概率论第9章假设检验习题解答

合集下载

概率论与数理统计练习题(含答案)

概率论与数理统计练习题(含答案)

第一章 随机事件及其概率练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。

(B )(2)事件的发生与否取决于它所包含的全部样本点是否同时出现。

(B )(3)事件的对立与互不相容是等价的。

(B ) (4)若()0,P A = 则A =∅。

(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。

(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P{}1=3两个女孩。

(B )(8)若P(A)P(B)≤,则⊂A B 。

(B ) (9)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。

(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。

(A ) 2. 选择题(1)设A, B 两事件满足P(AB)=0,则©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A) A. P(A ∪B)=P(A) B. P(AB)=P(A) C. P(B|A)=P(B) D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D)A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。

概率论与数理统计-假设检验

概率论与数理统计-假设检验

14

取伪的概率较大.
15
/2
0.12 0.1
0.08 0.06 0.04 0.02
/2 H0 真
60 62.5 65 67.5 70 72.5 75
0.12 0.1
0.08 0.06 0.04 0.02
H0 不真
67.5 70 72.5 75 77.5 80 82.5
16
现增大样本容量,取n = 64, = 66,则
41
两个正态总体
设 X ~ N ( 1 1 2 ), Y ~ N ( 2 2 2 )
两样本 X , Y 相互独立, 样本 (X1, X2 ,…, Xn ), ( Y1, Y2 ,…, Ym ) 样本值 ( x1, x2 ,…, xn ), ( y1, y2 ,…, ym )
显著性水平
42
(1) 关于均值差 1 – 2 的检验
原假设 备择假设 检验统计量及其在
H0
H1
H0为真时的分布拒绝域 Nhomakorabea1 – 2 = 1 – 2
1 – 2 1 – 2 <
1 – 2 1 – 2 > ( 12,22 已知)
43
原假设 备择假设 检验统计量及其在
H0
H1
H0为真时的分布
1 – 2 = 1 – 2
拒绝域
1 – 2 1 – 2 <
1 – 2 1 – 2 >
12, 22未知
12
=
2 2
其中
44
(2)
关于方差比
2 1
/
2 2
的检验
原假设 备择假设 检验统计量及其在
H0
H1
H0为真时的分布

浙大版概率论与数理统计答案---第九章

浙大版概率论与数理统计答案---第九章

第九章 方差分析与回归分析注意: 这是第一稿(存在一些错误)1.解:()()()211,,n niii i i i L f y y f y x αβσεαβ======--∏∏()()()221222211122ni i i i i y x y x nni e eαβαβσσπσπσ=------=∑==∏()()()()22212,,ln ,,ln22ni i i y x l L n αβαβσαβσπσσ=--==--∑()()()()()()212212221242,,0,,0,,1022ni i i n i i i i n i i i y x l y x x l y x l n αβαβσασαβαβσβσαβαβσσσσ===⎧--⎪∂⎪==∂⎪⎪--⎪∂⎪==⎨∂⎪⎪--⎪∂⎪=-=⎪∂⎪⎩∑∑∑ 解得2ˆˆ,ˆ,ˆ.xyxxy x s s SSE n αββσ⎧⎪=-⎪⎪=⎨⎪⎪=⎪⎩则α、β的极大似然估计与最小二乘估计一致。

2σ的极大似然估计为SSE n ,最小二乘估计为2SSE n -,为2σ的无偏估计。

2.解: (1)由题意,知0123:H μμμ==,1123:,,H μμμ不全相等计算有112312.54ni i i x n x n n n ⋅===++∑ 321()0.738i A i i S n x x ⋅==-=∑,321() 5.534in T ij i i jS x x ===-=∑∑4.796E T A S S S =-=,/(31)0.369A A MS S =-=123/(3)0.178E E MS S n n n =++-=,/ 2.077A E F MS MS == 所以单因素方差分析表为: 方差来源 自由度 平方和 均方 F 比 因素A 2 0.738 0.369 2.077 误差 27 4.796 0.178 总和295.534由于 2.077F =<(2,27) 3.3541F α=,接受0H(2)2σ的无偏估计量为:123/(3)0.178E E MS S n n n =++-=3.解:(1)61n =,4r =,(2)0.05(3,57) 2.76 3.564F ≈<,则拒绝原假设,即认为不同年级学生的月生活费水平有显著差异。

(完整版)统计学假设检验习题答案

(完整版)统计学假设检验习题答案

1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。

解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。

采用t 分布的检验统计量nx t /0σμ-=。

查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。

667.116/60800820=-=t 。

因为t <2.131<2.947,所以在两个水平下都接受原假设。

2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。

n=100可近似采用正态分布的检验统计量nx z /0σμ-=。

查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。

计算统计量值3100/5001000010150=-=z 。

因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。

3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。

问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量3.33 1.96Z ===>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响.5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。

概率论重点及课后题答案9

概率论重点及课后题答案9

第九章假设检验一、大纲要求(1)理解假设检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。

(2)了解单个及两个正态总体的均值和方差的假设检验.二、重点知识结构图三、基本知识1.假设检验的几个术语 定义1给定k ,k ≥确定了关于X 的一个区域00,k μμ⎛⎛⎫-∞-++∞ ⎪⎝⎝⎭当X 落入此区域内,就拒绝0H (接受1H ),称上式这类区域为0H 的拒绝域,记为Z .k <确定了关于X 的另外一个区域00k k μμ⎛-+ ⎝当X 落入此区域内,就接受0H (拒绝1H ),称上类区域为接受域,记为Z .不等式k <称为临界值形式的接受域,00k k μμ⎛-+ ⎝称为区间形式的接受域.定义2称0H 为原假设(或零假设),称1H 为备择假设(或备选假设、对立假设). 定义3称允许作判断有错误的概率α为显著性水平(或检验水平),它是用来衡量原假设与实际情况差异是否明显的标准.定义4称k 为临界值小概率原理:小概率事件在一次试验中是不大会发生的.2.假设检验的两类错误第一类错误:0H 正确,但拒绝了它,这类错误称为“弃真错误”. 第二类错误:0H 不正确,但接受了它,这类错误称为“存伪错误”.3.假设检验的基本步骤 (1)提出假设;(2)找统计量(这里要求该统计量含有待检验的参数); (3)求临界值(求接受域); (4)求观察值; (5)作出判断.4.u 检验法已知方差2σ,假设检验00:H μμ=. (1)提出假设00:H μμ=.(2)找统计量.确定样本函数:()~0,1X u N =,称其为u 的统计量,它含有待检验参数μ.(3)求临界值.给定显著性水平()01αα<<,查正态分布表求出临界值/2u α,使{}/2P u u αα≥=,即{}/21P u u αα<=-.(4)求观察值.根据给定的样本求出统计量u 的观察值1u . (5)作出判断.若1/2u u α<,则接受0H ;若1/2u u α≥,则拒绝0H .5.t 检验法未知方差2σ,假设检验00:H μμ=. (1)提出假设00:H μμ=.(2)找统计量.因为2σ未知,这时u 已不是统计量,所以不能用u 检验法,这里用2S 来代替2σ,找出统计量:X t =(3)求临界值.对给定显著性水平()01αα<<,由t 分布表查得临界值,使{}/2P t t αα≥=.(4)求观察值.根据给定的样本算出统计量t 的观察值1t . (5)作出判断.若1/2t t α<,则接受0H ;若1/2t t α≥,则拒绝0H .6.2χ检验法已知期望μ,假设检验220:H σσ=. (1)提出假设220:H σσ=.(2)找统计量.确定样本函数的统计量:()222211()~nii Xn χμχσ==-∑(3)求临界值.对给定显著性水平()01αα<<,由2χ分布表查得临界值()2/2n αχ与()21/2n αχ-,使(){}(){}2222/21/2, 22P n P n ααααχχχχ-≥=≤=即()(){}2221/2/21P n n ααχχχα-<<=-(4)求观察值.根据给定的样本算出统计量2χ的观察值21χ.(5)作出判断.若()()2221/2/2n n ααχχχ-<<,则接受0H ;若()221/2n αχχ≥或21χ≤()21/2n αχ-,则拒绝0H .7.F 检验法已知期望12,μμ,假设检验21022:H σσσ=(1)提出假设21022:H σσσ=.(2)找统计量()12212111122221221()~,1()n ii n i i Xn F F n n Y n μσμσ==-=-∑∑(3)求临界值.对给定显著性水平()01αα<<,查F 分布表,求得()/212,F n n α及()1/212,F n n α-,使(){}(){}/2121/212,, ,22P F F n n P F F n n αααα-≥=≤=即()(){}1/212/212,,1P F n n F F n n ααα-<<=-(4)求观察值.由所给定的样本算出统计量的值1F .(5)作出判断.若()()1/212/212,,F n n F F n n αα-<<,则接受0H ;若()1/212,F F n n α≥或()11/212,F F n n α-≤,则拒绝0H .四、典型例题例1有两批棉纱,为比较其断裂强度,从中各取一个样本,测试得到:第一批棉纱样本11200,0.523kg,0.218kg n X S ===; 第二批棉纱样本22100,0.576kg,0.176kg n X S ===.试验证两批棉纱断裂强度的均值有无显著差异(检验水平0.05α=)?如果0.1α=呢?解这是两个正态总体的均值检验问题,检验0:H EX EY =.()()~0,1,~0,1X Y N N因为是大样本(12,n n 均较大),所以DX 、DY 可用2212S S 、代入,近似有221212~,, ~,S S X N EX Y N EY n n ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭故221212~,S S X Y N EX EY n n ⎛⎫--+ ⎪⎝⎭由于X 与Y 相互独立,若0:H EX EY =成立,则221212~0,S S X Y N n n ⎛⎫-+ ⎪⎝⎭故()~0,1X Y u N =因此,只要是大样本(容量较大时),不管总体X 、Y 是否服从正态分布,是否DX DY =,都可以按u 检验法2σ已知的情况去做近似检验.由已知得2211200, 0.523, 0.218n X S ===2222100, 0.576, 0.176n X S ===故 1.88X Y u ===-当0.05α=时,查表得/2 1.96u α=.因/21.88 1.96u u α=<=,故0H 被接受,即在检验水平0.05α=下可以认为这两种棉纱的强力值无显著差异.当0.10α=时,查表得/2 1.65u α=.因/21.88 1.65u u α=>=,u 落入拒绝域,应否定0H ,即在检验水平0.10α=下可以认为这两种棉纱的强力值有显著差异.例2某农业试验站为了研究某种新化肥对农作物产量的效力,在若干小区进行试验.测得产量(单位:kg)如下:施肥 34 35 32 33 30 34 未施肥 29 27 32 28 31 32 31设农场的产量服从正态分布,检验该种化肥对提高产量的效力是否显著?()0.10α=解设X 为施肥后的产量,Y 为施肥前的产量.已知()211~,,~X N Y Nμσ()222,μσ.由于总体方差21σ和22σ均未知,应先对方差进行检验,即22012:H σσ=,22112:H σσ≠. 由题意可知67111133, 3067i i i i X X Y Y ======∑∑672222121111() 3.2, ()456i i i i S X X S Y Y ===-==-=∑∑2122 3.20.84S F S ===已知120.1,6,7n n α===,查表得()()/2120.051,15,6 4.95F n n F α--==.因为()0.055,6F F <,所以接受0H ,即认为2212σσ=. 提出检验问题,即11012112:,:H H μμμμ≤>2.828X Yt == 已知()0.10α=,查表得()()120.1211 1.3634t n n t α+-==.因为()0.12.82811t t =>,所以拒绝0H ,即认为该种化肥对提高产量的效力显著.例3某种配偶的后代按体格的属性分为三类,各类的数据是:10,53,46.按照某种遗传模型,其频率之比应为()()22:21:1p p p p --,问数据与模型是否相符?()0.05α=解令()()22123,21,1p p p p p p p ==-=-,欲检验的假设为0H :数据与模型相符.设观察到的三类数量分别为123,,n n n ,其中123n n n n ++=,则p 的似然函数为()()()()()31222123211 10,53,46n n n L p pp p p n n n ⎡⎤=--===⎡⎤⎣⎦⎣⎦由于()1222ln 212011L p n n n n p p p p p∂--=+++=∂--解得p 的极大似然估计为12220530.3352218n n p n ++=== 从而 2210.3350.112p p ===()22120.3350.6650.45p p p =-=⨯⨯= ()22310.6650.44p p=-==统计量观测值为()2321i ii in n p n p χ=-=∑()()()222101090.112531090.45461090.441090.1121090.451090.44-⨯-⨯-⨯=++⨯⨯⨯0.801=已知0.05α=,自由度11321n --=-=,查表得()20.051 3.84χ= 由于()220.801 3.841αχχ=<=,故接受0H ,即数据与模型相符.例4设某次考试考生成绩服从正态分布,从中随机抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在0.05α=时是否可以认为这次考试全体考生的平均成绩为70分?解设该次考试考生的成绩为X ,则()2~,X N μσ.把从X 中抽取的容量为n 的样本均值记为X ,样本标准差记为S ,检验假设01:70,:70H H μμ=≠.则()1/21u t n α-=-已知()0.97536,66.5,15,361 2.0301n X S t ===-=,所以()0.97566.57035 2.030115u n t -=≥= 所以接受假设0:70H μ=,即0.05α=时,可以认为这次考试全体考生的平均成绩为70分.例5某一指标服从正态分布,今对该指标测量8次,所得数据为:68,43,70,65, 55,56,60,72.在以下两种条件下,检验()220:80.05H σα==.(1)总体均值μ未知;(2)总体均值60μ=.解 (1)检验假设220:8H σ=,用2χ检验,得()882211154.875, 1()652.88i i i i X X n S X X ====-=-=∑∑故()22221652.810.28n S χσ-==≈ 查表得()()220.0250.975817.535,8 2.180χχ==.因()()2220.0250.97588χχχ>>,故接受0H .(2)检验假设220:8H σ=,而60μ=,故()82211()663i i n SX μ=-=-=∑()2222166310.48n S χσ-=== 由于()()2220.0250.97588χχχ>>,故接受0H .例6从某锌矿的东西两支矿脉中,各抽取容量分别为9和8的样本分析后,计算其样本含锌量(%)的平均值与方差分别如下:东支2110.230, 0.1337, 9X S n ===西支2220.269, 0.1736, 8Y S n ===假定东西两支矿脉的含锌量都服从正态分布,对于0.05α=,能否认为两支矿脉的含锌量相同?解设东支矿脉的含锌量为X ,()211~,X N μσ;西支矿脉的含锌量为Y ,~Y ()222,N μσ;其中1μ、、、均为未知参数.(1)检验假设.则已知,计算得查表得 因,故接受假设,即认为. (2)检验假设,这属于检验,检验统计量为已知,计算得查表得.因,故接受假设,即认为两支矿脉的含锌量相同.例7在20世纪70年代后期人们发现,酿啤酒时,在麦芽糖干燥过程中会形成致癌物质亚硝基二甲胺(NDMA),于是80年代初期开发了一种新的麦芽糖干燥过程.下面给出分别在新老两种过程中所形成的(NDMA)含量(以10亿份中的份数计).老过程 6 4 5 5 6 5 5 6 4 6 7 4 新过程 2 1 2 2 1 0 3 2 1 0 1 3设两样本分布来自正态总体,两总体方差相等,两样本独立,分别以、记2μ21σ22σ222201121112:,:H H σσσσ=≠()211222~1,1S F F n n S =--2211229,0.1337,8,0.1736n S n S ====0.13370.77020.1736F ==()()()0.0250.9750.025118,7 4.90,8,77,8 4.53F F F ===1 4.904.53F <<01H 2212σσ=02121212:,:H H μμμμ=≠t ()12~2t t n n =+-2211229,0.1337,8,0.1736n S n S ====0.2180t ==-()0.02515 2.1315t = 2.1315t <02H 1μ2μ对应于新老两过程的总体均值,检验假设.解该检验的拒绝域为已知,查表得. 由已知数据计算得由于在拒绝域中,故应拒绝.例8某厂使用两种不同的原料A 、B 生产同一类产品,各在一周的产品中取样进行分析比较,取使用原料A 生产的样品220件,测得平均重量为2.46kg,样本标准差;取使用原料B 生产的样品205件,测得平均重量为2.55kg,样本标准差,设这两个样本独立,问在下能否认为使用原料B 的产品平均重量比使用原料A 大?解检验假设. 这个问题是大样本问题,故可近似认为统计量:于是检验的拒绝域为()012112:2,:20.05H H μμμμα-=->=()122X Y W t t n n α⎧⎫⎪⎪⎪⎪==≥+-⎨⎬⎪⎪⎪⎪⎩⎭1212,12,0.05n n α===()()120.05222 1.7171t n n t α+-==5.25, 1.5X Y ==()()2211222121110.25 6.50.7283123Wn S n S S n n -+-+===+-11.87 1.7171t ==>t 0H 0.57kg S =0.48kg S =0.05α=012112:0,:0H H μμμμ-=-<()~0,1X Y Z N =X Y W Z Z α⎧⎫⎪⎪⎪⎪==≤-⎨⎬⎪⎪⎪⎪⎩⎭已知,所以由于落在拒绝域中,故应拒绝,即认为使用原料B 的产品平均重量比使用原料A 的大.例9某种导线,要求其电阻的标准差不得超过0.005(单位:).今在生产的一批导线中取样本9根,测得,设总体为正态分布,问在下能否认为这批导线的标准差显著地偏大?解检验假设. 该检验的拒绝域为已知,所以由于落在拒绝域中,故应拒绝,即在下这批导线的标准差显著偏大.例10一自动车床加工零件的长度服从正态分布,车床正常时,加工零件长度为10.5,经过一段时间生产后,要检验这车床是否正常工作,为此抽取该车床加工的31个零件,测得数据如下:零件长度 10.1 10.3 10.6 11.2 11.5 11.8 12.0 频率 1 3 7 10 6 3 1若加工零件长度方差不变,问此车床工作是否正常?()解检验假设.则0.050.05, 1.65Z α== 1.76 1.65Z ==-<-Z 0H Ω0.007S =0.05α=01:0.005,:0.005H H σσ≤>()()2222011n S W n αχχσ⎧⎫-⎪⎪==≥-⎨⎬⎪⎪⎩⎭()20.05,9,115.507n n ααχ==-=22280.00715.6815.5070.005χ⨯==>2χ0H 0.05α=()2,N μσ0.05α=0010:10.5,:10.5H H μμμμ==≠=()~,1X t t n =于是检验的拒绝域为 已知,计算得.从而查表得.由于,故拒绝.即可以认为该车床工作不正常. 例11某车间的白糖包装机包装量,其中,未知.一天开工后为检验包装量是否正常,抽取了已经装好的糖9袋,算得样本均值,样本标准差为,试确定包装机工作是否正常?()解检验假设(可省略).样本均值,样本方差.于是已知,查表得. 由于,故接受.可认为包装机工作正常.例12某市居民上月平均伙食费为235.5元,随机抽取49个居民,他们本月的伙食费平均为236.5元,由这49个样本算出的标准差元.假设该市居民月伙食费方差正态分布,试分别在和时,检验“本月该市居民平均伙食费较之上个月无变化”的假设.解检验假设. 由于方差未知,故采用检验法,其拒绝域为已知,计算得()/21W t t n α⎧⎫⎪⎪==>-⎨⎬⎪⎪⎩⎭31n =11.08,0.516X S == 6.26t ===()()/20.025130 2.0423t n t α-==()0.0256.2630 2.0423t t =>=0H ()20~,X N μσ2500g,μσ=504g X =5g S =0.01α=01:500,:500H H μμ=≠504X =225S= 2.4X t ===0.01,18n α=-=()()/20.00518 3.3554t n t α-==()/21t t n α<-0H 3.5S =X 0.05α=0.01α=01:235.5,:235.5H H μμ=≠2σt()/21W t t n α⎧⎫⎪⎪==≥-⎨⎬⎪⎪⎩⎭49,236.5, 3.5n X S ===由于,故可用代替.当时,,故应拒绝.即本月该市居民平均伙食费较之上个月有显著升高.当时,,故接受.即本月该市居民平均伙食费较之上个月无显著变化.例13一位研究者声称至少有80%的观众对商业广告感到厌烦,现在随机询问了120位观众,其中70人同意此观点,在时,问是否可同意该研究者的观点?解把“观众对商业广告感到厌烦”(即)作为原假设.本问题的归结为在时,检验假设.设随机向量在为真时,为来自总体服从两点分布的一个样本,且.由于较大,由中心极限定理可知于是检验的拒绝域为 已知,计算得故拒绝,即在此数据的基础上,不能同意该研究者的观点.2t ===4914830-=>/2u α()/2491t α-0.05α=0.025 1.962u =<0H 0.01α=0.005 2.582u =>0H 0.05α=0.8p ≥0H 0.05α=0010:0.8,:0.8H p p H p p ≥=<=()11,2,,1200i i X i i ⎧==⎨⎩第个观众同意此观点第个观众不同意此观点0H 12120,,,X X X ()1,0.8B 0.8,0.16i i EX DX ==120n =()0~0,1niXnp u N -=∑00ni X np W u u ⎧⎫-⎪⎪⎪⎪==<-⎨⎬⎪⎪⎪⎪⎩⎭∑12000.051120,70,0.8, 1.65i i n X p u =====∑ 5.93 1.65u ==-<-0H五、课本习题全解9-1 ①提出假设.②找统计量..③求临界值.对给定的,查表得;对给定的,查表 得.④求观察值..⑤作出判断.当时,,所以拒绝;当时,,所以接受.9-2 ①提出假设.②找统计量..③求临界值.对给定的,查表得. ④求观察值..⑤作出判断.当时,,所以拒绝. 9-3 (1)①提出假设.②找统计量..③求临界值.对给定的,查表得. ④求观察值..⑤作出判断.当时,,所以拒绝. (2)①提出假设. ②找统计量.. 010:32.05H μμ==()~0,1X u N =0.05α=0.025 1.96u =0.01α=0.005 2.575u =31.13, 2.05X u ==-0.05α= 2.05 1.96u =>0H 0.01α=u 2.05 2.275=<0H 00:5H μμ==()~0,1X u N =0.01α=0.005 2.575u =5.32, 3.2X u ==0.01α= 3.2 2.275u =>0H 00:50H μμ==()~0,1X u N =0.05α=0.025 1.96u =2.25u =0.05α= 2.25 1.96u =>0H 00:50H μμ==()~1X t t n =-③求临界值.对给定的,查表得. ④求观察值..⑤作出判断.当时,,所以接受.9-4 ①提出假设.②找统计量.. ③求临界值.对给定的,查表得. ④求观察值.. ⑤作出判断.当时,,所以接受. 9-5 ①提出假设.②找统计量..③求临界值.对给定的,查表得. ④求观察值..⑤作出判断.当,,所以拒绝. 9-6 (1)①提出假设.②找统计量..③求临界值.对给定的,查表得. ④求观察值..⑤作出判断.当时,,所以接受.(2)①提出假设.②找统计量. .0.05α=()0.0258 2.31t =48.5, 2.5, 1.8X S t ===-0.05α= 1.8 2.31t =<0H 00: 2.7H μμ==()~1X t t n =-0.05α=()0.02529 2.04t =0.18,301 2.05/29n S S t n ==-⨯0.05α= 2.04t <0H 00:H μμ=()~0,1X u N =0.01α=0.005 2.575u =1.5u =0.01α= 1.5 2.575u =<0H 00:100H μμ==()~0,1X u N =0.05α=0.025 1.96u =99.9,0.25X u ==0.05α=0.25 1.96u =<0H 22200: 1.2H σσ==()9222211()~ii Xn χμχσ==-∑③求临界值.对给定的,查表得.④求观察值. .⑤作出判断.当时,,所以接受.9-7 ①提出假设.②找统计量..③求临界值.对给定的,查表得.④求观察值..⑤作出判断.当时,,所以拒绝,有显著差异. 9-8 ①提出假设.②找统计量.. ③求临界值.对给定的,查表得.④求观察值..⑤作出判断.当时,,所以接受,即可认为溶化时间 的标准差为9.9-9 (1)①提出假设.②找统计量..③求临界值.对给定的,查表得. ④求观察值..⑤作出判断.当时,,所以接受,即包装机工作 正常.(2)①提出假设.0.05α=()()220.0250.975919.0,9 2.7χχ==28.2χ=0.05α=22.719.0χ<<0H 2200:0.04H σσ==()222211()~1nii XX n χχσ==--∑0.05α=()()220.0250.9751426.1,14 5.63χχ==2 1.84χ=0.05α=2 5.63χ<0H 00:9H σσ==()222211()~1nii XX n χχσ==--∑0.05α=()()220.0250.975919.0,9χχ==2.72221162.9,(62.9)9nii X Xχ===-∑0.05α=22.719χ<<0H 00:500H μμ==()~0,1X u N =0.05α=0.025 1.96u =501.3,0.82X u ==0.05α=0.82 1.96u =<0H 00: 2.7H μμ==②找统计量.. ③求临界值.对给定的,查表得. ④求观察值.. ⑤作出判断.当时,,所以接受.9-10 (1)①提出假设.②找统计量..③求临界值.对给定的,查表得.④求观察值..⑤作出判断.当时,,所以接受. (2)①提出假设. ②找统计量..③求临界值.对给定的,查表得.④求观察值.. ⑤作出判断.当时,,所以接受.9-11 ①提出假设.②找统计量..③求临界值.对给定的,查表得. ④求观察值.⑤作出判断.当时,,所以拒绝.()~1t t n =-0.05α=()0.0259 2.26t =2501.3,31.57,0.73X S t ===0.05α= 2.26t <0H 2200:25H σσ==()2222101()~nii XX n χχσ==-∑0.05α=()()220.0250.9751020.5,10 3.25χχ==212χ=0.05α=23.2520.5χ<<0H 00:5H σσ==()2222101()~1nii XX n χχσ==--∑0.05α=()()220.0250.975919.0,9χχ==2.722501.3,31.57,11.37X S χ===0.05α=22.719χ<<0H 02:0H μμ-=()~0,1X Y u N μμ---=0.05α=0.025 1.96u =u =0.05α= 1.96u >0H9-12 (1)①提出假设.②找统计量..③求临界值.对给定的,查表得④求观察值..⑤作出判断.当时,,所以接受. (2)①提出假设. ②找统计量..③求临界值.对给定的,查表得. ④求观察值..⑤作出判断.当时,,所以接受.9-13 (1)①提出假设.②找统计量..③求临界值.对给定的,查表得. ④求观察值..1022:1H σ=()12211122121()1~1,11()1n i i n i i X X n F F n n Y Y n ==--=----∑∑0.05α=()()0.0250.9755,57.15,5,50.14F F ==222112221139.33,269,0.14655S S S F S =⨯=⨯==0.05α=0.147.15F <<0H 012:0H μμ-=()12~2X Y t t n n μμ---=+-0.05α=()0.02510 2.23t =0.14067,0.13883,0.57X Y t ===0.05α=0.57 2.23t =<0H 21022:1H σσ=()12211122121()1~1,11()1n i i n i i X X n F F n n Y Y n ==--=----∑∑0.01α=()()0.0050.9958,9 6.69,8,9F F ==17.342221122264,226,0.28S S S F S ====⑤作出判断.当时,,所以接受. (2)①提出假设. ②找统计量..③求临界值.对给定的,查表得. ④求观察值.⑤作出判断.当时,,所以拒绝.9-14 ①提出假设.②找统计量..③求临界值.对给定的,查表得. ④求观察值..⑤作出判断.当时,,所以接受.9-15 (1)①提出假设.②找统计量.. ③求临界值.对给定的,查表得.④求观察值..0.01α=16.697.34F <<0H 02:0H μμ-=()12~2X Y t t n nμμ---=+-0.01α=()0.00517 2.9t =533,562,X Y t ===0.01α= 2.9t >0H 012:0H μμ-=()12~2X Y t t n n μμ---=+-0.05α=()0.02511 2.20t =17.681,17.630,X Y t ===0.05α= 2.2t <0H 21022:1H σσ=()12211122121()1~1,11()1n i i n i i X X n F F n n Y Y n ==--=----∑∑0.10α=()()0.050.9518,5 4.82,8,5 3.69F F ==22211222113.69,19.2,0.1285S S S F S =⨯=⨯==⑤作出判断.当时,,所以拒绝. (2)①提出假设.②找统计量.. ③求临界值.对给定的,查表得 ④求观察值.. ⑤作出判断.当时,,所以拒绝. 9-16 ①提出假设.②找统计量..③求临界值.对给定的,查表得. ④求观察值..⑤作出判断.当时,,所以接受.9-17 ①提出假设.②找统计量.. ③求临界值.对给定的,查表得. ④求观察值..⑤作出判断.当时,,所以接受. 0.10α=13.69F <0H 21022:1H σσ=()1221111222121()~,1()n i i n i i X n F F n n Y n μμ==-=-∑∑0.10α=()()0.050.9519,6 4.06,9,6 3.37F F ==0.128F =0.10α=13.37F <0H 02:0H μμ-=()12~2X Y t t n n μμ---=+-0.05α=()0.02513 2.16t=t =0.05α= 2.16t <0H 21022:1H σσ=()12211122121()1~1,11()1n i i n i i X X n F F n n Y Y n ==--=----∑∑0.05α=()()0.0250.97516,751.2,6,7 5.7F F ==222112220.1048,0.0272, 3.85S S S F S ====0.10α=15.125.7F <<0H9-18 根据题目要求,考虑假设检验.其中 服从泊松分布,其分布律为的极大似然估计为样本均值,其观察值为则统计量为其中,是按的泊松分布律计算出的的取值为0,1,2,3,4 这五种情况的概率.查表得,故接受.9-19 根据题目要求,考虑假设检验,其中服从等概率分布,其 分布律为由观测数据得,则统计量为其中.查表得,故接受.六、自测题及答案1.设总体是来自的样本,记,当和未知时,则(1)检验假设所使用的统计量是.(2)检验假设所使用的统计量是.()()()()0010:,:H F x F x H F x F x =≠0F {}() 0,1,2,!kP X k e k k λλ-=== λX ()106544940.61200X =++++=()25210.7853i i i in np np χ=-==∑200n =i p 0.61λ=X ()220.0549.49χχ=>0H ()()00:H F x F x =0F {}()11,2,,66P X k e k λ-=== 120,20i n np ==()()26211936102525 4.820i i i in np np χ=-==+++++=∑120n =()220.05511.1χχ=>0H ()212~,,,,,n X N X X X μσ X 211,ni i i X X n σ===∑21()nii XX =-∑μ2σ00:H μμ=________2200:H σσ=________2.设总体服从正态分布,方差未知,对假设进行假设检验时,通常采取的统计量是,服从分布,自由度是.3.在检验时,用统计量,若时,用检验,它的拒绝域为.若时,用检验,它的拒绝域为.4.设总体,设假设检验的拒绝域为,则犯第一类错误的概率为;犯第二类错误的概率为.5.某加工厂生产一批轴承,质量检查规定,废品率不超过3%可以出厂,否则不能出厂.现从这批产品中抽查100件,发现有5件废品.为判断这批产品能否出厂,要求检验的假设为;在显著性水平下,选定的统计量为,其观测值为;该统计量近似服从分布,拒绝域为.6.设总体,和未知,假设检验.若采用检验法,则在显著性水平之下,其拒绝域为( ).(A) (B) (C) (D)7.设和是来自正态总体的样本均值和样本方差,样本容量为,为( ). (A)的拒绝域 (B)的接受域 (C)的一个置信区间 (D)的一个置信区间 8.设总体,其中未知,假设检验.若取得显X ()2,N μσ2σ0211:,:H H μμμ=≠2μ________________________2χ()2221n S χσ-=2200:H σσ=________________2200:H σσ≠________________()~,X B n p 0010:;:H p p H p p =≠W ={}{}()1212,X C X C C C ≤≥< ________________01:0.03;:0.03H p H p =>α________________________________()2~,X N μσμ2σ0010:,:H H μμμμ=≠t α()1/21t t n α-<-()1/21t t n α-≥-()11t t n α-≥-()11t t n α-<--X 2S ()2,N μσn (00.051X t n μ->-00:H μμ=00:H μμ=μ2σ()2~,X N μσ2σ01:1,:1H H μμ≤>著性水平,则其拒绝域为( ).(A) (B) (C) (D)9.对正态分布的数学期望进行假设检验,如果在显著性水平0.05下接受,那么在显著性水平0.01下,下列结论中正确的是( ).(A)必接受 (B)可能接受,也可能拒绝(C)必拒绝 (D)不接受,也不拒绝 10.自动包装机装出的每袋重量服从正态分布,规定每袋重量的方差不超过,为了检查自动包装机的工作是否正常,对它生产的产品进行抽样检查,假设检验,则下列命题正确的是( ).(A)如果生产正常,则检测结果也认为生产正常的概率为0.95 (B)如果生产不正常,则检测结果也认为生产不正常的概率为0.95 (C)如果检测结果认为生产正常,则生产确实正常的概率为0.95(D)如果检测结果认为生产不正常,则生产确实不正常的概率为0.95 11.设为正态总体中抽取的样本,在显著性水平下检验.取拒绝域为.试求当时,所烦的第二类错误的概率.12.甲、乙两台机床生产同一型号的滚球,现从这两台机床的产品中分别抽取8个和9个,测得滚球珠的直径(单位:mm)如下:甲机床 15.0 14.5 15.2 15.5 14.8 15.1 15.2 14.8 乙机床 15.2 15.0 14.8 15.2 15.0 14.8 15.1 14.8设滚珠直径服从正态分布,问乙机床的加工精度是否比甲机床高()? 13.一种元件,要求其使用寿命不得低于1000h,现在从一批这种元件中随机地抽取25件,测得其寿命平均值为950h,已知该元件寿命服从标准差的正态分布,试在下,确定该批元件是否合格?14.某台机器加工某种零件,规定零件长度为100cm,标准差不得超过2cm,每天定时检查机器运行情况,某日抽取10个零件,取到平均长度,样本标准差为,设加工的零件长度服从正态分布.问该日机器工作状况是否正常()?0.05α=0.051X u ->(0.0511X t n >+-0.051X t ->(0.0511X t n <--μ00:H μμ=0H 0H 0H 0H 0H 0H α2201:,:;0.05H a H a σσα≤>=12,,,n X X X (),1N μα()01:0:0H H μμ=≠(){}121/2,,,nW X X XX u α-=> 1μ=0.05α=100h σ=0.05α=101cm X =2cm S =0.05α=15.甲、乙相邻两地段各取了50块和52块岩心进行磁化率测定,算出样本标准差分别为,试问甲、乙两段的标准差是否有显著差异()?16.在集中教育开课前对学员进行测验,过了一段时间后,又对学员进行了与前一次同样程度的考查,目的是了解学员两次考试的分数是否有差别().从两次考卷中随机抽取12份考试成绩,如下表:考查次数考分总计平均第1次80.5 91.0 81.0 85.0 70.0 86.0 69.5 74.0 72.5 83.0 69.0 78.5 940 78.5 第2次76.0 90.0 91.5 73.0 64.5 77.5 81.0 83.5 86.0 78.5 85.0 73.5 960 80.0 [答案]1.(1)当未知时,检验假设,应选服从个自由度的分布统计量其中.于是.(2)检验假设,应选统计量.2.;分布;.3.双边;;左边;.4..5..6.的含义为.7.由可知.故A项正确.8.,故B项正确.9.检验水平越小,接受域的范围越大,也就是说,在下的接受域包含在下的接受域.如果在时,接受,即样本值落在接受域内,则此样本值也一定落在22120.0139,0.0053S S==0.05α=0.05α= 2σ00:Hμμ=1n-tXt=S=Xt=2200:Hσσ=()22222001n Sσχσσ-==()2211iS X Xn=--t1n-()()2222/21/21,1n nααχχχχ->-<-()2211nαχχ-<-()()()122110000111111;1C Cnn i m i n ii i i i i in n ni i C i CC p p C p p C p pαβ----===+=-+-=-∑∑∑()0,1;2XNμμα=>()11t nα--()(){}1111P t n t nαα--≤-=-(00.051X t nμ->-0.05t>()0.051Xt n>-α0.01α=0.05α=0.05α=H的接受域内,因此接受.即A 项正确.10.因为,从而,因而A 项正确.而B 、C 、D 三项分别反映的是条件概率、、,由假设检验中犯两类错误的概率之间的关系知,这些概率一般不能由唯一确定,故B 、C 、D 三项不正确.11.第二类错误的为.当时,来自,此时因此12.设甲、乙机床生产的滚珠直径分别为,检验乙机床的加工精度是否比甲机床高,即看是否比小.此问题归结为在下,检验假设. 容易想到用统计量,但是在为真时,不知其服从什么分布,只知随机变量而对于,有即事件是一个小概率事件,可惜乙机床计算不出来.但因0.01α=0H {}00P H H α=拒绝为真{}001P H H α-=接受为真{}00P H H 拒绝不真{}00P H H 为真接受{}00P H H 不真拒绝α()1P W μ=1μ=()12,,,n X X X ()1,1N )()1~1,,1~0,1X N X N n ⎛⎫- ⎪⎝⎭}111/2P P X U μμα==-=<)11/21/2111P X μαα=--⎫=-≤-≤-⎪⎭((1/21/2=ΦΦU U αα----))1/21/2=ΦΦU U αα---()()221122~,,~,X N Y N μσμσ22σ21σ0.05α=2222012112:,:H H σσσσ≤>2122S F S =0H ()2211122222/~1,1/S Z F n n S σσ=--α(){}121,1P Z F n n αα>--=(){}121,1Z F n n α>--F与有关,在为真时,有故事件 从而于是仍选用作为检验的统计量.的拒绝域为.已知,得,又查表得.由于,故拒绝.即认为乙机床的加工精度比甲机床的高.13.在下,检验假设. 由于已知,故拒绝域为已知,得故拒绝,即认为这批元件不合格.14.设加工的零件长度为,且,、均未知.(1)检验假设.这是检验问题,当成立时,统计量为于是拒绝域为已知,得Z 0H 22222112112222222122//S S S Z F S S S σσσσ==≥=(){}(){}12121,11,1F F n n Z F n n αα>--⊆>--(){}(){}12121,11,1P F F n n P Z F n n ααα>--⊆>--=2122S F S =0H 0H ()121,1F F n n α>--128,9n n ==221215.01,0.09554,14.99,0.02611X S Y S ====()()120.051,17,8 3.5F n n F α--==2212/0.09554/0.02611 3.695 3.5F S S ===>0H 0.05α=0010:1000,:1000H H μμμμ==<=2σ()120.050,,,:n X W x x x Z Z ⎧⎫==<-⎨⎬⎩⎭00.0525,950,100, 1.65n X Z σ====95010002.5 1.65100Z -==-<-0H X ()2~,X N μσμ2σ010110:100,:100H H μμμμ==≠=t 01H ()~1X T t n =-()(){}12/2,,,:1n W x x x t t n α=≥- 22101,10,2X n S ===已知,查表得,由于,故接受假设,即认为.(2)检验假设.这是检验问题,当成立时,统计量为于是拒绝域为计算得 已知,查表得,由于,故接受假设,即认为.综合(1)(2),可以认为该机器工作状态正常. 15.假设检验,则有由于统计量.查表得故. 因为,所以拒绝假设,即认为甲、乙段岩心磁化率,测定数据的标准差在时有显著差异.16.此为双正态总体方差的假设检验,两总体均值未知,要检验假设1.5811t ==0.05α=()0.0259 2.2622t = 1.5811 2.2622t =<01H 100μ=222222020120:2,:2H H σσσσ==>=2χ02H ()22212()~1nii n XX n χχσ=-=-∑()(){}2212,,,:1n n n W x x x n χχ=≥- ()22222019292nn S χσ-⨯===0.05α=()20.05916.9χ=2916.9n χ=<02H 222σ<012:H σσ=250211501500.0139()0.01425014949i i S X X =⨯⨯-===-∑(大)252221521520.053()0.00545215151i i S Y Y =⨯⨯-===-∑(小)2111222210.01422.630.00541n S n n S n -==-F=()()0.050.0149,51 1.59, 49,51 1.93F F ==()()/20.0250.050.01111.59 1.93 1.7622F F F F α==+=+=/22.63 1.76F F α=>=012:H σσ=0.05α=选取统计量于是拒绝域为 由题意可知因此查表得.由于,故在下,接受,即认为两次考试中学员的成绩无显著差异.2222012112: :H H σσσσ=≠()211222~1,1S F F n n S =--()()/2121/2121,1, 1,1F F n n F F n n αα->--<--221253.15, 60.23S S ==212253.150.882560.23S F S ===()()0.0250.97511,11 3.43,11,110.2915F F ==()()1/20.02511,110.882511,11 3.43F F F α-<=<=0.05α=0H。

第9章假设检验习题解答

第9章假设检验习题解答

9. 在统计假设的显著性检验中,取小的显著性水平α 的目的在于( B ).
A. 不轻易拒绝备选假设.
B. 不轻易拒绝原假设.
C. 不轻易接受原假设.
D. 不考虑备选假设.
10. 在统计假设的显著性检验中,实际上是( B ).
A. 只控制第一类错误,即控制"拒真"错误.
B. 在控制第一类错误的前提下,尽量减小第二类错误(即受伪)的概率.
C. 同时控制第一类错误和第二类错误.
D. 只控制第二类错误,即控制"受伪"错误.
11. 在统计假设的显著性检验中,下列结论错误的是( C ).
A. 显著性检验的基本思想是“小概率原理”,即小概率事件在一次试验中是几乎不可能 发生.
B. 显著性水平α 是该检验犯第一类错误的概率,即"拒真"概率. C. 记显著性水平为α ,则 1 α 是该检验犯第二类错误的概率,即"受伪"概率.
第 9 章假设检验习题解答
一.选择题
1.假设检验中,显著性水平α 的意义是( A ).
A. H0 为真,经检验拒绝 H0 的概率. B. H0 为真,经检验接受 H0 的概率.
C. H0 不真,经检验拒绝 H0 的概率. D. H0 不真,经检验接受 H0 的概率.
2. 假设检验中的显著性水平α 的意义是( A ).
25.设总体 X ~ N (µ,σ 2 ), 其中µ,σ 2都未知 . X1, X 2 , , X n 为来自该总体的一个样
∑ ∑ 本.记
X
=
1 n
n i =1
Xi,S2
=
1 n −1
n i =1
(Xi

X )2

概率统计练习题9答案

概率统计练习题9答案

《概率论与数理统计》练习题9答案考试时间:120分钟题目部分,(卷面共有22题,100分,各大题标有题量和总分) 一、选择题(10小题,共30分)1、一批产品,优质品占20%,进行重复抽样检查,共取5件产品进行检查,则恰有三件是优质品的概率等于( )。

A 、 30.2B 、320.20.8⨯C 、 30.210⨯D 、 32100.20.8⨯⨯答案:D2、设,A B 相互独立,()0.76P AB =, ()0.4P B =,则()P A =( )。

A 、0.16B 、0.36C 、0.4D 、0.6 答案:C3、已知离散型随机变量的分布律为0.250.51 0 p 0.25ξ-1则以下各分布律正确的是( )。

0.5120 p (A)0.52ξ-20.250.253 1 p(B)0.521ξ+-10.50.2510ξ2p(C)0.50.51 0ξ2p(D)答案:D4、设随机变量ξ与η相互独立,且都有相同的分布列则ζξη=+的分布列为( )。

A 、B 、C 、D 、答案:C5、若随机变量ξ与η相互独立,且方差()2,() 1.5D D ξη==,则(321)D ξη--等于( )。

A 、9 B 、24 C 、25 D 、2答案:B6、()0D ξ=是{}1P C ξ==(C 是常数)的( )。

A 、充分条件,但不是必要条件B 、必要条件,但不是充分条件C 、充分条件又是必要条件D 、既非充分条件又非必要条件 答案:C 、7、设随机变量n ξ,服从二项分布(,)B n p ,其中01,1,2,p n <<=,那么,对于任一实数x ,有(({}lim nn Pnp x ξ→+∞-<等于( )。

A22t xe dt --∞B22t edt +∞--∞C 、1222πe dt t x -zD 、0答案:D8、设12(,,)n X X X 是正态总体2~(,)X N μσ的一个样本,样本均值为X ,样本的二阶中心矩为2S .则统计量()/(Q X μ=-服从( )。

概率论 1-9章 习题解答

概率论 1-9章 习题解答

第 一 章 思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么? 3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由. 4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习 题 一1.写出下列试验下的样本空间: (1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω== (3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥ 2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶”-C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件: (1) “甲未中靶”: ;A (2) “甲中靶而乙未中靶”: ;B A (3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”:;C B A C B A C B A(5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC (7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB (9)“三人均未中靶”: ;C B A(10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A3 .设,A B是两随机事件,化简事件(1)()()AB A B (2)()()A B A B解:(1)()()A B A B A B A B B B== ,(2)()()A B A B ()A B A B B A A B B==Ω= .4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率. 解:51050.302410P P ==.5.n 张奖券中含有m张有奖的,k个人购买,每人一张,求其中至少有一人中奖的概率.解法一:试验可模拟为m 个红球,n m -个白球,编上号,从中任取k 个构成一组,则 总数为k nC ,而全为白球的取法有k mn C-种,故所求概率为knkm n C C --1.解法二:令i A —第i 人中奖,,.,2,1k i=B —无一人中奖,则kA A A B21=,注意到k A ,,A ,A 21不独立也不互斥:由乘法公式)()()()()(11213121-=k kA A A P A A A P A A P A PB P(1)(2)(1)121n m n m n m n m k nn n n k -------+=⋅⋅---+ !,1kkn m n m k kn nC C k C C ---同除故所求概率为.6.从5双不同的鞋子中任取4只,这4只鞋子中“至少有两只配成一双”(事件A )的概率是多少? 解:122585410()C C C P A C -=7.在[]1,1-上任取一点X ,求该点到原点的距离不超过15的概率.解:此为几何概率问题:]11[,-=Ω,所求事件占有区间]5151[,-,从而所求概率为121525P ⋅==.8.在长度为a 的线段内任取两点,将其分成三段,求它们可以构成一个三角形的概率.解:设一段长为x ,另一段长为y ,样本空间:0,0,0x a y a x y a Ω<<<<<+<,所求事件满足: 0202()a x a y x y a x y ⎧<<⎪⎪⎪<<⎨⎪+>--⎪⎪⎩从而所求概率=14C D E O A BS S = .9.从区间(0,1)内任取两个数,求这两个数的乘积小于14的概率.解:设所取两数为,,X Y 样本空间占有区域Ω, 两数之积小于14:14X Y <,故所求概率 ()()1()()1S S D S D P S Ω--==Ω,而11411()(1)1(1ln 4)44S D d x x=-=-+⎰,故所求概率为1(1ln 4)4+.10.设A 、B 为两个事件,()0.9P A =,()0.36P A B =,求()P A B . 解:()()()0.90.360.54P A B P A P A B =-=-=;11.设A 、B 为两个事件,()0.7P B =,()0.3P AB =,求()P A B . 解:()()1()1[()()]1[0.70.3]0.6P A B P A B P A B P B P A B ==-=--=--= . 12.假设()0.4P A =,()0.7P A B = ,若A 、B 互不相容,求()P B ;若A 、B 相互独立,求()P B .解:若A 、B 互不相容,()()()0.70.40P B P A B P A =-=-= ;若A 、B 相互独立,则由()()()()()P A B P A P B P A P B +=+-可得()P B =0.5. 13.飞机投弹炸敌方三个弹药仓库,已知投一弹命中1,2,3号仓库的概率分别为0.01,0.02,0.03,求飞机投一弹没有命中仓库的概率.解:设=A {命中仓库},则=A {没有命中仓库},又设=i A {命中第i 仓库})3,2,1(=i 则03.0)(,02.0)(,01.0)(321===A P A P A P ,根据题意321A A A A =(其中321,A A A 两两互不相容) 故123()()()()P A P A P A P A =++=0.01+0.02+0.03=0.06所以94.006.01)(1)(=-=-=A P A P 即飞机投一弹没有命中仓库的概率为0.9414.某市有50%住户订日报,有65%的住户订晚报,有85%的住户至少订这两种报纸中的一种,求同时订这两种报纸的住户的百分比 解: 设=A {用户订有日报},B ={用户订有晚报},则=B A {用户至少订有日报和晚报一种},=AB {用户既订日报又订晚报},已知85.0)(,65.0)(,5.0)(===B A P B P A P ,所以3.085.065.05.0)()()()(=-+=-+=B A P B P A P AB P即同时订这两种报纸的住户的百分比为30%15.一批零件共100个,次品率为10%,接连两次从这批零件中任取一个零件,第一次取出的零件不再放回,求第二次才取得正品的概率.解:设=A {第一次取得次品},=B {第二次取得正品},则=AB {第二次才取得正品},又因为9990)(,10010)(==A B P A P ,则0909.0999010010)()()(===ABP A P AB P16.设随机变量A、B、C 两两独立,A与B互不相容. 已知)(2)(>=C P B P且5()8P B C =,求()P A B .解:依题意)(=AB P 且)()()(B P A P AB P =,因此有0)(=A P .又因25()()()()()3()2[()]8P B C P B P C P B P C P C P C +=+-=-=,解方程85)(3)]([22=+-C P C P151()[()]()442P C P C P B ==⇒=舍去,,()()()()()0.5.P A B P A P B P A B P B =+-==17.设A是小概率事件,即()P A ε=是给定的无论怎么小的正数.试证明:当试验不断地独立重复进行下去,事件A迟早总会发生(以概率1发生).解:设事件iA —第i 次试验中A出现(1,2,,)i n = ,∵(),()1i i P A P A εε==-,(1,2,,)i n = ,∴n次试验中,至少出现A一次的概率为1212()1()n n P A A A P A A A =- 121()n P A A A =-121()()()n P A P A P A =-⋅⋅⋅ (独立性)1(1)nε=--∴12lim ()1n n P A A A →∞= ,证毕.18.三个人独立地破译一密码,他们能单独译出的概率分别是15,13,14,求此密码被译出的概率.解:设A ,B ,C 分别表示{第一、二、三人译出密码},D 表示{密码被译出},则()()()1 P D P A B C P A B C ==-1()1()()() P A B C P A P B P C =-=-42331..5345=-=. 19.求下列系统(如图所示)的可靠度,假设元件i 的可靠度为i p ,各元件正常工作或失效相互独立解:(1)系统由三个子系统并联而成,每个子系统可靠度为123p p p ,从而所求概率为31231(1)p p p --; (2)同理得2312[1(1)]p p --.20.三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率. 解:设1A —第一第三台机器发生故障,2A —第一第三台机器发生故障,3A —第一第三台机器发生故障,D —三台机器中至少有一台发生故障,则123()0.1,()0.2,()0.3P A P A P A ===,故()()()1 P D P A B C P A B C ==-1()1()()()10.90.80.70.496 P A B C P A P B P C =-=-=-⨯⨯=21.设A 、B 为两事件,()0.7P A =,()0.6P B =,()0.4B P A=,求()P A B .解:由()0.4B P A=得()0.4,()0.12,()()()0.48()P A B P A B P A B P B P A B P A ==∴=-=,()()()()0.82P A B P A P B P A B =+-= .22.设某种动物由出生算起活到20年以上的概率为0.8, 活到25年以上的概率为0.4. 问现年20岁的这种动物, 它能活到25岁以上的概率是多少? 解:设A—某种动物由出生算起活到20年以上,()0.8P A =,B —某种动物由出生算起活到25年以上,()0.4P B =,则所求的概率为()()0.4()()0.5()()0.8P A B P B BBP P AAP A P A =====23.某地区历史上从某年后30年内发生特大洪水的概率为80%,40年内 发生特大洪水的概率为85%,求已过去了30年的地区在未来10年内发生特大洪水的概率.解:设A —某地区后30年内发生特大洪灾,()0.8P A =,B —某地区后40年内发生特大洪灾,()0.85P B =,则所求的概率为()()0.15()1()1110.250.2()()P B A P B BBP P A AP A P A =-=-=-=-=.24.设甲、乙两袋,甲袋中有2只白球,4只红球;乙袋中有3只白球,2只红球.今从甲袋中任意取一球放入乙袋中,再从乙袋中任意取一球. 1)问取到白球的概率是多少?2)假设取到白球,问该球来自甲袋的概率是多少? 解:设A :取到白球,B :从甲球袋取白球24431) ()(/)()(/)()5/9 6666P A P A B P B P A B P B =+⋅+⋅= (/)()2/92) (/)()/()2/5()5/9P A B P B P B A P A B P A P A ====25.一批产品共有10个正品和2个次品,任取两次,每次取一个,抽出后不再放回,求第二次抽出的是次品的概率.解:设i B 表示第i 次抽出次品,(1,2)i =,由全概率公式2221111()()()()()B B P B P B P P B P B B =+=211021121112116⨯+⨯=.26.一批晶体管元件,其中一等品占95%,二等品占4%,三等品占1%,它们能工作500h 的概率分别为90%,80%,70%,求任取一个元件能工作500h 以上的概率.解:设=i B {取到元件为i 等品}(i =1,2,3) ,=A {取到元件能工作500小时以上} 则%1)(%,4)(%,95)(321===B P B P B P%70)(%,80)(%,90)(321===BAP BAP B AP所以)()()()()()()(332211BAP B P BAP B P B AP B P A P ++==⋅+⋅+⋅=%70%1%80%4%90%950.89427.某药厂用从甲、乙、丙三地收购而来的药材加工生产出一种中成药,三地的供货量分别占40%,35%和25%,且用这三地的药材能生产出优等品的概率分别为0.65,0.70和0.85,求从该厂产品中任意取出一件成品是优等品的概率.如果一件产品是优质品,求它的材料来自甲地的概率 解:以Bi分别表示抽到的产品的原材来自甲、乙、丙三地,A={抽到优等品},则有:123()0.35,()0.25,P B P B ==P(B )=0.4,1()0.65,AP B =32()0.7,()0.85AAP P B B==所求概率为().P A 由全概率公式得:123123()()()()()()()AAAP A P B P P B P P B P B B B =++0.650.40.70.350.850.250.7175.=⨯+⨯+⨯=1111()()(|)0.26()0.3624()()0.7175P B A P B P A B B P AP A P A ====28.用某种检验方法检查癌症,根据临床纪录,患者施行此项检查,结果是阳性的概率为0.95;无癌症者施行此项检查,结果是阴性的概率为0.90.如果根据以往的统计,某地区癌症的发病率为0.0005.试求用此法检查结果为阳性者而实患癌症的概率.解:设A={检查结果为阳性},B={癌症患者}.据题意有()0.95,()0.90,A AP P B B==()0.0005,P B =所求概率为().BP A()0.10,()0.9995.AP P B B==由Bayes 公式得()()()()()()()AP B P BBP AAAP B P P B P BB =+0.00050.950.00470.47%0.00050.950.99950.10⨯===⨯+⨯29.3个射手向一敌机射击,射中的概率分别是0.4,0.6和0.7.如果一人射中,敌机被击落的概率为0.2;二人射中,被击落的概率为0.6;三人射中则必被击落.(1)求敌机被击落的概率;(2)已知敌机被击落,求该机是三人击中的概率. 解:设A={敌机被击落},B i ={i 个射手击中},i=1,2,3. 则B 1,B 2,B 3互不相容.由题意知:132()0.2,()0.6,()1AAAP P P BB B===,由于3个射手射击是互相独立的,所以1()0.40.40.30.60.60.30.60.40.70.324P B =⨯⨯+⨯⨯+⨯⨯= 2()0.40.60.30.40.70.40.60.70.60.436P B =⨯⨯+⨯⨯+⨯⨯=3()0.40.60.70.168P B =⨯⨯=因为事件A 能且只能与互不相容事件B 1,B 2,B 3之一同时发生.于是(1)由全概率公式得31()()(|)0.3240.20.4360.60.16810.4944i i i P A P B P A B ===⨯+⨯+⨯=∑(2)由Bayes 公式得33331()(|)0.168(|)0.340.4944()(|)i i i P B P A B P B A P B P A B ====∑.30.某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1)该厂产品能出厂的概率;(2)任取一出厂产品未经调试的概率. 解:A ——需经调试 A ——不需调试 B ——出厂则%30)(=A P ,%70)(=A P ,%80)|(=A B P ,1)|(=A B P (1)由全概率公式:)()()()()(ABP A P ABP A P B P ⋅+⋅=%941%70%80%30=⨯+⨯=. (2)由贝叶斯公式:9470%94)()()()()(=⋅==A B P A P B P B A P BAP .31.进行一系列独立试验,假设每次试验的成功率都是p,求在试验成功2次之前已经失败了3次的概率. 解:所求的概率为234(1)pp -.32.10个球中有一个红球,有放回地抽取,每次取一球,求直到第n 次才取k 次()k n ≤红 球的概率解:所求的概率为11191010kn kk n C ---⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭33.灯泡使用寿命在1000h 以上的概率为0.2,求3个灯泡在使用1000h 后,最多只有一个坏了的概率.解:由二项概率公式所求概率为312333(0)(1)0.2(0.2)0.80.104P P C +=+⋅=34.(Banach 问题)某人有两盒火柴,每盒各有n 根,吸烟时任取一盒,并从中任取一根,当他发现有一盒已经用完时,试求:另一盒还有r 根的概率. 解:设试验E —从二盒火柴中任取一盒,A—取到先用完的哪盒,1()2P A =,则所求概率为将E 重复独立作2n r-次A发生n次的概率,故所求的概率为222211()()()222nnnn rn rn rn r n r C P n C -----==.第 二 章思 考 题1. 随机变量的引入的意义是什么?答:随机变量的引入,使得随机试验中的各种事件可通过随机变量的关系式表达出来,其目的是将事件数量化,从而随机事件这个概念实际上是包容在随机变量这个更广的概念内.引入随机变量后,对随机现象统计规律的研究,就由对事件及事件概率的研究转化为随机变量及其取值规律的研究,使人们可利用数学分析的方法对随机试验的结果进行广泛而深入的研究.随机变量概念的产生是概率论发展史上的重大事件,随机事件是从静态的观点来研究随机现象,而随机变量的引入则变为可以用动态的观点来研究.2.随机变量与分布函数的区别是什么?为什么要引入分布函数?答:随机变量与分布函数取值都是实数,但随机变量的自变量是样本点,不是普通实数,故随机变量不是普通函数,不能用高等数学的方法进行研究,而分布函数一方面是高等数学中的普通函数,另一方面它决定概率分布,故它是沟通概率论和高等数学的桥梁,利用它可以将高度数学的方法得以引入.3. 除离散型随机变量和连续型随机变量,还有第三种随机变量吗? 答:有,称为混合型. 例:设随机变量[]2,0~U X ,令⎩⎨⎧≤≤<≤=.21,1;10,)(x x x x g则随机变量)(X g Y =既非离散型又非连续型.事实上,由)(X g Y =的定义可知Y 只在[]1,0上取值,于是当0<y 时,0)(=y F Y ;1≥y 时,1)(=y F Y ;当10<≤y 时,()2))(()(y y X P y X g P y F Y =≤=≤=于是⎪⎪⎩⎪⎪⎨⎧≥<≤<=.1,1;10,2;0,0)(y y yy y F Y首先Y 取单点{1}的概率021)01()1()1(≠=--==Y Y F F Y P ,故Y 不是连续型随机变量.其次其分布函数不是阶梯形函数,故Y 也不是离散型随机变量.4.通常所说“X 的概率分布”的确切含义是什么?答:对离散型随机变量而言指的 是分布函数或分布律,对连续型随机变量而言指的是分布函数或概率密度函数.5.对概率密度()f x 的不连续点,如何由分布函数()F x 求出()f x ?答:对概率密度()f x 的连续点,()()f x F x '=,对概率密度()f x 的有限个不连续点处,可令()f x c =(c 为常数)不会影响分布函数的取值.6.连续型随机变量的分布函数是可导的,“概率密度函数是连续的”这个说法对吗?为什么?答:连续型随机变量密度函数不一定是连续的,当密度函数连续时其分布函数是可导的,否则不一定可导.习 题1.在测试灯泡寿命的试验中,试写出样本空间并在其上定义一个随机变量.解:每一个灯泡的实际使用寿命可能是),0[+∞中任何一个实数, 样本空间为}0|{≥=Ωt t ,若用X 表示灯泡的寿命(小时),则X 是定义在样本空间}0|{≥=Ωt t 上的函数,即tt X X==)(是随机变量.2.一报童卖报, 每份0.15元,其成本为0.10元. 报馆每天给报童1000份报, 并规定他不得把卖不出的报纸退回. 设X 为报童每天卖出的报纸份数, 试将报童赔钱这一事件用随机变量的表达式表示.解:{报童赔钱}⇔{卖出的报纸钱不够成本},而当 0.15 X <1000× 0.1时,报童赔钱,故{报童赔钱} ⇔{X ≤666}3.若2{}1P X x β<=-,1{}1P X x α≥=-,其中12x x <,求12{}P x X x ≤<.解:1221{}{}{}P x X x P X x P X x ≤<=<-<21{}[1{}]1P X x P X x αβ=<--≥=--.4.设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=1,110,0,0)(2x x x x x F试求(1)⎭⎬⎫⎩⎨⎧≤21X P (2)⎭⎬⎫⎩⎨⎧≤<-431X P (3)⎭⎬⎫⎩⎨⎧>21X P解:41)21(21)1(==⎭⎬⎫⎩⎨⎧≤F X P ; (2)1690169)1()43(431=-=--=⎭⎬⎫⎩⎨⎧≤<-F F X P ; (3)43)21(121121=-=⎭⎬⎫⎩⎨⎧≤-=⎭⎬⎫⎩⎨⎧>F X P X P .5.5个乒乓球中有2个新的,3个旧的,如果从中任取3个,其中新的乒乓球的个数是一个随机变量,求这个随机变量的概率分布律和分布函数,并画出分布函数的图形.解:设X 表示任取的3个乒乓球中新的乒乓球的个数,由题目条件可知,X 的所有可能 取值为0,1,2,∵33351{0}10C P X C ===,1223356{1}10C C P XC ===,2133353{2}10C C P XC ===∴随机变量X的概率分布律如下表所示: 由()k kx xF x P ≤=∑可求得()F x 如下:0 ,0{0} ,01(){0}{1} ,12{0}{1}{2} x P X x F x P X P X x P X P X P X <=≤<==+=≤<=+=+= ,2x ⎧⎪⎪⎨⎪⎪≥⎩0 ,00.1 ,010.7 ,121 ,2x x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩,()F x 的图形如图所示.6.某射手有5发子弹,射击一次命中率为0.9,如果他命中目标就停止射击,命不中就一直射击到用完5发子弹,求所用子弹数X 的概率分布 解:7 .一批零件中有9个合格品与3个废品,安装机器时,从这批零件中任取一个,如果每次取出的废品不再放回,求在取出合格品之前已取出的废品数的分布律. 解:设{}ii A =第次取得废品,{}i A i =第次取得合格品,由题意知,废品数X的可能值为0,1,2,3,事件{0}X =即为第一次取得合格品,事件{1}X =即为第一次取出的零件为废品,而第二次取出的零件为合格品,于是有19{0}()0.7512P X P A ====,21211399{1}()0.2045121144A P X P A A P A P A ====⋅=≈()(),3212311123299{2}()0.0409121110220A A P X P A A A P A P P A A A ===⋅⋅=≈()()()=32412341112123{3}()32191 0.00451211109220A A A P X P A A A A P A P P P A A A A A A ====⋅⋅⋅=≈()()()()所以X8.从101-中任取一个数字,若取到数字)101( =i i 的概率与i成正比,即1,2,,10P X i ki i === (),(),求k.解:由条件1,2,,P X i k ii === (),(),由分布律的性质1011i i p ==∑,应有1011i k i ==∑,155k =.9 .已知随机变量X 服从参数1=λ的泊松分布,试满足条件{}01.0=>N X P 的自然数N .解:因为{}{}{}99.0101.0),1(~=>-=≤=>N X P N X P Y X P P X 所以从而{}99.0!==≤∑=-Nk k eNX P λ查附表得4=N10.某公路一天内发生交通事故的次数X 服从泊松分布,且一天内发生一次交通事故的概率与发生两次交通事故的概率相等,求一周内没有交通事故发生的概率. 解:设~()XP λ,由题意:)1(=X P =)2(=X P ,2!2!1λλλλ--=ee,解得2=λ,所求的概率即为222!0)0(--===eeX P .11 . 一台仪器在10000个工作时内平均发生10次故障,试求在100个工作时内故障不多于两次的概率.解:设X 表示该仪器在100个工作时内故障发生的次数,1~(100,)1000XB ,所求的概率即为)0(=X P ,)1(=X P ,)2(=X P 三者之和.而100个工作时内故障平均次数为=μ1.010001100=⨯,根据Poisson 分布的概率分布近似计算如下:99984.000452.009048.090484.0!2!1!0)2(21=++=++≈≤---μμμμμμeeeX P故该仪器在100个工作时内故障不多于两次的概率为0.99984. 12.设[]~2,5XU ,现对X 进行三次独立观察,试求至少有两次观察值大于3的概率.解:()1,2530 ,x f x ⎧≤≤⎪=⎨⎪⎩其余,令()3AX =>,则()23p P A ==,令Y 表示三次重复独立观察中A 出现次数,则2~3,3YB ⎛⎫ ⎪⎝⎭,故所求概率为()21323332121202333327P Y C C ⎛⎫⎛⎫⎛⎫⎛⎫≥=+=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.13.设某种传染病进入一羊群,已知此种传染病的发病率为2/3,求在50头已感染的羊群中发病头数的概率分布律.解:把观察一头羊是否发病作为一次试验,发病率3/2=p ,不发病率3/1=q ,由于对50头感染羊来说是否发病,可以近似看作相互独立,所以将它作为50次重复独立试验,设50头羊群中发病的头数为X ,则X (50,2/3)X B ,X 的分布律为{})50,,2,1,0(31325050 =⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==-k C k X P kkk14.设随机变量X 的密度函数为2, 01()0 , x x p x <<⎧=⎨⎩其它,用Y 表示对X 的3次独立重复观察中事件1{}2X ≤出现的次数,求{2}P Y =.解:(3,)Y p B ,1211{}224p P X x d x =≤==⎰,由二项概率公式223139{2}()()4464P Y C ===.15.已知X 的概率密度为2,0()0,0xa x ex f x x λ-⎧>=⎨≤⎩,试求:(1)、未知系数a ;(2)、X 的分布函数()F x ;(3)、X 在区间1(0,)λ内取值的概率. 解:(1)由⎰+∞-=021dx eax xλ,解得.22λ=a(2)()()()F x P X x f x dx+∞-∞=≤=⎰,∴当x ≤0时0)(=x F ,当x >0时,222()1(22)2xxxeF x a x ed x x x λλλλ--==-++⎰,∴2211(22),0()20, 0x x x F x x λλ⎧-++>⎪=⎨⎪≤⎩.(3)511(0)()(0)12P X F F eλλ<<=-=-.16.设X 在(1,6)内服从均匀分布,求方程210x X x ++=有实根的概率.解: “方程210x X x ++=有实根”即{2}X >,故所求的概率为{2}P X >=45.17.知随机变量X 服从正态分布2(,)N a a ,且Y a X b =+服从标准正态分布(0,1)N ,求,a b .解:由题意222(0)1a b a a a ⎧+=>⎨⋅=⎩ 解得:1,1a b ==-18.已知随机变量X 服从参数为λ的指数分布,且X 落入区间(1,2)内 的概率达到最大,求λ. 解:2(12)(1)(2)()P X P X P X e e g λλλ--<<=>->=-=令,令()0g λ'=,即022=---λλee,即021=--λe,∴.2ln =λ19.设随机变量(1,4)X N ,求(01.6)P X ≤<,(1)P X <. 解:011.61(01.6)()22P X P X --≤<=≤< 1.6101()()0.309422--=Φ-Φ=11(1)()(0)0.52P X -<==Φ=Φ=.20.设电源电压()2~220,25XN ,在200,200240,240XX X ≤<≤>电压三种情形下,电子元件损坏的概率分别为0.1,0.001,0.2,求: (1)该电子元件损坏的概率α;(2)该电子元件损坏时,电压在200~240伏的概率β.解:设()()()123200,200240,240A XA X A X =≤=<≤=>, D —电子元件损坏,则(1)123,,A A A完备,由全概率公式()()()()123123DD D P D P A P P A P P A P A A A α⎛⎫⎛⎫⎛⎫==++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,今()()()12002200.810.80.21225P A -⎛⎫=Φ=Φ-=-Φ= ⎪⎝⎭,同理()()()()20.80.820.810.576P A =Φ-Φ-=Φ-=,()310.2120.5760.212P A =--=, 从而()0.062P D α==.(2)由贝叶斯公式()()222D P A P A A P D P D β⎛⎫⎪⎝⎭⎛⎫==⎪⎝⎭0.5760.0010.0090.062⨯==.21.随机变求2Y X =的分布律解:. 22.变量X 服从参数为0.7的0-1分布,求2X 及22X X -的概率分布.解.X 的分布为易见,2X 的可能值为0和1;而22X X -的可能值为1-和0,由于2{}P Xu =={P X }u =(0,1)u =,可见2X的概率分布为:由于2{21}{1}0.7P XX P X -=-===,2{20}{0}0.3P X X P X -====,可得22XX-的概率分布为23.X 概率密度函数为21()(1)X f x x π=+,求2Y X =的概率密度函数()Y f y .解:2y x =的反函数为2y x =,代入公式得22()()()22(4)Y X y y f y f y π'==+.24.设随机变量[]~0,2X U ,求随机变量2YX=在()0,4内概率密度()Y f y .解法一(分布函数法) 当0y<时,()0,4Y F y y =>时()1Y F y =,当04y ≤≤时,()(YXF y P X F =≤=从而 ()040 ,XY f y f y ⎧=≤≤⎪=⎨⎪⎩其余解法二(公式法)2y x=在()0,2单增,由于反函数x=在()0,4可导,'y x =,从而由公式得()040 ,XYf y f y ⎧=≤≤⎪=⎨⎪⎩其余25. ,0)0 ,0xXe xf x x -⎧≥=⎨<⎩(,求XYe=的密度.解法一(分布函数法)因为0X≥,故1Y>,当1y >时,()()()ln ln YX F y P X y F y =≤=,()()ln 2111ln ,10 ,1y X Yf y e y y y y f y y -⎧==>⎪∴=⎨⎪≤⎩.解法二(公式法)xye=的值域()1,+∞,反函数ln xy=,故()()[]21ln ln ' ,10 ,1X Yf y y y y f y y ⎧=>⎪=⎨⎪≤⎩.26.设随机变量X 服从(0,1)上的均匀分布,分别求随机变量XY e =和ln Z X =的概率密度()Y f y 和()Z f z .解:X 的密度为1, 01() x fx ⎧<<⎪=⎨⎪⎩0,若其它,(1)函数xye=有唯一反函数,ln xy=,且1Ye<<,故(ln )(ln ), 1() X f y y y ef y '⎧<<⎪=⎨⎪⎩0,其它1, 1 y e y ⎧<<⎪=⎨⎪⎩0,其它.(2)在区间(0,1)上,函数ln ln zx x==-,它有唯一反函数zxe-=,且0Z>,从而()(), () z z X Zf e e fz -->⎧'⎪=⎨⎪⎩z 00,其它, zz e ->⎧⎪=⎨⎪⎩0,其它. 27. 设()Xf x 为X 的密度函数,且为偶函数,求证X -与X 有相同的分布.证:即证Y X=-与X 的密度函数相同,即()()YXf y f y =.证法一(分布函数法)()()()()()11YX F y P X y P X y P X y F y =-≤=≥-=-≤-=--, ()()()()1YX Xp y p y p y ∴=--⋅-=,得证.证法二(公式法)由于y x=-为单调函数,∴()()()()()'YX X Xp y p y y p y p y =--=-=.28.设随机变量X 服从正态分布),(2σμN ,0,>+∞<<-∞σμ ,)(x F 是X 的分布函数,随机变量)(X F Y=.求证Y 服从区间]1,0[上的均匀分布.证明:记X 的概率密度为)(x f ,则⎰∞-=xdt t f X F .)()( 由于)(x F 是x 的严格单调增函数,其反函数)(1x F - 存在,又因1)(0≤≤x F ,因此Y的取值范围是]1,0[. 即当10≤≤y 时{}{}{}1()()()Y F y P Y y P F X y P X F y -=≤=≤=≤.)]([1y y FF ==-于是Y 的密度函数为1, 01()0, Y y p y ≤<⎧=⎨⎩其它即Y 服从区间]1,0[上的均匀分布.第 三 章 思 考 题1(答:错)2 (答:错) 3答:错)习 题 三1 解:)(}1,1{}1,1{}{已知独立==+-=-===Y X P Y X P Y X P 2121212121}1{}1{}1{}1{=⋅+⋅===+-=-==Y P X P Y P X P .由此可看出,即使两个离散随机变量Y X 与相互独立同分布, Y X 与一般情况下也不会以概率1相等. 2解:由∑∑ijij p =1可得:14.0=b ,从而得:.1,0;2,1,0}{}{},{=======j i j Y P i X P j Y i X P 故Y X ,相互独立.7.035.015.014.006.0}1,1{}0,1{}1,0{}0,0{)1,1(}1,1{=+++===+==+==+====≤≤Y X P Y X P Y X P Y X P F Y X P3解:)()1,1(11AB P Y X P p====,121)()(==A B P A P)()0,1(12B A P Y X P p====613241)()(=⋅==A B P A P因为: ,32)(1)(:,1)()(=-==+A B P A B P A B P A B P 所以121)()()()()()()()1,0(21=-=-=-=====AB P B A P AB P AB P B P A B P B A P Y X P p12812161121122=---=p,结果如表所示.4 解: X 的边缘分布律为32}2{,31}1{====X P X PY 的边缘分布律为21}2{,21}1{====X P Y P1=Y 的条件下X 的条件分布为0}1{}1,1{}11{=======Y P Y X P Y X P1}1{}1,2{}12{=======Y P Y X P Y X P2=X 的条件下Y 的条件分布为,32}2{}1,2{}21{=======X P Y X P X Y P ,31}2{}2,2{}22{=======X P Y X P X Y P5 解:(1)由乘法公式容易求得),(Y X 分布律.易知,放回抽样时,61}1{,65}0{,61}1{,65}0{========Y P Y P X P X P且}{}{},{i X P i X j Y P j Y i X P ====== .1,0;1,0}{}{=====j i j Y P i X P于是),(Y X 的分布律为(2)不放回抽样,则,61}1{,65}0{====X P X P ,在第一次抽出正品后,第二次抽取前的状态:正品9个,次品2个.故 ,112}01{,119}00{======X Y P X Y P又在第一次抽出次品后,第二次抽取前状态:正品10个,次品1个.故6解 ),(y x f =⎪⎩⎪⎨⎧≤≤≤≤--.,0,,,))((1否则d y c b x a d c a b⎪⎩⎪⎨⎧><≤≤-=b x a x b x a a b x f X,0,1)(, )(y f Y =⎪⎩⎪⎨⎧><≤≤-d y c y d y c d c ,0,1随机变量X 及Y 是独立的. 7 解 (1)),(y x f =yx y x F ∂∂∂),(2=)9)(4(6222y x ++π(2)X 的边缘分布函数=+∞=),()(x F x F X )22)(22(12ππππ++x arctg=)22(1x arctg+ππ.由此得随机变量X 的边缘分布密度函数==)()(x F dxd x f X X )4(22x +π同理可得随机变量Y 的边分布函数=+∞=),()(y F y F Y )32)(22(12y arctg++ππππ=)32(1y arctg+ππY 的边缘分布密度函数==)()(y F dyd y f y Y )9(32y +π(3)由(2)知)(x f X )(y f Y =)4(22x +π)9(32y +π=),(y x f ,所以X 与Y 独立.8 解 因为X 与Y 相互独立,所以Y X ,的联合概率密度为∞<<-∞∞<<-∞==+-y x ey f x f y x f y x Y X ,,21)()(),(222π⎰⎰⎰⎰≤+---+--=-====12012110222222222,12121}2{y x rry x e erdr ed dxdye Z P πθππ⎰⎰⎰⎰≤+≤----+--=-====41202122121222222222,2121}1{y x rry x ee erdr ed dxdye Z P πθππ⎰⎰⎰⎰>+∞-∞--+-=-====420222222222222,2121}0{y x rry x eerdr ed dxdye Z P πθππ所以,Z 的分布律为:.1}2{,}1{,}0{212212-----==-====e Z P ee Z P e Z P9解:(1)由 ⎰⎰∞+∞-∞+∞-dxdy y x f ),(=1,即⎰⎰∞+∞++-==⇒0)43(121A dxdy eA y x ,即12=⇒A因此),(y x f =,,00,0,12)43(⎪⎩⎪⎨⎧>>+-其它y x e y x (2)X 的边缘概率密度为 当0>x ,)(x f X =⎰∞∞-dy y x f ),(=⎰∞+-0)43(12dy ey x =xe33-, 当0>y ,)(y f Y =⎰∞0),(dx y x f =⎰∞+-0)43(12dx ey x =ye44-,可知边缘分布密度为:)(x f X=⎪⎩⎪⎨⎧>-,,0,0,33其它x e x)(y f Y =⎪⎩⎪⎨⎧>-,,00,44其它y e y(3)}20,10{≤<≤<Y X P =⎰⎰--+---=102083)43()1)(1(12eedxdy ey x10解 因为 ⎰⎰∞+∞-∞+∞-dxdy y x f ),(=1,即⎰⎰=1121dy y xdxc , 6,13121==⋅⋅c c对任意10<<x ,)(x f X =⎰∞+∞-dy y x f ),(=⎰=1226x dy xy ,所以)(x f X =⎩⎨⎧<<,,0,10,2其它x x对任意10<<y ,)(y f Y =⎰∞+∞-dx y x f ),(=⎰=122,36y dx xy ,所以)(y f Y =⎪⎩⎪⎨⎧<<,,0,10,32其它y y故),(y x f =)(x f X )(y f Y ,所以X 与Y 相互独立.11解 由 2ln 12211===⎰e eDxdx xS当21e x ≤≤时,,2121),()(11xdy dy y x f x fx x X===⎰⎰其它)(x f X =0.所以:.41)2(=Xf12解(1)X ,Y 的边缘密度为分布密度为:)(x f X =⎰-<<=x xx x dy 10,21)(y f Y =⎰<<--=111,11yy y dx故)(y x f YX=)(),(y f y x f Y =⎪⎩⎪⎨⎧<-,,0,,11其它x y y)(x y f XY=)(),(x f y x f X =⎪⎩⎪⎨⎧<<,,0,1,21其它y x x(2)因为)(x f X )(y f Y y -=1≠),(y x f =1,故X 与Y 不相互独立.13证 设X 的概率密度为)(x f ,Y 的概率密度为)(y f ,由于Y X ,相互独立,故),(Y X 的联合密度为),(y x f =)(x f )(y f .于是⎰⎰⎰⎰≤∞+∞-∞+==≤yx xdy y f dxx f dxdy y f x f Y X P )()()()(}{⎰⎰⎰⎰>∞+∞-∞+==>yx ydx x f dyy f dxdy y f x f Y X P )()()()(}{交换积分次序可得:⎰⎰∞+∞+∞-=xdy y f dxx f )()(⎰⎰∞+∞+∞-ydx x f dyy f )()(所以=≤}{Y X P =>}{Y X P 1-}{Y X P ≤故21}{=≤Y X P .14解 设)(A P p =,由于Y X ,相互独立同分布,于是有,)(}{}{)(p A P a X P a Y P B P ==≤=≤=则,1)(p B P -=又=)(B A P )(A P +)(B P -)(A P )(B P =p +()1p --p )1p -=9712=+-p p解得:,32,3121==p p 因而a 有两个值.由于2121}{)(1-==≤=⎰a dx a X P A P a,所以,当311=p 时,由21-a =31得35=a当322=p 时,由21-a =32得37=a .15解 (1)Y X +的可能取值为2,3,4.且,41}1{}1{}2{=====+Y P X P Y X P 2141414141}1,2{}2{}1{}3{=⋅+⋅===+====+Y X P Y P X P Y X P,41}2{}2{}4{=====+Y P X P Y X P 故有:;41}4{,21}3{,41}2{==+==+==+Y X P Y X P Y X P(2)由已知易得 ;21}42{,21}22{====X P X P16解 由已知得所以有17证明:对任意的,,,1,021n n k += 我们有∑=-====ki i k Y P i X P k Z P 0}{}{}{(因为X 与Y 相互独立)=∑=-----ki i k n ik ik nin ii n qpC qp C 0)(2211=∑=-+-ki kn n ki k n i n qp C C2121)( (利用组合公式 ∑=+-=ki kn m ik ni m C C C 0)=kn n kkn n qp C -++2121即YX Z+=~),(21p n n b +18解 Y X Z +=在[0,2]中取值,按卷积公式Z 的分布密度为:,)()()()(1dx x z fdx x z fx fz fYYXZ-=-=⎰⎰∞+∞-⎩⎨⎧≤≤-≤≤⎩⎨⎧≤-≤≤≤,1,10:,10,10:z x z x x z x 即其中如图,从而:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-=≤≤==⎰⎰-。

假设检验习题及答案

假设检验习题及答案

假设检验习题及答案第8章假设检验一、填空题1、对正态总体的数学期望μ进行假设检验,如果在显著性水平0.05下,接受假设00:μμ=H ,那么在显著性水平0.01下,必然接受0H 。

2、在对总体参数的假设检验中,若给定显著性水平为α,则犯第一类错误的概率是α。

3、设总体),(N ~X 2σμ,样本n 21X ,X ,X Λ,2σ未知,则00:H μ=μ,01:H μ<μ的拒绝域为 )}1(/{0--<-n t nS X αμ,其中显著性水平为α。

4、设n 21X ,X ,X Λ是来自正态总体),(N 2σμ的简单随机样本,其中2,σμ未知,记∑==n 1i i X n 1X ,则假设0:H 0=μ的t 检验使用统计量=T Q n n X )1(- .二、计算题1、某食品厂用自动装罐机装罐头食品,规定标准重量为250克,标准差不超过3克时机器工作为正常,每天定时检验机器情况,现抽取16罐,测得平均重量252=X 克,样本标准差4=S 克,假定罐头重量服从正态分布,试问该机器工作是否正常?解:设重量),(~2σμN X 05.016==αn 4252==S X(1)检验假设250:0=μH 250:1≠μH ,因为2σ未知,在0H 成立下,)15(~/250t n S X T -=拒绝域为)}15(|{|025.0t T >,查表得1315.2)5(025.0=≠t由样本值算得1315.22<=T ,故接受0H(2)检验假设9:20=σH 9:201>σH 因为μ未知,选统计量2022)1(σS n x -= 在0H 成立条件下,2x 服从)15(2x 分布,拒绝域为)}15({205.02x x >,查表得996.24)15(205.0=x ,现算得966.24667.26916152>=?=x ?拒绝0H ,综合(1)和(2)得,以为机器工作不正常2、一种电子元件,要求其使用寿命不得低于1000小时,现在从一批这种元件中随机抽取25 件,测得其寿命平均值为950小时,已知该种元件寿命服从标准差100=σ小时正态分布,试在显著性水平0.05下确定这批产品是否合格.解:设元件寿命),(~2σμN X ,2σ已知10002=σ,05.0,950,25===αX n检验假设1000:0=μH 1000:1<μH在2σ已知条件下,设统计量)1,0(~/1000N n X σμ-=拒绝域为}{05.0μμ<,查表得645.195.005.0-=-=μμ 而645.15.2205025/1001000950-<-=-=-=μ 拒绝假设0H 选择备择假设1H ,所以以为这批产品不合格.3. 对显著水平 a ,检验假设 H 0 ; m = m 0,H 1 ; m ≠ m 0,问当 m 0, m , a一定时,增大样本量 n 必能使犯第二类错误概率 b 减少对吗?并说明理由。

概率论与数理统计第8章例题

概率论与数理统计第8章例题

第八章例题1.在假设检验中,检验水平α的意义是:原假设0H 成立,经检验被____________的概率(填写“拒绝”或“接受”) 拒绝2.在假设检验中,犯第一类错误是指___ 弃真。

即0H 正确却被拒绝 __3. ),(~2σμN X ,当2σ未知时,为检验假设00:μμ=H 须构造统计量__________ nS x /μ- 4.从已知标准差 5.2σ=的正态总体中,抽取容量为16的样本,算得样本均值27.56x =,试在显著水平0.05α=之下,检验假设0:26H μ=.(0.025 1.96u =) 解:0:26H μ=)1,0(~/00N n x U σμ-=;0.05α=,/20.025 1.96u u α==; 算得 1.2u ==; 由于0.025u u <,所以在显著水平0.05α=之下,接受假设0:26H μ=.5.某产品按规定每包重为10kg ,现从中抽取6包进行测试,得9.7 10.1 9.8 10.0 10.2 9.6若包重服从正态分布2(,)N μσ,且20.05σ=,问在显著性水平为0.05α=下,包的平均重量是否为10kg ?(0.025 1.96u =) 解01:10,:10.H H μμ=≠令, 9.9x =0.025||||| 1.095u 1.96x u ===<= 所以可以认为重量为10kg6. 工厂某电子元件平均使用寿命为3000小时,采用新的生产设备后,从中随机抽取20个,测得这批电子元件的平均寿命X =3100小时,样本标准差为S=170小时,设电子元件的寿命X 服从正态分布N ()2,σμ,试检验用了新生产设备后产品质量是否显著改变?(显著性水平01.0=α,54.2)19(01.0=t )解 0H :μ=3000, 1H :3000>μ0.01(19)t 显著改变 7. 设罐头番茄汁中维生素C 含量服从正态分布。

规定每罐维生素C 的平均含量为21毫克。

概率论与数理统计自考题-9_真题(含答案与解析)-交互

概率论与数理统计自考题-9_真题(含答案与解析)-交互

概率论与数理统计自考题-9(总分100, 做题时间90分钟)第一部分选择题一、单项选择题1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则______ •**(B|A)=0•**(A|B)>0•**(A|B)=P**(AB)=P(A)P(B)SSS_SIMPLE_SINA B C D分值: 2答案:A[解析] ,P(A)>0,又A与B互不相容,所以P(AB)=0即P(A|B)=0.2.设A,B为两个随机事件,且P(AB)>0,则P(A|AB)=______•**(A)•**(AB)•**(A|B)**SSS_SIMPLE_SINA B C D分值: 2答案:D[解析] P(A|AB)表示的意义是在A、B两个事件同时发生的条件下事件A发生的概率,易知P(A|AB)=1.3.设随机变化量X的概率密度为则______A. B. C. D.SSS_SIMPLE_SINA B C D分值: 2答案:A[解析] .4.设随机变量X服从参数为3的指数分布,其分布函数记为F(x),则______A. B.C.1-e-1 D.SSS_SIMPLE_SINA B C D分值: 2答案:C[解析] ∵X服从参数为3的指数分布,5.设下列函数的定义域均为(-∞,+∞),则其中可以作为概率密度的是______ A.f(x)=-e-x B.f(x)=e-xC. D.f(x)=e-|x|SSS_SIMPLE_SINA B C D分值: 2答案:C[解析] 由概论密度的性质得,f(x)≥0,,A项,f(x)=-e-x<0排除,B项,,C项f(x).同理排除D.6.设随机变量,Y~N(2,10),又E(XY)=14,则X与Y的相关系数=______ρXY• A.-0.8• B.-0.16•****SSS_SIMPLE_SINA B C D分值: 2答案:D[解析] .7.已知随机变量X的概率密度为则(E)X=______A.6 B.3C.1 D.SSS_SIMPLE_SINA B C D分值: 2答案:B[解析] 因为,所以就有.8.设随机变量X~N(0,1),Y~N(0,1),且X与Y相互独立,则X2+Y2~______•**(0,2)B.χ2(2)•**(2)**(1,1)SSS_SIMPLE_SINA B C D分值: 2答案:B[解析] 由χ2分布定义知,X2+Y2~χ2(2).9.设随机变量Z~B(n,p),n=1,2,…,其中0<p<1,则______nA. B.C. D.SSS_SIMPLE_SINA B C D分值: 2答案:B[解析] 由独立同分布的中心极限定理知.10.设总体X~N(μ,σ2),其中σ2未知.现随机抽样,计算得样本方差为100,若要对其均值进行检验.采用______•**—检验法B.χ2—检验法•**—检验法**—检验法SSS_SIMPLE_SINA B C D分值: 2答案:D[解析] Z—检验法适用对象:单个或多个正态总体,σ2已知时,关于均值μ的假设检验.t—检验法适用对象:单个或多个正态总体,σ2未知,用样本值S2代替时,关于均值μ的假设检验.χ2—检验法:用来检验在未知正态总体的均值时,其方差是否等于某个特定值.F—检验法,用来检验均值未知的两个正态总体,其方差是否相等.第二部分非选择题二、填空题1.设随机事件A与B相互独立,且P(A)=P(B)=,则=______.SSS_FILL分值: 2答案:[解析]2.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,则飞机至少被击中一炮的概率为______.SSS_FILL分值: 2答案:0.7[解析] 设甲击中飞机的概率为P(A),乙击中飞机的概率为P(B),则P(AB)为甲、乙同时击中飞机的概率.故飞机至少被击中一炮的概率为:P(A∪B)=P(A)+P(B)-P(AB)=0.4+0.5-0.4×0.5=0.7.3.设A为随机事件,P(A)=0.3,则=______.SSS_FILL分值: 2答案:0.7[解析]4.设事件A与B相互独立,且P(A)=0.3,P(B)=0.4,则P(A∪B)=______.分值: 2答案:0.58[解析] ∵A、B相互独立∴P(AB)=P(A)P(B)=0.4×0.3=0.12P(A∪B)=P(A)+P(B)-P(AB)=0.3+0.4-0.12=0.58.5.设X是连续型随机变量,则P{X=5}=______.SSS_FILL分值: 2答案:0[解析] 因为X是连续型随机变量,其任意一点的概率都为零,所以P{x=5}=0.6.设随机变量X服从正态分布N(1,4),Ф(x)为标准正态分布函数,已知Ф(1)=0.8413,Ф(2)=0.9772,则P{|X|<3}=______.SSS_FILL分值: 2答案:0.8185[解析]7.设随机变量X的分布函数为则当x>0时,X的概率密度f(x)=______.SSS_FILL分值: 2答案:e-x[解析] F(x)与f(x)的对应关系为f(x)=F'(x),当x>0时f(x)=(1-e-x)1=e-x.8.设二维随机变量(X,Y)的概率密度为则当y>0时,(X,Y)关于Y的边缘概率密(y)=______.度fY分值: 2答案:e-y[解析]9.设二维随机变量(X,Y)的概率密度为则P{X+Y≤1}=______.SSS_FILL分值: 2答案:[解析] 因为X+Y≤1又0<x<2,2<y<1,所以随机点必落在右图区域中.10.设随机变量X的分布律为,则E(X2)=______.SSS_FILL分值: 2答案:1[解析] .11.设随机变量X~N(0,4),则E(X2)=______.SSS_FILL分值: 2答案:4[解析] X~N(0,4),∴E(x)=0,D(x)=4,E(x2)=D(x)+E2(x)=4+0=4.12.设随机变量F~F(n1,n2),则~______.SSS_FILL答案:F(N2,N1)[解析] 由F分布的构造知,若F~F(m,n),则有1/F~F(n,m),∴.13.设X1,X2,…,Xn…是独立同分布的随机变量序列,E(Xn)=μ,D(Xn)=σ2,n=1,2,…,则=______.SSS_FILL分值: 2答案:0.5[解析] 根据独立同分布中心极限定理:14.设0.05是假设检验中犯第一类错误的概率,H0为原假设,则P{拒绝H|H真}=______.SSS_FILL分值: 2答案:0.05[解析] 由第一类错误的定义即知.15.设x1,x2,…,xn为样本观测值,经计算知,.则=______.SSS_FILL分值: 2答案:36[解析]三、计算题1.设工厂甲、乙、丙三个车间生产同一种产品,产量依次占全厂产量的45%,35%,20%,且各车间的次品率分别为4%,2%,5%.求:(1)从该厂生产的产品中任取1件,它是次品的概率;(2)该件次品是由甲车间生产的概率.SSS_TEXT_QUSTI答案:以A1,A2,A3依次表示任取1件产品,它是由甲、乙、丙车间所生产的事件,B表示事件“任取1件产品,它是次品”.(1)(2)2.设某行业的一项经济指标服从正态分布N(μ,σ2),其中μ,σ2均未知.今获取了该指标的9个数据作为样本,并算得样本均值=56.93,样本方差s2=(0.93)2,求μ的置信度为95%的置信区间.(附:t0.025=2.306)SSS_TEXT_QUSTI分值: 8答案:正态总体的方差σ2未知,μ的置信度为(1-α)的置信区间为.由,s=0.93,n=9,α=0.05,.计算可知μ的置信度为95%的置信区间为(56.22,57.64).四、综合题设随机变量X的概率密度为SSS_TEXT_QUSTI1.求X的分布函数FX(x);分值: 4答案:SSS_TEXT_QUSTI2.求;分值: 4答案:SSS_TEXT_QUSTI3.令Y=2X,求Y的概率密度fY(y).分值: 4答案:y=g(x)=2x,α=-∞,β=+∞,,则设二维随机变量(X,Y)的分布律为SSS_TEXT_QUSTI4.求(X,Y)分别关于X,Y的边缘分布律;分值: 6答案:X,Y的分布律分别为SSS_TEXT_QUSTI5.试问X与Y是否相互独立,为什么?分值: 6答案:由于P{X=0,Y=0}=0.2,P{X=0}=0.3,P{Y=0}=0.4而P{X=0,Y=0}≠P{X=0}P{Y=0},故X与Y不相互独立.五、应用题1.设某厂生产的食盐的袋装重量服从正态分布N(μ,σ2)(单位:g),已知σ2=9.在生产过程中随机抽取16袋食盐,测得平均袋装重量=496.问在显著性水平α=0.05下,是否可以认为该厂生产的袋装食盐的平均袋重为500g?(μ0.025=1.96)SSS_TEXT_QUSTI分值: 10答案:检验假设H0:μ=500;H1:μ≠500.已知n=16,σ=3,,成立时,,在H,即认为该厂生产的代装食盐的平均重量不是500g.由于,故拒绝H1。

概率论与数理统计课后习题集及答案详解

概率论与数理统计课后习题集及答案详解

概率论与数理统计课后习题集及解答第一章 随机事件和概率一. 填空题1. 设A, B, C 为三个事件, 且=-=⋃⋃=⋃)(,97.0)(,9.0)(C AB P C B A P B A P 则____. 解.)(1)(1)()()()(ABC P AB P ABC P AB P ABC AB P C AB P +--=-=-=-=)(C B A P ⋃⋃-)(B A P ⋃= 0.97-0.9 = 0.072. 设10件产品中有4件不合格品, 从中任取两件, 已知所取两件产品中有一件是不合格品, 另一件也是不合格品的概率为_______.解. }{合格品二件产品中有一件是不=A , }{二件都是不合格品=B511)()()()()|(2102621024=-===c c c c A P B P A P AB P A B P 注意: }{合格品二件产品中有一件是不=}{不合格品二件产品中恰有一件是 +}{二件都是不合格品 所以B AB B A =⊃,; }{二件都是合格品=A 3. 随机地向半圆a x ax y (202-<<为正常数)内掷一点, 点落在半圆内任何区域的概率与区域的面积成正比, 则原点和该点的连线与x 轴的夹角小于4π的概率为______. 解. 假设落点(X, Y)为二维随机变量, D 为半圆. 则121)),((2==∈a kD Y X P π, k 为比例系数. 所以22ak π= 假设D 1 = {D 中落点和原点连线与x 轴夹角小于4π的区域}πππ121)2141(2)),((22211+=+=⨯=∈a a a D k D Y X P 的面积. 4. 设随机事件A, B 及其和事件A ⋃B 的概率分别是0.4, 0.3, 0.6, 若B 表示B 的对立事件, 则积事件B A 的概率)(B A P = ______.解. =+-+=)()()()(B A P B P A P AB P 0.4 + 0.3-0.6 = 0.13.01.04.0)()()(=-=-=AB P A P B A P .5. 某市有50%住户订日报, 有65%住户订晚报, 有85%住户至少订这两种报纸中的一种, 则同时订这两种报纸的住户的百分比是________. 解. 假设A = {订日报}, B = {订晚报}, C = A + B. 由已知 P(A) = 0.5, P(B) = 0.65, P(C) = 0.85.所以 P(AB) = P(A) + P(B)-P(A + B) = 0.5 + 0.65-0.85 = 0.3.6. 三台机器相互独立运转, 设第一, 第二, 第三台机器不发生故障的概率依次为0.9, 0.8, 0.7, 则这三台机器中至少有一台发生故障的概率________. 解. 设A i 事件表示第i 台机器运转不发生故障(i = 1, 2, 3). 则 P(A 1) = 0.9, P(A 2) = 0.8, P(A 3) = 0.7,)()()(1)(1)()(321321321321A P A P A P A A A P A A A P A A A P -=-==++ =1-0.9×0.8×0.7=0.496.7. 电路由元件A 与两个并联元件B, C 串联而成, 若A, B, C 损坏与否相互独立, 且它们损坏的概率依次为0.3, 0.2, 0.1, 则电路断路的概率是________. 解. 假设事件A, B, C 表示元件A, B, C 完好.P(A) = 0.7, P(B) = 0.8, P(C) = 0.9. 事件线路完好 = A(B + C) = AB + AC.P(A(B + C) ) = P(AB + AC) = P(AB)+P(AC)-P(ABC) = P(A)P(B) + P(A)P(C)-P(A)P(B)P(C) = 0.7×0.8 +0.7×0.9-0.7×0.8×0.9 = 0.686. 所以 P(电路断路) = 1-0.686 = 0.314.8. 甲乙两人投篮, 命中率分别为0.7, 0.6, 每人投三次, 则甲比乙进球多的概率______. 解. 设X 表示甲进球数, Y 表示乙进球数.P(甲比乙进球多) = P(X = 3, Y = 2) +P(X = 3, Y = 1) + P(X = 3, Y = 0) + P(X = 2, Y = 1) +P(X = 2, Y = 0) + P(X = 1, Y = 0) = P(X = 3)P(Y = 2) +P(X = 3)P(Y = 1) + P(X = 3)P(Y = 0) + P(X = 2)P(Y = 1) +P(X = 2)P(Y = 0) + P(X = 1)P(Y = 0)=+⋅⋅⋅21336.04.07.0c +⋅⋅⋅6.04.07.02233c 334.07.0⋅++⋅⋅⋅⋅⋅2132134.06.07.03.0c c +⋅⋅⋅32134.07.03.0c 32134.03.07.0⋅⋅⋅c= 0.148176 + 0.098784 +0.021952 + 0.127008 + 0.028224 + 0.012096 = 0.43624.9. 三人独立破译一密码, 他们能单独译出的概率分别为41,31,51, 则此密码被译出的概率_____.解. 设A, B, C 表示事件甲, 乙, 丙单独译出密码., 则41)(,31)(,51)(===C P B P A P . P(A + B + C) = P(A) + P(B) + P(C)-P(AB)-P(AC)-P(BC) + P(ABC)= P(A) + P(B) + P(C)-P(A)P(B)-P(A)P(C)-P(B)P(C) + P(A)P(B)P(C) =53413151413141513151413151=⋅⋅+⋅-⋅-⋅-++.二.单项选择题.1. 以A 表示“甲种产品畅销, 乙种产品滞销”, 则对立事件A 为(A) “甲种产品滞销, 乙种产品畅销” (B) “甲、乙产品均畅销”(C) “甲种产品滞销” (D) “甲产品滞销或乙产品畅销” 解. (D)是答案.2. 设A, B, C 是三个事件, 与事件A 互斥的事件是(A) C A B A + (B) )(C B A + (C) ABC (D) C B A ++ 解. ==++C B A A )C B A A(φ, 所以(D)是答案. 3. 设A, B 是任意二个事件, 则(A) P(A ⋃B)P(AB)≥P(A)P(B) (B) P(A ⋃B)P(AB)≤P(A)P(B) (C) P(A -B)P(B -A)≤P(A)P(B)-P(AB) (D)41)()(≥--A B P B A P . 解. P(A + B)P(AB)-P(A)P(B) = (P(A) + P(B)-P(AB))P(AB)-P(A)P(B) =-P(A)(P(B)-P(AB)) + P(AB)(P(B)-P(AB) =-(P(B)-P(AB))(P(A)-P(AB)) =-P(B -A)P(A -B) ≤ 0 所以(B)是答案 .4. 事件A 与B 相互独立的充要条件为(A) A + B = Ω (B) P(AB) = P(A)P(B) (C) AB = φ (D) P(A + B) = P(A) + P(B) 解. (B)是答案.5. 设A, B 为二个事件, 且P(AB) = 0, 则(A) A, B 互斥 (B) AB 是不可能事件 (C) AB 未必是不可能事件 (D) P(A) = 0或P(B) = 0. 解. 概率理论中 P(A) = 0不能推出A 为不可能事件(证明超出大纲要求). 所以(C)是答案. 6. 设A, B 为任意二个事件, 且A ⊂B, P(B) > 0, 则下列选项必然成立的是 (A) P(A) < P(A|B) (B) P(A) ≤ P(A|B) (C) P(A) > P(A|B) (C) P(A) ≥ P(A|B) 解. )()()()()()|(A P B P A P B P AB P B A P ≥==(当B = Ω时等式成立). (B)是答案.7. 已知 0 < P(B) < 1, 且P[(A 1 + A 2)|B] = P(A 1|B) + P(A 2|B), 则下列选项必然成立的是 (A))B |P(A )B |P(A ]B |)A P[(A 2121+=+ (B) P(A 1B +A 2B) = P(A 1B) +P(A 2B)(C) P(A 1 +A 2) = P(A 1|B) +P(A 2|B)(D) P(B) = P(A 1)P(B|A 1) + P(A 2)P(B|A 2)解. 由P[(A 1 + A 2)|B] = P(A 1|B) + P(A 2|B)得到)()()()()(])[(2121B P B A P B P B A P B P B A A P +=+, 所以P(A 1B +A 2B) = P(A 1B) +P(A 2B). (B)是答案.三. 计算题1. 某厂生产的产品次品率为0.05, 每100个产品为一批, 抽查产品质量时, 在每批中任取一半来检查, 如果发现次品不多于1个, 则这批产品可以认为合格的, 求一批产品被认为是合格的概率.解. P(该批产品合格) = P(全部正品) + P(恰有1个次品)=2794.050100154995*********=+c cc c c2. 书架上按任意次序摆着15本教科书, 其中有5本是数学书, 从中随机地抽取3本, 至少有一本是数学书的概率.解. 假设A={至少有一本数学书}. A ={没有数学书}P(A ) =9124315310=c c , P(A) = 1-P(A ) = 91673. 全年级100名学生中有男生80名, 来自北京的20名中有男生12名. 免修英语的40名学生中有男生32名, 求出下列概率: i. 碰到男生情况不是北京男生的概率;ii. 碰到北京来的学生情况下是一名男生的概率; iii. 碰到北京男生的概率;iv. 碰到非北京学生情况下是一名女生的概率; v. 碰到免修英语的男生的概率.解. 学生情况: 男生 女生 北京 12 8 免修英语 32 8 总数 80 20i. P(不是北京|男生) =20178068=ii. P(男生|北京学生) =532012=iii. P(北京男生) =10012iv. P(女生|非北京学生) =8012v. P(免修英语男生) =100324. 袋中有12个球, 其中9个是新的, 第一次比赛时从中取3个, 比赛后任放回袋中, 第二次比赛再从袋中任取3个球, 求: i. 第二次取出的球都是新球的概率;ii. 又已知第二次取出的球都是新球, 第一次取到的都是新球的概率.解. i. 设B i 表示第一次比赛抽到i 个新球(i = 0, 1, 2, 3). A 表示第二次比赛都是新球. 于是312339)(c c c B P i i i -=, 31239)|(c c B A P i i -=)()(1)()|()()(3603393713293823193933092312323123933930c c c c c c c c c c c c c c c c c B A P B P A P i i i i i i i +++===∑∑=--=146.0484007056)201843533656398411()220(12==⨯⨯+⨯⨯+⨯⨯+⨯⨯=ii. 215484007056)220(20184)()()|()|(2333=⨯⨯==A P B P B A P A B P5. 设甲、乙两袋, 甲袋中有n 个白球, m 个红球, 乙袋中有N 个白球, M 个红球, 今从甲袋中任取一只放入乙袋, 再从乙袋中任取一球, 问取到白球的概率. 解. 球的情况: 白球 红球 甲袋 n m 乙袋 N M假设 A = {先从甲袋中任取一球为白球} B = {先从甲袋中任取一球为红球} C = {再从乙袋中任取一球为白球} P(C) = P(C|A)P(A) + P(C|B)P(B)nm mM N N m n n M N N +⋅++++⋅+++=111 ))(1()1(n m M N NmN n +++++=第二章 随机变量及其分布一. 填空题1. 设随机变量X ~B(2, p), Y ~B(3, p), 若P(X ≥ 1) =95, 则P(Y ≥ 1) = _________. 解. 94951)1(1)0(=-=≥-==X P X P 94)1(2=-p , 31=p 2719321)0(1)1(3=⎪⎭⎫⎝⎛-==-=≥Y P Y P2. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为cc c c 162,85,43,21, 则c = ______. 解. 2,16321628543211==+++=c cc c c c 3. 用随机变量X 的分布函数F(x)表示下述概率:P(X ≤ a) = ________. P(X = a) = ________.P(X > a) = ________. P(x 1 < X ≤ x 2) = ________.解. P(X ≤ a) = F(a) P(X = a) = P(X ≤ a)-P(X < a) = F(a)-F(a -0) P(X > a) = 1-F(a) P(x 1 < X ≤ x 2) = F(x 2)-F(x 1)4. 设k 在(0, 5)上服从均匀分布, 则02442=+++k kx x 有实根的概率为_____.解. k 的分布密度为⎪⎩⎪⎨⎧=051)(k f 其它50≤≤kP{02442=+++k kx x 有实根} = P{03216162≥--k k } = P{k ≤-1或k ≥ 2} =535152=⎰dk 5. 已知2}{,}{kbk Y P k a k X P =-===(k = 1, 2, 3), X 与Y 独立, 则a = ____, b = ____, 联合概率分布_____, Z = X + Y 的概率分布为_____. 解. 116,132==++a a a a . 4936,194==++b b b b(X, Y)的联合分布为ab = 216α, 539=α α249)3()1()3,1()2(==-===-===-=abY P X P Y X P Z P α66)2,1()3,2()1(=-==+-===-=Y X P Y X P Z Pα251)1,1()2,2()3,3()0(=-==+-==+-====Y X P Y X P Y X P Z P α126)2,3()1,2()1(=-==+-====Y X P Y X P Z Pα723)1()3()1,3()2(==-===-====abY P X P Y X P Z P6. 已知(X, Y)联合密度为⎩⎨⎧+=0)sin(),(y x c y x ϕ 其它4,0π≤≤y x , 则c = ______, Y 的边缘概率密度=)(y Y ϕ______.解.12,1)sin(4/04/0+==+⎰⎰c dxdy y x c ππ所以⎩⎨⎧++=0)sin()12(),(y x y x ϕ 其它4,0π≤≤y x当 40π≤≤y 时))4cos()(cos 12()sin()12(),()(4y y dx y x dx y x y Y +-+=++==⎰⎰∞+∞-πϕϕπ所以⎪⎩⎪⎨⎧+-+=0))4cos()(cos 12()(y y y Y πϕ 其它40π≤≤y7. 设平面区域D 由曲线2,1,01e x x y xy ====及直线围成, 二维随机变量(X, Y)在D 上服从均匀分布, 则(X, Y)关于X 的边缘密度在x = 2处的值为_______. 解. D 的面积 =2121=⎰e dx x. 所以二维随机变量(X, Y)的密度为: ⎪⎩⎪⎨⎧=021),(y x ϕ 其它D y x ∈),(下面求X 的边沿密度:当x < 1或x > e 2时 0)(=x X ϕ 当1 ≤ x ≤ e 2时 ⎰⎰===∞+∞-x X x dy dy y x x 102121),()(ϕϕ, 所以41)2(=X ϕ. 8. 若X 1, X 2, …, X n 是正态总体N(μ, σ2)的一组简单随机样本, 则)(121n X X X nX +++=服从______. 解. 独立正态分布随机变量的线性函数服从正态分布.μ==⎪⎭⎫ ⎝⎛∑∑==n i i n i i X E n X n E 11)(11, nX D nX n D ni in i i 2121)(11σ==⎪⎭⎫ ⎝⎛∑∑==所以 ),(~2nN X σμ9. 如果(X, Y)的联合分布用下列表格给出,且X 与Y 相互独立, 则α = ______, β = _______.解.213161)1(,18)3(,9)2(,31)2(=+==+==+==++==Y P Y P Y P X P βαβα 132)3()2()1(=++==+=+=βαY P Y P Y P⎪⎪⎩⎪⎪⎨⎧+++=======+++=======)181)(31()3()2()3,2()91)(31()2()2()2,2(ββαβαβααY P X P Y X P Y P X P Y X P两式相除得βαβα=++18191, 解得 βα2=, 92,91==αβ.10. 设(X, Y)的联合分布律为3122 0 122 则 i. Z = X + Y 的分布律 ______. ii. V = X -Y 的分布律______.iii. U= X 2 + Y -2的分布律_______. 解.二. 单项选择题1. 如下四个函数哪个是随机变量X 的分布函数(A)⎪⎪⎩⎪⎪⎨⎧=221)(x F 0022≥<≤--<x x x , (B) ⎪⎩⎪⎨⎧=1sin 0)(x x F ππ≥<≤<x x x 00(C) ⎪⎩⎪⎨⎧=1sin 0)(x x F 2/2/00ππ≥<≤<x x x , (D) ⎪⎪⎩⎪⎪⎨⎧+=1310)(x x F 212100≥<≤<x x x解. (A)不满足F(+∞) = 1, 排除(A); (B)不满足单增, 排除(B); (D)不满足F(1/2 + 0) = F(1/2), 排除(D); (C)是答案. 2. ),4,2,0(!/)( ===-k k ec k X P kλλ是随机变量X 的概率分布, 则λ, c 一定满足(A) λ > 0 (B) c > 0 (C) c λ > 0 (D) c > 0, 且 λ > 0 解. 因为),4,2,0(!/)( ===-k k ec k X P kλλ, 所以c > 0. 而k 为偶数, 所以λ可以为负.所以(B)是答案.3. X ~N(1, 1), 概率密度为ϕ(x), 则(A)5.0)0()0(=≥=≤X P X p (B)),(),()(+∞-∞∈-=x x x ϕϕ (C) 5.0)1()1(=≥=≤X P X p (D) ),(),(1)(+∞-∞∈--=x x F x F 解. 因为E(X) = μ = 1, 所以5.0)1()1(=≥=≤X P X p . (C)是答案.4. X, Y 相互独立, 且都服从区间[0, 1]上的均匀分布, 则服从区间或区域上的均匀分布的随机变量是(A) (X, Y) (B) X + Y (C) X 2 (D) X -Y 解. X ~⎩⎨⎧=01)(x ϕ其它10≤≤x , Y ~⎩⎨⎧=01)(y ϕ其它10≤≤y . 所以(X, Y)~⎩⎨⎧=01),(y x ϕ其它1,0≤≤y x .所以(A)是答案.5. 设函数⎪⎪⎩⎪⎪⎨⎧=120)(xx F 1100>≤<≤x x x 则(A) F(x)是随机变量X 的分布函数. (B) 不是分布函数.(C) 离散型分布函数. (D)连续型分布函数.解. 因为不满足F(1 + 0) = F(1), 所以F(x)不是分布函数, (B)是答案.6. 设X, Y 是相互独立的两个随机变量, 它们的分布函数为)(),(y F x F Y X , 则Z = max(X, Y)的分布函数是(A) )(z F Z = max{)(),(z F z F Y X } (B) )(z F Z = max{|)(||,)(|z F z F Y X } (C) )(z F Z = )()(z F z F Y X (D) 都不是解. }{}),{m ax ()()(z Y z X P z Y X P z Z P z F Z ≤≤=≤=≤=且 )()()()(z F z F z Y P z X P Y X =≤≤因为独立. (C)是答案.7. 设X, Y 是相互独立的两个随机变量, 其分布函数分别为)(),(y F x F Y X , 则Z = min(X, Y)的分布函数是(A) )(z F Z = )(z F X (B) )(z F Z = )(z F Y(C) )(z F Z = min{)(),(z F z F Y X } (D) )(z F Z = 1-[1-)(z F X ][1-)(z F Y ] 解. }{1}),{m in(1)(1)()(z Y z X P z Y X P z Z P z Z P z F Z >>-=>-=>-=≤=且 )](1)][(1[1)](1)][(1[1z F z F z Y P z X P Y X ---=≤-≤--因为独立 (D)是答案.8. 设X 的密度函数为)(x ϕ, 而,)1(1)(2x x +=πϕ 则Y = 2X 的概率密度是 (A))41(12y +π (B) )4(22y +π (C) )1(12y +π (D)y arctan 1π解. )2()2(}2{)()(y F y X P y X P y Y P y F X Y =≤=≤=≤= )4(2)2(112121)2()2()]([)(22''y y y y F y F y X X Y Y +=⎪⎭⎫ ⎝⎛+⋅=⋅=⎪⎭⎫ ⎝⎛==ππϕϕ (B)是答案.9. 设随机变量(X, Y)的联合分布函数为⎩⎨⎧=+-0),()(y x e y x ϕ 其它0,0>>y x , 则2YX Z +=的分布密度是(A) ⎪⎩⎪⎨⎧=+-021)()(y x Z e Z ϕ 其它0,0>>y x (B) ⎪⎩⎪⎨⎧=+-0)(2y x Z e z ϕ 其它0,0>>y x(C) ⎩⎨⎧=-04)(2z Z ze Z ϕ 00≤>z z (D) ⎪⎩⎪⎨⎧=-021)(zZ eZ ϕ 00≤>z z解. 2YX Z +=是一维随机变量, 密度函数是一元函数, 排除(A), (B). 21210=⎰∞+-dz e z , 所以(D)不是答案. (C)是答案.注: 排除法做单项选择题是经常使用而且很有效的方法. 该题也可直接计算Z 的密度: 当z < 0时0)(=z F Z当z ≥ 0时⎰⎰≤+=≤+=≤+=≤=zy x Z dxdy y x z Y X P z YX P z Z P z F 2),()2()2()()(ϕ =12222020+--=⎥⎦⎤⎢⎣⎡-----⎰⎰z z z xz y x e ze dx dy e e ==)()('z F z ZZ ϕ⎩⎨⎧-042z ze 00≤>z z , (C)是答案.10. 设两个相互独立的随机变量X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 则下列结论正确的是(A) P{X + Y ≤ 0} = 1/2 (B) P{X + Y ≤ 1} = 1/2 (C) P{X -Y ≤ 0} = 1/2 (D) P{X -Y ≤ 1} = 1/2解. 因为X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 且X 和 Y 相互独立, 所以 X + Y ~ N(1, 2), X -Y ~ N(-1, 2) 于是P{X + Y ≤ 1} = 1/2, (B)是答案.11. 设随机变量X 服从指数分布, 则Y = min{X, 2}的分布函数是(A) 是连续函数 (B) 至少有两个间断点 (C) 是阶梯函数 (D) 恰好有一个间断点 解. 分布函数:))2,(m in(1))2,(m in()()(y X P y X P y Y P y F Y >-=≤=≤= 当y ≥ 2时101))2,(m in(1)(=-=>-=y X P y F Y 当0 ≤ y < 2时)2,(1))2,(m in(1)(y y X y X P y F Y >>-=>-= ye y X P y X P λ--=≤=>-=1)()(1当y < 0时)2,(1))2,(m in(1)(y y X y X P y F Y >>-=>-= 0)()(1=≤=>-=y X P y X P于是 ⎪⎩⎪⎨⎧-=-011)(yY e y F λ 0202<<≤≥y y y 只有y = 2一个间断点, (D)是答案.三. 计算题1. 某射手有5发子弹, 射击一次的命中率为0.9, 如果他命中目标就停止射击, 不命中就一直到用完5发子弹, 求所用子弹数X 的分布密度. 解. 假设X 表示所用子弹数. X = 1, 2, 3, 4, 5.P(X = i) = P(前i -1次不中, 第i 次命中) = 9.0)1.0(1⋅-i , i = 1, 2, 3, 4.当i = 5时, 只要前四次不中, 无论第五次中与不中, 都要结束射击(因为只有五发子弹). 所以 P(X = 5) = 4)1.0(. 于是分布律为2. 设一批产品中有10件正品, 3件次品, 现一件一件地随机取出, 分别求出在下列各情形中直到取得正品为止所需次数X 的分布密度.i. 每次取出的产品不放回; ii. 每次取出的产品经检验后放回, 再抽取; iii. 每次取出一件产品后总以一件正品放回, 再抽取.解. 假设A i 表示第i 次取出正品(i = 1, 2, 3, …) i.1310)()1(1===A P X P 1331210)()|()()2(11212⋅====A P A A P A A P X P 1331221110)()|()|()()3(11223321⋅⋅====A P A A P A A P A A A P X P 1331221111)()|()|()|()4(1122334⋅⋅⋅===A P A A P A A P A A P X Pii. 每次抽取后将原产品放回1310133)()()()()(11111---⎪⎭⎫⎝⎛====k k k k k A P A P A P A A A p k X P , (k = 1, 2, …)iii.13)()1(1===A P X P 1331311)()|()()2(11212⋅====A P A A P A A P X P1331321312)()|()|()()3(112123321⋅⋅====A P A A P A A A P A A A P X P 1331321311)()|()|()|()4(1121231234⋅⋅⋅===A P A A P A A A P A A A A P X P3. 随机变量X 的密度为⎪⎩⎪⎨⎧-=01)(2x cx ϕ 其它1||<x , 求: i. 常数c; ii. X 落在)21,21(-内的概率. 解. πππϕ1,22|arcsin 21)(110112====-==⎰⎰-∞+∞-c c c x c dx xc dx x3162|arcsin 211))2/1,2/1((2/102/12/12=⋅==-=-∈⎰-ππππx x dx X P 4. 随机变量X 分布密度为i. 2102)(x x -⎪⎩⎪⎨⎧=πϕ 其它1||<x , ii. ⎪⎩⎪⎨⎧-=02)(x x x ϕ 其它2110≤≤<≤x x求i., ii 的分布函数F(x).解. i. 当x ≤ 1时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当-1< x < 1时 ⎰⎰∞--++-=-==x x x x xdt t dt t x F 21arcsin 1112)()(212πππϕ 当x ≥ 1时 ⎰⎰∞--=-==x dt t dt t x F 112)()(112πϕ所以 ⎪⎪⎩⎪⎪⎨⎧++-=121arcsin 110)(2x x xx F ππ 1111≥<<--≤x x xii. 当x < 0时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当0 ≤ x < 1时 ⎰⎰∞-===x x x tdt dt t x F 2)()(2ϕ当1 ≤ x < 2时 122)2()()(2110-+-=-+==⎰⎰⎰∞-x x dt t tdt dt t x F x x ϕ当2 ≤ x 时 1)2()()(2110⎰⎰⎰∞-=-+==x dt t tdt dt t x F ϕ所以 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+-=112220)(22x x x x F 221100≥<≤<≤<x x x x5. 设测量从某地到某一目标的距离时带有的随机误差X 具有分布密度函数⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞试求: i. 测量误差的绝对值不超过30的概率;ii. 接连独立测量三次, 至少有一次误差的绝对值不超过30的概率.解. 因为⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞, 所以X ~N(20, 402). i. {}⎭⎬⎫⎩⎨⎧<-<-=<<-=<25.0402025.13030)30|(|X P X P X P )25.1()25.0(-Φ-Φ=1)25.1()25.0()25.1(1()25.0(-Φ+Φ=Φ--Φ= 18944.05987.0-+== 0.4931.(其中Φ(x)为N(0, 1)的分布函数)ii. P(至少有一次误差的绝对值不超过30) = 1-P(三次误差的绝对值都超过30) =88.012.01)4931.0(13=-=- 6. 设电子元件的寿命X 具有密度为⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x问在150小时内, i. 三只元件中没有一只损坏的概率是多少? ii. 三只电子元件全损坏的概率是多少? iii. 只有一个电子元件损坏的概率是多少?解. X 的密度⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x . 所以31100)150(1501002==<⎰dx x X P . 令p = P(X ≥ 150) = 1-31= 32.i. P(150小时内三只元件没有一只损坏) =2783=p ii. P(150小时内三只元件全部损坏) =271)1(3=-piii. P(150小时内三只元件只有一只损坏) =943231213=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛c 7. 对圆片直径进行测量, 其值在[5, 6]上服从均匀分布, 求圆片面积的概率分布.解. 直径D 的分布密度为⎩⎨⎧=01)(d ϕ 其它65≤≤d假设42D X π=, X 的分布函数为F(x).)()()(2x D P x X P x F ≤=≤=π当x ≤ 0时, F(x) = 0 当x > 0时⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 当时即425,54ππ<<x xF(x) = 0 当时即πππ925,645≤≤≤≤x x⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 =54145-=⎰ππxdt x当 x > 9π时 1)()(65===⎰⎰∞-dt dt t x F x ϕ所以 ⎪⎪⎩⎪⎪⎨⎧-=1540)(πxx F ππππ99425425>≤≤<x x x 密度⎪⎩⎪⎨⎧==01)(')(x x F x πϕ 其它ππ9425≤≤x8. 已知X 服从参数 p = 0.6的0-1分布在X = 0, X = 1下, 关于Y 的条件分布分别为表1、表2所示表1 表2Y 1 2 3 Y 1 2 3 P(Y|X = 0)41 21 41 P(Y|X = 1) 21 61 31 求(X, Y)的联合概率分布, 以及在Y ≠ 1时, 关于X 的条件分布.解. X 的分布律为(X, Y)3.05321)1()1|1()1,1(=⋅=======X P X Y P Y X P 1.05361)1()1|2()2,1(=⋅=======X P X Y P Y X P2.05331)1()1|3()3,1(=⋅=======X P X Y P Y X P1.05241)0()0|1()1,0(=⋅=======X P X Y P Y X P2.05221)0()0|2()2,0(=⋅=======X P X Y P Y X P1.05241)0()0|3()3,0(=⋅=======X P X Y P Y X P所以Y 的分布律为5.06.03.0)1()1,0()1|0(==≠≠==≠=Y P Y X P Y X P5.06.03.0)1()1,1()1|1(==≠≠==≠=Y P Y X P Y X P所以9. 设随机变量X 与Y 相互独立, 并在区间[0, 9]上服从均匀分布, 求随机变量YXZ =的分布密度.解. X ~⎪⎩⎪⎨⎧=091)(x X ϕ 其它90≤≤x , Y ~⎪⎩⎪⎨⎧=091)(x Y ϕ 其它90≤≤y因为X, Y 相互独立, 所以(X, Y)联合密度为(X, Y)~⎪⎩⎪⎨⎧=0811),(y x ϕ 其它9,0≤≤y x , )()()(z X Y P z Z P z F Z ≤=≤=当 z ≤ 0时0)(=z F Z 当 0 < z < 1时D 1z z dxdy Xz Y P z X Y P z Z P z F D Z 219921811811)()()()(1=⋅⋅==≤=≤=≤=⎰⎰ 当z ≥ 1时⎰⎰=≤=≤=≤=2811)()()()(D Z dxdy Xz Y P z X Y P z Z P z F zz 211)992181(811-=⋅-⋅=所以 ⎪⎪⎩⎪⎪⎨⎧==2'21210)()(zz F z Z Z ϕ 1100≥<<≤z z z 10. 设(X, Y)的密度为⎩⎨⎧--=0)1(24),(y x y y x ϕ 其它1,0,0<+>>y x y x 求: i.)21|(),|(),(=x y x y x X ϕϕϕ, ii. )21|(),|(),(=y x y x y Y ϕϕϕ 解. i.⎰∞+∞-=dy y x x X ),()(ϕϕ当x ≤ 0 或 x ≥ 1时0),()(==⎰∞+∞-dy y x x X ϕϕ当0 < x < 1时310)1(4)1(24),()(x dy y x y dy y x x x X -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(4)(3x x X ϕ 其它10<<x所以 ⎪⎩⎪⎨⎧---==0)1()1(6)(),()|(3x y x y x y x x y X ϕϕϕ 其它1,0,0<+>>y x y x 所以 ⎩⎨⎧-==0)21(24)21|(y y x y ϕ 其它210<<yii.⎰∞+∞-=dx y x y Y ),()(ϕϕ当y ≤ 0 或 y ≥ 1时0),()(==⎰∞+∞-dx y x y Y ϕϕ当0 < y < 1时210)1(12)1(24),()(y y dx y x y dx y x y y Y -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(12)(2y y y Y ϕ 其它10<<y所以 ⎪⎩⎪⎨⎧---==0)1()1(2)(),()|(2y y x y y x y x Y ϕϕϕ其它1,0,0<+>>y x y x所以 ⎩⎨⎧-==0)21(4)21|(x y x ϕ 其它210<<x第三章 随机变量的数字特征一. 填空题1. 设随机变量X 与Y 相互独立, D(X) = 2, D(Y) = 4, D(2X -Y) = _______. 解. D(2X -Y) = 4D(X) + D(Y) = 122. 已知随机变量X ~N(-3, 1), Y ~N(2, 1 ), 且X 与Y 相互独立, Z = X -2Y + 7, 则Z ~____. 解. 因为Z = X -2Y + 7, 所以Z 服从正态分布. E(Z) = E(X)-2E(Y) + 7 = 0. D(Z) = D(X -2Y + 7) = D(X) + 4D(Y) = 1+4 = 5. 所以Z ~N(0, 5)3. 投掷n 枚骰子, 则出现点数之和的数学期望______. 解. 假设X i 表示第i 颗骰子的点数(i = 1, 2, …, n). 则 E(X i ) = 27616612611=⋅++⋅+⋅(i = 1, 2, …, n) 又设∑==ni i X X 1, 则27)()()(11nX E X E X E ni i ni i ===∑∑== 4. 设离散型随机变量X 的取值是在两次独立试验中事件A 发生的次数, 如果在这些试验中事件发生的概率相同, 并且已知E(X) = 0.9, 则D(X) = ______. 解. ),2(~p B X , 所以E(X) = 0.9 = 2p. p = 0.45, q = 0.55 D(X) = 2pq = 2×0.45×0.55 = 0.495.5. 设随机变量X 在区间[-1, 2]上服从均匀分布, 随机变量⎪⎩⎪⎨⎧-=101Y 000<=>X X X , 则方差D(Y) = _______.解. X ~⎪⎩⎪⎨⎧=031)(x ϕ 其它21≤≤-xY因为 33)0()1(20==>==⎰dx X P Y P 0)0()0(====X P Y P3131)0()1(01==<=-=⎰-dx X P Y P于是 313132)(=-=Y E , 13132)(2=+=Y E , 98)]([)()(22=-=Y E Y E Y D6. 若随机变量X 1, X 2, X 3相互独立, 且服从相同的两点分布⎪⎪⎭⎫ ⎝⎛2.08.010, 则∑==31i i X X 服从_______分布, E(X) = _______, D(X) = ________.解. X 服从B(3, 0.2). 所以E(X) = 3p = 3×0.2= 0.6, D(X) = 3pq = 3×0.2×0.8 = 0.487. 设X 和Y 是两个相互独立的随机变量, 且X ~N(0, 1), Y 在[-1, 1]上服从均匀分布, 则),cov(Y X = _______.解. 因为X 和Y 是两个相互独立的随机变量, 所以),cov(Y X = 0.8. 设X 和Y 是两个相互独立的随机变量, 其概率密度分别为:⎩⎨⎧=02)(x x ϕ 其它10≤≤x , ⎩⎨⎧=--0)()5(y e y ϕ 其它5>y , 则E(XY) = ________. 解. 322)()(1=⋅==⎰⎰∞+∞-xdx x dx x x X E ϕ 6)()(5)5(=⋅==⎰⎰∞+--∞+∞-dy e y dy y y Y E y ϕ因为X 和Y 是两个相互独立的随机变量, 所以E(XY) = E(X)E(Y) = 49. 若随机变量X 1, X 2, X 3相互独立, 其中X 1在[0, 6]服从均匀分布, X 2服从正态分布N(0, 22), X 3服从参数λ = 3的泊松分布, 记Y = X 1-2X 2 + 3X 3, 则D(Y) = ______. 解. )(9)(4)()32()(321321X D X D X D X X X D Y D ++=+-==4639441262=⨯+⨯+二. 单项选择题1. 设随机变量X 和Y 独立同分布, 记U = X -Y , V = X + Y , 则U 和V 必然 (A) 不独立 (B) 独立 (C) 相关系数不为零 (D) 相关系数为零 解. 因为X 和Y 同分布, 所以E(U) = E(X)-E(Y) = 0, E(U)E(V) = 0. 0)()()(22=-=Y E X E UV E .所以 cov(X,Y) = E(UV)-E(U)E(V) = 0. (D)是答案. 2. 已知X 和Y 的联合分布如下表所示, 则有(A) X 与Y 不独立 (B) X 与Y 独立 (C) X 与Y 不相关 (D) X 与Y 彼此独立且相关 解. P(X = 0) = 0.4, P(Y = 0) = 0.3.0.1 = P(X = 0, Y= 0) ≠ P(X = 0)×P(Y = 0). (A)是答案.3. 设离散型随机变量X 可能取值为: x 1 = 1, x 2 = 2, x 3 = 3, 且E(X) = 2.3, E(X 2) = 5.9, 则x 1, x 2, x 3所对应的概率为(A) p 1 = 0.1, p 2 = 0.2, p 3 = 0.7 (B) p 1 = 0.2, p 2 = 0.3, p 3 = 0.5 (C) p 1 = 0.3, p 2 = 0.5, p 3 = 0.2 (D) p 1 = 0.2, p 2 = 0.5, p 3 = 0.3解. 3.223)1(32)(212121332211=--=--++=++=p p p p p p p x p x p x X E 7.0221=+p p9.5)1(94)(21213232221212=--++=++=p p p p p x p x p x X E 1.35821=+p p解得 p 1 = 0.2, p 2 = 0.3, p 3 = 0.5. (B)是答案.4. 现有10张奖券, 其中8张为2元, 2张为5元, 今每人从中随机地无放回地抽取3张, 则此人抽得奖券的金额的数学期望(A) 6 (B) 12 (C) 7.8 (D) 9解. 假设X 表示随机地无放回地抽取3张, 抽得奖券的金额. X 的分布律为157)()6(31038====c c P X P 三张都是二元157),()9(3101228====c c c P X P 一张五元二张二元151),()9(3102218====c c c P X P 二张五元一张二元8.71511215791576)(=⋅+⋅+⋅=X E . (C)是答案. 5. 设随机变量X 和Y 服从正态分布, X ~N(μ, 42), Y ~N(μ, 52), 记P 1 =P{X ≤ μ-4}, P 2 = P{Y≥ μ + 5}, 则(A) 对任何μ, 都有P 1 = P 2 (B) 对任何实数μ, 都有P 1 < P 2 (C) 只有μ的个别值, 才有P 1 = P 2 (D) 对任何实数μ, 都有P 1 > P 2 解. P 1 = {X ≤ μ-4} =)1(1)1(14Φ-=-Φ=⎭⎬⎫⎩⎨⎧-≤-μX PP 2 = {Y ≥ μ + 5} =)1(115115Φ-=⎭⎬⎫⎩⎨⎧≤--=⎭⎬⎫⎩⎨⎧≥-μμY P Y P(其中Φ(x)为N(0, 1)的分布函数). 所以(A)是答案.6. 随机变量ξ = X + Y 与η = X -Y 不相关的充分必要条件为(A) E(X) = E(Y) (B) E(X 2)-E 2(X) = E(Y 2)-E 2(Y) (C) E(X 2) = E(Y 2) (D) E(X 2) + E 2(X) = E(Y 2) + E 2(Y) 解. cov(ξ, η) = E(ξη)-E(ξ)E(η)E(ξη) =)()()])([(22Y E X E Y X Y X E -=-+ E(ξ)E(η) = [E(X)+E(Y)][E(X)-E(Y)] = )()(22Y E X E - 所以(B)是答案.三. 计算题1. 设X 的分布律为1)1()(++==k ka a k X P , k = 0, 1, 2, …, a > 0, 试求E(X), D(X).解. ∑∑∑∞=+∞=+∞=⎪⎭⎫⎝⎛+=+===1111011)1()()(k k k k k k a a k a a ka k X kP X E令 22'2'1211201)1(1)(x x x x x x x kx x kxx f k k k k k k -=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛===∑∑∑∞=∞=-∞=+ 2222)11()1()1(a aa a a a a f =+-+=+, 所以a a a X E =⋅=21)(.∑∑∑∞=+∞=+∞=+-+=+===11112022)1()11()1()()(k k kk k k k a a k k a a k k X P k X E∑∑∑∞=∞=+∞=+-+++=+-++=11111)1()1(11)1()1()1(k kkk k k k k k a a a k k a a a k a a k k 令 3''2''1111)1(21)1()1()(x x x x x x x kx k x kxk x f k k k k k k-=⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=+=+=∑∑∑∞=+∞=-∞= 23)1(2)11(12)1(a a a a a aa a f +=+-+=+,所以2222)1(211)(a a a a a aX E +=-+⋅+=.222222)]([)()(a a a a a X E X E X D +=-+=-=.2. 设随机变量X 具有概率密度为⎪⎩⎪⎨⎧=0cos 2)(2xx πϕ 其它2||π≤x , 求E(X), D(X).解. 0cos 2)()(222===⎰⎰-∞+∞-πππϕxdx xdx x x X E⎰-=-=222222cos 2)]([)()(πππxdx x X E X E X D211222cos 122222-=+=⎰πππdx x x 3.求⎥⎦⎤⎢⎣⎡+2)(sin Y X E π. 解. 2)(sinY X +π的分布律为 25.015.0)1(40.0145.002)(sin =⨯-+⨯+⨯=⎥⎦⎤⎢⎣⎡+Y X E π 4. 一汽车沿一街道行驶需要通过三个设有红绿信号灯路口, 每个信号灯为红或绿与其它信号灯为红或绿相互独立, 且红绿两种信号显示的时间相等, 以X 表示该汽车首次遇到红灯前已通过的路口的个数, 求: i. X 的概率分布, ii. ⎪⎭⎫⎝⎛+XE 11 解. 假设X 为该汽车首次遇到红灯已通过的路口数P(X = 0) = P{第一个路口为红灯} =2P(X = 1) = P{第一个路口为绿灯, 第二个路口为红灯} =2212121=⋅ P(X = 0) = P{第一,二路口为绿灯, 第三个路口为红灯} =321P(X = 0) = P{第一, 二, 三路口为绿灯} =3219667214121312121211111332=⋅+⋅+⋅+⋅=⎪⎭⎫⎝⎛+X E 5. 设(X, Y)的分布密度⎩⎨⎧=+-04),()(22y xxye y x ϕ其它0,0>>y x求)(22Y X E +. 解. ⎰⎰⎰⎰>>+-∞+∞-∞+∞-+=+=+00)(222222224),()(y x y xdxdy xye y x dxdy y x y x Y X E ϕ434sin cos 02202πθθθπ=⋅⋅⋅⋅=⎰⎰∞+-rdr e r r d r 6. 在长为l 的线段上任选两点, 求两点间距离的数学期望与方差.解. 假设X, Y 为线段上的两点. 则它们都服从[0, l ]上的均匀分布, 且它们相互独立.X ~⎪⎩⎪⎨⎧=01)(l x ϕ 其它l x ≤≤0, Y ~⎪⎩⎪⎨⎧=01)(l y ϕ 其它l y ≤≤0(X, Y)的联合分布为⎪⎩⎪⎨⎧=01)(2l x ϕ 其它l y x ≤≤,0.又设Z = |X -Y|, D 1={(x, y): x > y, 0 ≤ x, y ≤ l }, D 2={(x, y): x ≤ y, 0 ≤ x, y ≤ l }⎰⎰⎰⎰⎰⎰-+-=-=∞+∞-∞+∞-21221)(1)(),(||)(D D dxdy l x y dxdy l y x dxdy y x y x Z E ϕ⎰⎰⎰⎰-+-=l y lxdy dx x y l dx dy y x l2002])([1])([13212122022ldy y l dx x ll l=+=⎰⎰ 6)(1),()()(2002222l dxdy y x ldxdy y x y x Z E ly lx =-=-=⎰⎰⎰⎰∞+∞-∞+∞-≤≤≤≤ϕ 1896)]([)()(22222l l l Z E Z E Z D =-=-=7. 设随机变量X 的分布密度为)(,21)(||+∞<<-∞=--x e x x μϕ, 求E(X), D(X). 解. ⎰⎰⎰∞+∞--∞+∞---∞+∞-+-===dt e t x t dx e x dx x x X E t x ||||)(2121)()(μμϕμ=⎰∞+∞--dt te t ||21+μμμ==⎰⎰∞+-∞+∞--0||21dt e dt e tt⎰⎰⎰∞+∞--∞+∞---∞+∞-+-===dt e t x t dx e x dx x x X E t x ||2||222)(2121)()(μμϕμ=⎰∞+-02dt e t t+20022μμμ+==⎰⎰∞+-∞+-dt e dt e t t所以 22)]([)()(2222=-+=-=μμX E X E X D8. 设(X, Y)的联合密度为⎪⎩⎪⎨⎧=01),(πϕy x 其它122≤+y x , 求E(X), D(Y), ρ(X, Y).解. 01),()(122===⎰⎰⎰⎰+∞∞-+∞∞-≤+y x xdxdy dxdy y x x X E πϕ01),()(122===⎰⎰⎰⎰+∞∞-+∞∞-≤+y x ydxdy dxdy y x y Y E πϕ41cos 11),()(20132122222====⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-≤+πθθππϕdr r d dxdy x dxdy y x x X E y x 41sin 11),()(20132122222====⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-≤+πθθππϕdr r d dxdy y dxdy y x y Y E y x 01),()(122===⎰⎰⎰⎰∞+∞-∞+∞-≤+y x xydxdy dxdy y x xy XY E πϕ41)]([)()(22=-=X E X E X D , 41)]([)()(22=-=Y E Y E Y D0)()()()()(=-=Y D X D Y E X E XY E XY ρ.9. 假设一部机器在一天内发生故障的概率为0.2, 机器发生故障时全天停止工作. 若一周5个工作日里无故障, 可获利润10万元, 发生一次故障仍可获利润5万元; 发生二次故障所获利润0元; 发生三次或三次以上故障就要亏损2万元. 求一周内期望利润是多少? 解. 假设X 表示一周内发生故障的天数. 则X ~B(5, 0.8)33.0)8.0()0(5===X P , 41.0)8.0(2.05)1(4=⨯⨯==X P20.0)8.0(2.0)2(3225=⨯⨯==c X P , 06.020.041.033.01)3(=---=≥X P又设YE(Y) = 10×0.33 + 5×0.41 + 0×0.20 + (-2)×0.06 = 5.23(万元)10. 两台相互独立的自动记录仪, 每台无故障工作的时间服从参数为5的指数分布; 若先开动其中的一台, 当其发生故障时停用而另一台自行开动. 试求两台记录仪无故障工作的总时间T 的概率密度)(t f 、数学期望和方差.解. 假设X 、Y 分别表示第一、二台记录仪的无故障工作时间, 则X 、Y 的密度函数如下:⎩⎨⎧<≥=-05)(~,5x x e x f Y X xX 、Y 相互独立, 且 T = X + Y .X 、Y 的联合密度: ⎩⎨⎧≥≥=+-,00,0,25),()(5y x e y x f y x关于T 的分布函数: ⎰⎰≤+=≤+=≤=ty x T dxdy y x f t Y X P t T P t F ),(}{}{)(当 0<t 时⎰⎰⎰⎰≤+≤+===≤+=≤=ty x ty x T dxdy dxdy y x f t Y X P t T P t F 00),(}{}{)(当 0≥t 时⎰⎰⎰⎰≥≥≤++-≤+==≤+=≤=0,0)(525),(}{}{)(y x t y x y x ty x T dxdy edxdy y x f t Y X P t T P t Ft t tx t y x x t y t x te e dx e e dy e dx e 550055050551|)(525----------=-==⎰⎰⎰所以 ⎩⎨⎧<≥--=--0,00,51)(55t t te e t F t t T所以T 的概率密度: ⎩⎨⎧<≥==-0,00,25)]'([)(5t t e t t F t f t T T 所以 ⎰⎰∞+∞-∞+-===5225)()(052dt e t dt t f t T E t T 所以⎰⎰∞+∞-∞+-=-=-=-=25225425)52()()]([)()(0532222dt e t dt t f t T E T E T D tT第四章 大数定律和中心极限定理一. 填空题1. 设Y n 是n 次伯努利试验中事件A 出现的次数, p 为A 在每次试验中出现的概率, 则对任意 ε > 0, 有=⎪⎭⎫⎝⎛≥-∞→ε||lim p n Y P n n __________. 解. =⎪⎭⎫⎝⎛≥-∞→ε||lim p n Y P n n 1-011||lim =-=⎪⎭⎫ ⎝⎛<-∞→εp n Y P n n2. 设随机变量X 和Y 的数学期望是2, 方差分别为1和4, 而相关系数为0.5, 则根据切比雪夫不等式P(|X -Y| ≥ 6) ≤ _______. 解. E(X -Y) = E(X)-E(Y) = 2-2 = 0 D(X -Y) = D(X) + D(Y)-)()(2Y D X D XY ρ= 1 + 4-2×0.5×1×2 = 3所以 1213636)()6|(|2==-≤≥-Y X D Y X P二. 选择题1. 设随机变量n X X X ,,,21 相互独立, n n X X X S +++= 21, 则根据列维-林德伯格(Levy-Lindberg)中心极限定理, n S 近似服从正态分布, 只要n X X X ,,,21 ( A ) 有相同的数学期望 ( B ) 有相同的方差( C ) 服从同一指数分布 ( D ) 服从同一离散型分布解. 列维-林德伯格(Levy-Lindberg)中心极限定理要求n X X X ,,,21 既有相同的数学期望, 又有相同的方差, 因此( A ) 、( B )、 ( D )都不是答案, ( C )为答案.三. 计算题1. 某厂有400台同型机器, 各台机器发生故障的概率均为0,02, 假如各台机器相互独立工作, 试求机器出现故障的台数不少于2台的概率.解. 假设X 表示400台机器中发生故障的台数, 所以X ~B(400, 0.02) 由棣莫佛-拉普拉斯定理:。

《概率论与数理统计教程》课后习题解答答案1-8章

《概率论与数理统计教程》课后习题解答答案1-8章

第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。

(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。

(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。

解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 ,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,, A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1 ,2 ,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。

则 {1 ,2 ,1b ,2b ,3b ,1r ,2r ,3r ,4r }(ⅰ) A {1 ,2 } (ⅱ) B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。

(1) 叙述C AB 的意义。

(2)在什么条件下C ABC 成立? (3)什么时候关系式B C 是正确的? (4) 什么时候B A 成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。

(2) C ABC 等价于AB C ,表示全系运动员都有是三年级的男生。

(3)当全系运动员都是三年级学生时。

(4)当全系女生都在三年级并且三年级学生都是女生时`。

1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i 1)。

用i A 表示下列事件: (1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。

解 (1)ni i A 1; (2) n i i n i i A A 11; (3) n i ni j j j i A A 11)]([ ;(4)原事件即“至少有两个零件是合格品”,可表示为 nji j i jiAA 1,;1.4 证明下列各式:(1)A B B A ; (2)A B B A (3) C B A )()(C B A ; (4) C B A )()(C B A(5) C B A )( )(C A )(C B (6)ni i ni i A A 11证明 (1)—(4)显然,(5)和(6)的证法分别类似于课文第10—12页(1.5)式和(1.6)式的证法。

概率论与数理统计第六章至第九章

概率论与数理统计第六章至第九章

═══════════════════════════════════════════════════════════════本套试题共分15页,当前页是第1页-概率论与数理统计(经管类)第六章至第九章试题课程代码:04183一、单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设总体X ~ N(2,σμ),其中μ未知,x 1,x 2,x 3,x 4为来自总体X 的一个样本,则以下关于μ的四个估计:)(41ˆ43211x x x x +++=μ,3212515151ˆx x x ++=μ,2136261ˆx x +=μ,1471ˆx =μ中,哪一个是无偏估计?( )A .1ˆμB .2ˆμC .3ˆμD .4ˆμ2.设x 1, x 2, …, x 100为来自总体X ~ N(0,42)的一个样本,以x 表示样本均值,则x ~( ) A .N(0,16) B .N(0,0.16) C .N(0,0.04)D .N(0,1.6)3.要检验变量y 和x 之间的线性关系是否显著,即考察由一组观测数据(x i ,y i ),i =1,2,…,n ,得到的回归方程x y 10ˆˆˆββ+=是否有实际意义,需要检验假设( ) A .0∶,00100≠=ββH H ∶B .0∶,0∶1110≠=ββH HC .0ˆ∶,0ˆ∶0100≠=ββH HD .0ˆ∶,0ˆ∶1110≠=ββH H4.设x 1,x 2,…,x 100为来自总体X ~N (μ,42)的一个样本,而y 1,y 2,…,y 100为来自总体Y~N (μ,32)的一个样本,且两个样本独立,以y x ,分别表示这两个样本的样本均值,则y x -~( )A .N ⎪⎭⎫⎝⎛1007,0 B .N ⎪⎭⎫ ⎝⎛41,0C .N (0,7)D .N (0,25)5.设总体X ~N (μ2σ)其中μ未知,x 1,x 2,x 3,x 4为来自总体X 的一个样本,则以下关于μ的四个无偏估计:1ˆμ=),(414321x x x x +++4321252515151ˆx x x x +++=μ 4321361626261ˆx x x x +++=μ,4321471737271ˆx x x x +++=μ中,哪一个方差最小?( )═══════════════════════════════════════════════════════════════本套试题共分15页,当前页是第2页-A .1ˆμB .2ˆμC .3ˆμD .4ˆμ6.设n 1X ,,X 为正态总体N(2,σμ)的样本,记∑=--=ni i x x n S 122)(11,则下列选项中正确的是( ) A.)1(~)1(222--n S n χσB.)(~)1(222n S n χσ-C.)1(~)1(22--n S n χD.)1(~222-n S χσ7.设有一组观测数据(x i ,y i ),i =1,2,…,n ,其散点图呈线性趋势,若要拟合一元线性回归方程x y 10ˆˆˆββ+=,且n i x y i i ,,2,1,ˆˆˆ10 =+=ββ,则估计参数β0,β1时应使( ) A .∑=-ni i i yy 1)ˆ(最小 B .∑=-ni i i yy 1)ˆ(最大 C .∑=-ni i i yy 1)ˆ(2最小 D .∑=-ni i i yy 1)ˆ(2最大 8.设x 1,x 2,…,1n x 与y 1,y 2,…,2n y 分别是来自总体),(21σμN 与),(22σμN 的两个样本,它们相互独立,且x ,y 分别为两个样本的样本均值,则y x -所服从的分布为( )A .))11(,(22121σμμn n N +- B .))11(,(22121σμμn n N -- C .))11(,(2222121σμμn n N +-D .))11(,(2222121σμμn n N --9.设总体n X X X N X ,,,),,(~212 σμ为来自总体X 的样本,2,σμ均未知,则2σ的无偏估计是( )A .∑=--ni iX Xn 12)(11B .∑=--ni iXn 12)(11μC .∑=-ni iX Xn12)(1D .∑=-+ni iXn 12)(11μ10.设总体X 服从正态分布N (μ,1),x 1,x 2,…,x n 为来自该总体的样本,x 为样本均值,s 为样本标准差,欲检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则检验用的统计量是( )═══════════════════════════════════════════════════════════════本套试题共分15页,当前页是第3页-A.n/s x 0μ-B.)(0μ-x nC.10-μ-n /s xD.)(10μ--x n11.设总体X~N (μ,σ2),X 1,X 2,…,X n 为来自该总体的一个样本,X 为样本均值,S 2为样本方差.对假设检验问题:H 0:μ=μ0↔H 1:μ≠μ0,在σ2未知的情况下,应该选用的检验统计量为( ) A .n X σμ0- B .10--n X σμ C .n SX 0μ-D .10--n SX μ12.在假设检验问题中,犯第一类错误的概率α的意义是( ) A .在H 0不成立的条件下,经检验H 0被拒绝的概率 B .在H 0不成立的条件下,经检验H 0被接受的概率 C .在H 0成立的条件下,经检验H 0被拒绝的概率 D .在H 0成立的条件下,经检验H 0被接受的概率13.设总体X 服从[0,2θ]上的均匀分布(θ>0),x 1, x 2, …, x n 是来自该总体的样本,x 为样本均值,则θ的矩估计θˆ=( ) A .x 2 B .x C .2xD .x2114.设总体X~N (μ,σ2),σ2未知,X 为样本均值,S n 2=n1∑=-n1i i X X ()2,S 2=1n 1-∑=-n1i iX X()2,检验假设H o :μ=μ0时采用的统计量是( ) A .Z=n /X 0σμ- B .T=n /S X n 0μ-C .T=n/X 0σμ- D .T=n/S X 0μ-15.F 0.05(7,9)=( ) A .F 0. 95(9,7)B .)7,9(195.0F═══════════════════════════════════════════════════════════════本套试题共分15页,当前页是第4页-C .)9,7(105.0FD .)7,9(105.0F16.设(X 1,X 2)是来自总体X 的一个容量为2的样本,则在下列E (X )的无偏估计量中,最有效的估计量是( ) A .)(2121X X +B .213132X X +C .214143X X +D .215253X X +17.设总体X~N(0,0.25),从总体中取一个容量为6的样本X 1,…,X 6,设Y=26543221)X X X (X )X (X ++++,若CY 服从F(1,1)分布,则C 为( ) A.2 B.21 C.2D.2118.设α、β分别是假设检验中第一、二类错误的概率,且H 0、H 1分别为原假设和备择假设,则下列结论中正确的是( )A.在H 0成立的条件下,经检验H 1被接受的概率为βB.在H 1成立的条件下,经检验H 0被接受的概率为αC.α=βD.若要同时减少α、β,需要增加样本容量二、填空题请在每小题的空格中填上正确答案。

概率论与数理统计_浙大四版_习题解_第9章_方差分析

概率论与数理统计_浙大四版_习题解_第9章_方差分析

概率论与数理统计(浙大四版)习题解 第9章 方差分析约定:以下各个习题所涉及的方差分析问题均满足方差分析模型所要求的条件。

【习题9.1】今有某种型号的电池三批,它们分别是C B A ,,三个工厂所生产的。

为评比其质量,各随机抽取5只电池为样品,经试验得其寿命(小时)如下表。

三批电池样品的寿命检测结果 A B C 40 42 26 28 39 50 48 45 34 32 40 50 383043(1)试在显著性水平0.05下检验电池的平均寿命有无显著的差异。

(2)若差异显著,试求B A μμ-、C A μμ-及C B μμ-的置信水平为0.95的置信区间。

〖解(1)〗设,,A B C μμμ分别表C B A ,,三厂所产电池的寿命均值,则问题(1)归结为检验下面的假设(单因素方差分析)01::,,不全相等A B CA B C H H μμμμμμ==设A 表因素(工厂),设,,,T R A CR 分别表样本和、样本平方和、因素A 计算数、矫正数,其值的计算过程和结果如下表。

样本数据预处理表A B C 预处理结果40 42 26 28 39 50 n=15 48 45 34 32 40 50 a=338 30 43 CR=22815 j T 213 150 222 T=585 2j j T n9073.8 4500 9856.8 A=23430.6 2ijx∑913745409970R=23647112221121158558522815152364723430.6jjj n aij j i n aijj i n a ij j j i T x T CR n R x A x n =============⎛⎫== ⎪ ⎪⎝⎭∑∑∑∑∑∑计算平方和及自由度如下23647228158321151142364723430.6216.41531223430.622815615.61312T E A SST R CR df n SSE R A df n a SSA A CR df a =-=-==-=-==-=-==-=-==-=-==-=-= 方差分析表方差来源 平方和 自由度 均方 F 值()0.052,12F因素A 615.6 2 307.8 17.07 3.89 误差 216.4 12 18.0333总和83214因17.07 3.89值F =>在拒绝域内,故在0.05水平上拒绝0H ,即认定各厂生产的电池寿命有显著的差异。

概率论与数理统计习题集及答案

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案之马矢奏春创作第1章概率论的基本概念 §1 .1 随机试验及随机事件1.(1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ;2.(1) 丢一颗骰子. A :出现奇数点,则A=;B :数点大于2,则B= .(2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系暗示下列各事件:(1)A 、B 、C 都不发生暗示为:.(2)A 与B 都发生,而C 不发生暗示为:.(3)A 与B 都不发生,而C 发生暗示为:.(4)A 、B 、C 中最多二个发生暗示为:.(5)A 、B 、C 中至少二个发生暗示为:.(6)A 、B 、C 中未几于一个发生暗示为:.2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。

§1 .3 概率的定义和性质1.已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则 (1)=)(AB P , (2)()(B A P )= , (3))(B A P ⋃=.2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P =. §1 .4古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个分歧的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。

概率论与数理统计第九章方差分析与回归分析

概率论与数理统计第九章方差分析与回归分析

版权所有 BY 张学毅
10
方差分析的基本思想
7.若不同水平对试验指标值没有影响,则组间误差中只 包含随机误差,没有系统误差。这时,组间误差与 组内误差经过平均后的数值就应该很接近,它们的 比值就会接近1;
8.若不同水平对试验指标值有影响,则在组间误差中除 了包含随机误差外,还会包含有系统误差,这时组 间误差平均后的数值就会大于组内误差平均后的数 值,它们之间的比值就会大于1;
3)该平方和反映的是随机误差的大小。
计算公式为 :
nj s
2
SE
Xij X.j
i1 j1
三个离差平方和的关系
nj s
2s
2 kn
2
XijX nj X.jX XijX.j
i1j1
j1
i1j1
STSASE
总离差平方和=组间平方和+组内平方和
即 EMSE2
2) M S A 是否是总体方差 2 的无偏估计量,与原假设 成立与否有关 。当且仅当原假设成立时,M S A 才是 总体方差 2 的无偏估计量。
EMSA2s1 1js1njj2
2020/3/1
版权所有 BY 张学毅
17
八、方差分析表
通常将上述计算过程列成一张表格,称为方差分析表。
9.当这个比值大到某种程度时,就可以说不同水平之间 存在着显著差异,也就是自变量对因变量有影响。
2020/3/1
版权所有 BY 张学毅
11
六、离差平方和与自由度的分解
总离差平方和 S T ( sum of squares for total)
1)全部观察值 X
与总均值
ij
X
的离差平方和;

假设检验习题答案

假设检验习题答案
假设检验习题答案
单击此处添加副标题
汇报人姓名 汇报日期
目 录CATALOGUE
1 假设检验的基本概念 2 参数假设检验 3 非参数假设检验 4 习题答案与解析
ONE
1
假设检验的基本概念
定义与目的
判断该假设是否成 立,从而做出接受 或拒绝该假设的决 策。
假设检验是一种统计方法,用于根据样本数据对 某一假设进行评估。
假设检验的类型
单侧检验 只关注某一方向的假设是否成立。
参数检验 对总体参数进行假设检验。
双侧检验 同时关注两个方向的假设是否成立。
非参数检验 不涉及总体参数的假设检验。
ONE
2
参数假ቤተ መጻሕፍቲ ባይዱ检验
单参数假设检验
在单参数假设检验 中,我们通常会对 一个总体参数提出 假设,然后使用样 本数据来检验这个 假设。例如,我们 可能会假设一组数 据的平均值等于某 个值,然后使用样 本数据来检验这个 假设是否成立。
据是否符合正态分布、泊松分布等。
ONE
4
习题答案与解析
习题一答案与解析
答案:D
logo
解析:根据题目给出的数据,我们首先计 算出平均值和标准差。然后,利用假设检 验的方法,我们计算出Z统计量并确定其所 属的临界区间。根据临界区间的结果,我 们判断原假设是否被拒绝,并选择相应的 答案。
习题一答案与解析
秩次检验
详细描述
秩次检验将数据按照大小排序,并赋予每个数据 一个秩次值。然后比较两组数据的秩次分布是否 相同,以判断它们的相对大小关系。如果两组数 据的秩次分布相似,则可以认为它们的相对大小 关系相同;如果秩次分布不同,则可以认为它们 的相对大小关系不同。
秩次检验是一种非参数统计方法,用于比较两组 数据的相对大小关系。

《概率论与数理统计》第三版课后习题答案第9章

《概率论与数理统计》第三版课后习题答案第9章

n
xi yi
i 1 n
xi 2
i 1
n
i 1
xi
n
xi 2
i 1
yi
n
ci yi ,
i 1
你仅购买了个人使用权
这里 ci
xi
n
是常数。所以 ˆ 也服从正态分布。
xi2
i 1
注意到,误差服从高斯-马尔科夫假设,即 1, 2 ,, n 不相关(正态分布不相关等价于 独立),从而 y1, y2 ,, yn 也相互独立,所以
你仅购买了个人使用权
《概率论与数理统计》习题解答 王松桂、张忠占、程维虎等,第三版,科学出版社
第九章
9.1 对一元线性回归模型
yi xi i , i 1,2,3,, n
它不包含常数项,假设误差服从高斯-马尔科夫假设。
(1)求斜率 的最小二乘估计 ˆ ;
(2)若进一步假设误差 i ~ N (0, 2 ) ,试求 ˆ 的分布; (3)导出假设 H0 : 0 的检验统计量。 解:(1)本题也采用 9.1.1 小节的方法,求斜率 的最小二乘估计 ˆ 。
0.24 0.24 0.24 0.25 0.26 0.29 0.32
56 53 53 54.5 61.5 59.5 64
(1)求 0 和 1 的最小二乘估计,并写出经验回归方程; (2)作回归方程的显著性检验,并列出方差分析表(取 0.05 ); (3)求 0 和 1 各自的置信系数为 0.95 的置信区间。
假设这些数据服从一元线性回归模型
yi 0 1xi i , i ~ N (0, 2 ) , i 1,2,3,,92
序 X(%) 号
1 0.03 2 0.04 3 0.04 4 0.05 5 0.05 6 0.05 7 0.05 8 0.06 9 0.06 10 0.07 11 0.07 12 0.07 13 0.08 14 0.08 15 0.08 16 0.08 17 0.08 18 0.08 19 0.08 20 0.09 21 0.09 22 0.09 23 0.09 24 0.09 25 0.09
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档