合气量= 8000(273/273+25)×122.4= 327.18kmol /h 混合气中丙酮量=327.18×0.15=49.08 kmol /h = 49.08×327.18=16058kg /h查附录,25℃饱和水蒸气压强为3168.4Pa ,则相对湿度为70%的混合 气中含水蒸气量=4.31687.0103.1017.04.31683⨯⨯⨯-=0.0224 kmol (水气)/ kmol (空气十丙酮)混合气中水蒸气含量=0224.010224.018.327+⨯=7.17kmol /h (《化工单元操作及设备》P18916-23)=7.17×18=129.03kg /h混合气中空气量=327.18-49.08-7.17=270.93kmol /h=270.93×29=7856.97kg /h(2).混合气进出塔的(物质的量)成 1y =0.15,则2y =)95.01(08.4917.793.270)95.01(08.49-⨯++-⨯=0.0087(3).混合气进出塔(物质的量比)组成 若将空气与水蒸气视为惰气,则 惰气量=270.93十7.17=278.1kmol /h =7856.93+129.03=7985.96kg /hY 1=1.27808.49=0.176kmol(丙酮)/kmol(惰气) Y 2=1.278)95.01(08.49-=0.0088kmol(丙酮)/kmol(惰气)(4).出塔混合气量出塔混合气量=278.1+49.08×0.05=280.55kmol/h =7985.96+16058×0.05=8788.86kg/h 四 热量衡算热量衡算为计算液相温度的变化以判明是否为等温吸收过程。
化工原理水吸收丙酮的课程设计要点
吉林化工学院化工原理课程设计题目水吸收丙酮填料吸收塔的设计教学院化工与生物技术学院专业班级生工1101学生姓名学生学号 11130117指导教师张卫华2013年12月 19 日课程设计任务书1、设计题目:水吸收丙酮过程填料吸收塔的设计;试设计一座填料吸收塔,用于脱除混于空气中的丙酮气体。
混合气体的处理量为1550(m3/h),其中含空气为96%,丙酮气为4%(mol分数),要求丙酮回收率为98%(mol分数),采用清水进行吸收,吸收剂的用量为最小用量的 1.5倍。
(25C°下该系统的平衡关系为y=1.75x)2、工艺操作条件:(1)操作平均压力常压(2)操作温度t=25℃(3)填料类型及规格自选。
3、设计任务:完成吸收工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统的工艺流程图和吸收塔的工艺条件图,编写设计说明书。
目录摘要 (III)第1章绪论 (1)1.1 吸收技术概况 (1)1.2吸收设备的发展 (1)1.3 吸收在工业生产中的应用 (7)1.3.1 吸收的应用 (7)1.3.2 塔设备在化工生产中的作用和地位 (8)1.3.3化工生产对塔设备的要求 (8)第2章设计方案 (10)2.1吸收剂的选择.............................................................102. 2吸收工艺流程的确 (11)2.2.1吸收工艺流..........................................................112.2.2吸收工艺流程图及工艺过程说明........................................122.3吸收塔设备及填料的选择 (12)2.3.1吸收塔的设备选择....................................................122.3.2填料的选择..........................................................132.4操作参数的选择 (14)2.4.1操作温度的选择 (14)2.4.2操作压力的选择 (14)第3章吸收塔的工艺计算 (15)3.1基础物性数据 (15)3.1.1液相物性数据 (15)3.1.2气相物性数据 (15)3.2物料衡算 (16)3.3填料塔的工艺尺寸的计算 (16)3.3.1塔径的计算 (16)3.3.2泛点率校核 (17)3.3.3填料规格校核 (17)3.3.4液体喷淋密度校核 (17)3.4填料塔填料高度计算 (18)3.4.1传质单元高度计算 (18)3.4.2传质单元数的计算 (19)3.4.3填料层高度的计算 (20)3.5填料塔附属高度计算 (20)3.6液体分布器计算和再分布器的选择和计算 (20)3.6.1液体分布器 (20)3.6.2布液孔数 (21)3.6.3 液体保持管高度 (22)3.7其他附属塔内件的选择 (22)3.7.1液体分布器 (23)3.7.2液体再分布器 (23)3.7.3填料支承板 (24)3.7.4填料压板与床层限制板 (24)3.7.5气体进出口装置与排液装置 (24)3.8吸收塔的流体力学参数的计算 (25)3.8.1吸收塔的压力降 (25)3.8.2吸收塔的泛点率 (27)3.8.3气体动能因子 (27)3.9附属设备的计算与选择 (27)3.9.1离心泵的选择与计算 (27)3.9.2进出管工艺尺寸的计算举例 (28)工艺设计计算结果汇总与主要符号说明 (29)对设计过程的评述和有关问题的讨论 (32)参考文献.......................................................... 错误!未定义书签。
水吸收丙酮填料塔设计
摘要空气-丙酮混合气填料吸收塔设计任务为用水吸收丙酮常压填料塔,即在常压下,从含丙酮1.82%、相对湿度70%、温度35℃的混合气体中用25℃的吸收剂清水在填料吸收塔中吸收回收率为90%丙酮的单元操作。
设计主要包括设计方案的确定、填料选择、工艺计算等容,其中整个工艺计算过程包括确定气液平衡关系、确定吸收剂用量及操作线方程、填料的选择、确定塔径及塔的流体力学性能计算、填料层高度计算、附属装置的选型以及管路及辅助设备的计算,在设计计算中采用物料衡算、亨利定律以及一些经验公式,该设计的成果有设计说明书和填料吸收塔的装配图及其附属装置图。
目录摘要 (I)水吸收丙酮填料塔设计 (1)第一章任务及操作条件 (1)第二章设计方案的确定 (2)2.1 设计方案的容 (2)2.1.1 流程方案的确定 (2)2.1.2 设备方案的确定 (2)2.2 流程布置 (3)2.3 收剂的选择 (3)2.4 操作温度和压力的确定 (4)第三章填料的选择 (4)3.1填料的种类和类型 (4)3.1.1 颗粒填料 (4)3.1.2 规整填料 (5)3.2 填料类型的选择 (5)3.3填料规格的选择 (5)3.4填料材质的选择 (6)第四章 工艺计算 (7)4.1 物料计算 (7)4.1.1 进塔混合气中各组分的量 (7)4.1.2 混合气进出塔的摩尔组成 (7)4.1.3 混合气进出塔摩尔比组成 (8)4.1.4 出塔混合气量 (8)4.2气液平衡关系 (8)4.3 吸收剂(水)的用量s L (8)4.4 塔底吸收液浓度1X (9)4.5 操作线 (9)4.6 塔径计算 (9)4.6.1采用Eckert 通用关联图法计算泛点气速F u (10)4.6.2 操作气速的确定 (11)4.6.3 塔径的计算 (11)4.6.4 核算操作气速 (11)4.6.5 核算径比 (11)4.6.6 喷淋密度校核 (11)4.6.7 单位填料程压降(p Z)的校核 ................................... 11 4.7 填料层高度的确定 .. (12)4.7.1 传质单元高度OG H 计算 (12)4.7.2 计算Y K a (14)4.7.3 计算OG H (14)4.7.4 传质单元数N计算 (14)OG4.7.5 填料层高度z的计算 (15)4.7.6填料塔附属高度的计算 (15)第五章填料吸收塔的附属设备 (16)5.1 填料支承板 (16)5.2 填料压板和床层限制板 (16)5.3 气体进出口装置和排液装置 (17)5.4分布点密度及布液孔数的计算 (17)5.5塔底液体保持管高度的计算 (18)第六章辅助设备的选型 (20)6.1管径的计算 (20)参考文献 (21)附录 (22)附表 (23)致 (26)水吸收丙酮填料塔设计第一章 任务及操作条件混合气(空气、丙酮蒸汽)处理量:32200/m h进塔混合气含丙酮 1.82%(体积分数);相对湿度:70%;温度:35℃;进塔吸收剂(清水)的温度25℃;丙酮回收率:90%;操作压强:常压操作。
水吸收丙酮
化工原理课程设计题目:水吸收丙酮常压填料吸收塔学生姓名:学号:系别:专业:指导教师:起止日期:2011.5.28~2011.6.82011年6月8日目录概述及设计方案简介……………………………………一、设计任务及操作条件……………………………二、物性参数…………………………三、设计方案的确定……………………………………四、基础物性数据。
1.液相物性数据2.气相物性数据3.气液相平衡数据五、物料衡算五、填料塔的工艺尺寸的计算1.塔径计算2.填料层高度计算六、填料层压降计算七、液体分布器简要设计1、液体分布器的选型2、分布点密度计算八、进气管的设计 (1)九、填料吸收塔的附属设备…………………………十、填料塔的设计结果概要…………………………十一、课程设计总结……………………………………十二、主要符号说明……………………………………十三、参考文献…………………………………………一、设计任务及操作条件 1)气体处理量2200Nm 3 /h2)进塔气体含丙酮1.82%(V ol ),相对湿度70%,湿度35。
C 3)进塔吸收剂(清水)的温度 25。
C 水洗 4)丙酮吸收率95% 5)操作压强:常压 二、物性参数1. 空气的分子量:29 ;丙酮的分子量:58 ;水的分子量:182. 35℃饱和水蒸气压强为5623.4 Pa 3. 常压:101.325 kPa4. 在1 atm 时,水的凝固点(f.p.)为0℃,沸点(b.p.)为100℃。
水在0℃的凝固热为5.99 kJ/mol (或80 cal/g ),水在100℃的汽化热为40.6 kJ/mol (或540 cal/g )。
三、设计方案的确定1.用水吸收丙酮属易溶气体的吸收过程为提高传质效率,选用逆流吸收过程。
因用水作吸收剂,若丙酮不作为产品,则采用纯溶剂;若丙酮作为产品,则采用含一定丙酮的水溶液。
现以纯溶剂为例进行设计。
2.填料的选择对于水吸收丙酮的过程,操作温度及操作压力较低,塑料可耐一般的酸碱腐蚀,所以工业上通常选用塑料散装填料。
水吸收丙酮
水吸收丙酮化工原理课程设计题目:水吸收丙酮常压填料吸收塔学生姓名:学号:系别:专业:指导教师:起止日期:2011.5.28~2011.6.82011年6月8日目录概述及设计方案简介……………………………………一、设计任务及操作条件……………………………二、物性参数…………………………三、设计方案的确定……………………………………四、基础物性数据。
1.液相物性数据2.气相物性数据3.气液相平衡数据五、物料衡算五、填料塔的工艺尺寸的计算1.塔径计算2.填料层高度计算六、填料层压降计算七、液体分布器简要设计1、液体分布器的选型2、分布点密度计算八、进气管的设计 (1)九、填料吸收塔的附属设备…………………………十、填料塔的设计结果概要…………………………十一、课程设计总结……………………………………十二、主要符号说明……………………………………十三、参考文献…………………………………………一、设计任务及操作条件 1)气体处理量2200Nm 3 /h2)进塔气体含丙酮1.82%(V ol ),相对湿度70%,湿度35。
C 3)进塔吸收剂(清水)的温度 25。
C 水洗 4)丙酮吸收率95% 5)操作压强:常压二、物性参数1. 空气的分子量:29 ;丙酮的分子量:58 ;水的分子量:182. 35℃饱和水蒸气压强为5623.4 Pa 3. 常压:101.325 kPa4. 在1 atm 时,水的凝固点(f.p.)为0℃,沸点(b.p.)为100℃。
水在0℃的凝固热为5.99 kJ/mol (或80 cal/g ),水在100℃的汽化热为40.6 kJ/mol (或540 cal/g )。
三、设计方案的确定1.用水吸收丙酮属易溶气体的吸收过程为提高传质效率,选用逆流吸收过程。
因用水作吸收剂,若丙酮不作为产品,则采用纯溶剂;若丙酮作为产品,则采用含一定丙酮的水溶液。
现以纯溶剂为例进行设计。
2.填料的选择对于水吸收丙酮的过程,操作温度及操作压力较低,塑料可耐一般的酸碱腐蚀,所以工业上通常选用塑料散装填料。
丙酮水吸收实验
基本原理实验目的:1、了解调料吸收塔的结构,学会操作2、测定体积吸收系数K y a和吸收率η3、吸收剂用量对吸收操作的影响4、吸收剂温度对吸收操作的影响实验原理及计算方法:1、利用全塔物料衡算,平衡关系和吸收速率方程求取逆流时的体积吸收系数K y a和吸收率ηG=V空(Y1-Y2)=L水(X1-X2)2、吸收剂用量对于吸收操作的影响根据物料衡算操作线方程当V空计量不变,增加L水计将使操作线斜率变大,如果Y1和X2不变,Y2和X1将变小,如图中所示a线,传质量增大,吸收率提高。
实验原理及计算方法:2、吸收剂用量对于吸收操作的影响根据物料衡算操作线方程当V空计量不变,增加L水计将使操作线斜率变大,如果Y1和X2不变,Y2和X1将变小,如图中所示a线,传质量增大,吸收率提高。
设备参数:本试验所用的吸收塔塔身由透明玻璃管制成,两端面磨光,且与中心线垂直。
塔φ41X3,塔身高度600mm,填料为瓷质拉西环,填料层高度390 mm,填料尺寸6 X 6 X 1 mm。
实验装置包括空气输送,空气和丙酮鼓泡接触以及吸收剂供给和气液两相在填料塔中逆流接触等部分组成。
来自空气压缩机的空气,经压力定值器定值在0.03 Mpa左右,并经转子流量计计量后,再经空气加热器加热到8-15 o C(T1),进入鼓泡器使空气和液体丙酮.鼓泡接触,带有丙酮蒸汽的空气(温度变为T2)进入填料塔的底部,和自塔顶喷下温度为T3的水逆流接触,被吸收掉大部分丙酮后,从塔顶排出。
塔顶的水来自液体衡压槽,经转子流量计计量,再经水加热器加热到10-20o C,进入填料塔吸收空气中丙酮后,温度变为T4,流入吸收液储槽。
计算方法、原理、公式:利用全塔物料衡算,平衡关系和吸收速率方程求取逆流时的体积吸收系数K y a和吸收率η(1)G=V空(Y1-Y2)=L水(X1-X2)①y1和y2为混和气中的丙酮的mol%②T3和T4为水进出口温度,求水的定性,查出ρ水③标准状态下空气的流量式中:T—室温,KP—压力,数值为气动压力定值器压力表读数+当地大气压,mmtg④X2=0,可以得到(2)平衡关系对于稀溶液来说,丙酮与空气的混和气体服从亨利定律,其相平衡常数是温度的函数,其数值如下:温度(℃)10 20 30 40m 0.881 1.49 2.43 3.83因为水吸收空气与丙酮混和气体中的丙酮属于非等温物理吸收,所以填料塔的操作温度为塔顶盒塔底的算术平均值:根据此温度值求相平衡常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录概述及设计方案简介 (3)一、设计任务书及操作条件 (7)二、设计条件及主要物性参数 (8)三、设计方案的确定 (9)四、物料计算 (10)五、热量衡算 (12)六、气液平衡曲线 (14)七、吸收剂(水)的用量Ls (15)八、塔底吸收液浓度X1 (16)九、操作线 (17)十、塔径计算 (18)十一、填料层高度计算 (21)十二、填科层压降计算 (26)十三、填料吸收塔的附属设备 (27)十四、填料塔的设计结果概要 (28)十五、课程设计总结 (29)十六、主要符号说明 (30)十七、参考文献 (31)概述及设计方案简介一、介绍在化工、炼油、医药、食品及环境保护等工业部门,塔设备是一种重要的单元操作设备。
其作用实现气—液相或液—液相之间的充分接触,从而达到相际间进行传质及传热的过程。
它广泛用于蒸馏、吸收、萃取、等单元操作,随着石油、化工的迅速发展,塔设备的合理造型设计将越来越受到关注和重视。
塔设备有板式塔和填料塔两种形式,下面我们就填料塔展开叙述。
填料塔的基本特点是结构简单,压力降小,传质效率高,便于采用耐腐蚀材料制造等,对于热敏性及容易发泡的物料,更显出其优越性。
过去,填料塔多推荐用于0.6~0.7m以下的塔径。
近年来,随着高效新型填料和其他高性能塔内件的开发,以及人们对填料流体力学、放大效应及传质机理的深入研究,使填料塔技术得到了迅速发展。
气体吸收过程是化工生产中常用的气体混合物的分离操作,其基本原理是利用气体混合物中各组分在特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。
板式塔和填料塔都可用于吸收过程,此次设计用填料塔作为吸收的主设备。
在塔内充以诸如瓷环之类的填料,液体自塔顶均匀淋下并沿瓷环表面下流,气体通过填料间的空隙上升与液体做连续的逆流接触。
在这种设备中,气体中的可溶组分不断地被吸收,其浓度自下而上连续地降低;液体则相反,其中可溶组分的浓度则由上而下连续地增高。
二、填料塔的结构及填料特性1.填料塔的结构塔体为一圆筒,筒内堆放一定高度的填料。
操作时,液体自塔上部进入,通过液体分布器均匀喷洒于塔截面上,在填料表面呈膜状流下。
填充高度较高的填料塔可将填料分层,各层填料之间设置液体再分布器,收集上层流下的液体,并将液体重新均布于塔截面。
气体自塔下部进入,通过填料层中的空隙由塔顶排出。
离开填料层的气体可能夹带少量液沫,必要时可在塔顶安装除沫器。
2.填料特性的评价气液两相在填料表面进行逆流接触,填料不仅提供了气液两相接触的传质表面,而且促使气液两相分散,并使液膜不断更新。
填料性能可由下列三方面予以评价:(1)比表面积a填料应具有尽可能多的表面积以提供液体铺展,形成较多的气液接触界面。
单位填充体积所具有的填料表面称为比表面积a,单位为m2/m3。
对同种填料,小尺寸填料具有较大的比表面积,但填料过小不但造价高而且气体流动的阻力大。
(2)空隙率ε在填料塔内气体是在填料间的空隙内通过的.。
流体通过颗粒层的阻力与空隙率密切相关。
为减少气体的流动阻力,提高填料塔的允许气速(处理能力),填料层应有尽可能大的空隙率。
对于各向同性的填料层,空隙率等于填料塔的自由截面百分率。
(3)填料的几何形状虽然填料形状目前尚难以定量表达,但比表面积、空隙率大致接近而形状不同的两种填料在流体力学与传质性能上可有显著区别。
形状理想的填料为气液两相提供了合适的通道,气体流动的压降低,通量大,且液流易于铺展成液膜,液膜的表面更新迅速。
因此,新型填料的开发主要是改进填料的形状。
此外,理想的填料还需兼顾便于制造、价格低廉,有一定强度和耐热、耐腐蚀性能,表面材质与液体的润湿性好等要求。
3.几种常用填料(1)拉西环拉西环填料于1914年由拉西(F. Rashching)发明,为外径与高度相等的圆环。
拉西环填料的气液分布较差,传质效率低,阻力大,通量小,目前工业上已较少应用。
(2)鲍尔环鲍尔环填料是对拉西环的改进,在拉西环的侧壁上开出两排长方形的窗孔,被切开的环壁的一侧仍与壁面相连,另一侧向环内弯曲,形成内伸的舌叶,诸舌叶的侧边在环中心相搭。
鲍尔环由于环壁开孔,大大提高了环内空间及环内表面的利用率,气流阻力小,液体分布均匀。
与拉西环相比,鲍尔环的气体通量可增加50%以上,传质效率提高30%左右。
鲍尔环是一种应用较广的填料。
(3)矩鞍填料矩鞍填料将弧鞍填料两端的弧形面改为矩形面,且两面大小不等,即成为矩鞍填料。
矩鞍填料堆积时不会套叠,液体分布较均匀。
矩鞍填料一般采用瓷质材料制成,其性能优于拉西环。
目前,国内绝大多数应用瓷拉西环的场合,均已被瓷矩鞍填料所取代。
(4)阶梯环阶梯环填料是对鲍尔环的改进,与鲍尔环相比,阶梯环高度减少了一半并在一端增加了一个锥形翻边。
由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。
锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的空隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。
阶梯环的综合性能优于鲍尔环,成为目前所使用的环形填料中最为优良的一种。
(5)金属环矩鞍填料金属环矩鞍填料环矩鞍填料(国外称为Intalox)是兼顾环形和鞍形结构特点而设计出的一种新型填料,该填料一般以金属材质制成,故又称为金属环矩鞍填料。
环矩鞍填料将环形填料和鞍形填料两者的优点集于一体,其综合性能优于鲍尔环和阶梯环。
(6)格栅填料格栅填料是以条状单元体经一定规则组合而成的,具有多种结构形式。
工业上应用最早的格栅填料为木格栅填料。
目前应用较为普遍的有格里奇格栅填料、网孔格栅填料、蜂窝格栅填料等,其中以格里奇格栅填料最具代表性。
格栅填料的比表面积较低,主要用于要求压降小、负荷大及防堵等场合。
在散装填料中应用较多。
三、设计方案简介1. 确定设计方案的原则:(1)满足工艺和操作的要求(2)满足经济上的要求(3)保证安全生产三项原则在生产中都是同样重要的。
但在化工原理课程设计中,对第一个原则应作较多的考虑,而对第三个原则只要求作一般的考虑。
2. 本设计按以下几个阶段进行:(1)设计方案的确定和说明。
根据给定任务,对吸收装置的流程、操作条件、主要设备型式及其材质的选取等进行论述。
(2)塔的工艺计算,确定塔高和塔径。
(3)计算各主要工艺尺寸,进行流体力学校核计算。
接管尺寸、泵等。
(4)管路及附属设备的计算与选型,如冷凝器、加热器等。
(5)抄写说明书。
(6)绘制吸收装置工艺流程图和吸收塔的设备图。
一、设计任务书及操作条件一、设计题目分离丙酮—空气混合气体常压填料吸收塔的工艺二、设计条件1. 生产能力:年产量8000吨(每年生产日按330天计算)2. 原料:含丙酮5%(体积分数)的混合气体,以丙酮—空气二元体系;相对湿度70%;温度35℃3. 吸收剂:25℃的清水4. 丙酮的回收率为90%5. 操作压力为常压6. 使用微分接触式的吸收设备7. 逆流操作三、设计说明书的内容1. 吸收流程的确定2. 亨利常数m、传质阻力系数的确定3. 工艺计算:包括物料衡算、最小气液比和实际气液比4. 塔工艺尺寸计算:包括塔径、塔高5. 塔板流体力学校核:包括压降、液泛6. 绘制吸收流程图、塔结构示意图7. 主题设备设计以及说明8. 附属设备的选择(冷却器、加热器等)9. 参考文献10. 后记以及其它四、设计图要求1. 绘制主要装置图,设备技术要求,主要参数,大小尺寸,部件明细表,标题栏2. 绘制设备流程图一张3. 用坐标纸绘制吸收塔的操作线和平衡线二、设计条件及主要物性参数一、设计条件:1. 生产能力产量:8000吨/年 (一年以330个工作日计算)02=x ; %90=η ; 05.01=y ; 混合气处理量h kmol /01.3873302405.09.058108000G 3=⨯⨯⨯⨯⨯= =387.01×22.4×27335273+=9780.48 3m /h 2. 原料以丙酮—空气二元体系,进料混合气体含丙酮的体积分数为5%3. 产品要求塔顶逸出气体含丙酮体积分数为0.5%4. 操作压力:常压二、物性参数1. 空气的分子量:29 ;丙酮的分子量:58 ;水的分子量:182. 35℃饱和水蒸气压强为5623.4 Pa3. 常压:101.325 kPa4. 在1 atm 时,水的凝固点(f.p.)为0℃,沸点(b.p.)为100℃。
水在0℃的凝固热为5.99 kJ/mol (或80 cal/g ),水在100℃的汽化热为40.6 kJ/mol (或540 cal/g )。
三、设计方案的确定1. 吸收工艺流程采用常规逆流操作,流程如下:流程说明:混合气体进入吸收塔,与水逆流接触后,得到净化气排放;吸收丙酮后的水,经取样计算其组分的量,若其值符合国家废水排放标准,则直接排入地沟,若不符合,待处理之后再排入地沟。
四、物料计算1. 进塔混合气中各组分的量近似取塔平均操作压力为101.3 kPa,故:混合气量=387.01 kmol/h混合气中丙酮的量=387.01×0.05=19.35 kmol/h=19.35×58=1122.33 kg/h查附录,35℃饱和水蒸气压强为5623.4 Pa ,则相对湿度为70%的混合气中含水蒸气量=h kmol /0404.04.56237.0103.1017.04.56233=⨯-⨯⨯(水气)/ kmol (空气十丙酮)混合气中水蒸气含量h kmol /03.150404.010404.001.387=+⨯= =15.03×18=270.51 kg / h混合气中空气量=387.01-19.35-15.03=352.63 kmol / h=352.63×29=10226.27kg / h2. 混合气进出塔的(物质的量的比)组成已知1y =0.05,则0052.09.0135.1903.1563.3529.0135.192=-⨯++-⨯=)()(y 3. 混合气进出塔(物质的量比)组成若将空气与水蒸气视为惰气,则惰气量=352.63 +15.03=367.66 kmol/h=10226.27+270.51=10496.78㎏/h053.066.36735.191==Y kmol (丙酮)/kmol (惰气) 0053.066.367)9.01(35.192=-⨯=Y kmol (丙酮)/kmol (惰气) 4.出塔混合气量出塔混合气量=367.66+19.35×0.1=369.595 kmol/h=10496.78+1122.33×0.1=10609.013 kg/h五、热量衡算热量衡算为计算液相温度的变化以判明是否为等温吸收过程。