金属箔式应变片的性能试验.doc

合集下载

金属箔式应变片实验报告

金属箔式应变片实验报告

一、实验目的1. 了解金属箔式应变片的工作原理和结构特点。

2. 掌握金属箔式应变片的安装方法及注意事项。

3. 通过实验验证金属箔式应变片的性能,包括灵敏度、非线性误差、温度系数等。

二、实验原理金属箔式应变片是一种将应变转换为电信号的传感器。

当应变片受到拉伸或压缩时,其电阻值发生变化,从而产生电压信号。

实验中,利用金属箔式应变片组成的电桥电路,通过测量电桥输出电压的变化,来反映应变片受到的应变。

三、实验仪器与材料1. 金属箔式应变片2. 电桥电路3. 稳压电源4. 电压表5. 数字多用表6. 加载装置7. 温度计8. 实验台四、实验步骤1. 将金属箔式应变片安装在实验台上,确保其固定牢固。

2. 将应变片接入电桥电路,连接稳压电源和电压表。

3. 在加载装置上施加一定的力,观察电压表读数的变化。

4. 记录不同加载力下的电压值。

5. 改变加载方向,重复步骤3和4,观察电压值的变化。

6. 测量应变片的温度,记录不同温度下的电压值。

7. 利用数字多用表测量应变片的电阻值。

五、实验结果与分析1. 灵敏度测试根据实验数据,绘制应变片电压值与加载力的关系曲线。

根据曲线斜率,计算应变片的灵敏度。

2. 非线性误差测试根据实验数据,绘制应变片电压值与加载力的关系曲线。

通过曲线拟合,得到线性拟合曲线,计算非线性误差。

3. 温度系数测试根据实验数据,绘制应变片电压值与温度的关系曲线。

通过曲线拟合,得到线性拟合曲线,计算温度系数。

六、实验结论1. 通过实验验证了金属箔式应变片的工作原理和结构特点。

2. 实验结果表明,金属箔式应变片具有较高的灵敏度和较好的线性度。

3. 温度对金属箔式应变片的影响较小,温度系数较小。

七、实验总结本次实验对金属箔式应变片进行了性能测试,了解了其工作原理和结构特点。

通过实验,掌握了金属箔式应变片的安装方法及注意事项。

实验结果表明,金属箔式应变片具有较高的灵敏度和较好的线性度,适用于各种应变测量场合。

箔式应变片性能实验报告

箔式应变片性能实验报告

箔式应变片性能实验报告箔式应变片是一种常用于测量物体应变的传感器。

它的特点是薄而灵活,可以精确地测量物体在受力作用下的应变情况。

在工程领域和科学研究中,箔式应变片被广泛应用于材料力学性能测试、结构设计优化等方面。

本文将介绍箔式应变片的原理、性能及实验报告。

一、箔式应变片的原理箔式应变片是由金属箔制成的,通常采用铜或铬镍合金。

它的形状呈矩形或网格状,具有一定的弹性和导电性。

当箔式应变片受到外力作用时,其形状发生微小变化,从而导致电阻发生变化。

通过测量电阻的变化,可以间接地得到物体的应变情况。

二、箔式应变片的性能1. 灵敏度高:箔式应变片可以测量非常小的应变量,具有高灵敏度。

这使得它在材料力学性能测试中能够准确地捕捉到微小的变形情况。

2. 精度高:箔式应变片的测量精度非常高,可以达到亚微米级。

这使得它在工程设计和结构优化中成为不可或缺的工具,能够提供准确的应变数据,帮助工程师和科研人员做出合理的决策。

3. 可靠性强:箔式应变片具有良好的稳定性和可靠性。

在长时间使用过程中,其性能基本保持不变,不会因环境变化或疲劳损伤而产生较大误差。

三、箔式应变片的实验报告为了验证箔式应变片的性能,我们进行了一系列实验。

首先,我们选取了一块常见的金属材料作为被测物体,将箔式应变片粘贴在其表面。

然后,通过施加不同的力或加载不同的负荷,使被测物体发生应变。

接下来,我们使用电阻测量仪器对箔式应变片的电阻进行实时监测。

在加载过程中,我们记录了电阻值的变化,并与理论值进行比较。

实验结果显示,箔式应变片能够准确地反映被测物体的应变情况,并且与理论值吻合度较高。

此外,我们还进行了稳定性和可靠性测试。

通过长时间加载和卸载,我们观察到箔式应变片的性能基本保持不变,没有出现明显的漂移或损坏现象。

这表明箔式应变片具有较好的稳定性和可靠性,适用于长期使用。

综上所述,箔式应变片作为一种常用的应变传感器,具有高灵敏度、高精度和强可靠性的特点。

通过实验验证,我们证实了箔式应变片在测量物体应变方面的优秀性能。

试验一金属箔式应变片

试验一金属箔式应变片

实验四 热电偶测温性能实验
• 一、实验目的:了解热电偶测量温度的性能与应 用范围。 • 二、基本原理:当两种不同的金属组成回路,如 两个接点有温度差,就会产生热电势,这就是热 电效应。温度高的接点称工作端,将其置于被测 温度场,以相应电路就可间接测得被测温度值, 温度低的接点就称冷端(也称自由端),冷端可 以是室温值或经补偿后的0º C、25º C。 • 三、需用器件与单元:热电偶K型、E型、温度测 量控制仪、数显单元(主控台电压表)、直流稳 压电源±15V。
• •
• • • • •
3、电桥调零 适当调小增益Rw3(顺时针旋转3-4圈,电位器最大可顺时针旋转5圈),将应变式传感器的其中一 个应变片R1(即模块左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、 R7模块内已连接好,其中模块上虚线电阻符号为示意符号,没有实际的电阻存在),按图1-2完成 接线,接上桥路电源±4V(从主控箱引入),同 图1-2 应变式传感器单臂电桥实验接线图 时,将模块左上方拨段开关拨至左边“直流”档(直流档和交流档调零电阻阻值不同)。检查接线 无误后,合上主控箱电源开关。调节电桥调零电位器Rw1,使数显表显示为零。 备注: 1、如出现零漂现象,则是应变片在供电电压下,应变片本身通过电流所形成的应变片温度效应的 影响,可观察零漂数值的变化,若调零后数值稳定下来,表示应变片已处于工作状态,时间大概 5—10分钟。 2、如出现数值不稳定,电压表读数随机跳变情况,可再次确认各实验线的连接是否牢靠,且保证 实验过程中,尽量不接触实验线,另外,由于应变实验增益比较大,实验线陈旧或老化后产生线间 电容效应,也会产生此现象。
实验二 压电式传感器测量振动实验
• 一、实验目的:了解压电传感器的测量振动的原 理和方法。 • 二、基本原理:压电式传感器由惯性质量块和受 压的压电陶瓷片等组成。(观察实验用压电加速 度计结构)工作时传感器感受与试件相同频率的 振动,质量块便有正比于加速度的交变力作用在 压电陶瓷片上,由于压电效应,压电陶瓷片上产 生正比于运动加速度的表面电荷。 • 三、需用器件与单元:转动、振动源模块、压电 传感器、移相/相敏检波/低通滤波器模块、压电式 传感器实验模块、双线示波器。

金属箔式应变片性能实验报告

金属箔式应变片性能实验报告

1 实验报告姓名: 学号: 班级:实验项目名称:实验一 金属箔式应变片性能——单臂电桥,半桥实验目的:了解金属箔式应变片,单臂单桥的工作原理和工作情况;:验证单臂、半桥性能及相互之间关系。

实验原理:单臂、半桥、全桥是指在电桥组成工作时,有一个桥臂、二个桥臂、全部四个桥臂(用应变片)阻值都随被测物理量而变化。

电桥的灵敏度:电桥的输出电压(或输出电流)与被测应变在电桥的一个桥臂上引起的电阻变化率之间的比值,称为电桥的灵敏度。

如图是直流电桥,它的四个桥臂由电阻R1、R2、R3、R4组成,U 。

是供桥电压,输出电压为:当R1×R3=R2×R4则输出电压U 为零,电桥处于平衡状态。

如果将R4换成贴在试件上的应变片,应变片随试件的受力变形而变形,引起应变片电阻R4的变化,平衡被破坏,输出电压U 发生变化。

当臂工作时,电桥只有R4桥臂为应变片,电阻变为R +R ,其余各臂仍为固定阻值R,代入上式 有组桥时,R1和R3,R2和R4受力方向一致。

实验步骤(电路图):(1)了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,测微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。

(2)将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。

将差动放大器的输出端与F /V 表的输入插口Vi 相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使F /V 表显示为零,关闭主、副电源。

(3)根据图1接线R1、R2、R3为电桥单元的固定电阻。

R4为应变片;将稳压电源的切换开关置±4V 档,F /V 表置20V 档。

调节测微头脱离双平行梁,开启主、副电源,调节电桥平衡网络中的W1,使F /V 表显示为零,然后将F /V 表置2V 档,再调电桥W1(慢慢地调),使F /V 表显示为零。

图1金属箔式应变片性能—单臂电桥电路(4)将测微头转动到10mm刻度附近,安装到双平等梁的自由端(与自由端磁钢吸合),调节测微头支柱的高度(梁的自由端跟随变化)使F/V表显示最小,再旋动测微头,使F/V 表显示为零(细调零),这时的测微头刻度为零位的相应刻度。

金属箔式应变片

金属箔式应变片

实验二 金属箔式应变片——单臂电桥性能实验一、 实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、 实验原理应变片的安装位置如图2-2所示,应变式传感器已装到应变传感器模块上。

传感器中各电阻应变片已接入到“THVZ-1 型传感器实验箱”上,从左到右依次为R1、R2、R3、R4。

可用万用表进行测量,R1=R2=R3=R4=350Ω。

图2-2 应变式传感器安装示意图金属丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是金属的电阻应变效应。

金属的电阻表达式为:l R Sρ= (1) 当金属电阻丝受到轴向拉力F 作用时,将伸长l ∆,横截面积相应减小S ∆,电阻率因晶格变化等因素的影响而改变ρ∆,故引起电阻值变化R ∆。

对式(1)全微分,并用相对变化量来表示,则有:R l S R l S ρρ∆∆∆∆=-+ (2) 式中的l l ∆为电阻丝的轴向应变,用ε表示,常用单位με(1με=1×610mm mm -)。

若径向应变为r r ∆,电阻丝的纵向伸长和横向收缩的关系用泊松比μ表示为l r r lμ∆∆=-(),因为S S ∆=2(r r ∆),则(2)式可以写成: 01212R l l l k R l l l l lρρρμμρ∆∆∆∆∆∆=++=++=∆()() (3) 式(3)为“应变效应”的表达式。

0k 称金属电阻的灵敏系数,从式(3)可见,0k 受两个因素影响,一个是(1+μ2),它是材料的几何尺寸变化引起的,另一个是ρρε∆(),是材料的电阻率ρ随应变引起的(称“压阻效应”)。

对于金属材料而言,以前者为主,则μ210+≈k ,对半导体,0k 值主要是由电阻率相对变化所决定。

实验也表明,在金属丝拉伸比例极限内,电阻相对变化与轴向应变成比例。

通常金属丝的灵敏系数0k =2左右。

用应变片测量受力时,将应变片粘贴于被测对象表面上。

在外力作用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形,其电阻值发生相应变化。

传感器金属箔式应变片全桥性能实验

传感器金属箔式应变片全桥性能实验

实验四金属箔式应变片——全桥性能实验
一、实验目的
掌握全桥测量电路的原理及优点。

二、实验原理
全桥测量电路中,将受力性质相同的两个应变片接入电桥对边,当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U03=KE 。

其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到明显改善。

三、实验设备
THVZ-1型传感器实验箱中应变式传感器实验单元、砝码、万用表、信号调理挂箱、应变式传感器调理模块。

四、实验内容与步骤
根据4-1接线,实验方法与实验二相同。

将实验结果填入表;进行灵敏度和非线性误差计算。

图4-1 应变式传感器全桥实验接线图
五、实验注意事项
1.不要在砝码盘上放置超过1kg的物体,否则容易损坏传感器。

2.电桥的电压为±5V,绝不可错接成±15V。

实验1,2 金属箔式应变片性能

实验1,2 金属箔式应变片性能

实验1,2 金属箔式应变片性能实验1,2金属箔式应变片性能箔式单臂应变计1的性能测试实验目的:了解金属箔式应变片,单臂单桥的工作原理和工作情况。

实验原理:本实验说明箔式应变片及单臂直流电桥的电源的原理和工作情况。

应变计是最常用的力传感元件。

使用应变计进行试验时,应将应变计牢固粘贴在试验体表面。

当试件在应力作用下变形时,应变计的敏感网格随之变形,其电阻也随之变化。

通过测量电路将其转换为电信号输出显示。

电桥电路是最常用的非电量电测量电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻r1、r2、r3、r4中,电阻的相对变化率分别为△r1/r1、△r2/r2、△r3/r3、△r4/r4,当使用一个应变片时,σr=△r/r;当二个应变片组成差动状态工作.则有σr=2△r/r,用四个应变片组成二个差对工作,且r1=r2=r3=r4=r,σr=4△r/r。

其中r1、r2、r3、r4、r的电阻值均为350ω左右。

由此可知,单臂、半桥、全桥电路的灵敏度依次增大。

所需单元和组件:直流稳压电源、电桥、差动放大器、双平行梁测微头、应变计f/v表、主、副电源。

旋钮初始位置:将直流稳压电源调至±2V,将F/V表调至2V,差动放大增益最大。

实验步骤:(1)了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,应变片为棕色衬底箔有结构的小方形薄片。

上、下梁外表面分别粘贴两块应力应变片和一块补偿应变片。

测微计头位于双平行梁前面的支架上,可上下前后左右调整。

(2)将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。

将差动放大器差分放大器的输出端与F/V表的输入插座VI相连,差分放大器的接地与F/V表的接地相连;打开主电源和辅助电源;将差分放大器的增益调整到最大位置,然后调整差分放大器的调零旋钮,使F/V表显示为零,并关闭主电源和二次电源。

(3)根据图1接线r1、r2、r3为电桥单元的固定电阻。

实验一金属箔式应变片实验报告

实验一金属箔式应变片实验报告

实验一金属箔式应变片实验报告一、引言金属箔式应变片是一种常用的测量材料应变的传感器。

它由一层金属箔制成,可以通过测量箔片在外力作用下的形变来推算出材料的应力和应变。

本实验旨在通过使用金属箔式应变片,了解其原理并掌握测量材料应力和应变的方法。

二、实验目的1.了解金属箔式应变片的原理和使用方法;2.熟悉测量材料应变的实验步骤和操作技巧;3.通过实验,掌握金属箔式应变片的线性度和稳定性。

三、实验器材1.金属箔式应变片2.可调节力臂的托盘3.数字万用表4.检测电缆5.基板四、实验步骤1.准备工作(1)将金属箔式应变片粘贴在基板上,确保其与基板良好接触。

(2)将检测电缆与金属箔式应变片焊接连接,确保连接良好。

(3)将托盘放在平稳的台面上,并将托盘的力臂调整至合适位置。

2.实验测量(1)将标准质量放置在托盘的力臂上,记录下其质量数值。

(2)通过将标准质量增加或减小,使得金属箔式应变片在不同的载荷下产生不同的应变。

(3)使用数字万用表测量金属箔式应变片上的电压输出值,并记录。

3.实验数据处理(1)将实验得到的电压输出值与标准质量进行对应,得到应变值。

(2)通过计算应变的变化率,得到材料的应力和应变关系。

(3)绘制应力-应变曲线,并用最小二乘法拟合出线性程度。

五、实验结果与讨论在实验中我们得到了金属箔式应变片的电压输出值和标准质量的对应关系,并通过计算得出了应变的变化率。

将应力与应变关系绘制成图表,通过拟合得出了线性程度。

在实验中,我们还观察了金属箔式应变片的稳定性,并分析了其受到外界条件变化的影响。

六、实验结论通过实验,我们了解了金属箔式应变片的原理和使用方法,并掌握了测量材料应变的实验步骤和操作技巧。

通过对实验数据的处理和分析,我们得出了金属箔式应变片的线性程度和稳定性,并得出了应力与应变的关系。

实验结果表明,金属箔式应变片可以有效测量材料的应变,并具有较好的线性度和稳定性,适用于材料应变的测量。

实验一金属箔式应变片实验报告

实验一金属箔式应变片实验报告

实验一-金属箔式应变片实验报告金属箔式应变片实验报告一、实验目的1.学习和了解金属箔式应变片的基本原理和应用。

2.掌握应变片的粘贴和测试方法。

3.通过实验数据分析,理解应变、应力和弹性模量的关系。

二、实验原理金属箔式应变片是一种用于测量物体应变的传感器,其工作原理基于电阻的应变效应。

当金属导体受到拉伸或压缩时,其电阻值会发生变化。

这种现象称为“应变效应”。

利用这一原理,可以将应变片粘贴在待测物体上,通过测量电阻值的变化来推算物体的应变。

三、实验步骤1.准备材料:金属箔式应变片、放大镜、砂纸、酒精、丙酮、吹风机、应变计、电阻表、加载装置(如砝码或液压缸)。

2.选定待测物体并清理表面。

对待测物体表面进行打磨、清洁和干燥处理,确保表面无油污和杂质。

3.粘贴应变片:将金属箔式应变片粘贴在待测物体表面,确保应变片与物体表面完全贴合,无气泡和褶皱。

使用放大镜观察应变片的位置和贴合程度。

4.连接电阻表:将应变片的引脚连接到电阻表上,确保连接稳定可靠。

5.加载待测物体:采用适当的加载装置对待测物体进行加载,使物体产生应变。

记录加载过程中电阻表读数的变化。

6.数据记录:在加载过程中,每隔一定时间记录一次电阻表读数,并观察应变片应变的规律。

当应变达到最大值时,停止加载并记录最终的电阻值。

7.数据处理和分析:根据记录的电阻值和已知的应变系数,计算出物体的应变值。

分析应变、应力和弹性模量之间的关系。

四、实验结果与分析1.应变测量结果:通过电阻表测量得到应变片的电阻值变化量,根据应变系数计算得到物体的应变值。

2.应力和弹性模量之间的关系:根据弹性力学的基本原理,应力和弹性模量之间存在一定的关系。

本实验中,通过测量物体的应变和应力,可以进一步计算出物体的弹性模量。

3.应变片灵敏度的分析:通过比较不同应变片在同一物体上的测量结果,可以分析应变片的灵敏度和精度。

五、实验总结通过本次实验,我们学习和了解了金属箔式应变片的基本原理和应用,掌握了应变片的粘贴和测试方法,并通过实验数据分析,理解了应变、应力和弹性模量的关系。

实验一金属箔式应变片实验报告

实验一金属箔式应变片实验报告

成绩:预习审核:评阅签名:厦门大学嘉庚学院传感器实验报告实验项目:实验一、二、三金属箔式应变片——单臂、半桥、全桥实验台号:专业:物联网工程年级: 2014级班级: 1班学生学号: ITT4004 学生姓名:黄曾斌实验时间: 2016 年 5 月 20 日实验一 金属箔式应变片——单臂电桥性能实验一.实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二.基本原理金属电阻丝在未受力时,原始电阻值为R=ρL/S 。

电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:式中R R /∆为电阻丝电阻的相对变化,K 为应变灵敏系数,L L /∆=ε为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

输出电压:1.单臂工作:电桥中只有一个臂接入被测量,其它三个臂采用固定电阻;输出U O14/εEK =。

2.双臂工作:如果电桥两个臂接入被测量,另两个为固定电阻就称为双臂工作电桥,又称为半桥形式;半桥电压输出UO22/εEK =。

3.全桥方式:如果四个桥臂都接入被测量则称为全桥形式。

全桥电压输出U O3εEK =。

三.需用器件与单元CGQ-001实验模块、CGQ-013实验模块、应变式传感器、砝码、电压表、±15V 电源、±4V 电源、万用表(自备)。

()()ER R R R R R R R U O 43213241++-=四.实验步骤1.根据图1-1应变式传感器已装于应变传感器模块上。

传感器中各应变片已接入模块的左上方的BF 1、BF 2、BF 3、BF 4。

加热丝也接于模块上,可用万用表进行测量判别,R BF1= R BF2= R BF3= R BF4=350Ω,加热丝阻值为50Ω左右。

2.差放调零 3.电桥调零4.在电子秤上放置一只砝码,读取电压表数值,依次增加砝码和读取相应的电压表值,直到200g 砝码加完。

【精品】实验一 金属箔式应变片性能

【精品】实验一 金属箔式应变片性能

【精品】实验一金属箔式应变片性能实验目的:探究金属箔式应变片的性能,包括灵敏度、线性性以及温度特性。

实验步骤:1. 准备实验所需材料和仪器:金属箔式应变片、应变测量仪、电阻箱、电流表、交流电源、温度计。

2. 将金属箔式应变片放置在被测物体上,确保箔片与测量物体紧密接触。

3. 将应变测量仪连接到金属箔式应变片上,并设置合适的测量范围。

4. 通过电阻箱和电流表连接一个稳定的电流源,并将电流流过金属箔式应变片。

5. 记录应变测量仪显示的电压值,并结合电流和电阻计算出应变值。

6. 测量不同应变下的电压和应变值,并记录数据。

7. 分析数据,计算出金属箔式应变片的灵敏度,即电压与应变之间的比例关系。

8. 进行线性性测试,通过改变电流大小,测量不同应变下的电压,并绘制电压-应变曲线。

9. 测量金属箔式应变片在不同温度下的性能,并记录数据。

10. 计算出温度对金属箔式应变片性能的影响。

实验注意事项:1. 在进行实验前,保证仪器和设备正常工作,测量范围和设置正确。

2. 实验过程中应注意安全,谨防电流过大导致触电风险。

3. 在记录数据时要准确无误,避免误差产生。

4. 在测量温度时,使用合适的温度计,并保证测量准确。

5. 实验结束后要及时关闭电源并安全处理实验废弃物。

实验结果分析:通过实验可以得出金属箔式应变片的灵敏度、线性性以及温度特性等性能。

根据实验数据,可以计算出灵敏度,并绘制出电压-应变曲线。

同时,通过测量不同温度下的性能数据,可以分析温度对金属箔式应变片性能的影响。

这些结果对于金属箔式应变片在工程应用中的选择和设计具有重要的指导作用。

金属箔式应变片性能实验报告

金属箔式应变片性能实验报告

金属箔式应变片性能实验报告金属箔式应变片是一种常见的测量物体变形的仪器,主要用于测量实验中材料的力学特性和应变分布。

本实验通过对金属箔式应变片的性能进行测试,旨在探究其力学性能并评估其应用的可行性。

以下是关于金属箔式应变片性能实验的报告。

一、实验目的:1.掌握金属箔式应变片的基本原理和工作方式;2.了解金属箔式应变片的力学性能,如线性范围、敏感系数等;3.研究金属箔式应变片的应变分布,并评估其应用可行性。

二、实验器材:1.金属箔式应变片;2.电桥;3.高精度电压源;4.五步电压变阻箱;5.数字万用表;6.计算机及相应软件。

三、实验步骤:1.将金属箔式应变片安装在待测物体上,并确保其平整、牢固;2.通过电桥连接金属箔式应变片的导线,并设置适当的电压源;3.将五步电压变阻箱设置为规定的输出电压,并通过电流表测量电压源的电流;4.使用数字万用表测量金属箔式应变片的输出电压,并记录测量值;5.重复步骤3和步骤4,改变电阻箱的输出电压,并记录相应的电流和电压值;6.使用计算机及相应软件进行数据处理,并计算金属箔式应变片的力学性能指标。

四、实验结果与讨论:通过实验测量得到的数据可以用于评估金属箔式应变片的力学性能。

其中,线性范围是指金属箔式应变片能够线性响应的应变范围,即在该范围内,输出的电压与应变呈线性关系;敏感系数是指单位应变的变化引起的电压变化,可以通过计算斜率得到。

五、实验结论:六、实验心得:通过本次实验,我进一步了解了金属箔式应变片的原理和工作方式,并学习了其性能测试的方法和步骤。

同时,实验过程中,我也体会到了仪器的正确使用和数据处理的重要性,这对于实验结果的准确性和可靠性至关重要。

通过本次实验,我不仅增加了实验操作技能,还加深了对材料力学性能的理解,提高了实验设计和数据分析的能力。

实验一 金属箔式应变片性能实验

实验一  金属箔式应变片性能实验

实验一 金属箔式应变片性能实验——单臂、半桥、全桥电路性能比较 测控091 200900304037 黄健华一、实验目的:1. 观察了解箔式应变片的结构及粘贴方式。

2. 测试应变梁形变的应变输出。

3. 比较各种桥路的性能(灵敏度)。

二、实验原理:应变片是最常用的测力传感元件,当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形变, 应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。

通过测量电路,转换成电信号输出显示。

电桥电路是最常见的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R 1、R 2、R 3、R 4中,电阻的相对变化率分别为44332211R R R R R R R R ∆∆∆∆、、、,当使用一个应变片时,∑∆=RR ;当二个应变片组成差动状态工作,则有∑∆=R RR 2;用四个应变片组成二个差动对工作,且∑∆=====RRR R R R R R 4,4321。

根据戴维南定理可以得出测试电桥的输出电压近似等于1/4 • E •ΣR ,电桥灵敏度R R V K u //∆=,于是对应于单臂、半桥、全桥的电压灵敏度分别为1/4E 、1/2E 和E 。

由此可知,当E 和电阻相对变化一定时,电桥及电压灵敏度与各桥臂阻值的大小无关,单臂、半桥、全桥电路的灵敏度依次增大。

三、实验所需部件:直流稳压电源(V 4±档)、电桥、差动放大器、金属箔式应变片、测微头、电压表。

四、实验接线图:五、实验步骤:+4V-4V1、调零。

开启仪器电源,差动放大器增益置100倍(顺时针方向旋到底),“+,-”输入端用实验线对地短路。

输出端接数字电压表,用“调零”电位器调整差动放大器输出电压为零,然后拔掉实验线。

调零后电位器位置不要变化。

如需使用毫伏表,则将毫伏表输入端对地短路,调整“调零”电位器,使指针居“零”位。

拔掉短路线,指针有偏转是有源指针式电压表输入端悬空时的正常情况。

金属箔式应变片的性能试验

金属箔式应变片的性能试验

金属箔式应变片的性能试验学校:汕头大学专业:电子信息工程年级:10级姓名:胡丹(一)单臂电桥性能检测法一、实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理与性能,并掌握应变片测量电路。

二、基本原理电阻丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是电阻应变效应。

且(为应变灵敏系数)金属箔式应变片是一种敏感器件,通过它可以转换被测部位的受力状态变化。

而电桥的作用就是完成电阻到电压的变化,其输出反映了相应的受力状态。

单臂电桥输出电压。

三、实验设备主机箱()、应变式传感器实验模板、托盘、砝码。

四、实验数据处理重量和电压数据重量(g)20 40 60 80 100 120 140 160 180 200 电压(mV) 4 9 14 19 24 29 34 39 44 49重量和电压的关系曲线1.计算单臂测量系统的灵敏度S:的平均值为:灵敏度2.计算非线性误差:这里以理论拟合直线,即以输出0%为起点,满量程输出(此处为49mV)的100%作终点的直线()为基准直线。

如上图所示,可以看出,当砝码总重20g时取得最大偏差。

而,所以,。

五、思考题1.单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)(3)正、负应变片均可以?答:正、负应变片均可以。

当采用负应变片时,得到的电压是负值。

2.查阅传感器的相关资料,概述衡量传感器的性能特性都有哪些指标?答:静态特性:线性度、迟滞、重复性、阈值、灵敏度、稳定性、噪声、漂移;动态特性:时间常数、阻尼系数、固有频率。

(二)半桥性能检测法一、实验目的比较半桥与单臂电桥的不同性能,了解其特点。

二、基本原理不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性误差也可以消除。

当应变片阻值和应变量相同时,其桥路输出电压。

三、实验设备主机箱()、应变式传感器实验模板、托盘、砝码。

四、实验数据处理重量和电压数据重量(g)20 40 60 80 100 120 140 160 180 200 电压(mV)11 21 30 40 50 60 70 80 90 100重量和电压的关系曲线1.计算单臂测量系统的灵敏度S:的平均值为:灵敏度2.计算非线性误差:这里以理论拟合直线,即以输出0%为起点,满量程输出(此处为100mV)的100%作终点的直线()为基准直线。

金属箔式应变片——全桥性能实验实验报告4页

金属箔式应变片——全桥性能实验实验报告4页

金属箔式应变片——全桥性能实验实验报告4页实验目的:1. 熟悉金属箔式应变片的工作原理及其使用方法;2. 了解电桥测量原理,实现全桥测量方案设计;4. 实验中应用全桥电路,得到金属箔式应变片的应变-电压输出特性曲线。

实验仪器:1.金属箔式应变片;2.电桥测量仪;3.电压源;4.万用表;5.螺旋卡尺;6.计算机。

实验原理:金属箔式应变片的特点是:采用金属箔片的变形特性,制成微小的电阻应变片,常用的箔片材料有:钨、铂等。

当应变片在受力作用下发生形变,其电阻值也会发生变化,因此可通过测量电阻变化量,了解应变片的应变量。

校准金属箔应变片:由于金属箔片家质差异及加工差异,未校准时其输出电压未知,因此需要校准,以获得稳定的输出结果。

全桥电路:全桥电路采用4个电阻绕成的“Wheatstone电桥”,使用电压源提供电能,经过测量电桥的电阻差值、电压差值等,即可计算测量量的值。

实验步骤:1. 通过螺旋卡尺测量样品上要粘贴应变片的长度和宽度;2. 将样品清洗干净,待干;3. 粘贴金属箔式应变片,注意对粘贴区域的清洁和紧密接触;4. 使用电桥测量仪进行电路连接,根据电桥测量仪的要求连接电源,连接电阻箱;5. 按照测量仪器的测量提示,进行校准,获得标准应变值;6. 施加预测荷载,观察电荷随荷载的变化。

根据荷载下应变的变化率,计算出样品中的应力值;7. 通过计算机记录所测量的电荷值和应变值,描绘出应变—电荷输出特性曲线。

实验结果和分析:1. 实验得到的应变-电荷输出特性曲线如下:2. 通过该特性曲线可以反映金属箔式应变片在各种荷载下的响应情况,具有重要的工程应用价值;3. 实验结果证实,金属箔式应变片是一种灵敏度高、稳定性好、响应速度快的应变传感器,具有广泛的应用前景。

结论:本实验通过对金属箔式应变片进行实验研究,得到了该传感器的应变-电荷输出特性曲线,证实了该传感器具有一定的应变灵敏度、稳定性和相对快速的响应速度,适用于各种领域的力学性能测试和监测。

金属箔式应变片传感器性能研究实验报告

金属箔式应变片传感器性能研究实验报告

南昌大学物理实验报告课程名称:普通物理实验(3)实验名称:金属箔式应变片传感器性能研究学院:专业班级:学生姓名:学号:实验地点:座位号:实验时间:一、实验目的:1.了解金属箔式应变片的应变效应,掌握单臂电桥工作原理和性能。

2.比较全桥、、半桥与单臂电桥的不同性能、了解其特点。

3.了解全桥测量电路的优点及其在工程测试中的实际应用。

二、实验仪器:应变传感器实验模块、托盘、砝码、、数显电压表、±15V和±4V电源三、实验原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件,四个金属箔应变片分别贴在弹性体的上下两侧,弹性体受到压力发生形变,应变片随弹性体形变被拉伸,或被压缩。

通过这些应变片转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化。

1、单臂电桥实验如图1-1所示,R5、R6、R7为固定电阻,与应变片一起构成一个单臂电桥。

其输出电压()1211o R nU E R n ∆≈∙∙+ E 为电桥电源电压,R 为固定电阻值,上式表明单臂电桥输出为非线性,存在着非线性误差2、半桥差动电路如图1-2,不同受力方向的两只应变片接入电桥作为邻边。

图1-2电桥输出灵敏度提高,非线性得到改善,当两只应变片的阻值相同、应变数也相同时,半桥的输出电压为E 为电桥电源电压,上式表明,差动半桥输出与应变片阻值变化率呈线性关系。

3、全桥测量电路如图1-3,受力性质相同的两只应变片接到电桥的对边,不同的接入邻边,当应变片初始值相等,变化量也相等时,其桥路输出:11o R U E R ∆=E 为电桥电源电压,上式表明,全桥输出灵敏度比半桥又提高了一倍。

四、实验内容:1、单桥性能测试(1)变传感器上的各应变片已分别接到应变传感器模块左上方的R1、R2、R3、R4上,可用多用表测量判别,R1=R2=R3=R4=350Ω.(2)从主控台接入±15V电源,检查无误后,合上主控台电源开关,将差动放大器的输入端Ui短接,输出端U02接数显电压表(选择2V档),调节电位器Rw4,使电压表显示为0V,Rw4的位置确定后不能改动。

实验一 金属箔式应变片性能

实验一  金属箔式应变片性能

CSY传感器实验仪简介实验仪主要由四部分组成:传感器安装台、显示与激励源、传感器符号及引线单元、处理电路单元。

传感器安装台部分:装有双平行振动梁(应变片、热电偶、PN结、热敏电阻、加热器、压电传感器、梁自由端的磁钢)、激振线圈、双平行梁测微头、光纤传感器的光电变换座、光纤及探头小机电、电涡流传感器及支座、电涡流传感器引线Φ3.5插孔、霍尔传感器的二个半圆磁钢、振动平台(圆盘)测微头及支架、振动圆盘(圆盘磁钢、激振线圈、霍尔片、电涡流检测片、差动变压器的可动芯子、电容传感器的动片组、磁电传感器的可动芯子)、扩散硅压阻式传感器、气敏传感器及湿敏元件安装盒,显示及激励源部分:电机控制单元、主电源、直流稳压电源(±2V-±10V档位调节)、F/V数字显示表(可作为电压表和频率表)、动圈毫伏表(5mV-500mV)及调零、音频振荡器、低频振荡器、±15V不可调稳压电源。

实验主面板上传感器符号单元:所有传感器(包括激振线圈)的引线都从内部引到这个单元上的相应符号中,实验时传感器的输出信号(包括激励线圈引入低频激振器信号)按符号从这个单元插孔引线。

处理电路单元:电桥单元、差动放大器、电容放大器、电压放大器、移相器、相敏检波器、电荷放大器、低通滤波器、涡流变换器等单元组成。

主要技术参数、性能及说明<一>传感器安装台部分:双平行振动梁的自由端及振动圆盘下面各装有磁钢,通过各自测微头或激振线圈接入低频激振器V O可做静态或动态测量。

应变梁:应变梁采用不锈钢片,双梁结构端部有较好的线性位移。

传感器:1、差动变压器量程:≥5mm 直流电阻:5Ω-10Ω由一个初级、二个次级线圈绕制而成的透明空心线圈,铁芯为软磁铁氧体.2、电涡流位移传感器量程:≥1mm 直流电阻:1Ω-2Ω多股漆包线绕制的扁平线圈与金属涡流片组成。

3、霍尔式传感器量程: ±≥2mm 直流电阻:激励源端口:800Ω-1.5KΩ输出端口:300Ω-500Ω日本JVC公司生产的线性半导体霍尔片,它置于环形磁钢构成的梯度磁场中。

金属箔式应变片性能实验报告

金属箔式应变片性能实验报告

金属箔式应变片性能实验报告金属箔式应变片性能实验报告引言:金属箔式应变片是一种常用的测量应变的工具,广泛应用于工程领域。

本实验旨在研究不同材料、不同厚度的金属箔式应变片的性能,并探讨其在实际应用中的优缺点。

一、实验目的通过对金属箔式应变片的性能测试,了解其应变灵敏度、线性范围、温度影响等特性,为其在工程实践中的应用提供参考。

二、实验材料与方法1. 实验材料:选取了不同材料的金属箔式应变片,包括铜、铝和钢等常见金属材料,并分别制备了不同厚度的应变片。

2. 实验仪器:使用电子拉伸试验机进行拉伸实验,并配备应变片固定装置和应变片读数装置。

3. 实验方法:a) 将不同材料、不同厚度的金属箔式应变片固定在试样上,并连接至电子拉伸试验机。

b) 在一定拉伸速率下,进行拉伸实验,并记录应变片的电阻变化。

c) 根据拉伸实验得到的电阻变化数据,计算得到应变值,并与拉伸试验机的应变计进行对比。

三、实验结果与分析1. 应变灵敏度:通过实验发现,不同材料、不同厚度的金属箔式应变片对应变的灵敏度存在差异。

以铜材料为例,当厚度相同时,应变灵敏度随着拉伸速率的增加而增加。

而当拉伸速率相同时,厚度较薄的应变片具有更高的灵敏度。

这说明金属箔式应变片的灵敏度与材料的导电性、厚度以及加载速率等因素有关。

2. 线性范围:实验结果显示,金属箔式应变片的线性范围与其材料和厚度密切相关。

以钢材料为例,当厚度较小时,其线性范围较宽,能够准确测量较小的应变值。

然而,当厚度较大时,线性范围会受到限制,无法测量较大的应变值。

因此,在实际应用中,需根据测量需求选择合适的金属箔式应变片材料和厚度。

3. 温度影响:温度是影响金属箔式应变片性能的重要因素之一。

实验结果表明,金属箔式应变片的电阻值随温度的变化而变化,从而影响应变值的计算。

在实际应用中,需对金属箔式应变片进行温度补偿,以提高测量的准确性。

四、实验结论通过对金属箔式应变片的性能测试,可以得出以下结论:1. 金属箔式应变片的灵敏度与材料的导电性、厚度以及加载速率等因素有关。

传感器与检测技术---金属箔式应变片性能研究实验

传感器与检测技术---金属箔式应变片性能研究实验

传感器与检测技术---金属箔式应变片性能研究实验一、实验目的1、了解金属箔式应变片,单臂电桥的工作原理和工作情况。

2、了解金属箔式应变片,半桥的工作原理和工作情况。

3、了解金属箔式应变片,全桥的工作原理和工作情况。

4、验证单臂、半桥、全桥的性能及相互之间的关系。

二、实验原理金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,与丝式应变片工作原理相同。

电阻丝在外力的作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应。

描述电阻应变效应的关系式为△R/R=Kε。

式中△R/R 为电阻丝电阻的相对变化,K 为应变灵敏系数,ε=△L/L 为电阻丝长度相对变化。

为了将电阻应变式传感器的电阻变化转化成电压或者电流信号,在应用中一般采用电桥电路作为测量电路。

电桥电路具有结构简单、灵敏度高、测量范围宽、线性度好且易实现温度补偿等优点。

能较好地满足各种应变测量要求,因此在测量应变中得到了广泛的应用。

电路电桥按其工作方式分有单臂、半桥、全桥三种,单臂工作输出信号最小,线性、稳定性较差;双臂输出是单臂的两倍,性能比单臂有所改善;全桥工作时的输出是单臂的四倍,性能最好。

因此,为了得到较大的输出电压一般采用半桥或者全桥工作。

三、需用器件与单元:可调直流稳压电源、电桥、差动放大器、双平行梁、测微头、应变片、电压/频率表、主、副电源。

四、实验内容及操作步骤1、了解所需单元、部件在实验仪上的位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。

2、将差动放大器调零,连接图如图所示:用连线将差动放大器的(+)、(–)与地短接,将差动放大器的输出端与电压/频率表的输入插口 Vi 相连,电压/频率表量程切换开关切换到 2V 档,开启主、副电源,调节差动放大器的增益到最大位置,然后调节差动放大器的调零旋钮,使电压/频率表显示为零,关闭主、副电源。

3、根据图 1-5 接线(图 1-4 为原理图)。

R1、R2、R3 为电桥单元的固定电阻,Rx 为应变片。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属箔式应变片的性能试验
学校:汕头大学专业:电子信息工程年级:10级姓名:胡丹
(一)单臂电桥性能检测法
一、实验目的
了解金属箔式应变片的应变效应,单臂电桥工作原理与性能,并掌握应变片测量电路。

二、基本原理
电阻丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是电阻应变效应。

且(为应变灵敏系
数)
金属箔式应变片是一种敏感器件,通过它可以转换被测部位的受力状态变化。

而电桥的作用就是完成电阻到电压的变化,其输出反映了相应的受力状态。

单臂电桥输出电压。

三、实验设备
主机箱()、应变式传感器实验模板、托盘、砝码。

四、实验数据处理
重量和电压数据
重量(g)20 40 60 80 100 120 140 160 180 200 电压(mV) 4 9 14 19 24 29 34 39 44 49
重量和电压的关系曲线
1.计算单臂测量系统的灵敏度S:
的平均值为:
灵敏度
2.计算非线性误差:
这里以理论拟合直线,即以输出0%为起点,满量程输出(此处为49mV)的100%作终点的直线()为基准直线。

如上图所示,可以看出,
当砝码总重20g时取得最大偏差。

而,所以,。

五、思考题
1.单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)
(3)正、负应变片均可以?
答:正、负应变片均可以。

当采用负应变片时,得到的电压是负值。

2.查阅传感器的相关资料,概述衡量传感器的性能特性都有哪些指标?
答:静态特性:线性度、迟滞、重复性、阈值、灵敏度、稳定性、噪声、漂移;
动态特性:时间常数、阻尼系数、固有频率。

(二)半桥性能检测法
一、实验目的
比较半桥与单臂电桥的不同性能,了解其特点。

二、基本原理
不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性误差也可以消除。

当应变片阻值和应变量相同时,其桥路输出电压。

三、实验设备
主机箱()、应变式传感器实验模板、托盘、砝码。

四、实验数据处理
重量和电压数据
重量(g)20 40 60 80 100 120 140 160 180 200 电压(mV)11 21 30 40 50 60 70 80 90 100
重量和电压的关系曲线
1.计算单臂测量系统的灵敏度S:
的平均值为:
灵敏度
2.计算非线性误差:
这里以理论拟合直线,即以输出0%为起点,满量程输出(此处为100mV)的100%作终点的直线()为基准直线。

如上图所示,可以看出,
当砝码总重20g时取得最大偏差。

而,所以,。

五、思考题
1.半桥测量时两个不同受力状态的电阻应变片接入电桥时,应放在:(1)对边;(2)
邻边。

答:邻边。

2.桥路(差动电桥)测量时存在非线性误差,是因为:(1)电桥测量原理上存在非线
性;(2)应变片应变效应是非线性的;(3)调零值不是真正为零。

答:调零值不是真正为零。

(三)全桥性能检测法
一、实验目的
了解全桥测量电路的优点。

二、基本原理
全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。

当应变片初始阻值:,其变化值时,其桥路
输出电压。

其输出灵敏度比半桥电路又提高了一倍,非线性误差和温度误差均得到改善。

三、实验设备
主机箱()、应变式传感器实验模板、托盘、砝码。

四、实验数据处理
重量(g)20 40 60 80 100 120 140 160 180 200 电压(mV)20 40 59 79 99 119 138 158 178 197
重量和电压的关系曲线
1.计算单臂测量系统的灵敏度S:
的平均值为:
灵敏度
2.计算非线性误差:
这里以理论拟合直线,即以输出0%为起点,满量程输出(此处为197mV)的
100%作终点的直线()为基准直线。

如上图所示,分析数据和
可以得到,当砝码总重120g时取得最大偏差。

而,所以,。

五、思考题
1.测量中,当两组对边(为对边)电阻值相同时,即,,而
时,是否可以组成全桥:(1)可以;(2)不可以。

答:不可以。

(四)直流全桥的应用—电子秤实验
一、实验目的
了解全桥测量电路的优点。

二、实验设备
主机箱()、应变式传感器实验模板、托盘、砝码。

三、实验数据处理
重量(g)20 40 60 80 100 120 140 160 180 200 电压(mV)20 40 60 80 100 120 140 160 180 200
1.计算单臂测量系统的灵敏度S:
的平均值为:
灵敏度
2.计算非线性误差:
这里以理论拟合直线,即以输出0%为起点,满量程输出(此处为200mV)的100%作终点的直线()为基准直线。

如上图所示,分析数据和可以得
到,最大偏差。

所以,。

因为,,所以只要把电压表的量纲改为g,该电路就可以作为一个电子秤来称重了。

(五)金属箔式应变片的温度影响实验
一、实验目的
了解全桥测量电路的优点。

二、基本原理
电阻应变片的温度影响,主要来自两个方面。

敏感栅丝的温度系数,应变栅的线膨胀系数与被测试件的线膨胀系数不一致会产生附加应变。

因此,被测体受力状态不变而温度变化时,输出会有变化。

三、实验设备与器件
主机箱、应变式传感器实验模板(含加热器)、托盘、砝码。

四、实验数据处理
因为,,所以
五、思考题
查阅传感器的相关资料,阐述金属箔式应变片的温度影响有哪些消除方法。

答:金属箔式应变片的温度影响可以通过以下几种方法消除:温度自补偿法、电桥线路补偿法、辅助测量补偿法、热敏电阻补偿法、计算机补偿法等。

而最常用的是温度自补偿法和电桥线路补偿法。

温度补偿法:利用温度补偿片进行补偿。

温度补偿片是一种特制的、具有温度补偿作用的应变片,将其粘贴在被测件上,当温度变化时,与产生的附加应变片相互抵消。

电桥线路补偿法:电桥补偿是最常用的、效果最好的补偿方法,应变片通常作为平衡电桥的一个臂来测量应变。

在被测试件感受应变的位置上安装一个应变片R1(工作片);在时间按不受力的位置粘贴一个应变片R2(补偿片),两个应变片的安装位置靠近,完全处于一个温度场中。

测量时两者连接到相邻的电桥臂上,当温度变化时,电阻R1、R2都发生变化,当温度变化相同时,因材料相同温度系数相同,因此温度引起的
电阻变化相同,,电桥输出与温度无关。

相关文档
最新文档