数学物理方程-谷超豪
数学物理方程_谷超豪_第二章答案
数学物理方程谷超豪第二章答案1. 引言本文档是《数学物理方程》一书中第二章的答案。
该章节主要涵盖了偏微分方程的分类和解法。
在本文中,我们将解答课后习题和深入讨论相关概念,以帮助读者更好地理解和应用这些知识。
2. 偏微分方程的分类在第二章中,我们学习了偏微分方程的分类方法。
根据方程中未知函数的阶数和自变量的个数,偏微分方程可以分为以下几类:1.一阶偏微分方程:只涉及一阶导数的方程,如线性一阶波动方程和拟线性一阶方程等。
2.二阶偏微分方程:涉及二阶导数的方程,如线性二阶波动方程和拉普拉斯方程等。
3.高阶偏微分方程:涉及高阶导数的方程,如线性高阶波动方程和椭圆方程等。
根据自变量的个数,偏微分方程还可以分为以下两类:1.单自变量偏微分方程:只含有一个自变量的方程,如一维波动方程和一维热传导方程。
2.多自变量偏微分方程:含有多个自变量的方程,如二维波动方程和三维热传导方程。
3. 课后习题答案3.1 第一题题目:求解一维波动方程 $\\frac{\\partial^2 u}{\\partial t^2} = c^2 \\frac{\\partial^2 u}{\\partial x^2}$,其中c为常数。
解答:我们可以使用分离变量法求解这个一维波动方程。
首先,假设c=c(c)c(c),代入原方程得到:$$\\frac{T''(t)}{c^2T(t)} = \\frac{X''(x)}{X(x)}$$两边同时等于一个常数 $-\\lambda^2$,即:$$\\begin{cases} T''(t) + \\lambda^2 c^2 T(t) = 0 \\\\ X''(x) + \\lambda^2 X(x) = 0 \\end{cases}$$解这个常微分方程得到:$$\\begin{cases} T(t) = A\\cos(\\lambda c t) +B\\sin(\\lambda c t) \\\\ X(x) = C\\cos(\\lambda x) +D\\sin(\\lambda x) \\end{cases}$$其中c,c,c,c都是常数。
数学物理方程_谷超豪_第三章答案
1
2u
r 2 sin 2 2
2u r
2
1 u u cos ( sin ) r sin r r
1
2 2
u u c o s ( s i n ) y
即
1 r
2
2u
2
r sin
2u
2
1 u 1 2u 2u (r ) 2 2 2 r r r r z
证:柱坐标 (r , , z ) 与直角坐标 ( x, y, z ) 的关系
2u
1 u x 2 y 2 2 2 2 1
2
2u
2u
(1)
u f (r ) ,
2u
x u r f ' (r ) f ' (r ) i xi xi r
xi2 1 " ' ' f ( r ) f ( r ) f ( r ) r xi2 r2 r3
xi2
为作变量的置换,首先令 r sin ,则变换(1)可分作两步进行
由此解出
所以 若 n 2 ,积分得
f ' (r ) A1r (n1)
A1 f (r ) r n2 c1 n2
u u u sin cos x u u u cos sin y
所以 u, v 皆为调和函数。 (5) 。证明用极坐标表示的下列函数都满足调和方程 (1) ln r和 令
1 1 1 2 u cos (ln r 1) cos sin ln r cos cos sin 0 r r r r r r v r ln r sin r cos v . (ln r 1) sin cos r
数学物理方程第三版 谷超豪 答案
x, y,t 有
二阶连续偏导数。且
u
(t 2
x2
y
2
)
3 2
t
t
2u
(t 2
x2
y
2
)
3 2
3(t 2
x2
y
2
)
5 2
t2
t 2
(t 2
x2
y
2
)
3 2
(2t 2
x2
y2)
u
(t 2
x2
y
2
)
3 2
x
x
数学物理方程答案
2u
x
x
x
x
x
2x
又
h x 2u 2v
t 2 t 2
代入原方程,得
h x 2v 1 h x 2v
x 2 a 2
t 2
即
2v 1 2v
x 2 a 2 t 2
由波动方程通解表达式得
vx,t Fx at Gx at
(2) 在 x 轴区间[ x1, x 2 ]上所给的初始条件唯一地确定区间[ x1, x2 ]的决定区
域中解的数值。
证:(1) 非齐次方程初值问题的解为
u(x,t)= 1 [(x at) (x at)] 1
xat
()d
2
2a xat
1 t
+
xa(t )
2u
t 2 u
数学物理方程谷超豪第三版
数学物理方程谷超豪第三版1、数学物理方程式谷超豪第三版数学物理方程式谷超豪第三版(The Third Edition of Mathematical Physical Equations of Kanada Gokoh),是日本硕士级学者谷超豪(Kanada Gokoh)2001年出版的作品,它可以说是谷超豪创作的一部里程碑式的数学物理名著,本书是根据日本高中普通科物理课程设计出来的,全书涵盖了静止机械,电学,热学,光学,无线电和原子物理学等一系列物理内容,包括物理理论,实验方法和实验原理,全书分为六大部分,包括《力学物理学篇》,《电学物理学篇》,《热学物理学篇》,《光学物理学篇》,《无线电学物理学和原子物理学篇》。
该书把各种物理原理、实验室实验等精心编成数学表示,彻底地克服了文字表示的不足,深深吸引了一代又一代物理爱好者。
此外,本书采用了更加详细、简明、精辟的论述形式,以及独特的排版和图表设计,为物理学爱好者,尤其是高中和大学物理学的学生提供了一部非常适合的参考书。
本书中的章节内容涵盖了物理学的全部要素,从基础理论到实践实验,作者把所有的内容细致地讲解透彻。
第一章介绍了大学物理的基本概念,可以作为把握整本书的入门读物,让读者对大学物理学的基本概念有系统的了解。
第四章介绍了物理实验,从物理实验中获得有用的知识,并以实际推导和实验证明的方式来理解物理知识,引导读者发现物理活动中的秘密,提高实验技术的水平,探索空间信息的可能性。
谷超豪第三版的物理书是日本物理学家读者的必备小参考,也因为其精湛的内容而备受全球物理爱好者的瞩目,深受世界各地物理学家和教育者的欢迎。
谷超豪第三版的物理书,确实是日本物理学史上的一本经典之作,本书既是日本高中普物学程的必备读物,也是高校物理专业学生以及其他专业学生和研究人员的参考书。
数学物理方程答案谷超豪
数学物理方程答案谷超豪【篇一:数学物理方程第二版答案(平时课后习题作业)】>第一章.波动方程1 方程的导出。
定解条件4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。
解:如图2,设弦长为l,弦的线密度为?,则x点处的张力t(x)为t(x)??g(l?x)且t(x)的方向总是沿着弦在x点处的切线方向。
仍以u(x,t)表示弦上各点在时刻t沿垂直于x轴方向的位移,取弦段(x,x??x),则弦段两端张力在u轴方向的投影分别为?g(l?x)sin?(x);?g(l?(x??x))sin?(x??x)其中?(x)表示t(x)方向与x轴的夹角又sin??tg??于是得运动方程?u ?x.?u?2u?u??x2?[l?(x??x)]∣x??x?g?[l?x]∣?g?xx?x?t利用微分中值定理,消去?x,再令?x?0得?2u??u?g[(l?x)]。
?x?x?t25. 验证u(x,y,t)?1t2?x2?y2在锥t?x?y0中都满足波动方程222?2u?2u?2u1222证:函数在锥0内对变量t?x?y??u(x,y,t)?222222?t?x?y?x?yx,y,t有二阶连续偏导数。
且232?u??(t2?x2?y2)?t??t35??u(t2?x2?y2)2?3(t2?x2?y2)2?t22?t?(t2?x2?y2)?32?(2t2?x2?y2)?u?(t2?x2?y2)?x?32?x?2u?x2?t?x?22352?2222?22?y?3t?x?yx??????52??u同理 ??t2?x2?y2?2?t2?x2?2y2?2?y所以即得所证。
2 达朗贝尔公式、波的传抪3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题) 2??2u2?u?2?a2t?x??ux?at?0??(x) ??(0)??(0)? ?u??(x).?x?at?0?5??t2?x2?y22t2?2x2?y2??2u?x2?2u?y2?t?x??225?y22??2t2?x?y22???t2.?2u解:u(x,t)=f(x-at)+g(x+at) 令 x-at=0 得 ?(x)=f(0)+g(2x)令x+at=0 得 ?(x)=f(2x)+g(0) 所以 f(x)=?()-g(0). g(x)=?()-f(0). 且 f(0)+g(0)=?(0)??(0). 所以 u(x,t)=?(x2x2x?atx?at)+?()-?(0). 22即为古尔沙问题的解。
数学物理方程(谷超豪)第三章调和方程习题解答
∆u
=
1 r2
⋅
∂ ∂r
(r 2
∂u ) ∂r
+
r2
1 sin θ
⋅
∂ ∂θ
(sin θ
∂u ∂θ
)
+
r2
1 sin
2
θ
⋅
∂2u ∂ϕ 2
=0
证:球坐标 (r,θ ,ϕ) 与直角坐标 (x, y, z) 的关系:
x = r sinθ cosϕ , y = r sin θ sin ϕ , z = r cosθ
f
(r)
=
−
A1 n+
2
r −n+2
+
c1
即 n ≠ 2 ,则
f
(r)
=
c1
+
c2 r n−2
若 n = 2 ,则 即 n = 2 ,则
f ' (r) = A1 故 f (r) = c1 + A1Inr r
f (r) = c1 + c2 In 1 r
2. 证明拉普拉斯算子在球面坐标 (r,θ ,ϕ) 下,可以写成
⋅
∂u ∂ρ
(5)
∂ 2u ∂x 2
+
∂2u ∂y 2
+
∂2u ∂z 2
=
∂2u ∂ρ 2
+
∂2u ∂z 2
+
1 ρ2
⋅
∂2u ∂ϕ 2
+
1 ρ
⋅
∂u ∂ρ
∂2u 再用(3)式,变换 ∂ρ 2
+
∂ 2u ∂z 2
。这又可以直接利用(5)式,得
∂2u ∂ρ 2
数学物理方程-谷超豪
其中σ = k /ES . 类似的,对x = l 端,有
− ∂u + σu ∂x
2
= 0.
x= l
3. 试证:圆锥形枢轴的纵振动方程为 ∂ x E 1− ∂x h
∂u ∂x
=ρ 1−
x h
2
∂2u , ∂t2
其中h 为圆锥的高. 证明: 此时S (x) = S0 1 −
x h
2
,其中S0 为圆锥枢轴的底面积.根据第1题的推导,即得所证.
第三章 调和方程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
第四章 二阶线性偏微分方程的分类与总结 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5. 一柔软均匀的细弦,一端固定,另一端是弹性支承.设该弦在阻力与速度成正比的介质中作微小 的横振动,试写出弦的位移所满足的定解问题.
解: 此时所受外力为阻力F (x) = k
∂u ,因而有 ∂t ∂2u ∂2u ∂u T 2 − ρ 2 = −k ∂t ∂x ∂t
假设固定端为x = 0,有u(0, t) = 0; ∂u = 0. 对于弹性支承端x = l,有 + σu ∂x x= l 6. 若F (ξ ),G(ξ )均为其变元的二次连续可导函数,验证F (x−at),G(x+at)均满足弦振动方程(1.11). 解: 参见第二节.
3. 利用传播波法,求解波动方程的古沙(Goursat)问题 2 2 ∂ u 2∂ u = a , ∂t2 ∂x2 u|x−at=0 = ϕ (x) , u|x+at=0 = ψ (x) , (ϕ (0) = ψ (0)) .
数学物理方程 谷超豪 第四章答案
61
(1 x) 2 u xx (1 y 2 )u yy xu x yu y 0
(1 x 2 )(1 y 2 ) 0 为椭圆形。特征方程为
(
即 解之得
dy 2 1 y 2 ) 0 dx 1 x2
因
dy 1 y2 i dx 1 x2
2u 2u y 2u 1 1 u 2 ( 3 ) xy x x x 2
2
因此引变换
代入化简即得 (3)
x 2u 0 u 0 ( x 0)
有
u u u 2 x
u xx u yy 0
60
因
0 y 0 0
2u y 2
2u 2
2
2u 2u 2
2u 2u 2u 2u (2 cos x) 2 (2 cos x) (2 cos x) 2 xy
代入化简得
2u
2
2 u u u ( )0 32
所以
D( , ) a11a 22 ( x 2 y 2 x 2 y 2 ) (a 212 a11a 22 )( x y y x ) 2 D( x, y )
D( , ) 因 0 ,故 与 同号,即类型不变。 D ( x, y )
(4) sgn yu xx 2u xy sgn xu yy 0 因 1 sgn x sgn y, 在坐标轴上 0 ,为双曲型;在一,三象限内 0 ,为抛物型;在二,四 象限内 0 ,为双曲型。 (5) u xx 4u xy 2u xz 4u yy u zz 0 因对应二次型为
数学物理方程第三版 谷超豪 答案
x u(x,t); x x u(x x,t)
其相对伸长等于
[x
x
u(x
x,t)] [x x
u(x,t)]
x
ux (x
x, t )
令 x 0 ,取极限得在点 x 的相对伸长为 u x (x,t) 。由虎克定律,张力T (x,t) 等于
T (x,t) E(x)ux (x,t)
x0
f
(t).
3. 试证:圆锥形枢轴的纵振动方程为 E [(1 x )2 u ] (1 x )2 2u
x h x
h t 2
其中 h 为圆锥的高(如图 1) 证:如图,不妨设枢轴底面的半径为 1,则 x
点处截面的半径 l 为: l 1 x h
所以截面积 s(x) (1 x )2 。利用第 1 题,得 h
数学物理方程答案
解:(1)杆的两端被固定在 x 0, x l 两点则相应的边界条件为
u(0,t) 0,u(l,t) 0.
(2)若
x
l
为自由端,则杆在
x
l
的张力 T
(l, t )
E(x)
u x
|
xl
等于零,因此相应
的边界条件为
u x
|
xl
=0
同理,若 x 0为自由端,则相应的边界条件为
又
h x 2u 2v
t 2 t 2
代入原方程,得
h x 2v 1 h x 2v
x 2 a 2
t 2
即
2v 1 2v
x 2 a 2 t 2
由波动方程通解表达式得
数学物理方程(谷超豪)版
第 二 章 热 传 导 方 程§1 热传导方程及其定解问题的提1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律dsdt u u k dQ )(11-= 又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。
解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。
记杆的截面面积42l π为S 。
由假设,在任意时刻t 到t t ∆+内流入截面坐标为x 到x x ∆+一小段细杆的热量为t x s xu kt s xu kt s xukdQ xx x x ∆∆∂∂=∆∂∂-∆∂∂=∆+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。
由假设,在时刻t 到t t ∆+在截面为x 到x x ∆+一小段中产生的热量为()()t x s u u lk t x l u u k dQ ∆∆--=∆∆--=111124π 又在时刻t 到t t ∆+在截面为x 到x x ∆+这一小段内由于温度变化所需的热量为()()[]t x s tuc x s t x u t t x u c dQ t ∆∆∂∂=∆-∆+=ρρ,,3由热量守恒原理得:()t x s u u lk t x s x ukt x s t u c x t ∆∆--∆∆∂∂=∆∆∂∂11224ρ 消去t x s ∆∆,再令0→∆x ,0→∆t 得精确的关系:()11224u u l kxu k t u c --∂∂=∂∂ρ或 ()()11222112244u u l c k xu a u u l c k x u c k t u --∂∂=--∂∂=∂∂ρρρ 其中 ρc k a =22. 试直接推导扩散过程所满足的微分方程。
解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt nuDdM ∂∂-=,其中D 为扩散系数,得 ⎰⎰⎰∂∂=21t t sdsdt nuDM 浓度由u 变到2u 所需之溶质为()()[]⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ∂∂=∂∂=-=2121121,,,,,,t t tt dvdt t uC dtdv t u C dxdydz t z y x u t z y x u C M两者应该相等,由奥、高公式得:⎰⎰⎰⎰⎰⎰⎰⎰ΩΩ∂∂==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=21211t t t t dvdt t uC M dvdt z uD z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。
数学物理方程谷超豪版第二章课后规范标准答案
,.第 二 章 热 传 导 方 程§1 热传导方程及其定解问题的提1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律dsdt u u k dQ )(11-=又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。
解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。
记杆的截面面积42l π为S 。
由假设,在任意时刻t 到t t ∆+内流入截面坐标为x 到x x ∆+一小段细杆的热量为t x s xu kts xu k t s xukdQ xx xx ∆∆∂∂=∆∂∂-∆∂∂=∆+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。
由假设,在时刻t 到t t ∆+在截面为x 到x x ∆+一小段中产生的热量为()()t x s u u lkt x l u u k dQ ∆∆--=∆∆--=111124π又在时刻t 到t t ∆+在截面为x 到x x ∆+这一小段内由于温度变化所需的热量为()()[]t x s tuc x s t x u t t x u c dQ t ∆∆∂∂=∆-∆+=ρρ,,3由热量守恒原理得:()t x s u u lk t x s x uk t x s t u c x t ∆∆--∆∆∂∂=∆∆∂∂11224ρ消去t x s ∆∆,再令0→∆x ,0→∆t 得精确的关系:()11224u u l k xu k t u c --∂∂=∂∂ρ 或 ()()11222112244u u l c k xu a u u l c k x u c k t u --∂∂=--∂∂=∂∂ρρρ 其中 ρc k a =22. 试直接推导扩散过程所满足的微分方程。
解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt nuDdM ∂∂-=,其中D 为扩散系数,得 ⎰⎰⎰∂∂=21t t sdsdt nuDM 浓度由u 变到2u 所需之溶质为()()[]⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ∂∂=∂∂=-=2121121,,,,,,t t tt dvdt t uC dtdv t u C dxdydz t z y x u t z y x u C M两者应该相等,由奥、高公式得:⎰⎰⎰⎰⎰⎰⎰⎰ΩΩ∂∂==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=21211t t t t dvdt t uC M dvdt z uD z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。
数学物理方程(谷超豪)课后答案
第一章.波动方程§1方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明满足方程),(t x u ()⎟⎠⎞⎜⎝⎛∂∂∂∂=⎟⎠⎞⎜⎝⎛∂∂∂∂x u E x t u x t ρ其中为杆的密度,为杨氏模量。
ρE 证:在杆上任取一段,其中两端于静止时的坐标分别为与。
现在计算这段杆在时x +x x ∆刻的相对伸长。
在时刻这段杆两端的坐标分别为:t t ),();,(t x x u x x t x u x ∆++∆++其相对伸长等于),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆−+−∆++∆+θ令,取极限得在点的相对伸长为。
由虎克定律,张力等于0→∆x x x u ),(t x ),(t x T ),()(),(t x u x E t x T x =其中是在点的杨氏模量。
)(x E x 设杆的横截面面积为则作用在杆段两端的力分别为),(x S ),(x x x ∆+x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(−∆+∆+利用微分中值定理,消去,再令得x ∆0→∆x tt u x s x )()(ρx∂∂=x ESu ()若常量,则得=)(x s =22)(tu x ∂∂ρ)((x u x E x ∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在两点则相应的边界条件为l x x ==,0.0),(,0),0(==t l u t u (2)若为自由端,则杆在的张力|等于零,因此相应的边l x =l x =xux E t l T ∂∂=)(),(l x =界条件为|=0xu∂∂l x =同理,若为自由端,则相应的边界条件为∣0=x xu∂∂00==x (3)若端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移l x =由函数给出,则在端支承的伸长为。
数学物理方程第二版(谷超豪)前三章习题答案
1
l 1
x h
所以截面积 s( x) (1 ) 。利用第 1 题,得
2
x h
证:函数 u ( x, y, t )
1 t x y
2 2 2
在锥 t x y >0 内对变量 x, y, t 有
2 2 2
( x) (1 ) 2
若 E ( x) E 为常量,则得
代入原方程,得
x sx
若 s( x) 常数,则得
2u u u . ES b x s x 2 t x x t
即
2v 1 2v h x 2 2 h x 2 x a t 2v 1 2v x 2 a 2 t 2
于是得运动方程
( x)s( x) x utt ( x, t ) ESu x ( x x) | x x ESu x ( x) | x
( x)s( x)utt ( ESu x ) x
即
利用微分中值定理,消去 x ,再令 x 0 得
u ∣ x 0 k[u(0, t ) v(t )] x u ( u ) ∣ x 0 f (t ). x E
解:(1)杆的两端被固定在 x 0, x l 两点则相应的边界条件为
u(0, t ) 0, u(l , t ) 0.
(2)若 x l 为自由端,则杆在 x l 的张力 T (l , t ) E ( x) 界条件为
u u x E t t x x
1 F x Gx hx 1 x aF / x aG / x hx
x
(1)
数学物理方程谷超豪版第二章课后答案.doc
第二章热传导方程§ 1热传导方程及其定解问题的提1. 一均匀细杆直径为 l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律dQ k 1(u u 1 )dsdt又假设杆的密度为,比热为 c ,热传导系数为 k ,试导出此时温度 u 满足的方程。
解:引坐标系:以杆的对称轴为x 轴,此时杆为温度u u( x,t) 。
记杆的截面面积 l 2为 S 。
t 到 tt 内流入截面坐标为 x 到 xx 一小段细杆的热量为 4由假设,在任意时刻dQu s t k u2u s x tkxs t k1x x x xx 2 xt 到 tt 在截面为杆表面和周围介质发生热交换,可看作一个“被动”的热源。
由假设,在时刻x 到 xx 一小段中产生的热量为4k 1dQ2k 1 u u l x tu u s x t1l1又在时刻 t 到 tt 在截面为 x 到 xx 这一小段内由于温度变化所需的热量为dQc u x,tt u x,t s x c u s x t由热量守恒原理得:3t tcu s x t k2us x t4k 1u u s x tt tx2 xl1消去 sx t ,再令x 0 , t 2 u 0 得精确的关系:cuk 4k 1 u ut x 2 l1u k 2u 4ka 22 u4k或t cx2c 1u u 1x2c 1u u 1ll其中a2kc2. 试直接推导扩散过程所满足的微分方程。
解:在扩散介质中任取一闭曲面s ,其包围的区域 为 ,则从时刻 t 1 到 t 2 流入此闭曲面的溶 质,由 dMDudsdt ,其中 D 为扩散系数,得nt 2D udsdtMt 1 snt 2t 2C udvdtM 1C u x, y, z, t 2 u x, y, z, t 1 dxdydzCudtdvt 1tt 1t两者应该相等,由奥、高公式得:t 2uuut 2C udvdtMD D D dvdt M 1t 1xx y y z zt 1t其中 C 叫做孔积系数 =孔隙体积。
数学物理方程第二版(谷超豪)答案
其中 h 为圆锥的高(如图 1) 证:如图,不妨设枢轴底面的半径为 1,则 x 点处截面的半径 l 为:
l 1 x h
x h
2
所以截面积 s( x) (1 ) 。利用第 1 题,得
( x) (1 ) 2
若 E ( x) E 为常量,则得
x h
2u x u [ E (1 ) 2 ] 2 x h x t
1 h x x 1 h d c 2 2a x 2
o
x
1 1 h d c Gx h x x 2 2a x 2
o
x
所以
u ( x, t )
1 [(h x at ) ( x at ) (h x at ) ( x at )] 2(h x)
( x)
3. 利用传播波法,求解波动方程的特征问题(又称古尔沙问题)
2 2u 2 u 2 a x 2 t u x at0 ( x) u ( x). x at0
(0) (0)
数学物理方程答案
解:u(x,t)=F(x-at)+G(x+at) 令 x-at=0 令 x+at=0 所以 得 ( x) =F(0)+G(2x) 得 ( x) =F(2x)+G(0) F(x)= ( ) -G(0). G(x)= ( ) -F(0). 且 所以 F(0)+G(0)= (0) (0). u(x,t)= (
2 5 2 2 2 x y t 2x 2 y 2 2
y
所以 即得所证。
2u x 2
2u y 2
t
数学物理方程(谷超豪)-第三、四章 课后习题答案
第三章调和方程§1建立方程定解条件1.设)(),,,(21r f x x x u n = )(221n x x r ++=是n 维调和函数(即满足方程022212=∂∂++∂∂nx ux u),试证明221)(-+=n rc c r f )2(≠n rInc c r f 1)(21+=)2(=n 其中21,c c 为常数。
证:)(r f u =,rx r f x rr f x u i i i ⋅=∂∂⋅=∂∂)()(''32''22"22)(1)()(r x r f r r f rx r f x ui i i ⋅-⋅+⋅=∂∂312''212"122)()()(rx r f r nr f rx r f x uni i ni i ni i∑∑∑===⋅-⋅+⋅=∂∂)(1)('"r f rn r f -+=即方程0=∆u 化为0)(1)('"=-+r f rn r f rn r f r f 1)()('"--=所以)1(1')(--=n r A r f 若2≠n ,积分得1212)(c r n A r f n ++-=+-即2≠n ,则221)(-+=n r c c r f 若2=n ,则rA r f 1')(=故Inr A c r f 11)(+=即2=n ,则rInc c r f 1)(21+=2.证明拉普拉斯算子在球面坐标),,(ϕθr 下,可以写成sin 1)(sin sin 1(12222222=∂∂⋅+∂∂∂∂⋅+∂∂∂∂⋅=∆ϕθθθθθur u r r u r r r u 证:球坐标),,(ϕθr 与直角坐标),,(z y x 的关系:ϕθcos sin r x =,ϕθsin sin r y =,θcos r z =(1)222222z u yu xu u ∂∂+∂∂+∂∂=∆为作变量的置换,首先令θρsin r =,则变换(1)可分作两步进行ϕρcos =x ,ϕρsin =y (2)θρsin r =,θcos r z =(3)由(2)⎪⎪⎭⎪⎪⎬⎫∂∂+-∂∂=∂∂∂∂+∂∂=∂∂)cos ()sin (sin cos ϕρϕρϕϕϕρy ux u u y u x u u 由此解出⎪⎭⎪⎪⎬⎫⋅∂∂+∂∂=∂∂⋅∂∂-∂∂=∂∂ρϕϕϕρρϕϕϕρcos sin sin cos u u y u u u x u (4)再微分一次,并利用以上关系,得)sin cos (22ρϕϕϕρ⋅∂∂-∂∂∂∂=∂∂u u x xu)sin cos (sin )sin cos (cos ρϕϕϕρϕρϕρϕϕϕρρϕ⋅∂∂-∂∂∂∂⋅-⋅∂∂-∂∂∂∂=u u u u +∂∂⋅+∂∂∂⋅-∂∂=22222222sin cos sin 2cos ϕρϕϕρρϕϕρϕuu u ρρϕϕρϕϕ∂∂⋅+∂∂⋅+u u 22sin cos sin 2cos sin (22ρϕϕϕρ⋅∂∂+∂∂∂∂=∂∂u u y yu)cos sin (cos )cos sin (sin ρϕϕϕρϕρϕρϕϕϕρρϕ⋅∂∂+∂∂∂∂++⋅∂∂+∂∂∂∂=u u u u ρρϕϕρϕϕϕρϕϕρρϕϕρ∂∂⋅+∂∂⋅--∂∂⋅+∂∂∂+∂∂=u u uu u2222222222cos cos sin 2cos cos sin 2sin 所以ρρϕρρ∂∂⋅+∂∂⋅+∂∂=∂∂+∂∂uu u yu xu 11222222222(5)ρρϕρρ∂∂⋅+∂∂⋅+∂∂+∂∂=∂∂+∂∂+∂∂uuz uu z u y u x u112222222222222再用(3)式,变换2222zu u ∂∂+∂∂ρ。
数学物理方程(谷超豪)-第三、四章 课后习题答案
第三章调和方程§1建立方程定解条件1.设)(),,,(21r f x x x u n = )(221n x x r ++=是n 维调和函数(即满足方程022212=∂∂++∂∂nx ux u),试证明221)(-+=n rc c r f )2(≠n rInc c r f 1)(21+=)2(=n 其中21,c c 为常数。
证:)(r f u =,rx r f x rr f x u i i i ⋅=∂∂⋅=∂∂)()(''32''22"22)(1)()(r x r f r r f rx r f x ui i i ⋅-⋅+⋅=∂∂312''212"122)()()(rx r f r nr f rx r f x uni i ni i ni i∑∑∑===⋅-⋅+⋅=∂∂)(1)('"r f rn r f -+=即方程0=∆u 化为0)(1)('"=-+r f rn r f rn r f r f 1)()('"--=所以)1(1')(--=n r A r f 若2≠n ,积分得1212)(c r n A r f n ++-=+-即2≠n ,则221)(-+=n r c c r f 若2=n ,则rA r f 1')(=故Inr A c r f 11)(+=即2=n ,则rInc c r f 1)(21+=2.证明拉普拉斯算子在球面坐标),,(ϕθr 下,可以写成sin 1)(sin sin 1(12222222=∂∂⋅+∂∂∂∂⋅+∂∂∂∂⋅=∆ϕθθθθθur u r r u r r r u 证:球坐标),,(ϕθr 与直角坐标),,(z y x 的关系:ϕθcos sin r x =,ϕθsin sin r y =,θcos r z =(1)222222z u yu xu u ∂∂+∂∂+∂∂=∆为作变量的置换,首先令θρsin r =,则变换(1)可分作两步进行ϕρcos =x ,ϕρsin =y (2)θρsin r =,θcos r z =(3)由(2)⎪⎪⎭⎪⎪⎬⎫∂∂+-∂∂=∂∂∂∂+∂∂=∂∂)cos ()sin (sin cos ϕρϕρϕϕϕρy ux u u y u x u u 由此解出⎪⎭⎪⎪⎬⎫⋅∂∂+∂∂=∂∂⋅∂∂-∂∂=∂∂ρϕϕϕρρϕϕϕρcos sin sin cos u u y u u u x u (4)再微分一次,并利用以上关系,得)sin cos (22ρϕϕϕρ⋅∂∂-∂∂∂∂=∂∂u u x xu)sin cos (sin )sin cos (cos ρϕϕϕρϕρϕρϕϕϕρρϕ⋅∂∂-∂∂∂∂⋅-⋅∂∂-∂∂∂∂=u u u u +∂∂⋅+∂∂∂⋅-∂∂=22222222sin cos sin 2cos ϕρϕϕρρϕϕρϕuu u ρρϕϕρϕϕ∂∂⋅+∂∂⋅+u u 22sin cos sin 2cos sin (22ρϕϕϕρ⋅∂∂+∂∂∂∂=∂∂u u y yu)cos sin (cos )cos sin (sin ρϕϕϕρϕρϕρϕϕϕρρϕ⋅∂∂+∂∂∂∂++⋅∂∂+∂∂∂∂=u u u u ρρϕϕρϕϕϕρϕϕρρϕϕρ∂∂⋅+∂∂⋅--∂∂⋅+∂∂∂+∂∂=u u uu u2222222222cos cos sin 2cos cos sin 2sin 所以ρρϕρρ∂∂⋅+∂∂⋅+∂∂=∂∂+∂∂uu u yu xu 11222222222(5)ρρϕρρ∂∂⋅+∂∂⋅+∂∂+∂∂=∂∂+∂∂+∂∂uuz uu z u y u x u112222222222222再用(3)式,变换2222zu u ∂∂+∂∂ρ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: 参见第二节. 7. 验证u (x, y, t) =
t2
1 − x2
−
在锥t2 y2
−
x2
−
y2
>
0中满足波动方程
∂2u ∂t2
=
∂2u ∂x2
+
∂2u ∂y2
.
解: 显然,
∂u ∂t
=
− (t2
−
t x2 −
y2)3/2 ,
∂2u ∂t2
=
(t2
3t2 − x2 − y2)5/2
−
t2 − x2 − y2 −3/2
1.2 习题选讲
§1. 方程的导出、定解条件
1. 细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x, t) 表示静止时在x 处的点在时刻t 离开
原来位置的偏移.假设振动过程中所发生的张力服从胡克定律,试证明u(x, t) 满足方程
∂ ∂t
ρ
(x)
∂u ∂t
=
∂ ∂x
E
∂u ∂x
,
其中 ρ 为杆的密度,E 为杨氏模量.
ρ
(x)
∂u ∂t
=
∂ ∂x
E
∂u ∂x
,
2. 在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种 情况下所对应的边界条件.
解: 设杆的两个端点坐标分别为0 和l .
(1) 端点固定:此时两个端点无位移,即 u(0, t) = u(l, t) = 0 ;
+
∆x)
∂u ∂x
(x + ∆x, t) S(x + ∆x) −
E(x)
∂u ∂x
(x,
t)
S(x),且正向与坐标轴相同.
图 1-1 图示
设x¯
为微元重心,则重心处加速度为
∂2u ∂t2
(x¯,
t),由牛顿第二定律得,
ρ
(x¯)
S
(x¯)
∆x
∂2u ∂t2
(x¯,
t)
=
E
(x
+
∆x)
S
(x
+
∆x)
∂u ∂x
(2)
端点自由:此时两个端点无约束,根据上题,拉力E(x)
∂u ∂x
(x,
t)
S
=
0
,即
∂u ∂x
(0, t)
=
∂u ∂x
(l, t)
=
0;
(3) 端点固定在弹性支承上:此时端点所受外力与弹性支承的变形成比例.若支承的弹性系数为k
,则支承对杆的左端点x
=
0
处的作用力为E(0)
∂u ∂x
(0,
t) S
证明:
如图建立坐标系,选取杆上一段微元(x, x + ∆x)
,则微元两端的相对伸长分别为
∂u ∂x
(x,
t)
和
∂u ∂x
(x
+
∆x,
t)
.
假设杆的横截面面积为S
,则微
元两端
所受拉
力分别为E(x)
∂u ∂x
(x, t) S(x)
和E(x
+
∆x)
∂u ∂x
(x
+
∆x, t) S(x + ∆x)
.
因此所受合力为E(x
类似的,
∂2u ∂x2
=
(t2
−
3x2 x2 −
y2)5/2
+
t2 − x2 − y2 −3/2 ,
∂2u ∂y2
=
(t2
−
3y2 x2 −
y2)5/2
+
t2 − x2 − y2 −3/2 ,
代入即得所证.
§2. 达朗贝尔公式、波的传播
1. 证明方程
∂ ∂x
1
−
x h
2 ∂u ∂x
=
1 a2
1
−
x h
t
=
0
:
v
=
(h
−
x)ϕ(x),
∂v ∂t
=
(h
−
x)ψ(x)
因此
v(x, t)
=
1 2
((h
−
x
+
at)ϕ(x − at) + (h
−
x
−
at)ϕ(x + at))
+
1 2a
x+at
(h − ξ)ψ(ξ)dξ,
x−at
从而
u(x, t)
=
1 2(h − x)
((h
−
x
+
at)ϕ(x
−
at)
+
(h
−
第二章 热传导方程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1 学习要求 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 习题选讲 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
(2) 在x轴区间[x1, x2]上所给的初始条件唯一地确定区间[x1, x2]的决定区域中解的数值.
证明: (1) 根据非齐次问题解的表达式可知,影响区域为
{(x, t) |t 0, x1 − at x x2 + at }
1.1 学习要求 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 习题选讲 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
,且其正向与x
轴方向相反,因此有
E(0)
∂u ∂x
(0,
t)
S
=
ku(0,
t),
或写为
−
∂u ∂x
+
σu
= 0;
x=0
其中σ = k/ES.
类似的,对x = l 端,有
−
∂u ∂x
+
σu
= 0.
x=l
3. 试证:圆锥形枢轴的纵振动方程为
E
∂ ∂x
1
−
x h
2 ∂u ∂x
=ρ
1
−
x h
2
∂2u ∂t2
第三章 调和方程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1 学习要求 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 习题选讲 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
,
其中h 为圆锥的高.
证明: 此时S(x) = S0
1
−
x h
2
,其中S0为圆锥枢轴的底面积.根据第1题的推导,即得所证.
图 1-2 图示
4. 绝对柔软而均匀的弦线有一端固定,在它自身重力的作用下,此线处于铅垂的平衡位置,试导出 此线的微小横振动方程.
-2-
第一章 波动方程
解: 根据弦的微小横振动方程,有
u|x−at=0 = F (0) + G (2x) = ϕ (x)
u|x+at=0 = F (2x) + G (0) = ψ (x)
从而F (x) = ψ
x 2
− G (0) , G (x) = ϕ
x 2
− F (0) , 又因为u(0, 0) = ϕ(0) = ψ(0),于是F (0) +
G(0) = ϕ(0) = ψ(0).因此
2
∂2u ∂t2
,
的通解可以写成
u(x, t)
=
F (x
−
at) h
+ −
G(x x
+
at)
其中h > 0为常数, F , G为任意的具有二阶连续导数的单变量函数,并由此求解它的初值问题:
t
=
0
:
v
=
(h
−
x)ϕ(x),
∂v ∂t
=
(h − x)ψ(x)
解: (1) 令v(x, t) = (h − x)u(x, t),则 v(x, t) 满足方程