集成运算放大电路
模电课件集成运放基本电路
![模电课件集成运放基本电路](https://img.taocdn.com/s3/m/3e8c7037571252d380eb6294dd88d0d233d43c92.png)
R f 8 R f 20
R2
R3
加减运算电路旳设计环节 R1 24k 先根据函数关系画出电路,R2然 后30计k算参数
解(1) 画出电路 (2) 计算电阻
平衡电阻
R3 12k R 80k
Rf
R’ // R1 // R2 =Rf // R3
uo
Rf R1
ui1
Rf R2
ui 2
Rf R3
ui 3
(由2虚)断因:为i叠 加i点为0虚地,i输i1 入ii信2 号ii3之间i f
满u足i1 线u0性 叠u加i2 定 0u理 ,互ui不3 影0u响。u0 uo
R1
R2
R3
Rf
uo 由由u虚R虚Rf 短地uu:i:1 u0i2 ui3
ui3 ui2
ii3 ii2
R3 R2
Rf
若 R1 = R2 = R3 = R
换作用
1反相微分器 平衡电阻R’=Rf
iC
C
duC dt
由虚断:i i 0 iC i i f i f
iC
u uo Rf
C d ui
dt
由“虚
地u” 0
u
uo
iC
R
f
C
iiCi
ui
dui t
RuC
dt
u
u R
if ii+
Rf
uo
2实际应用旳微分器Zf
uRωi ↑限i→Zi制11/输uω入Ci电↓- →流i,C ↑降→低高高频u频噪o 噪声声uo Cf相位补u 偿i,+ 克制自激振荡
由虚短: u u
uo ui2
R1 R f RRf R2 R R1
集成运算放大电路
![集成运算放大电路](https://img.taocdn.com/s3/m/fa3810b5b8f67c1cfbd6b835.png)
VCCUBE0 R
(1)
当 1 时,T1管的集电极电流
IC1IE1UBE0ReUBE1
(2)
(2)式中 (UBE0 – UBE1) 大概几十毫伏,因此只要 几千欧的 Re 就可以得到几十微安的IC1,所以称 为微电流源。
由式
IC1
Re0 Re1
IRU ReT1lnIICR1
可得
IC1
UT Re
ln
+VCC
IC0=IC1=IC ,IR为基准电流。
T0
C
T1
A点的电流方程I为E2:IC2IBIC2IC
IC0
2IB
IC
A
1
IC
2
IE2
2
IC2
IB2
IE2
1
B
T2
2
IC2
(1)
IR R
IC2 B点的电流方程为:
IR IB 2 IC IC 2 1 2 IC 22 2 2 2 2 IC 2
பைடு நூலகம்
UBE
UT
ln
IE IS
(2)
B
IC0
T0
A T1
IB0
IB1
Re0 IE0
IE1 Re1
因 将T(30)与式T代1 特入性 (1)完式全得U相:B同E0,U 故B:E1UTlnIIE E10 IE1Re1IE0Re0UTlnIIE E1 0
(3) (4)
当 2时,IC0IE0IR,IC1 IE1,所以
IC2(122 22)IRIR
(2)
2.4 多路电流源电路
基于比例电流源的多路电流源:
+VCC
IR R
C B
IC0
模拟电子技术 第十章 集成运算放大电路
![模拟电子技术 第十章 集成运算放大电路](https://img.taocdn.com/s3/m/12d42a7801f69e31433294d8.png)
I I 0
虚断
对于工作在非线性区的应用电路,上述两个特点是分析其 输入信号和输出信号关系的基本出发点。
19
什么情况下放工作于非线性区?
运放在非线性区的条件:
电路开环工作或引入正反馈! iF
ui
UO RF UOPP U+-U-
iI
R1
i+ + i- -
Auo
uO
R
-UOPP
20
实际运放 Auo ≠∞ ,当 u+ 与 u-差值比较小时, 仍有 Auo (u+ u- ),运放工作在线性区。
在运算电路中,无论输入电压,还是输出电压, 均是对“地”而言的。
23
一、比例运算电路
作用:将信号按比例放大。 类型:反相比例放大、同相比例放大。 方法:引入深度电压并联负反馈或电压串联 负反馈。这样输出电压与运放的开环放大倍
数无关,与输入电压和外围网络有关。
24
一、比例运算电路
1.反相比例运算电路
虚短 虚断
2. 理想运放的输入电流等于零。
对于工作在线性区的应用电路,“虚短”和“虚断”是 分析其输入信号和输出信号关系的基本出发点。
17
如何使运放工作在线性区?
理想运放的线性区趋近于0,为了扩大运放的线性区 或使其具有线性区,需给运放电路引入负反馈: 运放工作在线性区的条件: 电路中有负反馈!
但线性区范围很小。
uO
例如:F007 的 UoM = ± 14 V,Auo 2 × 105 , 线性区内输入电压范围
实际特性
0 u+u
U OM u u Auo 14 V 2 105 70 μV
非线性区
集成运算放大器全篇
![集成运算放大器全篇](https://img.taocdn.com/s3/m/b9721e00302b3169a45177232f60ddccdb38e652.png)
习题判16
七、 微分器
iF R
i1 C ui
R2
– +
+
u–= u+= 0
uo
若输入: ui sin t
ui
则:uo RC cost RC sin(t 90 ) 0 uo
0
iF
uo R
i1
C
dui dt
i1 iF
uo
RC
dui dt
t t 习题判19
微分是积分的逆运算。因此,只要将积分运算电路 中R和C的位置互换,就能形成微分器基本电路。如果 说,积分电路能够延缓信号的传输,那么微分电路则能 加快信号的传输过程,微分器又称D调节器。
(2)无调零引出端的运放调零。有些运放是不设调零引出端 的,特别是四运放或双运放等因引脚有限,一般都省掉调零端。 用作电压比较器的运放,无需调零;用作弱信号处理的线性电 路,需要通过一个附加电路,引入一个补偿电压,抵消失调参 数的影响,几种附加的调零电路如图1-14所示。 调零电路的接人对信号的传输关系应无影响,故图l-14a和图l14b加入了限流电阻R3,R3的阻值要求比R1大数十倍,若R1 =10 kΩ, R3可取200 kΩ。图l-14c和图l-14d为不用调零电源 (+U和-U)的调零电路,通过调节电位器RP,可以改变输入偏置 电流的大小,以调整电消振措施 1)区分内外补偿。从产品手册或产品说明书上可查到补偿方法, 如F007型运放往往把消振用的RC元件制作在运放内部。大部分 没有外接相位补偿(校正)端子的运放,均列出补偿用RC元件 的参考数值,按厂家提供的参数,一般均能消除自激。 2)补偿电容与带宽的关系。有时按厂家提供的RC参数不能完全 消除自激。此时若加大补偿电容的容量,可以消除自激。对于 交流放大器,则必须注意补偿元件对频带的影响,不应取过大 的电容值,要选取适当的电容值,使之既能消除振荡,又能保 持一定的频带宽度。此外,对应不同的闭环增益,所需的补偿 电容和补偿电阻也不同。在选取补偿元件时,可以按以下原则 掌握:在消除自激的前提下,尽可能使用容量小的补偿电容和 阻值大的补偿电阻。
集成运算放大电路
![集成运算放大电路](https://img.taocdn.com/s3/m/fb45c97e0a4c2e3f5727a5e9856a561252d321f3.png)
功耗
描述放大电路在工作过程 中消耗的能量,包括静态
电流、动态功耗等。
参数与性能指标的测试方法
01
02
03
输入阻抗测试
通过测量输入电压和电流 的比值来计算输入阻抗。
输出阻抗测试
通过测量输出电压和电流 的比值来计算输出阻抗。
开环增益测试
通过测量放大电路在不同 频率下的电压增益来计算 开环增益。
参数与性能指标的测试方法
描述放大电路对电源的需求和 功耗特性,包括电源电压、静 态电流等。
主要性能指标
线性度
描述放大电路输出信号与输 入信号之间的线性关系,包 括失真度、线性范围等。
精度
描述放大电路输出信号的 精度和稳定性,包括失调
电压、失调电流等。
带宽
描述放大电路在不同频率下 的响应速度和带宽范围,包 括通频带、增益带宽积等。
集成运算放大电路
目录
• 集成运算放大电路概述 • 集成运算放大电路的应用 • 集成运算放大电路的参数与性能指标 • 集成运算放大电路的设计与实现 • 集成运算放大电路的发展趋势与展望
集成运算放大电路概
01
述
定义与特点
定义
集成运算放大电路是一种将差分 输入的电压信号转换成单端输出 的电压信号,并实现电压放大的 集成电路。
特点
具有高放大倍数、高输入电阻、 低输出电阻、低失真度、低噪声 等优点,广泛应用于信号放大、 运算、滤波等领域。
工作原理
差分输入
集成运算放大器采用差分输入方式, 将两个输入端之间的电压差作为输入 信号。
放大与输出
反馈机制
集成运算放大器采用负反馈机制,通 过反馈网络将输出信号的一部分反馈 到输入端,以改善电路的性能。
运算放大电路
![运算放大电路](https://img.taocdn.com/s3/m/795fe574a26925c52cc5bfec.png)
比较器电路本身也有技术指标要求:如精度、 响应速度、传播延迟时间、灵敏度等,大部分 参数与运放的参数相同。在要求不高时可采用 通用运放来作比较器电路。如在A/D变换器电 路中要求采用精密比较器电路。 由于比较器与运放的内部结构基本相同,其 大部分参数(电特性参数)与运放的参数项基本 一样(如输入失调电压、输入失调电流、输入偏 置电流等)。
大学生电子设计大赛系列讲座
集成运算放大电路
物理系 葛汝明
运算放大电路
运算放大电路具有较高的输入阻抗,较大的负载能 力,很高的开环放大倍数,而芯片内部结构复杂, 而外部结构简单,所以得到广泛的应用,我们通常 无需了解其内部的结构,只需熟悉其管脚的排列和 一些基本的电气参数就可以应用了。但是,了解一 些基本的电路原理,也有助于更好的使用运算放大 电路。
Vo
反相比例运算电路
Rf R1
Vi
Af
Rf R1
基本运算原理电路图
2.同相比例运算: 由于:U+ = UI+ = I- = 0 由于反相输入端不再为 “虚地”点,且输入电流 Ii=0,故: IR = If 即:
Vo (1 Rf R1 )Vi
)
A f (1
Rf R1
3.反相加法运算电路:
4、偏置电路
偏置电路用于设置集成运放电路中各级放大电路的静态工 作点。与分立元件不同的是分立元件采用电压源供电,而 集成运放采用电流源电路为各级提供合适的集电极(或 发射极、漏极)静态工作电流,从而确定了合适的静态工 作点,保证了其工作的条件。
集成运放的主要性能指标
1.差模开环放大倍数:AOd 2.共模抑制比:KCMR 3.差模输入电阻:RId 4.输入偏置电流:IIB 5.-3dB带宽: fH 6.输入失调电压及其温漂:UIO, dUIO/dT 7.输入失调电压及其温漂:IIO , dIIO/dT
集成电路运算放大器36页
![集成电路运算放大器36页](https://img.taocdn.com/s3/m/035e49d550e79b89680203d8ce2f0066f5336425.png)
01
02
03
04
信号放大
将传感器输出的微弱信号进行 放大,提高信号的幅度。
信号滤波
对传感器输出的信号进行滤波 处理,消除噪声和干扰。
信号线性化
将传感器输出的非线性信号通 过集成电路运算放大器进行线 性化处理,提高测量精度。
信号比较
将传感器输出的模拟信号与预 设阈值进行比较,输出相应的
开关信号。
在音频信号处理中的应用
集成电路运算放大器
02
的工作原理
输入级
01
02
03
差分输入
运算放大器采用差分输入 方式,将两个输入信号进 行减法运算,提高了抗干 扰能力和共模抑制比。
放大器
输入级通常包含一个三极 管或场效应管组成的放大 器,对差分输入信号进行 放大。
射极跟随器
输入级通常采用射极跟随 器作为输出级,以减小信 号的输出阻抗,提高信号 的驱动能力。
时序控制
在数字电路中,集成电路运算放大 器可以用于产生各种时序控制信号, 如时钟信号、复位信号等。
电压偏置
为数字电路中的逻辑门提供适 当的偏置电压,以调整逻辑门 的阈值电压和性能参数。
电流源和电压源
利用集成电路运算放大器可以 构成各种电流源和电压源,为
数字电路提供稳定的电源。
在传感器信号处理中的应用
THANKS.
确保信号的质量和稳定性。
集成电路运算放大器的历史与发展
历史
集成电路运算放大器的概念最早由美国科学家在20世纪60年 代提出,随着半导体技术和集成电路工艺的发展,集成电路 运算放大器逐渐成为电子工程领域的重要器件。
发展
随着技术的不断进步,集成电路运算放大器的性能不断提高 ,功耗不断降低,集成度不断提高,应用领域不断扩大。目 前,集成电路运算放大器已经广泛应用于信号处理、通信、 音频、医疗、工业控制等领域。
集成运算放大电路全篇
![集成运算放大电路全篇](https://img.taocdn.com/s3/m/71aea03159fafab069dc5022aaea998fcd22405e.png)
Y0 Y1 Y2 Y3 B
注:式中Aod为差模开环放大倍数。
二、 集成运放中的电流源电 路
4.2.1 基本电流源电路
一、镜像电流源
+VCC
IR
B IC0
T0
R 2IB
A
IB0
IB1
IC1 T1
UBE0= UBE1, β0=β1=β, IC0=IC1=IC= βIB , IC1为输出电流, IR为基准电流。
基准电流表达式:
IR
用
uP
集成运放组成方框图:
输入级
uN
中间级
输出级 uO
偏置电路
1) 输入级 又称前置级,常为双输入高性能差分放大电路(高Ri 、大Ad、 大KCMR、静态电流小)。输入级的好坏直接影响着集成运放的大多数性能 参数。
2) 中间级 主放大器,使集成运放具有较强的放大能力,多采用共射 (或共源)放大电路。放大管经常采用复合管,以恒流源做集电极负载。
R`3
C`1 R`3
2.1k
2.1k
R`5 240k
C`1
R`4 25k
R`5 240k
- +
R7 100k
-∞ A3
(以下电路同上,仅C1、C2 值不同,电路从略)
图5.6 十五段优质均衡器
(2) 当R4的滑动触头移到最左边时,其电路如图8.7(a)所示。
C1
R3
R3
C2 R5
R4 R5
-∞
R6
B点的电流方程为:
IR
IB2
IC
IC2
1 2
IC2
2
2
2 2
2
I
C
2
IC2
(1
第4章 集成电路运算放大电路
![第4章 集成电路运算放大电路](https://img.taocdn.com/s3/m/b339c41e10a6f524ccbf85df.png)
④动态时ΔiO约为多少?
4.3 集成运放电路简介
•电压放大倍数高 集成运放的特点: •输入电阻大 •输出电阻小 已知电路图,分析其原理和功能、性能。 (1)了解用途:了解要分析的电路的应用场合、用途和技术 指标。 (2)化整为零:将整个电路图分为各自具有一定功能的基本 电路。 (3)分析功能:定性分析每一部分电路的基本功能和性能。 (4)统观整体:电路相互连接关系以及连接后电路实现的功 能和性能。 (5)定量计算:必要时可估算或利用计算机计算电路的主要 参数。
4.2.1 基本电流源电路
一、镜像电流源
T0 和 T1 特性完全相同。
U BE0 = U BE1 U BE I B0 = I B1 I B I C0 = I C1 I C
I R IC 2I B IC 2 IC IC
2
I R 即I C1
当β>>2时, I C1
学习指导 4.1 集成运算放大电路概述 4.2 集成运放中的电流源 4.3 集成运放电路的简介 4.4 集成运放的性能指标及低频等效电路
4.5 集成运放的种类及选择(自学) 4.6 集成运放的使用(自学) 小结
作 业
• 4.3
学习指导
在半导体制造工艺的基础上,将整个电路中的元 器件制作在一块硅基片上,构成特定功能的电子电路, 称为集成电路。 其体积小,而性能却很好。 集成电路按其功能分,有模拟集成电路和数字集 成电路。模拟集成电路的种类繁多,其中集成运算放 大器(简称集成运放)是应用极为广泛的一种。 主要内容:(1)集成运放中的电流源;(2)集成运放 电路的分析;(3)集成运放及主要性能指标。 基本要求:(1)熟悉运放的组成及各部分的作用, 理解主要性能指标及其使用注意事项;(2)了解镜 像电流源、微电流源的工作原理、特点和主要用途; (3)了解运放F007的基本组成和工作原理。(4)熟悉 LM324集成运放的引脚分布及其应用。
第4章集成运算放大电路
![第4章集成运算放大电路](https://img.taocdn.com/s3/m/d2c97cf8a26925c52cc5bff9.png)
2020年4月8日星期三
Shandong University
第3页
模拟电路
二、集成运放电路的组成
两个 输入端
一个 输出端
若将集成运放看成为一个“黑盒子”,则可等效为一个 双端输入、单端输出的差分放大电路。
2020年4月8日星期三
Shandong University
第4页
模拟电路
集成运放电路四个组成部分的作用
模拟电路
第四章 集成运算放大电路
§4.1 概述 §4.2 集成运放中的电流源 §4.3 电路分析及其性能指标
2020年4月8日星期三
Shandong University
第1页
模拟电路
§4.1 概述
一、集成运放的特点 二、集成运放电路的组成 三、集成运放的电压传输特性
2020年4月8日星期三
Shandong University
2020年4月8日星期三
Shandong University
第5页
模拟电路
三、集成运放的电压传输特性 uO=f(uP-uN)
在线性区:
uO=Aod(uP-uN) Aod是差模开环放大倍数。
非线 性区
由于Aod高达几十万倍,所以集成运放工作在线性区时的 最大输入电压(uP-uN)的数值仅为几十~一百多微伏。
特点:IC1具有更高的稳定性。
2020年4月8日星期三
Shandong University
第9页
三、微电流源
模拟电路
要求提供很小的静态电流,又不能用大电阻。
IE1 (UBE0 UBE1) Re
U BE
I UT
I I e , I e E
S
E0 E1
模电课件第四章集成运算放大电路
![模电课件第四章集成运算放大电路](https://img.taocdn.com/s3/m/9c0ab3ad83d049649b665846.png)
§4.1集成运算放大电路概述 一、集成运放的电路结构特点
集成运算放大电路:高电压放大倍数的直接耦合多级放大电路。
2019/7/28
模电课件
二、集成运放的电路组成
1、输入级:运算放大器的输入级通常是差分放大电路,其主 要功能是抑制共模干扰和温漂,双极型运放中差分管通常采 用CC-CB复合管,以便拓展通频带。 2、中间级:电压放大,要求:放大倍数要尽可能大,通常采 用共201射9/7/2或8 共源电路,并采用恒模电流课源件 负载和复合管以增加电压 放大倍数。
工作在放大状态。
当T0与 T1特性参数完全一致时,由U BE0 = U BE1可推得
IB0 = IB1 = IB IC0 = IC1 = Io 由基极输入回路得,
Io
IR
VCC
U BE R
I0 2IB
I0
2
I0
所以,I0
1 1 2
IR
基准电流
输出电流
当
时,I0 IR 。
在集成运放电路中通常只能制作小容量(几十pF)电容,不能 制作大201容9/7/量28 电解电容,级间通常模采电课用件 直接耦合。
四、以电流源为有源负载的放大电路
在集成运放的共射(共源)放大电路中,为了提高电压放大 倍数,常用电流源电路取代Rc (或Rd ),这样在电源电压不 变的情况下,既获得合适的静态电流,又可以得到很大的等效 的Rc(或 Rd )。
(1) 运放电路的结构分解 输入级是一个差动放大电路,主要由T1、T3(共集-共基组合)
和T2、T4组成。中间放大级由T16、T17、T13组成共集—共射电路; 输出级由T14、T18 、 T19组成互补输出电路。
《模拟电子技术》课件第6章 集成运算放大电路
![《模拟电子技术》课件第6章 集成运算放大电路](https://img.taocdn.com/s3/m/6c8e2e964793daef5ef7ba0d4a7302768e996fdb.png)
IE2
IE1Re1 Re2
VT Re2
ln
IE1 IE2
§6.2 电流源电路
IR R
IC1
T1
IE1 Re1
IB1 IB2
VCC
I C 2=IO
T2
IE2 Re2
当值足够大时
IR IC1 IE 1 IO IC2 IE 2
IO
IR
Re1 Re2
VT Re2
ln
IR IO
IO
IR
Re1 Re2
四、微电流源
R c + vo R c
VCC
Rs
+
vi1
T1 RL T2
Rs
+
vi2
Re
VEE
2、差模信号和共模信号的概念
vid = vi1 vi2 差模信号
vic
=
1 2
(vi1
vi2 )
共模信号
Avd
=
vod vid
差模电压增益
其中vod ——差模信号产生的输出
Avc
=
voc vic
共模电压增益
总输出电压
IE3
IC2
IC1
1
IC2
2
IC 1
2 IC1 β
IO
1
IR 2
2
2
IR
IC1
T1
R IB3
T3
IE3
IB1 IB2
V CC IO= IC2 = IC1
T2
IR R
IC1
IB3
T1 I B1
VCC
IO
T3
IE3 IC2
T2 IB2
三、比例电流源
第四章 集成运算放大电路
![第四章 集成运算放大电路](https://img.taocdn.com/s3/m/adebf8284b73f242336c5f92.png)
2. 最大输出电压 op-p 最大输出电压U
Uo / V - 10 Uid + ∞ +
-0.4
-0.2 -0.1
0 0.1 0.2 0.3 0.4 Uid / mV
-0.3
-10 线性区
集成运放的传输特性
3. 差模输入电阻 id 差模输入电阻r rid的大小反映了集成运放输入端向差模输入信号 源索取电流的大小。要求rid愈大愈好, 一般集成运放 rid为几百千欧至几兆欧, 故输入级常采用场效应管来 提高输入电阻rid。 F007的rid=2 M 。认为理想集成运 放的rid为无穷大。
动态时,加入差模信号uid,根据差分放大电路的特点, T1 管的集电极电流在静态电流IC1的基础上增加了∆iC1,T2管的集 电极电流在静态电流IC2的基础上减小了∆iC2,∆iC1=-∆iC2。 由于 iC4 和 iC1 是 镜 像 关 系 , ∆iC4=∆iC1 , 因 此 ∆io=∆iC4-∆iC2=∆iC1-(∆iC1)=2∆iC1。 可见这个电流值是单端输出电流的两倍, 即等于 差分放大电路双端输出时的电流值。因此,用电流源作为差分 放大电路的有源负载,可将双端输出信号“无损失”地转换成 单端输出信号。
若电路中有共模信号输入,T3 管和T4 管的集电极电流相等 (忽略T7管的基极电流),T3管和T5管的集电极电流相等,又由于 R1=R3,因此T6管的集电极电流和T5管的集电极电流相等, 如此 推来,T6管和T4管的集电极电流相等,而T16管的基极电流为T4 管和T6管的集电极电流之差,所以T16管的基极电流近似为零, 可见共模信号输出为零,电路具有较高的抑制共模信号的能力。
2. 偏置电路 偏置电路由T8~T13、电阻R4和R5组成。其中T10、T11、 T12 和R4、R5构成主偏置电路,该电路中R5上的电流是F007偏置电 路的基准电流,由图可知
第四章集成运算放大电路
![第四章集成运算放大电路](https://img.taocdn.com/s3/m/ae7c8507b52acfc789ebc9c7.png)
( R L // rce 2 // rce 4 )
rbe
若RL<<(rce1∥rce2), 则
Au
RL
rbe
返回
4.3 集成运放电路简介
图4.3.1 F007电路原理图
图4.3.2 F007电路中的放大电路部分
1. 输入级 在输入级中,T1 、T3 和T2 、T4 组成共集-共基差分放大电 路, T5~T7和电阻R1~R3构成改进型电流源电路,作为差放的有
号变化速度的适应能力,是衡量运放在大幅值信号作用时工作
速度的参数,单位为V/μs。在实际工作中,输入信号的变化律
一定不要大于集成运放的SR。信号幅值越大、频率越高,要求 集成运放的SR就越大。
理想运算放大器
理想运放的技术指标
在分析集成运放的各种应用电路时,常常将集成运放看成 是理想运算放大器。所谓理想运放, 就是将集成运放的各项技术
图4.2.2 比例电流源
图4.2.3 微电流源
二、 改进型的镜像电流源(获得稳定输出的电流)
1. 加射极输出器的电流源
2. 威尔逊电流源
三、 多路电流源电路
IR IE0 I C1 I E1 IC 2 IE2 IC3 IE3 Re0 R e1 Re0 Re2 Re0 Re3 IR
IR I c1 V CC U R
BE
2
IR IR
2. 比例电流源
IR V cc U
BE 0
3. 微电流源
Re0 R e1 IR
I C1 I E1 U BE 0 U BE 1 Re
IC1 UT Re 1n IR IC1
R Re0
, I c1
第四章 集成运算放大电路
![第四章 集成运算放大电路](https://img.taocdn.com/s3/m/267c42f7f705cc17552709b0.png)
(输出级偏臵的一部分;中间级的有源负载。)
34
§4-3.集成运放电路简介
F007简介 输入级
T1—T4:CC-CB差动放大
偏置电路
各部分的作用: 1.输入级:KCMR↑,Ri↑,IQ↓, 一般采用双端输入的差放电路。
5
§4-1.集成运算放大电路概述
三、集成运放的电压传输特性
集成运放符号: 电压传输特性:
uo f (uP uN )
同(反)相输入端是指运放的输入电 压与输出电压的相位关系。 可以认为集成运放是双端输入、单 端输出的差放电路。
10
集成运算放大器的符号和基本特点
3. 理想运放工作在线性区的两个特点 证:uo = Aud (u+ – u–) = Aud uid u+ – u– = uo/Aud 0 2) i+ i– 0 (虚断) 证: i+ = uid / Rid 0 同理 i – 0 1) u+ u–(虚短)
32
§4-3.集成运放电路简介
33
§4-3.集成运放电路简介
F007简介 偏臵电路 T12、R5、T11:主偏臵—R5中电流为基准电流
Im 2VCC U EB12 U BE11 0.73mA R5
T10、T11:微电流源
T8、T9:镜像电流源
T12、T13:镜像电流源
(输入级偏臵)
21
IR
Re2的作用:增大IE2,提高β。
§4-2.集成运放中的电流源电路
二、改进型电流源电路 2.威尔逊电流源 工作点稳定,输出电阻大。
I C2
2 (1 2 )IR IR 2 2
22
§4-2.集成运放中的电流源电路
【电工学】集成运算放大器全篇
![【电工学】集成运算放大器全篇](https://img.taocdn.com/s3/m/4b4acc8551e2524de518964bcf84b9d528ea2ce2.png)
当 u+> u– 时, uo = + Uopp u+< u– 时, uo = – Uopp
(2) 由于rid→∞,仍然有: i+=i-≈0
3.3 基本运算电路
运算放大器与外部电阻、电容、半导体器件 等构成闭环电路后,可以实现对模拟信号进行比 例、加法、减法、微分、积分、对数、反对数、 乘法和除法等数学运算。
i1 R1 +
– +
uo +
+
ui –
i2 R2 i3
R3
–
因 i+=0, 所以 i2=i3 ,
u
R1 R1 RF
uo
而 u+=u- ,所以
uo
(1
RF R1
)u
u
ui R2 R3
R3
所以,u0
(1
RF R1
)(
R3 R2 R3
)ui
3 差动输入电路
iF RF
+ i1 R1
–
+
+
ui1
理想运算放大器的图形符号
∆
i–
∞
u–
–
i+
+
uo
u+
+
这里省略了其 它引线,而只画 出了两个输入端 和一个输出端,
其中:
“- ”为反相输入端;
“+”为同相输入端; “∞”表示开环电压放大倍数满足理想化条件;
“ ” 表示运放输入。
运放的三种工作方式
1)当信号从同相输入端对公共地端输入时,输出 电压与输入电压同相,——同相输入方式;
3.1.2 主要技术指标
1.开环差模电压增益 Aod 指无反馈电路时的差模电压放大倍数。
集成运算放大电路分析
![集成运算放大电路分析](https://img.taocdn.com/s3/m/fc8813308f9951e79b89680203d8ce2f01666510.png)
集成运算放大电路分析首先,集成运算放大电路是由集成电路技术制作的一类电路,主要由运算放大器、反馈电阻网络和输入输出电阻组成。
运算放大器是一种电压增益很大、输入阻抗很高的电子器件,它的输入端可以接入其他电路或传感器,输出端可以连接到显示器、控制装置等。
集成运算放大电路的基本原理是使用运算放大器提供的高增益和多种反馈方式来实现各种信号处理和增强功能。
通过调整反馈电阻网络可以实现放大、滤波、积分、微分等各种功能。
具体来说,集成运算放大电路将输入信号经过运算放大器放大后反馈给输入端,形成一个闭环系统,使得输出信号与输入信号之间的差别达到最小,从而实现精确的信号处理。
集成运算放大电路的特点有以下几点。
首先,它的增益很高,通常可以达到几千倍甚至几百万倍,具有极高的信号放大能力。
其次,它的输入阻抗很高,达到百万级别,可以使输入信号的影响最小化,减小对被测电路的影响。
另外,它的输出阻抗很低,可以提供较大的输出电流,方便连接到其他电路。
集成运算放大电路在实际应用中有广泛的用途。
首先,它可以用于放大微弱信号,如传感器输出信号、生物电信号等,从而提高信号的可靠性和可测性。
其次,它可以用于实现滤波功能,通过调整反馈电阻网络可以滤除不需要的频率成分,提取出需要的信号成分。
此外,它还可以用于实现比较器功能,将输入信号与参考电压进行比较,输出高、低电平来判断输入信号的大小。
最后,它还可以用于实现运算功能,如加法、减法、乘法和除法等。
总之,集成运算放大电路是一种非常重要的电路,具有高增益、高输入阻抗和低输出阻抗的特点,可以用于放大信号、滤波信号、比较信号和进行各种运算。
它在各种电子设备中发挥着重要的作用,如信号处理、控制系统、仪器仪表等。
随着科技的进步和集成电路技术的发展,集成运算放大电路将继续发展壮大,并在更多的领域得到应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章集成运算放大电路第一节学习要求第二节集成运算放大器中的恒流源第三节差分式放大电路第四节集成电路运算放大器第五节集成电路运算放大器的主要参数第六节场效应管简介第一节学习要求1. 掌握基本镜象电流源、比例电流源、微电流源电路结构及基本特性。
2. 掌握差模信号、共模信号的定义与特点。
3. 掌握基本型和恒流源型差分放大器的电路结构、特点,会熟练计算电路的静态工作点,熟悉四种电路的连接方式及输入输出电压信号之间的相位关系。
4. 熟练分析差分放大器对差模小信号输入时的放大特性,共模抑制比。
会计算A VD、R id、 R ic、 R od、 R oc、K CMR。
5.熟悉运放的主要技术指标及集成运算放大电路的一般电路结构。
学习重点:掌握集成运放的基本电路的分析方法学习难点:集成运放内部电路的分析集成电路简介集成电路是在一小块 P型硅晶片衬底上,制成多个晶体管 ( 或FET)、电阻、电容,组合成具有特定功能的电路。
集成电路在结构上的特点:1. 采用直接耦合方式。
2. 为克服直接耦合方式带来的温漂现象,采用了温度补偿的手段 ----输入级是差放电路。
3. 大量采用BJT或FET构成恒流源 ,代替大阻值R ,或用于设置静态电流。
4. 采用复合管接法以改进单管性能。
集成电路分为数字和模拟两大部分。
返回第二节集成运算放大器中的恒流源一、基本镜象电流源电路如图6.1所示。
T1,T2参数完全相同,即β1=β2,I CEO1=I CEO2 ,从电路中可知V BE1=V BE2,I E1=I E2,I C1=I C2当β>>2时,式中I R=I REF称为基准电流,由上式可以看出,当R确定后,I R 就确定,I C2也随之而定,我们把I C2看作是I R的镜像,所以称图6.1为镜像恒流源。
改进电路一:图6.2是带有缓冲级的基本镜象电流源,它是针对基本镜象电流源缺点进行的改进,两者不同之处在于增加了三极管T3,其目的是减少三极管T1、T2的I B对I R的分流作用,提高镜象精度,减少β值不够大带来的影响。
改进电路二:图6.3是带有发射极电阻的镜象电流源,其中R e1=R e2,两管的输入仍有对称性,所以若此电路R e1不等于R e2,则I C2与(R e1、R e2)的比值成比例,因此,此电流源又称为比例电流源。
二、微电流源电路如图6.4所示,当I R一定时,I C2可确定为:可见,利用两管基-射电压差 V BE可以控制I0。
由于 V BE的数值小,用阻值不大的R e2即可得微小的工作电流--微电流源。
例:电路如图6.5所示,已知:BJT的参数相同,求各电流源与参考电流的关系。
三、电流源的主要应用-有源负载前面曾提到,增大R c可以提高共射放大电路的电压增益。
但是,R c不能很大,因为在集成工艺中制造大电阻的代价太高,而且,在电源电压不变的情况下,R c越大,导致输出幅度越小。
那么,能否找到一种元件代替R C,其动态电阻大,使得电压增益增大,但静态电阻较小。
因而不致于减小输出幅度呢?自然地,我们可以考虑晶体管恒流源。
由于电流源具有直流电阻小,交流电阻大的特点,在模拟集成电路中广泛地把它作负载使用--有源负载,如图6.6所示。
返回第三节差分式放大电路基本概念:图6.7表示一个线性放大器,它有两个输入端,分别接有信号v i1和v i2;输出端的信号为v o。
在电路完全对称的理想情况下,输出信号电压可表示为式中A VD是差分放大器的差模电压增益。
可见电路的两个输入端所共有的任何信号对输出电压都不会有影响。
但在一般情况下,实际的输出电压不仅取决于两个输入信号的差模信号v id,而且还与两个输入信号的共模信号v ic有关,它们分别是当用差模信号和共模信号表示两个输入信号时,有在差模信号和共模信号同时存在时,对于线性放大器而言,可以利用叠加原理来求出总的输出电压,即式中为差模电压放大倍数,称为共模电压放大倍数。
一、基本差分放大电路1. 基本电路基本差动式放大器如图6.8所示。
图中 T1,T2 是特性相同的晶体管,电路对称,参数也对称。
如:V BE1=V BE2,R c1=R c2=R c, R b1=R b2= R b,β1=β2=β。
电路有两个输入端和两个输出端。
2. 工作原理(1)当v i1=v i2=0时,即静态时,由于电路完全对称:I c1 = I c2= I0/2, R c1I c1 = R c2I c2,V o = V c1-V c2 = 0 即输入为0时,输出也为0。
(2)加入差模信号时,即v s1=-v s2=v sd/2,从电路看v B1增大使得i B1增大,使i c1增大,使得v c1减小v B2减小使得i B2减小,又使得i c2减小,使得v c2增大.由此可推出:v o=v c1 - v c2=2v c1,每个变化量v不等于0,所以有信号输出。
若在输入端加共模信号,即v s1=v s2,由于电路的对称性和恒流源偏置,理想情况下v o=0,无输出。
这就是所谓"差动"的意思;即两个输入端之间有差别,输出端才有变动。
3、抑制零点漂移的原理在差分电路中,无论是温度的变化,还是电流源的波动都会引起两个三极管的i C及v C的变化。
这个效果相当于在两个输入端加入了共模信号,在理想情况下, v o不变,从而抑制了零漂。
凡是对差放两管基极作用相同的信号都是共模信号。
常见的有:(1)v i1不等于 -v i2,信号中含有共模信号;(2)干扰信号(通常是同时作用于输入端);(3)零漂。
实际情况下,要做到两管完全对称和理想恒流源是比较困难的,但输出漂移电压也将大为减小。
综上分析,放大差模信号,抑制共模信号是差放的基本特征。
通常情况下,我们感兴趣的是差模输入信号,对于这部分有用信号,希望得到尽可能大的放大倍数;而共模输入信号可能反映由于温度变化产生的漂移信号或随输入信号一起进入放大电路的某种干扰信号。
对于这样的共模输入信号我们希望尽量地加以抑制,不予放大传送。
4、主要技术指标的计算(1)静态工作点的估算I C1=I C2=I c=I O/2V C1=V C2=V cc-I c R cI B1=I B2=I c/β=I B=I/2β(2)差摸电压增益和输入、输出电阻差放电路有两个输入端和两个输出端。
同样,输出也分双端输出和单端输出方式。
组合起来,有四种连接方式:双端输入双端输出、双端输入单端输出,单端输入双端输出,单端输入单端输出。
(a)双入双出电路差模输入: v i1=-v i2=v id/2,则i C1上升时, i C2下降。
若电路完全对称时,则△i C1=△i C2,因为I O不变,因此v e=0,电路可以用图6.9表示。
由上面的计算可见,负载在电路完全对称,双入双出的情况下,A VD= A V1,可见该电路使用成倍的元器件换取抑制零漂的能力。
差模输入电阻R i:从两个输入端看进去的等效电阻 R i=2r be差模输出电阻R0:从两个输出端看进去的等效电阻R0=2R CR0, R i是单管的两倍。
(b)双入单出电路对于差模信号:由于另一三极管的C极没有利用,因此V0只有双出的一半。
差模输入电阻:由于输入回路没变,所以R i=2r be,差模输出电阻: R0=R c1。
(c)单端输入电路对于单端输入,相当与图6.10的b2接地。
当v i>0时,i c1增大,使i e1也增大,v e增大。
由于T2的b极通过接地,则v BE2=0-v e= -v e,所以有v BE2减小,i c2也减小。
整个过程,在单端输入v i的作用下,两个BJT的电流为i c1增大,i c2减少。
所以单端输入时,差分放大的T1、T2仍然工作在差分状态。
单端输入与双端输入是一致的。
小结:①只要是双端出,不管是单入还是双入,其A VD、R i、R o都是一样的。
②只要是单端出,不管是单入还是双入,其A VD、R i、R o也是一样的。
(3)共模电压增益①双端输出的A VC。
因为v i1=v i2,此时变化量相等,即v C1=v C2,因此实际上,电路完全对称是不容易的,但即使这样,A VC也很小,放大电路的抑制共模能力还是很强的。
②单端输出的A VC对于共模信号,因为两边电流同时增大或同时减小.因此在e极处得到的是两倍的i e。
v e=2i e R e,这相当于每个BJT的发射极分别接2R e 电阻,如图6.11所示。
(这里的R e就是恒流源交流等效电阻)因此有(4)共模抑制比K CMRK CMR是衡量差放抑制共模信号能力的一项技术指标。
定义为:A VD越大,A VC越小.则共模抑制能力越强,放大器的性能越优良,所以K CMR 越大越好。
理想情况下:双端输出的K CMR=∞单端输出的共模抑制比为:双端输出电路的总输出电压:单端输出电路的总输出电压:例1:集成运放BG305的输入级如图6.12所示,各BJT的β1= β2=30,β3=β4=β5=β6=50,各BJT的V BE=0.7V,R b=100K,R c=50K, R w=10K(滑动端调至中点),R e=1K,R L即第二级的R i为23.2K。
求:(1)该放大级的静态工点; (2)差动放大倍数A VD;(3)差动输入电阻R i,差动输电阻 R o。
解(1)求放大级的静态工点解(2)差动放大倍数A VD解(3)差动输入、出电阻R i、R o返回第四节集成电路运算放大器模拟集成电路的分类模拟集成电路按功能大致可分为:线性放大器、功率放大器、比较器、乘法器、稳压器、(D/A 、A/D)转换器、锁相环器件等。
其中线性放大器按性能可分为通用型和专用型。
线性放大器中,发展最早、应用最广的是集成运算放大电路。
图6.13示出部分运放的实物图。
一、简单集成电路运算放大器1、集成运放的基本组成框图和符号(如图6.14所示)2、一个简单的集成运放(如图6.15所示)(1)直流分析:(2)放大电路总增益的计算返回第五节集成电路运算放大器的主要参数1、输入失调电压V IO2、输入偏置电流I IB3、输入失调电流I IO4、温度漂移5、最大差摸输入电压V idmax6、最大共摸输入电压V iCmax7、最大输出电流I Omax8、开环电压增益A VO运放在无外加反馈情况下对差模信号的电压增益。
9、开环带宽BW(f H)10、单位增益带宽BW(f T)11、转换速率S R返回第六节场效应管(FET)简介一、结型场效应管(一) JFET的结构和特点1、结构场效应管的结构如图6.18所示,它是在一块N型半导体的两边利用杂质扩散出高浓度的P型区域,用P+表示,形成两个P+N结。
N 型半导体的两端引出两个电极,分别称为漏极D和源极S。
把两边的P区引出电极并连在一起称为栅极G。