浅谈金属的喷丸强化
喷丸处理的优点及丸粒选择

喷丸时丸粒大小选择弹簧进行适当的喷丸强化处理后,其许用应力和疲劳寿命均提高.喷丸强化后弹簧钢丝表面产生一层残余压应力,从而可改变弹簧的工作性能,延长弹簧使用寿命·喷丸强化的目的是用最大程度的压应力使金属表面获得最小的变形.在这一过程中需要控制的变量主要是喷丸时间,弹丸速度及弹丸直径.经喷丸强化处理后可大大减少由于金属表面的凹坑.刻痕、接缝等缺陷所引起应力集中的不利影响.但喷丸强化并不能治愈金属内部的缺陷,却会使作用在金属内部的净抗拉应力减弱.因此它的不足之处是,在给定的工作条件下可能会引起弹簧的断裂,但这种可能性很小·如果喷丸不足,就达不到弹簧的最大使用寿命,从而不得不选用大直径的钢丝或优质材料.相反,如果喷丸过多,却会使变形的表面实际成为缺陷·如果喷丸强化过于剧烈而强化层深度又设能达到大部分的金属表面缺陷的深度,同样也会使表面形成缺陷。
在对压缩弹簧进行喷丸强化时,所选用的丸粒直径一般为钢丝直径的5%~40%。
而簧圈间的间隙越小,所选的丸粒直径也就越小·这样才能保证丸粒到达弹簧的内部。
同时,使用的丸粒的数量也是很重要的,通常用较少的丸粒喷射可获得最好的疲劳特性。
并能够在金属表面形成一层最佳的覆盖层而不会产生大的表面缺陷。
喷丸处理是以高度弹丸流喷射到弹簧表面,使表层产生塑性变形,从而形成一定厚度的表面强化层。
大量弹丸在压缩空气的推动下,形成高速运动的弹丸流不断地向弹簧表面进行喷射,无数个弹丸不断的锤击弹簧表面,从而使金属晶体发生了晶粒破碎、晶格歪扭及高密度位错,在一定的时间内,以冷加工的形式使弹簧表面的金属材料发生塑性变形,造成重叠的塑性变形,在形成凹坑的过程中会产生压应力并拉伸表面,然而这一变化过程被试件内部未变形的部分所阻挡。
于是在试件表层和靠近表面处形成了残余压应力。
量化喷丸强化的效果和质量的指标主要有喷丸覆盖率、喷丸强度和喷丸后试件的表面粗糙度值。
影响喷丸强度的工艺参数有;弹丸直径、弹丸流量、弹丸速度、喷丸试件等。
激光喷丸强化技术

摘要激光喷丸强化技术是一种有效的金属疲劳解决方案,是具有很多优越性的全新的金属表面强化技术。
与常规喷丸类似,也是通过在金属表面引入残余压应力而增强金属零件的抗疲劳性能。
不同的是,激光喷丸是利用高能脉冲激光在零件表面诱导产生冲击波,冲击波作用于金属表面产生机械“冷作”作用产生塑性变形引入残余压应力,而残余压应力增强了零件材料对表面相关破坏的抵抗能力。
本文对304不锈钢试样分别进行激光喷丸与机械喷丸处理,对处理结果分析表明通过激光喷丸处理,表层晶粒得到了细化,但没有产生明显的马氏体相变,随着喷丸能量密度增大,应力腐蚀敏感性减小;而通过机械喷丸处理的试样,晶粒细化的同时诱发了明显的马氏体相变,随着喷丸压力升高,应力腐蚀敏感性呈现先减小后增大的变化趋势。
关键词:激光喷丸强化技术,机械喷丸技术,马氏体相变,应力腐蚀目录1绪论 (3)1.1激光喷丸强化技术的研究背景 (3)1.2激光喷丸强化技术的研究现状 (4)2 传统喷丸强化技术 (6)2.1机械喷丸强化技术 (6)2.2超声喷丸强化技术 (7)3激光喷丸强化技术 (8)3.1激光强化技术技术原理 (8)3.2激光强化技术实验研究 (9)3.3激光强化技术实验结论 (11)4激光喷丸强化技术适用范围 (12)参考文献 (13)1绪论1.1激光喷丸强化技术的研究背景在实际的工程应用中,尤其是在机械工程和航空航天等领域应用的机械产品和装备中,其关键零部件通常受到热、力等交变载荷的作用,常常发生磨损、断裂和疲劳破坏,导致产品在有效寿命期内过早报废。
疲劳破坏作为一个逐渐发展的过程,通常包括裂纹形成、裂纹稳定扩展和裂纹失稳扩展三个阶段。
完整的疲劳过程分析,既要研究裂纹的萌生,也要研究裂纹的扩展,但对于某些在制造或使用过程中已不可避免地引入了裂纹或类裂纹缺陷的构件,则主要考虑如何采用延寿工艺控制其裂纹扩展,提高疲劳寿命。
为有效提高结构件的抗疲劳失效的能力,目前国内外学者主要开展了两个方面的工作:一方面,致力于提升零部件表面性能的先进制造方法研究,如热处理、深冷处理、电磁热处理、复合材料胶补、激光改性等方法已逐渐应用于零件表面改性和延寿;另一方面,针对疲劳裂纹断裂机制和寿命预测模型开展了探索研究,目标是建立科学的设计理念和安全准则。
喷丸强化技术

精选课件
20
激光喷丸(LY2合金)
喷
精选课件
21
马壮, 等. 特种加工技术与装备,10(2007)36.
激光喷丸(6061-T6合金)
精选课件
22
周建忠, 等. 中国激光,38(2011)0703009-1.
激光喷丸(6061-T6合金)
精选课件
23
周建忠, 等. 中国激光,38(2011)0703009-1.
应用: 1)黑色金属零件:铸钢丸、铸铁丸或玻璃丸; 2)有色金属和不锈钢零件:玻璃丸或不锈钢丸。
精选课件
7
第三节 喷丸强化应用及研究
目的:细化晶粒,提高性能。
流变区
过渡区
Al-Si合金喷丸处理后断面结构
李慕勤, 等. 材料精表选面课工件程技术,2010.
8
材料:2024-T351铝合金板材
精王选明课涛件 , 等. 航空制造技术,5(2012)92.9
二次喷丸: 铸钢丸+玻璃丸
精选课件
14
王欣, 等. 材料保护,44(2011)9.
2124-T851铝合金喷丸
精选课件 王欣, 等. 材料保护,44(2011)159.
Al-Zn-Mg合金高能喷丸
样品在真空炉中固溶处理(480℃,60min), 直径8mm的不锈钢弹丸
李茂林. 中国精选表课面件工程,20(2007)18.
0.1-0.8 mm
精选课件
3
硬化层内产生的两种变化
(1)形成高密度位错,其 在随后交变应力及温 度的作用下逐渐排列 规则,呈现多边形, 在硬化层内形成了更 小的亚晶粒;
(2)形成了高的宏观残余 压应力。
精选课件
4
喷丸强化名词解释

喷丸强化名词解释“喷丸强化”一种用于改善金属和树脂表面性能的表面处理技术,它可以将非金属粒子(尤其是非金属硬度颗粒)射送或涂覆到金属和树脂表面上,从而改变金属和树脂表面的性能。
它是一种有效的耐磨减小技术,可以提高金属和树脂表面的易操作性和耐磨性,还可以根据不同的应用场景改变表面性能,如外观、洁净和磨损等。
喷丸强化的金属和树脂表面是通过一种称为喷丸强化的机械过程来达到。
这种过程会将被处理表面和压缩的喷射介质,如砂丸或金属粉末,分别放入一个真空室中的工件,然后由紧凑的压缩空气将砂丸或金属粉末均匀地射入表面,以改善表面硬度和抗磨损性能。
喷丸强化不仅可以大大增加金属和树脂表面的耐磨性,而且可以提高表面的粗糙度、外观和洁净度,减少表面的污染,从而提高整体的表面性能。
它还能够改变表面的摩擦系数,增强表面的可视度和耐候性,从而提高产品的耐久性和使用寿命。
喷丸强化是一种广泛应用的表面处理技术,广泛应用于汽车制造、航空航天、模具制造、机械制造、刀具加工、电子领域等。
对汽车来说,喷丸强化可以改善金属表面性能,减少汽车抛光工作,防止腐蚀,提高汽车外观,增强汽车耐磨性,节省能源,节约材料和加工成本,提高汽车的使用寿命和性能。
此外,喷丸强化还可以用于模具制造。
例如,在铸造模具制造过程中,喷丸强化可以改善模具的表面硬度,从而提高模具的精度和稳定性,降低气孔的数量,改善外观,改善表面的光滑度,降低整体模具的成本。
总之,喷丸强化是一种表面处理技术,用于改善金属和树脂表面性能。
它可以增加表面的耐磨性、光滑度和可视度,改善外观,降低磨损,增强耐候性,减小表面电阻性,改善表面摩擦系数,从而提高整体表面性能,为不同领域的产品提供更加高效、更加安全的表面处理技术和产品服务。
喷丸的原理与应用

喷丸的原理与应用喷丸是一种表面处理技术,通过高速喷射颗粒或颗粒流撞击工件表面,以去除表面杂质,改善表面质量和增加表面硬度的方法。
其原理主要涉及颗粒动能、颗粒形状和撞击角度等因素的相互作用。
1.颗粒动能:喷丸设备通过高速喷射颗粒或颗粒流,使其具有较高的动能。
当颗粒撞击工件表面时,动能转化为变形能量和热量。
变形能量可使工件表面结构发生改变,而热量则有助于改变表面硬化和残余应力分布。
2.颗粒形状:颗粒形状对喷丸效果有重要影响。
常见的颗粒形状包括球形、角状、锥形等。
不同形状的颗粒在撞击表面时会产生不同的切削和挤压作用,从而影响表面的去除效果和表面质量。
3.撞击角度:撞击角度是指颗粒与工件表面的夹角。
不同的撞击角度会产生不同的撞击力和撞击强度。
一般来说,较小的撞击角度可以提高颗粒对表面杂质的去除能力,而较大的撞击角度则有助于改善表面硬度和残余应力分布。
喷丸技术具有广泛的应用领域,主要包括以下几个方面:1.表面清洁:喷丸可以有效地去除工件表面的氧化皮、锈蚀、毛刺等杂质,从而使表面更加清洁、光滑和均匀。
2.表面改良:喷丸可以通过改变工件表面的形貌和结构,从而实现表面强化和改进。
例如,喷丸可以增加工件表面的粗糙度,提高涂层附着力,增加表面硬度和耐磨性。
3.表面修复:喷丸可以修复受损或磨损的工件表面。
例如,通过选择合适的喷丸介质和参数,可以修复发动机缸体、轴承座和齿轮等零部件的表面。
4.去应力、改善表面处理效果:喷丸可以去除工件表面的残余应力,并改变表面的组织和应力状态,从而提高工件的耐腐蚀性能、疲劳寿命和抗应力腐蚀性能。
5.预处理和涂装:喷丸可以作为表面预处理的一环,用于清除旧涂层、氧化皮等,为涂装提供均匀的表面。
同时,喷丸还可以改善涂层的附着力和抗腐蚀性能。
6.金属废料回收:喷丸可以用于回收废弃的金属材料。
通过喷丸可以去除金属表面的氧化皮、涂层等杂质,从而恢复金属的原始性质,减少资源浪费。
综上所述,喷丸作为一种表面处理技术,通过高速喷射颗粒或颗粒流撞击工件表面,可以实现表面清洁、改良、修复,去除残余应力等多种功能,广泛应用于金属加工、航空航天、汽车制造、钢结构、电力设备等领域。
S30432不锈钢喷丸强化工艺研究

S30432随着科技的不断发展,不锈钢材料在工业生产中得到了广泛应用。
不锈钢通常被用于制造船舶、核电站、航空航天等领域,其在生产过程中经常遭受重压和力量的磨损和腐蚀,导致其使用寿命缩短,因此需要采取相应的强化措施,以提高其耐磨性和抗腐蚀性。
在不锈钢的强化中,喷丸强化是一种非常有效的方法,本文将对此进行探讨。
一、喷丸强化原理喷丸强化是一种机械表面处理技术,其原理为在高速旋转的喷丸轮中,通过高速气体或压缩空气驱动金属弹丸进行撞击,使物体表面受到冲击和打磨,从而改善表面质量。
通过高速撞击拟合小球和磨粒,释放应力,从而提高压缩应力和表面硬度,从而达到强化的效果。
二、喷丸强化的工艺过程喷丸强化的工艺过程主要分为以下几个步骤:1、准备工作在喷丸强化之前,需要对待处理工件进行清洗、脱脂和去除表面氧化物等前处理,以保证喷丸强化对工件进行有效的强化。
2、喷丸材料选用喷丸强化的有效性与喷丸材料具体的性质有关,需根据待处理工件的材料和性质来选择相适应的喷丸材料。
在处理不锈钢时,常采用不锈钢、陶瓷、铝、钛等材料作为喷丸材料。
3、喷丸机的选择选择合适的喷丸机器非常重要,在选择喷丸机时需要考虑喷丸机的喷丸量、工艺精度和加工要求等相关因素。
4、喷丸强化的工艺参数喷丸强化在具体的操作过程中需要控制一系列的工艺参数。
比如,需要对喷丸速度、喷丸强度、撞击角度、喷丸时间以及腐蚀锈蚀等因素进行调整,以达到不同的表面强化效果。
5、喷丸强化完工后的处理在喷丸后,工件表面可能会有残余摩擦、碎屑和残留的碳等物质,因此需要采取相应的化学腐蚀、水冲洗、干燥和防腐处理等步骤。
三、喷丸强化的优势1、提高机械性能通过喷丸强化,不锈钢在表面加工方面会产生压缩应力、冷变形等效应,从而提高了其强度、硬度和延展性。
2、增强防腐蚀性喷丸强化后的不锈钢表面会产生良好的物理和化学质量,增强了不锈钢表面的防腐能力和稳定性。
3、提高耐磨性喷丸强化对不锈钢表面加工后,可以产出一个均匀的络合体微观结构,从而增强了不锈钢材料的耐磨性和抗磨损能力。
喷丸处理名词解释

喷丸处理名词解释喷丸处理是一种常用于表面处理的工艺,通过高速喷射磨料颗粒(通常为金属、瓷砂、玻璃珠等)对被处理物体进行冲击磨削,以达到清洁表面、强化材料、改善工件表面性能的效果。
喷丸处理主要应用于金属制造、汽车制造、航空航天等行业。
一、喷丸处理过程喷丸处理通常使用喷砂机进行,喷砂机由压缩空气或机械动力驱动,在高速的喷射流中催动磨料颗粒。
喷射磨料以高速冲击在被处理物体表面,瞬间去除表面的污垢、氧化层或涂层。
同时,磨料颗粒的冲击力还可以使金属表面产生塑性变形,消除应力集中,提高材料的表面质量。
二、喷丸处理的优势1. 清洁表面:喷丸处理可以将杂质、氧化层和油脂等污垢彻底清除,使金属表面达到洁净状态。
这为后续的涂装、防腐等工艺提供了良好的基础。
2. 强化材料:喷丸处理可以使材料表面产生塑性变形,并形成一定的压应力层。
这种压应力层能够提高金属的抗疲劳性能和耐腐蚀性能,延长材料的使用寿命。
3. 改善表面性能:喷丸处理可以改变材料表面的粗糙度和表面形貌。
通过选择适当的喷砂工艺参数,可以实现表面的去毛刺、去毛化,增加表面的附着力,提高材料的表面质量。
4. 提高工件工艺性能:喷丸处理可以消除金属工件上的应力集中,减少裂纹和断裂的产生。
同时,通过改变喷砂时磨料颗粒的大小、形状和密度等参数,还可以调控材料的表面硬度,提高材料的机械性能。
三、喷丸处理的应用领域喷丸处理广泛应用于各个行业,主要包括以下几个方面:1. 金属制造:喷丸处理在金属制造行业中被广泛用于清洁金属表面、去除氧化层、除去焊渣等。
例如,钢铁制造中的钢板、钢管、钢板焊接缝等都需要进行喷丸处理,以提高材料表面的质量。
2. 汽车制造:喷丸处理在汽车制造中应用广泛。
例如,汽车发动机的缸体、曲轴和齿轮等关键零部件经过喷丸处理后可以消除应力集中,提高材料的强度和硬度,增加其使用寿命。
3. 航空航天:在航空航天领域,喷丸处理被用于航空发动机的涡轮叶片、压气机叶片等关键部件的表面处理,以提高其抗疲劳性能和耐腐蚀性能。
喷丸处理

喷丸处理喷丸处理也称喷丸强化,是提高零件疲劳寿命的有效方法之一,喷丸处理就是将高速弹丸流喷射到弹簧表面,使弹簧表层发生塑性变形,而形成一定厚度的强化层,强化层内形成较高的残余应力,由于弹簧表面压应力的存在,当弹簧承受载荷时可以抵消一部分抗应力,从而提高弹簧的疲劳强度。
喷丸是用来清除厚度不小于2mm的或不要求保持准确尺寸及轮廓的中型、大型金属制品以及铸锻件上的氧化皮、铁锈、型砂及旧漆膜。
是表面涂(镀)覆前的一种清理方法。
广泛用于大型造船厂、重型机械厂、汽车厂等。
喷丸强化是一个冷处理过程,它被广泛用于提高长期服役于高应力工况下金属零件,如飞机引擎压缩机叶片、机身结构件、汽车传动系统零件等的抗疲劳属性。
喷丸强化,是在一个完全控制的状态下,将无数小圆形称为钢丸的介质高速且连续喷射,捶打到零件表面,从而在表面产生一个残余压应力层。
因为当每颗钢丸撞击金属零件上,宛如一个微型棒捶敲打表面,捶出小压痕或凹陷。
为形成凹陷,金属表层必定会产生拉伸。
表层下,压缩的晶粒试图将表面恢复到原来形状,从而产生一个高度压缩力作用下的半球。
无数凹陷重叠形成均匀的残余压应力层。
最终,零件在压应力层保护下,极大程度地改善了抗疲劳强度,延长了安全工作寿命。
喷丸又分为喷丸和喷砂。
用喷丸进行表面处理,打击力大,清理效果明显。
但喷丸对薄板工件的处理,容易使工件变形,且钢丸打击到工件表面(无论抛丸或喷丸)使金属基材产生变形,由于Fe3o4和Fe2o3没有塑性,破碎后剥离,而油膜与基材一同变形,所以对带有油污的工件,抛丸、喷丸无法彻底清除油污。
在现有的工件表面处理方法中,清理效果最佳的还数喷砂清理。
喷砂适用于工件表面要求较高的清理。
但是我国目前通用喷砂设备中多由铰龙、刮板、斗式提升机等原始笨重输砂机械组成。
用户需要施建一个深地坑及做防水层来装置机械,建设费用高,维修工作量及维修费用极大,喷砂过程中产生大量的矽尘无法清除,严重影响操作工人的健康并污染环境。
金属材料的喷丸强化原理及其强化机理综述

金属材料的喷丸强化原理及其强化机理综述喷丸强化是一种常用的金属表面处理技术,通过将高速喷射的金属颗粒或研磨料冲击在金属表面上,可以改善金属的表面质量、增强金属的抗疲劳性能和耐蚀性能。
喷丸强化的原理及其强化机理主要有以下几个方面:1.表面清理:喷丸强化过程中,高速喷射的金属颗粒或研磨料冲击在金属表面上,可以将表面的氧化物、油污、锈蚀物等清除干净,从而提高金属表面的清洁度和质量。
2.表面硬化:喷丸强化会在金属表面形成一定深度的冷作硬化层,这是因为金属颗粒或研磨料的冲击会引起金属表面的塑性变形和冷变形,从而产生强化效果。
这种硬化层可以增加金属材料的硬度和耐磨性,提高抗疲劳性能。
3.残余压应力:喷丸强化会在金属表面产生一定的残余压应力,即冲击力的作用下,金属表面产生压缩变形,而内部则产生拉伸变形。
这些残余压应力的存在可以有效地阻止裂纹和缺陷的扩展,提高金属材料的抗拉强度和延伸率。
4.容积效应:喷丸强化可以在金属表面形成很多微小的挤压区,这些微小的挤压区可以有效地增加金属的表面积,增强金属与周围环境的接触,从而提高金属的氧化和腐蚀性能。
5.变形和急冷回火效应:喷丸强化过程中,金属颗粒或研磨料的冲击会引起金属表面的塑性变形和变形加热,而喷射介质的冷却能力很强,会在喷丸后对金属表面进行急冷回火。
这种急冷回火效应可以改善金属的晶粒结构和组织性能,提高金属的韧性和抗疲劳性能。
总之,喷丸强化通过冲击、压缩、冷变形和急冷回火等机制,对金属材料的表面和组织进行改善和增强,从而达到提高金属的性能和延长使用寿命的目的。
这种技术在航空、航天、能源、汽车等领域有着广泛的应用前景。
金属材料的喷丸强化原理及其强化机理综述

金属材料的喷丸强化原理及其强化机理综述1 喷丸强化原理喷丸强化(Peening)是一种表面处理技术,该技术可以使金属或非金属材料表面几乎承受和耐受机械强度的变化和维护的方法。
它通过喷丸装置形成的动态压痕来改善材料的性能,以降低环境和表面潜在的威胁,从而提高整体结构的强度和寿命。
喷丸强化是在表面处理中使用力学加工的过程,可以应用于铝合金、碳钢、不锈钢和双向淬火钢等金属材料,它可以有效地提高材料的表面硬度和强度。
喷丸强化的原理是,使用压痕和动能来改变和完善表面,从而改善该表面的性能和机械性能,可以解决多种结构和断裂的问题,并可以提高外形精度和耐磨持久性。
2 喷丸强化机理喷丸强化机理涉及多种因素,如极化物质,弹性能,光反射表面,颗粒聚集度,弹性和摩擦力等。
其中,极化物质是喷丸强化的重要机理,极化物质可以将形成的压痕向四周传播以改善表面外观,并增强表面的硬度。
通过电荷分布模式的形成,还可以改变结构的几何维度,使表面形成不同形状的压痕,从而改善材料的表面硬度和耐久性。
弹性能的改善是另一个重要的强化机理,喷丸可以形成压痕磨损表面,从而改善不同表面的弹性能,降低撞击速度对材料的损失,使材料的表面更加平滑,增强材料的机械强度和耐久性。
光反射表面的改善是另一个喷丸强化机理,由于喷丸刻蚀表面形成了凹凸不平表面,使反射光线传播和反射更多,以提高表面的亮度和抗反射能力。
最后,喷丸强化还可以改变表面的密度,材料的密度是影响机械强度的重要因素。
而喷丸处理可以改变表面结构和形状,从而提高表面的密度,并使其结构更加均匀,从而提高材料的机械强度和耐久性。
3 总结喷丸强化是一种常用的表面处理技术,可以有效地提高金属材料表面的硬度和强度,对材料表面的耐磨性有良好的改善作用。
它主要依靠极化物质、弹性能、光反射表面和密度等机制来改善材料表面的性能,从而提高材料的用途和加工性。
浅谈金属的喷丸强化

浅谈金属的喷丸强化摘要:喷丸是高速运动的弹丸流, 喷射在金属表面的加工过程。
金属表层在弹丸的冲击作用下, 发生强烈的塑性变形, 这种塑性变形属于循环应变的性质。
其结果使应变层内的组织结构和应力状态发生变化。
关键词:喷丸强化组织结构金属性能残余应力一、喷丸强化原理喷丸强化过程就是将高速运动的弹丸流连续向金属零件表面喷射的过程, 弹丸流的喷射如同无数小锤向金属表面锤击, 使得金属表面层产生极为强烈的塑性形变, 从而产生了冷作硬化层, 此层称为表面强化层。
从应力状态来看强化层内形成较高的残余压应力;从组织结构来看强化层内形成了更加细小的亚晶粒组织。
二、金属的喷丸强化对组织结构及应力状态的影响喷丸是高速运动的弹丸流, 喷射在金属表面的加工过程。
金属表层在弹丸的冲击作用下, 发生强烈的塑性变形, 这种塑性变形属于循环应变的性质。
其结果使应变层内的组织结构和应力状态发生变化。
1、昌粒变化、晶格咬变、镶嵌细化零件表面在高速(70m/s)弹丸冲击下, 可使金属表层晶粒的形状、尺寸和方位发生变化, 晶格发生歪曲、畸变, 面间距发生变化。
金属表层由于弹丸作用产生塑性变形, 镶嵌块Ε亚晶粒Η细化, 形成微细的镶嵌块组织。
大量实验结果证明, 零部件表面镶嵌块越小, 其疲劳强度越高。
微细的镶嵌块组织, 不仅能提高零件的室温疲劳强度,而且还能提高零件的高温疲劳强度。
2、微观应力由于应变层内晶格产生畸变, 使亚晶粒之间产生很高的应力, 即微观应力。
微观应力的存在, 对零件的疲劳强度也产生有利的影响。
3、显微组织转变从表面上看, 喷丸似乎是一种冷变形加工过程, 其实不然, 当高速弹丸冲击零件表面时, 金属表面受到瞬间局部高温加热。
据沙维林测定的结果, 表面温度可达600度以上。
在微观应力和瞬时高温作用下, 会使应变层内的显微组织发生转变。
根据卡拉谢夫的研究, 渗碳淬火后的12Cr2Ni4 钢,经喷丸后可使残留奥氏体转变成马氏体。
9种金属表面处理工艺

9种金属表面处理工艺金属表面处理工艺有很多种,以下是其中九种常见的金属表面处理工艺:1.抛光工艺:抛光工艺是一种使金属表面光滑如镜的工艺,主要应用于珠宝、钟表、光学仪器等领域。
抛光工艺可以采用机械抛光、化学抛光或电化学抛光等方法,使金属表面达到镜面效果。
2.阳极氧化处理:阳极氧化处理是一种在铝和铝合金表面形成氧化铝膜的工艺,主要应用于建筑、航空航天、汽车等领域。
阳极氧化处理可以提高金属表面的耐腐蚀性和耐磨性,同时还可以改变金属表面的外观和质感。
3.电泳工艺:电泳工艺是一种利用电场作用使带电粒子在电场中移动并沉积在金属表面上的工艺,主要应用于汽车、家电、家具等领域。
电泳工艺可以提高金属表面的耐腐蚀性和耐磨性,同时还可以改变金属表面的外观和质感。
4.微弧氧化工艺:微弧氧化工艺是一种通过微弧放电在金属表面形成陶瓷膜的工艺,主要应用于铝、镁等轻金属领域。
微弧氧化工艺可以提高金属表面的耐磨性、耐腐蚀性和绝缘性等性能。
5.PVD真空镀:PVD真空镀是一种在真空中利用物理或化学方法在金属表面形成涂层的工艺,主要应用于航空航天、汽车、电子等领域。
PVD真空镀可以形成各种不同的涂层,如氮化钛、碳化钛等,以提高金属表面的硬度、耐磨性和耐腐蚀性等性能。
6.喷涂工艺:喷涂工艺是一种将涂料通过喷枪或喷涂设备喷涂在金属表面上的工艺,主要应用于建筑、汽车、家具等领域。
喷涂工艺可以改变金属表面的外观和质感,同时还可以提高金属表面的耐腐蚀性和耐磨性等性能。
7.蚀刻工艺:蚀刻工艺是一种利用化学或电化学方法将金属表面部分去除的工艺,主要应用于航空航天、电子、光学仪器等领域。
蚀刻工艺可以形成各种不同的图案和形状,同时还可以提高金属表面的硬度和耐磨性等性能。
8.表面淬火工艺:表面淬火工艺是一种通过快速加热和淬火处理使金属表面硬化的一种工艺,主要应用于钢铁材料。
表面淬火工艺可以提高金属表面的硬度和耐磨性等性能,同时还可以改变金属表面的外观和质感。
不同材料零件的喷丸强化

不同材料零件的喷丸强化喷丸强化是一种常见的表面处理方法,通过高速喷射金属颗粒或其它硬质颗粒,以一定的速度和角度撞击工件表面,从而改善其表面硬度、耐磨性和抗疲劳性能。
不同材料零件的喷丸强化具有不同的特点和优势。
首先,对于金属零件来说,喷丸强化可以显著提高其表面硬度和耐磨性。
金属材料的表面会在喷丸过程中形成一层厚度较薄的变形层,该变形层由于受到冲击和压缩作用,具有高度致密、细小的晶粒和高硬度的特点。
这使得金属零件在使用过程中更加耐磨,延长了其使用寿命。
同时,喷丸也可以消除金属表面的残余应力和缺陷,提高其抗疲劳性能。
不同金属材料的喷丸强化会产生不同的效果。
例如,对于铸铁零件来说,喷丸可以去除表面的氧化皮和毛刺,提高其表面质量。
对于铝合金零件来说,喷丸可以消除其表面的氧化层和缺陷,提高其表面附着力,减少腐蚀和疲劳裂纹的产生。
对于钢材来说,喷丸可以提高其表面硬度和抗疲劳性能,改善其耐磨性。
对于非金属材料来说,喷丸强化主要是通过改善材料表面的粗糙度和附着力,提高其涂层或涂装的质量和耐久性。
例如,对于塑料、陶瓷和玻璃等材料来说,喷丸可以增加其表面粗糙度,提高其涂层的附着力。
这使得这些材料在使用过程中更加耐磨、耐腐蚀。
此外,喷丸强化还可以用于修复零件的表面缺陷和磨损。
通过喷丸可以去除表面的氧化层、氧化皮、锈蚀和残留物,平整表面,减小表面粗糙度,提高零件的表面质量和几何形状。
这使得喷丸强化成为修复零件表面质量和提高工件整体质量的有效工艺。
总的来说,不同材料零件的喷丸强化能够在一定程度上改善其表面硬度、耐磨性和抗疲劳性能。
通过喷丸可以去除表面缺陷和磨损,平整表面,提高表面质量和几何形状。
不同材料的喷丸强化具有不同的适用范围和效果,因此在进行喷丸强化前需要对材料特性进行充分的了解和选择适当的喷丸工艺参数。
不同材料零件的喷丸强化

不同材料零件的喷丸强化高强度钢由抛丸/喷丸强化引入的残余压应力是最终拉应力强度的一个百分比,该比率随着零件材料本身强度/硬度增加而增加。
高强度/硬度的金属更脆,且对表面缺陷更敏感。
对其进行抛丸/喷丸强化,能让这些高强度金属可以应用在易发生疲劳的工作条件下。
飞机起落架通常设计的疲劳强度为300 ksi (2068 MPa),结合抛丸/喷丸强化。
没经过抛丸/喷丸强化的,机加工后的钢制零件在硬度为30 HRC.左右能取得最佳的疲劳属性。
如材料强度/硬度超过这个水平,其疲劳强度会由于对表面缺口的敏感性和脆性增加而降低。
通过导入的压应力,疲劳强度与增加的强度/硬度成比率提高。
当材料硬度为52 HRC,强化后的疲劳强度可达144 ksi (993 MPa),比未经过强化的同样材料抗疲劳强度增加了2倍多。
利用抛丸/喷丸强化改善高强度/硬度零件的典型应用包括对扳手和冲击工具等。
此外,表面的浅刮痕对于经过抛丸/喷丸强化的高强度钢的疲劳强度影响不大,而对于未经强化的则破坏性很大。
渗碳钢渗碳和渗氮都是热处理过程,能让钢表面具有非常高的硬度。
通常在55~62 HRC。
渗碳钢强化的好处在于:?在~200 ksi (1379 MPa)或更高的高应力水平下,能提供卓越的疲劳属性?减少表面晶格间因氧化而造成渗碳异常情况对于完全渗碳和渗氮处理过的零件,要取得最佳的抗疲劳属性,建议使用硬度为55-62 HRC 的丸料。
脱碳钢脱碳是在热处理过程,铁合金表面碳含量减少。
脱碳会降低高强度钢(240 ksi, 1650 MPa 或以上)的疲劳强度70-80%;能降低低强度钢(2140-150 ksi, 965-1030 MPa)的疲劳强度45-55%。
脱碳对于疲劳属性的破坏力与脱碳层深度并无特别的关系。
脱碳层在0.003英寸深度,其破坏力与0.030英寸深度是一样的。
强化工艺被证实为一种有效的方法,能恢复大部分由于脱碳过程损失的疲劳强度。
喷丸处理原理

喷丸处理原理
喷丸处理,也称为喷丸强化,是一种表面处理技术,主要通过将高速弹丸流喷射到零件表面,使零件表层发生塑性变形,形成一定厚度的强化层。
这个强化层内会形成较高的残余应力,这些残余应力可以在零件承受载荷时抵消一部分应力,从而提高零件的疲劳强度。
喷丸处理通常以压缩空气为动力,将磨料以一定的速度喷向被处理的钢材表面。
磨料对钢材表面的冲击和磨削作用可以除去表面的氧化皮、锈蚀产物及其他污物。
在处理过程中,金属表面会因冲击而产生小压痕或凹陷,为了形成这些凹陷,金属表层必定会产生拉伸。
在表层下,压缩的晶粒试图将表面恢复到原来形状,从而产生一个高度压缩力作用下的半球形。
无数凹陷重叠形成均匀的残余压应力层,最终在压应力层保护下,极大程度地改善了抗疲劳强度,延长了安全工作寿命。
喷丸处理广泛用于大型造船厂、重型机械厂、汽车厂等,是一种高效率的表面处理方法。
如需更多信息,建议咨询相关专家或查阅相关专业文献。
喷丸强化

近期工作中接触喷丸强化(强力喷丸)比较多,搜索了一些资料,做了一些笔记,记录了一些照片,整理一下,与大家共享。
希望与大家交流。
1.强化喷丸概念在了解喷丸强化技术之前,我们有必要将抛丸、喷砂、喷丸的三个容易混淆的概念解释一下。
这三个概念其实就四个字:喷、抛、丸、砂,其中,喷抛是工艺方法,丸砂是使用的材料。
喷,是用高压空气将丸、砂吹到工件的表面,抛是用高速旋转的叶片抛射到工件表面,丸用的是钢丸,砂用的是石英砂等。
喷丸过程就是将大量弹丸喷射到零件表面上的过程,有如无数小锤对表面锤击,因此,金属零件表面产生极为强烈的塑性形变,使零件表面产生一定厚度的冷作硬化层,称为表面强化层,此强化层会显著地提高零件的疲劳强度。
测评强化丸质量有三个基本参数:强度、覆盖率、表面粗糙度。
2.喷丸强度影响喷丸强度的工艺参数主要有:弹丸直径、弹流速度、弹丸流量、喷丸时间等。
弹丸直径越大,速度越快,弹丸与工件碰撞的动量越大,喷丸的强度就越大。
喷丸形成的残余压应力可以达到零件材料抗拉强度的60%,残余压应力层的深度通常可达0.25mm,最大极限值为1mm左右。
喷丸强度需要一定的喷丸时间来保证,经过一定时间,喷丸强度达到饱和后,再延长喷丸时间,强度不再明显增加。
在喷丸强度的阿尔门试验中,喷丸强度的表征为试片变形的拱高。
3.阿尔门(Almen)试验喷丸强度常用N试片(用于有色金属试验)、A试片(最常用)、C试片(更高强度)来进行测量,A试片和C试片之间关系为近似3倍关系。
如用C试片测得强度为0.15-0.20C mm 就相当于0.45-0.60A mm。
图中厚的为C试片,薄的为A试片。
试验过程中,先测量试片原有变形,然后将卡好该试片的工装置于喷丸箱内,采用与工件相同的工艺进行喷射。
喷丸结束,取下试片,测量变形拱高。
如图[localimg=400,300]3[/localimg]4.喷丸覆盖率覆盖率是指工件上每一个点被钢丸打到的次数,有人对喷丸覆盖率常这样认为:我的喷嘴1上1下喷工件2遍,不就可以满足200%的覆盖率了吗?乍一听觉得有道理,其实不是这样的。
纯钛空化水喷丸空蚀和强化的研究

纯钛空化水喷丸空蚀和加强的研究采纳空化水射流方法对工业纯钛表面进行不一样时间的空化水喷丸办理, 用光学显微镜、扫描电子显微镜和透射电镜对办理后试样的表面容貌、显微组织构造等进行了剖析 , 并对试样空蚀损害和表面加强进行了研究。
结果得出,依据空蚀损伤程度和吞没式水射流的流动特征, 能够把损害划分为一次空化水射流损害区( 一次射流区 ) 和混淆空化水射流损害区( 混淆射流区 ) 。
在损害严重的一次射流区, 工作压力为 30MPa时, 喷丸很短时间内 (5min), 表面就出现塑性变形坑、空蚀针孔和形变孪晶。
跟着喷丸时间的延伸(20~30min),在孪晶界等地区开始出现裂纹萌发和扩展 , 喷丸 60min 时表面已出现金属大批剥落的严重损害。
混淆射流区的损害速度显然低于一次射流区, 该地区在空化水喷丸过程中的主要变化是孪晶数目的增添和裂纹的萌发、扩展,而没有塑性变形坑和空蚀针孔。
空化水喷丸能够使纯钛表层组织中的孪晶数目增添, 但在同样空化水喷丸工艺中,混淆射流区的孪晶层厚度显然高于一次射流区。
空化水喷丸过程中 , 先形成一次孪晶 , 后形成次生孪晶以及孪晶交割。
孪晶数量和尺寸随时间的增添而增添, 单个孪晶的最大尺寸约为120μm左右 , 与原始晶粒的最大尺寸相等。
在扫描电镜下对 30MPa工作压力 , 空化水喷丸 20min 后的试样进行 EBSD剖析 ,发现试样表层有必定的剩余应力。
空化水喷丸过程中, 纯钛试样表面一次射流区的粗拙度上涨速率较大 , 粗拙度上涨最快的时间段是20min~30min; 混淆射流区粗拙度上涨速率相对较小, 上涨最快的时间段是20min~30min。
在工作压力为 30MPa下空化水喷丸时 , 一次射流区的粗拙度最高 2.92 μm,低于机加工要求的粗拙度。
空化水喷丸能够使纯钛试样的表面硬度高升, 一次射流区的最表面硬度高与混淆射流区, 但硬化层深度小于混淆射流区。
硬化成效最好的喷丸工艺为工作压力30MPa,喷丸时间 30min~60min之间 ,30MPa下水喷丸 30min 时, 纯钛表面一次射流区的均匀硬度为 339HV,混淆射流区的均匀硬度为 269HV。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈金属的喷丸强化
摘要:喷丸是高速运动的弹丸流, 喷射在金属表面的加工过程。
金属表层在弹丸的冲击作用下, 发生强烈的塑性变形, 这种塑性变形属于循环应变的性质。
其结果使应变层内的组织结构和应力状态发生变化。
关键词:喷丸强化组织结构金属性能残余应力
一、喷丸强化原理
喷丸强化过程就是将高速运动的弹丸流连续向金属零件表面喷射的过程, 弹丸流
的喷射如同无数小锤向金属表面锤击, 使得金属表面层产生极为强烈的塑性形变, 从
而产生了冷作硬化层, 此层称为表面强化层。
从应力状态来看强化层内形成较高的残余压应力;从组织结构来看强化层内形成了更加细小的亚晶粒组织。
二、金属的喷丸强化对组织结构及应力状态的影响
喷丸是高速运动的弹丸流, 喷射在金属表面的加工过程。
金属表层在弹丸的冲击作用下, 发生强烈的塑性变形, 这种塑性变形属于循环应变的性质。
其结果使应变层内的组织结构和应力状态发生变化。
1、昌粒变化、晶格咬变、镶嵌细化
零件表面在高速(70m/s)弹丸冲击下, 可使金属表层晶粒的形状、尺寸和方位发生变化, 晶格发生歪曲、畸变, 面间距发生变化。
金属表层由于弹丸作用产生塑性变形, 镶嵌块Ε亚晶粒Η细化, 形成微细的镶嵌块组织。
大量实验结果证明, 零部件表面镶嵌块越小, 其疲劳强度越高。
微细的镶嵌块组织, 不仅能提高零件的室温疲劳强度,而且还能提高零件的高温疲劳强度。
2、微观应力
由于应变层内晶格产生畸变, 使亚晶粒之间产生很高的应力, 即微观应力。
微观应力的存在, 对零件的疲劳强度也产生有利的影响。
3、显微组织转变
从表面上看, 喷丸似乎是一种冷变形加工过程, 其实不然, 当高速弹丸冲击零件
表面时, 金属表面受到瞬间局部高温加热。
据沙维林测定的结果, 表面温度可达600度以上。
在微观应力和瞬时高温作用下, 会使应变层内的显微组织发生转变。
根据卡拉谢夫的研究, 渗碳淬火后的12Cr2Ni4 钢,经喷丸后可使残留奥氏体转变成马氏体。
4、宏现残余应力
用40Cr钢制成Alman试片, 经喷丸60s后, 在X射线应力仪上测得的残余压应力为
288MPa,40Cr钢制成的多次冲击试样, 经碳氮共渗处理后, 喷丸32s,测得试样轴向的残余压应力高达774MPa或。
表面残余压应力可抵消外加的拉应力, 可提高零件的疲劳寿命。
此外, 喷丸强化可改善由于零件结构设计(如齿根圆角、花键槽)和表面加工痕迹或划伤引起的局部应力集中。
喷丸强化对上述这些“先天的”疲劳源, 起到覆盖作用, 从而可缓和应力集中, 部分改善零的疲劳性能。
三、喷丸强化对金属性能的影响
1、硬度
喷丸后可提高金属的硬度。
18CrMnTi钢渗碳淬火十低温回火后, 硬度为HRC60,喷丸后硬度为HRC64。
40Cr钢淬火、230℃回火后, 硬度为HV550, 喷丸后硬度为HV690。
奥氏体不锈钢喷丸后, 应变层的显微硬度可从HV230增加到HV460。
2、屈服强度
喷丸强化对金属材料的屈服强度提高有限, 这是由于材料在受轴向静拉伸时,横截面上的拉应力是均匀分布的。
喷丸只强化表层, 次表层及心部未得到强化。
有人对不同屈服强度的材料,经相同工艺喷丸后,在相同应力下做了疲劳试验。
结果发现, 屈服强度高的材料, 其疲劳寿命长。
可以认为,对高强度材料喷丸强化容易得到较好的效果。
3、弯曲疲劳强度
喷丸能显著提高弯曲疲劳强度。
如承受交变载荷的汽车钢板弹簧, 经用冷拔钢丝进行喷丸后, 钢板弹簧几乎不发生弯曲疲劳破坏。
受弯的轴类零件喷丸后, 弯曲疲劳寿命成倍提高。
喷丸也能提高多冲弯曲抗力。
用40Cr钢, 经850℃碳氮共渗后直接淬火,200℃回火后喷丸。
各组试样的喷丸时间和多冲寿命见表1所示。
冲击能量选用4.7J。
从表1中看出, 与不喷丸相比, 喷丸能使多冲寿命提高1.4~28倍。
随着喷丸时间的增加, 多冲抗力提高的幅度也增加。
可以看出喷丸时间不足, 将大大降低强化效果。
4、疲劳裂纹的萌生和扩展
20SiMn2MoVA钢试样,经900℃油淬, 200℃回火, 和三种不同喷丸强化工艺进行喷丸后, 与未经喷丸试样同时进行三点弯曲疲劳试验, 当载荷为19.6~980N 时, 所得到的条件疲劳裂纹萌生期N1见表2。
从表2可以看出, 喷丸可以大幅度地延长疲劳裂纹形核时间, 与未喷丸相比, 疲劳裂纹萌生期可以延长7~10倍。
在同样试验条件下, 当载荷在15.7~3.1KN范围时, 喷丸试样的裂纹萌生期为未喷丸试样的11.6倍, 即应力水平越低, 效果越显著。
在疲劳裂纹扩展初期, 喷丸可的扩展, 随着裂纹尺寸增大, 这种作用减弱并逐渐消失。
5、有脱碳层试样的疲劳性能
机械零件表层脱碳, 可降低疲劳寿命。
35CrMn钢经860℃油淬,620℃×1.5h回火, 当表面存在约1mm脱碳层时, 材料的N1下降2/3~7/8 。
材料强度越高, 影响越甚。
对脱碳表面进行喷丸, 可以弥补脱碳造成的损失, N1可提高0.5~1倍(见表3)。
这是由于喷丸使脱碳层发生形变强化,使硬度由HV85提高到HV302,因而提高了脱碳层的屈服强度。
另一方面, 由于在脱碳层造成残余压应力, 从而抵消一部分外加拉应力, 使实际承受的有效应力降低。
这两方面结合, 使疲劳裂纹形核时间大大推迟, 从而延长了无裂纹
疲劳寿命N1。
喷丸强化除具有上述优点外, 还能提高抗腐蚀疲劳和应力腐蚀的能力, 降低金属材料的疲劳缺口敏感度等。
要提高喷丸强化效果, 在不改变喷丸工艺参数的条件下, 当前首要的工作是适当延长机件的喷丸时间, 力求达到喷丸饱和时间, 根据机件的材料、表面形状、热处理工艺, 以及表面硬度, 选择弹丸的材料、硬度、颗粒大小、喷角度和速度, 根据机件的失效部位及受力状态, 确定机件的喷丸部位, 循环使用的弹丸必须经常定期筛选, 及时去掉那些影响强化效果的破碎的尖角状弹丸, 机件喷丸后通过残余应力测定, 调整并确定最佳喷丸工艺参数。
喷丸强化效果的好坏, 最终还是以考核机件的使用寿命为评定依据。
四、激光喷丸强化及特点
随着激光技术的广泛应用,人们很快认识到由激光诱导的等离子体可产生强烈的冲击。
即当短脉冲(几到几十纳秒) 的高能量密度(~200J/ cm2 ) 的激光辐照金属表面时,金属表面的吸收层(黑漆) 吸收激光能量发生爆炸性汽化,汽化后的蒸气急剧吸收激光能量并形成温( > 10 000 K) 、高压( > 1 GPa) 的等离子体,等离子体受到约束层(水或光学玻璃) 的限制,形成高强度压力冲击波,作用于金属表面并向内部传播。
由于这种冲击波压力高达数个兆帕,其峰值应力远远大于材料的动态屈服强度,从而使材料产生密集、均匀和稳定的位错结构,同时冲击波贮藏的弹性变形能大于材料所需的屈服、塑性变形能,使表面材料发生屈服和冷塑性变形,同时在成形区域产生有益的残余压应力,其能消除工件因机械加工、热处理、焊接、激光切割、电镀或硬化涂层形成的有害拉应力,从而提高金属零件的强度、耐磨性、耐腐蚀性和疲劳寿命。
由于其强化原理类似喷丸,因此这种新型的表面强化技术称为激光喷丸。
图1 为激光喷丸的示意图。
吸收层(黑漆) 的作用是吸收激光能量,以产生等离子体爆炸形成激光冲击波,同时保护板料表面不受激光热损伤。
约束层(水或光学玻璃)的作用是阻碍等离子体的膨胀,增强与激光能量的耦合,提高冲击波的压力。
图1 激光喷丸的示意图
激光喷丸强化的技术特点
激光喷丸用于金属表面强化的技术优势十分明显,这主要体现在以下几点上。
1.激光喷丸强化形成的残余压应力层深度要比机械喷丸强化形成的残余压应力层深。
2.残余压应力的大小和深度随激光冲击次数的增加而增加。
3.激光喷丸强化能显著提高金属零件的使用寿命。
4.加工一些传统工艺不能处理的部位,特别适合处理具有局部应力集中的疲劳件。
5.可以改变固体金属表面的形态和组织结构,改善关键部位的耐磨损、抗腐蚀等表面性能。
6.无机械损伤和热应力损伤,与传统的强化工艺如喷丸、冷挤压相比,激光喷丸强化后金属表面不产生畸变和机械损伤,而且由于激光脉冲短,只有几十纳秒,激光与金属表面作用时间短,且大部分激光能量被能量吸收层吸收,传到金属表面的热量很少,故不会引起表面的热损伤。
参考文献
[ 1 ]张毅等喷丸对疲劳裂纹萌生与扩展的形响, 1981
[ 2 ]金属机械性能编写组编金属机械性能机械工业出版社
[ 3 ]倪敏雄等激光喷丸技术及其应用江苏大学机械工程学院2005。