高一数学必修一第一章总结
人教版高一数学必修一知识点总结
![人教版高一数学必修一知识点总结](https://img.taocdn.com/s3/m/5f8a94f9951ea76e58fafab069dc5022aaea4625.png)
高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:BA⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A⊆B, B⊆C ,那么 A⊆C④如果A⊆B 同时 B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B=由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即SA全册每单元每课时 2例题:1.下列四组对象,能构成集合的是()A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数2.集合{a,b,c }的真子集共有个3.若集合M={y|y=x2-2x+1,x∈R},N={x|x≥0},则M与N的关系是 .全册每单元每课时 3全册 每单元 每课时44.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。
高一数学必修1知识点总结
![高一数学必修1知识点总结](https://img.taocdn.com/s3/m/ca7eeff319e8b8f67d1cb914.png)
高中高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a∈A ,相反,a不属于集合A 记作aÏA列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{xÎR| x-3>2}或{x| x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A 与B是同一集合。
高一数学必修一知识点归纳
![高一数学必修一知识点归纳](https://img.taocdn.com/s3/m/cc97b05115791711cc7931b765ce05087632759d.png)
高一数学必修一知识点归纳第一章二次函数1.1 一元二次方程及其解法一元二次方程的标准形式为ax^2 + bx + c = 0,可以通过公式法、配方法和因式分解等方式求解。
1.2 二次函数的图像及性质二次函数y=ax^2+bx+c的图像为抛物线,开口向上或向下,顶点坐标为(-b/2a,c-b^2/4a)。
1.3 二次函数与一元二次方程的关系一元二次方程可以通过二次函数的图像特征求解,二次函数的各项系数与一元二次方程的特征之间有一一对应的关系。
第二章直线与圆2.1 直线的方程及性质直线的一般方程为Ax+By+C=0,斜率为-k/A,其中k为直线的垂直距离。
2.2 圆的方程及性质圆的标准方程为(x-a)^2 + (y-b)^2 = r^2,其中(a,b)为圆心坐标,r为半径。
第三章度量衡3.1 长度、面积和体积的计算长度、面积和体积的计算包括常见图形的计算公式和应用场景,如长方形、正方形、圆形等。
3.2 单位换算长度、面积和体积的不同单位之间的换算,包括长度单位、面积单位、体积单位等。
第四章三角函数4.1 弧度制下的角度角度的度量单位有度、分、秒和弧度制,弧度制下一周的角度为2π。
4.2 三角函数的概念三角函数包括正弦函数、余弦函数、正切函数等,它们与直角三角形的边和角之间有一一对应的关系。
4.3 三角函数的图像及性质三角函数的图像具有周期性、对称性,通过振幅和周期来描述函数的性质。
第五章概率5.1 随机事件及基本概率随机事件的基本概率计算方法包括等可能概率、加法原理和乘法原理等。
5.2 条件概率及事件的独立性条件概率描述了随机事件在已知其他事件发生的情况下自身发生的概率,事件的独立性指两个事件发生与否互不影响。
第六章初等数论6.1 整除、最大公因数、最小公倍数整除、最大公因数和最小公倍数概念及计算方法,涉及质数、合数、素数分解等内容。
6.2 同余式同余式描述了整数之间的某种特殊的相等关系,同余式的性质包括传递性、对称性和相容性等。
高一上学期数学必修内容总结
![高一上学期数学必修内容总结](https://img.taocdn.com/s3/m/36aca5c8b9f67c1cfad6195f312b3169a451ea39.png)
高一上学期数学必修内容总结高一上学期数学必修内容总结必修一第一章集合与函数概念1。
1集合1.2函数及其表示1。
3 函数的基本性质第二章基本初等函数(Ⅰ)2。
1指数函数2.2 对数函数2。
3幂函数第三章函数的应用3。
1 函数与方程3.2函数模型及其应用必修二第一章空间几何体1.1 空间几何体的结构1.2空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.2直线、平面平行的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3。
2 直线的方程3。
3 直线的交点坐标与距离公式第四章圆与方程4。
1 圆的方程4.2 直线、圆的位置关系4。
3 空间直角坐标系必修四第一章函数1.1 任意角和弧度制1。
2任意角的函数1.3函数的诱导公式1。
4函数的图象和性质1。
5 函数的图象1.6 函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3平面向量的基本定理及坐标表示2。
4 平面向量的数量积2。
5平面向量应用举例第三章恒等变换3.1 两角和与差的正弦、余弦和正切公式 3.2 简单的恒等变换必修五第一章解形1.1正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4等比数列2。
5 等比数列的前n项和第三章不等式3。
1 不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题 3。
4基本不等式。
高一数学必修第一章知识点
![高一数学必修第一章知识点](https://img.taocdn.com/s3/m/47e97ec20342a8956bec0975f46527d3250ca651.png)
高一数学必修第一章知识点第一节实数实数是指可以在数轴上表示的数,包括有理数和无理数。
1.1 有理数有理数是可以表示为两个整数之比的数,可以用分数表示。
有理数包括正整数、负整数、零和分数。
1.2 无理数无理数是不能表示为两个整数之比的数,无限不循环小数或无限循环小数。
常见的无理数有根号2、圆周率π等。
第二节幂次方与根式2.1 幂次方幂次方是指由底数和指数组成的数,表示为a的n次方,其中a是底数,n是指数。
2.2 幂运算法则- 乘法法则:a的m次方乘以a的n次方等于a的(m+n)次方;- 除法法则:a的m次方除以a的n次方等于a的(m-n)次方;- 幂的幂:(a的m次方)的n次方等于a的(m*n)次方;- 幂的0次方:任何数的0次方等于1;- 幂的负指数:a的负n次方等于1除以a的n次方。
2.3 根式根式是求一个数的平方根、立方根等的运算,表示为√a、³√a 等。
2.4 根式的运算法则- 基本性质:如果a≥0,那么√a≥0;- 乘法法则:√(a*b)等于√a乘以√b;- 除法法则:√(a/b)等于√a除以√b;- 次方:(√a)的n次方等于√(a的n次方)。
第三节整式与分式3.1 整式整式是由常数、变量及它们的运算(加法、减法、乘法)组成的代数表达式。
- 单项式:由单个项组成的整式,如3x、-4y²等;- 多项式:由多个项组成的整式,如2x+3y、-4x²+5xy+6等。
3.2 分式分式是由整式的运算(加法、减法、乘法、除法)和整数指数(有理数)组成的代数表达式。
- 分子:分式的上部,表示为a;- 分母:分式的下部,表示为b;- 分子与分母的关系:如果a和b都是整数,且b不等于0,则表示一个真分式;如果a和b都是整数,且b等于1,则表示一个整式;如果a和b都是整数,且a能被b整除,则表示一个整数;- 分子和分母都为多项式的分式:分式的分子和分母都是多项式。
第四节一元一次方程与一元一次不等式4.1 一元一次方程一元一次方程是指未知数的最高次数为1的方程。
高一上册数学必修《集合的基本关系》知识点梳理
![高一上册数学必修《集合的基本关系》知识点梳理](https://img.taocdn.com/s3/m/ec6cfbe9a1116c175f0e7cd184254b35effd1a4b.png)
高一上必修一第一章《集合与常用逻辑用语》知识点梳理1.1.2集合的基本关系学习目标1. 理解集合之间包含与相等的含义;2. 能识别给定集合的子集;3. 能判断给定集合间的关系. 重难点 重点:理解集合间包含与相等的含义.难点:包含关系的判断与证明.(空集与任意集合的关系).学习新知1.子集一般地,如果集合的任意一个元素都是集合的元素,那么集合称为集合的子集.(1)记作(或);(2)读作“包含于”(或“包含”);(3)不是的子集,记作(或).尝试与发现尝试(1)根据子集的定义判断,如果,那么吗?根据子集的定义,;发现(1):非空集合都是它自身的子集,即成立.尝试(2):是的子集吗?根据子集的定义,是的子集.发现(2):成立尝试(3):你认为可以规定空集是任意一个集合的子集吗?为什么?因为空集不包含任何元素,不会出现“内有元素不在集合”的可能,因此,这里的也可以是空集.发现(3):空集是任意一个集合的子集.2.真子集一般地,如果集合是集合的子集,并且中至少有一个元素不属于,那么集合称为集合的真子集,(1)记作(或);(2)读作“真包含于”(或“真包含”) .尝试与发现尝试(1):分析集合,之间的关系。
发现(1):.尝试(2):是任意任意一个集合的真子集吗?发现(2):是任意任意一个非空集合的真子集 .尝试(3): 能否借助图形来形象地表示两个集合的真子集关系?,,发现(3)如果用平面上一条封闭曲线的内部来表示集合,那么我们就可以作出示意图来形象地表示集合之间的关系,这种示意图通常称为维恩图.尝试(4):对于集合,,,如果,,那么, 之间有什么关系?发现(4):对于集合,,,如果,,则.尝试(5):对于集合,,,如果,,那么, 之间有什么关系?如何用维恩图来描述它们之间的关系?发现(5):对于集合,,,如果,,则.尝试(6):对于集合,,,如果,,那么, 之间有什么关系?发现(6):对于集合,,,如果,,则.例题讲解:例1 写出集合的所有子集和真子集.分析:该集合有3个元素,可以考虑从元素个数的不同选取入手,形成不同的集合。
高一数学必修1第一章知识点总结
![高一数学必修1第一章知识点总结](https://img.taocdn.com/s3/m/c1c311cdf71fb7360b4c2e3f5727a5e9856a276d.png)
高一数学必修1第一章知识点总结高一数学必修1第一章主要包括三个部分:集合论、函数与映射、数列与数列的极限。
下面将对这三个部分进行总结。
一、集合论1. 集合的概念:集合是由一些确定的事物(称为元素)构成的整体。
2. 集合的表示方法:列举法、描述法和图示法。
3. 集合的运算:并集、交集、补集、差集、元素的判断和包含关系。
4. 集合的性质:幂集、集合的基数和集合的运算律。
二、函数与映射1. 函数的定义与表示:函数是一个对应关系,每个输入都有唯一的输出。
2. 映射的定义与表示:映射是一个集合到另一个集合的对应关系。
3. 函数的性质:定义域、值域、单调性、奇偶性、判定性质等。
4. 反函数与复合函数:反函数是一个函数的逆过程,复合函数是两个函数的结合。
三、数列与数列的极限1. 数列的概念:数列是按照一定规律排列的一组数。
2. 等差数列与等比数列:等差数列是指每一项与前一项之差都相等的数列,等比数列是指每一项与前一项之比都相等的数列。
3. 数列的通项公式与递推公式:通项公式是通过数列项的位置计算项的值,递推公式是通过前一项计算后一项的值。
4. 数列的极限:数列极限是数列中项的无限逼近某个数的过程,包括数列的有界性、极限存在与不存在以及数列极限的计算。
综上所述,高一数学必修1第一章主要是基础的数学知识点。
通过学习集合论、函数与映射以及数列与数列的极限,可以奠定后续数学学习的基础。
这些知识点在高中数学中会贯穿始终,为后续的学习打下坚实的基础。
因此,学生应该重视这些知识点的学习,理解其概念、运算法则,尽量多做相关习题,从而提高数学的综合素养和解题能力。
同时,也应注重数学的实际运用,将所学的数学知识应用到现实生活中,培养数学思维和解决问题的能力。
高一必修一数学知识总结(4篇)
![高一必修一数学知识总结(4篇)](https://img.taocdn.com/s3/m/243da698ba4cf7ec4afe04a1b0717fd5360cb23a.png)
高一必修一数学知识总结第1篇【基本初等函数】一、指数函数(一)指数与指数幂的运算1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数。
此时,的次方根用符号表示。
式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand)。
当是偶数时,正数的次方根有两个,这两个数互为相反数。
此时,正数的正的次方根用符号表示,负的次方根用符号—表示。
正的次方根与负的次方根可以合并成±(>0)。
由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时,2、分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。
3、实数指数幂的运算性质(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R。
注意:指数函数的底数的取值范围,底数不能是负数、零和1。
2、指数函数的图象和性质高一必修一数学知识总结第2篇二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
高一数学必修一知识点总结人教
![高一数学必修一知识点总结人教](https://img.taocdn.com/s3/m/b6174bddd5d8d15abe23482fb4daa58da0111c23.png)
高一数学必修一知识点总结人教高一数学必修一是数学课程的基础,是后续学习的重要基石。
本文将为你总结高一数学必修一的主要知识点,希望能够帮助你更好地学习和掌握这些内容。
第一章相似与全等1. 相似三角形的判定条件- AAA 相似判定法:两个三角形对应角相等。
- AA 相似判定法:两个三角形有两个对应角相等,且对应边成比例。
- SAS 相似判定法:两个三角形的对应两边成比例,且夹角相等。
2. 相似三角形的性质和应用- 长度比例关系:对应边比例相等,对应角相等。
- 面积比例关系:面积比例等于边长比例的平方。
- 重心、垂心、外心、内心等的位置关系。
- 相似三角形的几何应用。
3. 全等三角形的判定条件- SSS 全等判定法:两个三角形的三边对应相等。
- SAS 全等判定法:两个三角形有两边及其夹角对应相等。
- ASA 全等判定法:两个三角形有两个角及其夹边对应相等。
- AAS 全等判定法:两个三角形有两个角及其对边对应相等。
4. 全等三角形的性质和应用- 证明等腰三角形的性质。
- 证明直角三角形的性质。
- 证明等边三角形的性质。
第二章平面向量1. 向量的概念及运算- 平面向量的定义和表示。
- 向量的加法、减法和数乘。
- 向量的数量积和向量积。
2. 向量的应用- 向量几何问题的分析与处理。
- 判断向量共线和垂直的方法。
- 平行四边形和三角形的面积计算。
第三章二次函数1. 二次函数的图像特征- 平移变换和伸缩变换。
- 最值点和零点的性质。
- 对称轴和对称点的关系。
2. 二次函数的性质与应用- 二次函数的单调性与求解方程。
- 二次函数与一次函数的关系。
- 二次函数在几何中的应用。
3. 二次函数图像的绘制- 根据函数的参数绘制函数图像。
- 根据函数图像确定函数的参数。
第四章导数与微分1. 导数的概念和性质- 导数的定义与几何意义。
- 导数的四则运算法则。
- 导数与函数图像的关系。
2. 导数的应用- 导数表示函数的变化率。
高一数学必修1 数学。第一章。完整知识点梳理大全(最全)
![高一数学必修1 数学。第一章。完整知识点梳理大全(最全)](https://img.taocdn.com/s3/m/395ad8dcb9f67c1cfad6195f312b3169a451eab7.png)
高一数学必修1 数学。
第一章。
完整知识点梳理大全(最全)集合与函数概念集合是数学中的基本概念之一,它包含了一些确定性、互异性和无序性的元素。
常见的数集有自然数集、正整数集、整数集、有理数集和实数集等。
集合中的元素与集合之间存在着一些关系,例如一个元素属于一个集合,可以表示为a∈M,而不属于则表示为a∉M。
集合的表示方法有自然语言法、列举法、描述法和图示法等。
其中,描述法是通过{x|x具有的性质}来表示集合,而图示法则是用数轴或XXX来表示集合。
集合还可以分为有限集、无限集和空集。
空集是不含有任何元素的集合,记为∅。
集合间的基本关系有子集、真子集和集合相等等。
子集指一个集合中的所有元素都属于另一个集合,而真子集则是指一个集合是另一个集合的子集,但不等于该集合。
如果两个集合中的元素完全相同,则它们是相等的。
集合的基本运算有交集、并集和补集等。
交集是指两个集合中共同存在的元素所组成的集合,而并集则是指两个集合中所有的元素所组成的集合。
补集是指一个集合中不属于另一个集合的所有元素所组成的集合。
最后,含有绝对值的不等式和一元二次不等式的解法也是数学中的重要知识点。
对于含有绝对值的不等式,可以通过分情况讨论来求解。
而对于一元二次不等式,则可以通过求解二次函数的根来确定其解集。
x|>a (a>0)x|c (c>0)XXX:x|-a<x<a}x|xa}We can treat ax+b as a whole and transform it into the form of |x|a (a>0) XXX.Summary of Knowledge Points in Chapter 1 of High School Mathematics2.Solving Quadratic InequalitiesDiscriminantΔ>0Δ=b-4acQuadratic ny=ax^2+bx+c (a>0) Δ=Δ<0XXXax^2+bx+c=0 (a>0) Ox=(-b±√Δ)/(2a)1,2where x1<x2)x|xx2}x|x1<x<x2}x1=x2=-b/2an of No Real Root ax^2+bx+c>0 (a>0) n setx|x≠-b/2a}Rax^2+bx+c0)n set1.2 n and Its XXX1.2.1 Concept of n1.A n is a correspondence een two non-empty sets A and B。
高一数学必修1 数学 第一章 完整知识点梳理大全(最全)
![高一数学必修1 数学 第一章 完整知识点梳理大全(最全)](https://img.taocdn.com/s3/m/ea183d126c85ec3a87c2c54c.png)
【1.1.1】集合的含义与表示1、集合的概念集合中的元素具有确定性、互异性和无序性. 2、常用数集及其记法N ——自然数集,N *或N +——正整数集,Z ——整数集,Q ——有理数集,R ——实数集.集合与函数概念3、集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. 4、集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. 5、集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集,记为∅.【1.1.2】集合间的基本关系6、子集、真子集、集合相等7、已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算8、交集、并集、补集)【补充知识】含绝对值的不等式与一元二次不等式的解法1、含绝对值的不等式的解法0)〖1.2〗函数及其表示【1.2.1】函数的概念1、函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. 2、区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a ≥b ,而后者必须a b <.3、求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.(暂不讲)⑤tan y x =中,()2x k k Z ππ≠+∈.(暂不讲)⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. 4、求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的. 事实上,如果在函数的值域中存在一个最小(大)数,这个数就是 函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值. ④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法5、函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.6、映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作:f A B→.②给定一个集合A到集合B的映射,且,∈∈.如果元素a和元a Ab B素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值1、函数的单调性①定义及判定方法yxo②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.简称:同增异减。
高一数学必修一第一章知识点梳理
![高一数学必修一第一章知识点梳理](https://img.taocdn.com/s3/m/e4ce7e57876fb84ae45c3b3567ec102de2bddfad.png)
高一数学必修一第一章知识点梳理
(最新版)
目录
1.必修一第一章概述
2.第一章主要知识点
2.1 集合与基本初等函数
2.2 函数的性质与图像
2.3 三角函数
2.4 指数函数和对数函数
2.5 解析几何初步
正文
【必修一第一章概述】
本章是高中数学必修一的第一章,主要涉及的知识点包括集合与基本初等函数,函数的性质与图像,三角函数,指数函数和对数函数,解析几何初步等。
这些知识点是高中数学的基础,对于后续的学习有着重要的影响。
【第一章主要知识点】
2.1 集合与基本初等函数
这一部分主要介绍了集合的概念及其运算,以及基本初等函数,如一次函数、二次函数、正弦函数、余弦函数等。
这些都是高中数学的基本知识,需要我们熟练掌握。
2.2 函数的性质与图像
这一部分主要讲述了如何通过函数的性质来画出函数的图像,以及如何通过函数的图像来推导函数的性质。
这对于理解函数的性质和解决实际
问题都有着重要的作用。
2.3 三角函数
三角函数是初中数学的知识,但在高中数学中也有着重要的应用。
本部分主要介绍了正弦函数、余弦函数、正切函数等基本三角函数的性质和图像。
2.4 指数函数和对数函数
指数函数和对数函数是高中数学的重要内容,本部分主要介绍了它们的性质、图像以及如何进行运算。
2.5 解析几何初步
解析几何是高中数学的重要内容,本部分主要介绍了解析几何的基本概念和方法,如点斜式、截距式等。
【结束语】
高中数学必修一第一章的知识点是高中数学的基础,我们需要对其进行深入的理解和掌握。
(完整版)高一数学必修一知识点汇总
![(完整版)高一数学必修一知识点汇总](https://img.taocdn.com/s3/m/8929a759195f312b3169a5c0.png)
高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是注意:B同一集合。
⊆/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊇/A或B2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即C S A=},|{AxSx x∉∈且韦恩图示A B图1A B图2SA二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.值域: 先考虑其定义域(1)观察法(2)配方法(3)代换法3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A 到集合B的一个映射。
高一数学必修一第一章知识点梳理
![高一数学必修一第一章知识点梳理](https://img.taocdn.com/s3/m/13e56aecc0c708a1284ac850ad02de80d4d806ef.png)
高一数学必修一第一章知识点梳理【原创实用版】目录1.必修一第一章的主要知识点2.知识点的详细解析3.知识点的应用和实践正文一、必修一第一章的主要知识点高一数学必修一的第一章主要包括以下几个知识点:1.有理数和整式有理数包括整数、分数和无理数,整式是由单项式和多项式组成的代数式。
2.一元一次方程与不等式一元一次方程是指含有一个未知数的一次方程,不等式是指用不等号连接的代数式。
3.函数和导数函数是一种将自变量映射到因变量的数学关系,导数是函数在某一点的切线斜率。
二、知识点的详细解析1.有理数和整式有理数是我们日常生活中常用的数字,包括整数、分数和无理数。
整式是由单项式和多项式组成的代数式,其中单项式是只含有一个变量的代数式,多项式是由多个单项式相加或相减而成的代数式。
2.一元一次方程与不等式一元一次方程是指含有一个未知数的一次方程,例如 2x+3=7。
不等式是指用不等号连接的代数式,例如 x>5。
解一元一次方程和不等式的方法主要包括移项、合并同类项、化简等步骤。
3.函数和导数函数是一种将自变量映射到因变量的数学关系,例如 y=2x+1。
导数是函数在某一点的切线斜率,表示函数在该点的变化率。
导数的求法有多种,如极限法、微分法等。
三、知识点的应用和实践在实际生活和学习中,我们可以通过以下方式应用和实践这些知识点:1.解实际问题中的数学题,如利用一元一次方程和不等式求解实际问题。
2.学习其他数学课程,如利用函数和导数研究数学曲线的性质。
3.参加数学竞赛或考试,提高自己的数学能力和成绩。
必修1高一数学人教版最全知识点(必须珍藏)
![必修1高一数学人教版最全知识点(必须珍藏)](https://img.taocdn.com/s3/m/bf6af15f5acfa1c7aa00cc40.png)
R 表示实数集 .
a 与集合 M 的关系是 a
M ,或者 a
M ,两者必居其一 .
( 4 )集合的表示法 ①自然语言法:用文字叙述的形式来描述集合 . .
②列举法:把集合中的元素一一列举出来,写在大括号内表示集合 ③描述法: {
x | x 具有的性质 },其中 x 为集合的代表元素 .
.
④图示法:用数轴或韦恩图来表示集合 ( 5 )集合的分类 ①含有有限个元素的集合叫做有限集 合叫做空集 ( ).
必修 1 知识点
高中数学必修 1 知识点总结 第一章 集合与函数概念 〖 1.1 〗集合 【 1.1.1 】集合的含义与表示
( 1 )集合的概念 集合中的元素具有确定性、互异性和无序性 ( 2 )常用数集及其记法 .
N 表示自然数集, N
( 3 )集合与元素间的关系 对象
或
N 表示正整数集, Z 表示整数集, Q 表示有理数集,
【 1.3.1 】单调性与最大(小)值
【 1.3.2 】奇偶性 ............................................................................................................................................... 11 【 1.3.3 】函数周期性和对称性 〖补充知识〗函数的图象 第二章 ....................................................................................................................... 12
C ,则 A A ,则 A
高中数学必修一最全知识点汇总
![高中数学必修一最全知识点汇总](https://img.taocdn.com/s3/m/7a50dd20a31614791711cc7931b765ce05087af1.png)
高中数学必修一最全知识点汇总高中数学必修1知识点第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示集合是由元素组成的整体,其中的元素具有确定性、互异性和无序性。
常用的数集有自然数集N、正整数集N*或N+、整数集Z、有理数集Q、实数集R。
集合与元素之间的关系可以表示为a∈M或a∉M。
集合的表示法有自然语言法、列举法、描述法和图示法。
集合可以分为有限集、无限集和空集(∅)。
1.1.2 集合间的基本关系集合间的基本关系包括子集、真子集和集合相等。
子集表示为A⊆B,真子集表示为A⊂B,集合相等表示为A=B。
已知集合A有n(n≥1)个元素,则它有2个子集,2^(n-1)个真子集,2^(n-1)个非空子集和2^n-2个非空真子集。
1.1.3 集合的基本运算集合的基本运算包括交集、并集和补集。
交集表示为A∩B,并集表示为A∪B,补集表示为A的补集。
补集的性质为A∪A的补集=全集,A∩A的补集=空集。
2.补充知识:含绝对值的不等式与一元二次不等式的解法含绝对值的不等式|x|0)的解集为{-aa(a>0)的解集为{xa}。
一元二次不等式的解法与一元二次方程类似,可以通过移项、配方法和求根公式等方式求解。
1.解一元二次不等式将$ax+b$看作一个整体,化成$|x|c(c>0)$,$|x|>a(a>0)$型不等式来求解。
2.解一元二次不等式的方法通过判别式$\Delta=b^2-4ac$,确定二次函数$y=ax^2+bx+c(a>0)$的图像,分类讨论$\Delta>\Delta'$,$\Delta=\Delta'$和$\Delta0)$的根$x_1,x_2$(其中$x_10$和$y<0$的解集。
3.函数及其表示3.1 函数的概念设$A$、$B$是两个非空的数集,如果按照某种对应法则$f$,对于集合$A$中任何一个数$x$,在集合$B$中都有唯一确定的数$f(x)$和它对应,那么这样的对应(包括集合$A$、$B$以及$A$到$B$的对应法则$f$)叫做集合$A$到$B$的一个函数,记作$f:A\to B$。
高中数学人教A版必修一第一章知识点总结及题型
![高中数学人教A版必修一第一章知识点总结及题型](https://img.taocdn.com/s3/m/6d48a120974bcf84b9d528ea81c758f5f61f296c.png)
高中数学人教A版必修一第一章知识点总结及题型高中数学必修一第一章知识点及题型一、第一章第一单元集合---知识点总结知识点一:集合的概念集合是研究对象的统称,用小写拉丁字母a,b,c等表示元素,一些元素的集合称为集合或集,用大写拉丁字母A,B,C等表示,不含任何元素的集合称为空集,记为∅。
知识点二:集合与元素的关系如果a是集合A的元素,就称a属于集合A,记作a∈A;如果a不是集合A中的元素,就称a不属于集合A,记作a∉A。
知识点三:集合的特性及分类集合元素具有唯一性、无序性和互异性。
集合可分为有限集和无限集,有限集含有有限个元素,无限集含有无限个元素。
知识点四:集合的表示方法集合的表示方法有列举法和描述法。
列举法是把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法;描述法是用集合所含元素的特征表示集合的方法。
知识点五:集合与集合的关系集合A中的所有元素都是集合B中的元素时,称集合A是集合B的子集,记作A⊆B;如果A是B的子集,但存在元素不属于B,则称A是B的真子集,记作A⊂B。
子集的性质包括空集是任意集合的子集、任何集合都是它本身的子集、如果A是B的子集,B是C的子集,则A是C的子集。
知识点六:集合的运算集合的运算包括交集和并集。
集合A与B的并集是由A 和B中所有元素组成的集合,记作A∪B;集合A与B的交集是A和B中共有的元素组成的集合,记作A∩B。
3.交集与并集的性质交集的运算性质:A∩B = B∩A (交换律)A∩A = A (恒等律)A∩∅ = ∅(零律)A⊆B ⇔ A∩B = A (吸收律)并集的运算性质:A∪B = B∪A (交换律)A∪A = A (恒等律)A∪∅ = A (零律)A⊆B ⇔ A∪B = B (吸收律)A∪B = B∪A = {x | x∈A或x∈B} (定义)符号语言、图形语言和自然语言都可以用来表示集合的交集和并集。
4.全集在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U。
高一数学必修一知识点汇总
![高一数学必修一知识点汇总](https://img.taocdn.com/s3/m/7d0da7fe49649b6648d747b3.png)
高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是注意:B同一集合。
⊆/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊇/A或B2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即C S A=},|{AxSx x∉∈且韦恩图示A B图1A B图2SA二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.值域: 先考虑其定义域(1)观察法(2)配方法(3)代换法3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A 到集合B的一个映射。
人教版高一数学必修一第一章 集合与函数概念知识点+经典例题+巩固练习
![人教版高一数学必修一第一章 集合与函数概念知识点+经典例题+巩固练习](https://img.taocdn.com/s3/m/ce19c478b8f67c1cfbd6b886.png)
高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是注意:B同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即C S A=},|{AxSx x∉∈且韦恩图示A B图1A B图2SA性 质A A=A A Φ=Φ A B=B A A B ⊆A A B ⊆BA A=A A Φ=A A B=B A A B ⊇A A B ⊇B(C u A) (C u B)= C u (A B) (C u A) (C u B)= C u (A B) A (C u A)=U A (C u A)= Φ.例题:1.下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 .4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CONTENTS
1 • PART 01 学习目标 2 • PART 02 问题导学
3 • PART 03 题型探究 4 • PART 04 达标检测
学习目标
1.构建知识网络; 2.进一步熟练指数、对数运算,加深对公式成立条件的记忆; 3.以函数观点综合理解指数函数、对数函数、幂函数.
=2-1
10
1 2
=
10 .
2
解析答案
(2)
2log3 2-log3
32 9
+log3
8-25log5
3
.
解
原式
=log3
4-log3
32 9
+log3
8-52log5
3
=log3
(4
9 32
8)-5log5
9
=log39-9=2-9=-7.
反思与感悟
解析答案
跟踪训练 1 计算 80.25× 4 2+( 3 2× 3)6+log32×log2(log327)的值为 ___1_1_1___.
返回
解析答案
类型三 指数函数、对数函数、幂函数的综合应用
1+2x+a·4x
例 3 已知函数 f(x)=lg
3 在 x∈(-∞,1]上有意义,求实数 a
的取值范围.
反思与感悟
解析答案
跟踪训练3 函数f(x)=loga(1-x)+loga(x+3)(0<a<1). (1)求函数f(x)的定义域; 解 要使函数有意义,则有1x+-3x>>00, , 解得-3<x<1,∴定义域为(-3,1).
4.已知 P=2-32,Q=253,R=123,则 P,Q,R 的大小关系是( B ) A.P<Q<R B.Q<R<P C.Q<P<R D.R<Q<P 解析 由函数 y=x3 在 R 上是增函数知,253<123,
由函数y=2x在R上是增函数知,2-32>2-3=( 1 )3, 2
所以P>R>Q.
解析答案
5.函数
y=(
1
)
1 x2 1
2
的值域为(
C
)
A.(-∞,1)
B.12,1
C.12,1
D.12,+∞
解析 因为 x∈R,0<x2+1 1≤1,
所以
y=(
1
)
1 x2 1
2
≥121=12且
y=(
1
)
x
1 2 1
解析答案
(2)a1.2,a1.3; 解 ∵函数y=ax(a>0且a≠1),当底数a大于1时在R上是增函数;当底 数a小于1时在R上是减函数, 而1.2<1.3,故当a>1时,有a1.2<a1.3; 当0<a<1时,有a1.2>a1.3.
解析答案
(3)0.213 ,0.233. 解 ∵y=x3在R上是增函数, 且0.21<0.23,∴0.213<0.233.
题型探究
重点难点 个个击破
类型一 指数、对数的运算
提炼化简方向:根式化分数指数幂,异底化同底.
化简技巧:分与合.
注意事项:变形过程中字母范围的变化.
例1
化简:1 (
2
8) 3
(3
102
9
)2
105;
解
原式=(2
3 2
-2
)3
29
(103 )2
5
10 2
=2-1
103
-5
10 2
要点归纳
题型探究
达标检测
要点归纳
知识网络
主干梳理 点点落实
知识梳理
1.分数指数幂
m
(1) a n=
1
:a>0,m,n∈N*,且n>1.
n am
(2)
-
a
m
n=
1 :a
m
>0,m,n∈N*,且n>1.
an
2.根式的性质 (1)(n a)n=a. (2)当 n 为奇数时,n an =a; 当 n 为偶数时,n an=|a|=a-,aa,≥a0<,0.
C.f(x)是增函数,g(x)是减函数 D.f(x)是减函数,g(x)是增函数
解析 f(x)=12x 在 x∈(-∞,0)上为减函数,g x=log1 x 为偶函数, 2
x∈(0,+∞)时g x=log1 x 为减函数,所以在(-∞,0)上为增函数.
2
解析答案
1 2345
解析答案
(2)log20.4,log30.4,log40.4. 解 ∵对数函数y=log0.4x在(0,+∞)上是减函数, ∴log0.44<log0.43<log0.42<log0.41=0. 又幂函数y=x-1在(-∞,0)上是减函数,
∴log10.42<log10.43<log10.44,
即log20.4<log30.4<log40.4.
3.指数幂的运算性质 (1)ar·as=ar+s:a>0,r,s∈R. (2)(ar)s=ars:a>0,r,s∈R. (3)(ab)r=arbr:a>0,b>0,r∈R. 4.指数式与对数式的互化式 logaN=b⇔ab=N:a>0,a≠1,N>0.
5.对数的换底公式
logaN=llooggmmNa :a>0,且 a≠1,m>0,且 m≠1,N>0.
反思与感悟
解析答案
跟踪训练2 比较下列各组数的大小: (1)log0.22,log0.049; 解 ∵log0.049=lglg0.904=lglg03.222
=22lglg03.2=lglg03.2=log0.23.
又∵y=log0.2x在(0,+∞)上单调递减, ∴log0.22>log0.23,即log0.22>log0.049.
解析答案
1
2.函数 y=x3 的图象是( B )
1 2345
解析 ∵0<13<1.
1
∴在第一象限增且上凸,又 y=x3 为奇函数,过(1,1),故选2x
与函数
g
x=log1
2
x 在区间(-∞,0)上的单调性为(
D
)
A.都是增函数 B.都是减函数
推论:log
am
b
n=
n m
log
a
b
:a>0,且a≠1,m,n>0,且m≠1,n≠1,b>0.
6.对数的四则运算法则
若a>0,a≠1,M>0,N>0,则
(1) loga(MN)=logaM+logaN; (2)logaMN =logaM-logaN; (3)logaMn=nlogaM(n∈R).
返回
a=4
1
2=
1
.
2
解析答案
返回
达标检测
1.化简22+lgllgglag10a0为( B )
A.1
B.2
C.3
D.0
解析 22+lgllgglag10a0=22lg+1l0g0l·glgaa
2[lg 100+lglg a] = 2+lglg a =2.
1 2345
解析答案
(2)若函数f(x)的最小值为-2,求a的值.
解 函数可化为f(x)=loga[(1-x)(x+3)]=loga(-x2-2x+3)=loga[-(x +1)2+4]. ∵-3<x<1,∴0<-(x+1)2+4≤4. ∵0<a<1,∴loga[-(x+1)2+4]≥loga4.
由 loga4=-2,得 a-2=4,
解析 ∵log32×log2(log327)=log32×log23
=llgg 23×llgg 32=1,
3
1
∴原式 =24 24+22 33+1
=21+4×27+1=111.
解析答案
类型二 数的大小比较 例2 比较下列各组数的大小: (1)27 ,82; 解 ∵82=(23)2=26, 由指数函数y=2x在R上单调递增知26<27即82<27.
2
<120=1,
所以 y∈12,1.
1 2345
解析答案
规律与方法
1.函数是高中数学极为重要的内容,函数思想和函数方法贯穿整个高 中数学的过程,对本章的考查是以基本函数形式出现的综合题和应用 题,一直是常考不衰的热点问题. 2.从考查角度看,指数函数、对数函数概念的考查以基本概念与基本 计算为主;对图象的考查重在考查平移变换、对称变换以及利用数形 结合的思想方法解决数学问题的能力;对幂函数的考查将会从概念、 图象、性质等方面来考查.