输电线路单相接地故障的特征、危害与定位技术分析
简析单相接地故障的特点以及应对措施
![简析单相接地故障的特点以及应对措施](https://img.taocdn.com/s3/m/f8d0d6c0fbb069dc5022aaea998fcc22bcd143a9.png)
简析单相接地故障的特点以及应对措施单相接地故障是电力系统中比较常见的故障形式之一,因其在发生时会对电力系统和设备造成一定的影响,因此加强对其了解和应对措施的研究对于保障电力系统运行的安全稳定具有重要的意义。
本篇文章将对单相接地故障的特点以及应对措施进行简析,以期对读者有所启发和帮助。
一、单相接地故障的特点1、故障现象的隐蔽性单相接地故障经常表现出隐蔽的故障特点,尤其是在其初期发生时。
例如,当只有一部分地线受到短路时,地电流可能仅是额定负荷电流的几倍,无法引起保护装置的动作,并且故障过程可能会很长,一般是数月乃至一年。
在这种情况下,如果未能及时处理,会导致电力系统运行不稳定,严重时甚至会引起串联电容效应等故障形式,产生连锁反应,危及电力系统的安全稳定。
2、地电势上升单相接地故障也表现为地电势上升的特征。
当电力系统中某一部分地线发生短路时,电流将通过地线流回发电机,从而导致地电势的上升。
此时,若地电势过高,将会对人身安全和设备稳定运行产生影响。
3、地电流和相电流之间的不平衡由于单相接地故障的发生,地电流和相电流之间就会产生不平衡。
例如,当只有一部分线路发生短路时,地电流就会通过这一部分电路流回发电机,而其他正常运行的线路则不会受到影响。
这就会导致发电机输出电流不平衡,进而影响整个电力系统的稳定性。
4、中性点电位偏移单相接地故障还会导致中性点电位偏移。
由于故障的发生,会导致电力系统中某些电源的接线点和中性点的电位发生变化,从而导致中性点电位的偏移。
因此,需要对电力系统中中性点电位进行监测和管理,以保障电力系统的稳定运行。
二、应对措施1、防范措施为避免电力系统出现单相接地故障,需要在系统的设计、运行和维护等方面进行全面的防范。
例如,需要加强对电力设备的检修和维护,确保设备的运行稳定、可靠;同时,需要严格管理电力系统的稳定性,加强对电力检测和监测等工作的管理和完善,及时发现和处理可能存在的故障隐患。
2、应急措施当电力系统出现单相接地故障时,需要及时采取应急措施避免产生连锁效应。
10kV配网单相接地故障分析及处理措施
![10kV配网单相接地故障分析及处理措施](https://img.taocdn.com/s3/m/d74ff2b4f242336c1fb95e2a.png)
10kV配网单相接地故障分析及处理措施摘要:10kV配电线路现实运行经过中常见的故障之一就是配电线路接地故障。
单相接地故障以及母线故障均是停电事故产生的核心诱导因素,当接地故障出现时,整体电力结构系统会受到损坏,并且也极有可能造成人员伤亡。
文章分析了10kV配网单相接地故障原因及危害,提出了处理措施,以供参考。
关键词;引言电力系统中配电线路具备点多、面广、线长、繁琐的走径、参差不齐的设备质量特征,并且受气候、地理环境的影响相对大,又直接面对用户端的配电线路,繁杂的供用电状况,这些都直接或间接关系到配电线路的安全运行。
在10kV配电线路中一般线路无法通过负载,形成这一情况的原因就是地线与火线处于直接连通的状态,这种情况下就很容易导致接地短路问题。
1、10kV配网单相接地故障的原因10kV配电线路是电网建设与运行中一个非常重要的部分,其安全可靠运行对整个电网的正常安全运行具有巨大影响。
若配电线路发生故障,势必会给电网运行造成负面影响,所以为避免这一情况发生,就需要对配电线路经常发生的故障类型、易发生故障的部位等基本信息进行了解和掌握,在此基础上找出配电线路故障发生的原因,进而有针对性的采取故障防治措施与解决措施,减少配电线路故障发生概率。
以10kV配电线路发生概率较高的单相接地故障为例,查找这种故障发生的原因需要从实际出发,结合历史经验,对10kV配电线路发生过的大量单相接地故障相关信息进行归纳、统计与分析,通过大量的统计分析从中总结出可能造成配电线路发生单相接地故障的原因主要有:10kV配电线路遭受雷击,导致线路瞬间电流过大,发生短路,进而引起单相接地故障;由于雷击过大导致避雷器、熔断器等绝缘装置被击穿,无法为配电线路的正常运行提供安全保障机制;配电线路在搭设过程中不小心与树木短接,或树木在生长过程中与原有配电线路发生短接,导致线路出现单相接地故障;配电线路某一部分导线因损坏断裂落地而与地面发生接触,未得到及时发现与处理,致使线路发生接地故障;线路上落有不明漂浮物,引发线路短路故障;当出现大风、暴风等恶劣天气时,导线因风飘幅度过大而引发线路出现单相接地故障等。
单相接地故障的特征及处理
![单相接地故障的特征及处理](https://img.taocdn.com/s3/m/5010ce30ba68a98271fe910ef12d2af90342a876.png)
单相接地故障的特征及处理单相接地故障是电力系统中最常见的故障之一,它会导致电网供电中断,电气设备损坏甚至引发火灾等严重后果。
因此,对于单相接地故障的特征及处理了解和掌握是非常重要的。
一、单相接地故障的特征1. 故障电流较大:在单相接地故障发生时,接地电流通常会迅速升高,其值远远大于正常运行时的电流。
这是因为接地故障导致了电流的泄漏,而导线的电压保持不变,导致电流异常增加。
2. 短暂性:单相接地故障通常是一种短暂性故障,故障后会形成一个绝缘破裂点,导致电流短暂地通过接地故障点,然后很快消失。
由于故障电流泄漏到地,所以绝大部分故障电流会流向地,导致接地电流增大。
3. 导线振荡:由于单相接地故障导致电压失去平衡,导线上的电流会发生振荡。
振荡的频率通常为故障的电源频率。
4. 线电压降低:故障发生时,线路上的电压会显著下降。
这是由于故障电流经过短路路径而电压丢失引起的。
5. 故障点火花:单相接地故障点处通常会发生电火花放电现象,这是由于电压失去平衡引起的。
火花放电可能会引发火灾。
二、单相接地故障的处理当发生单相接地故障时,我们需要采取一系列措施来迅速控制和排除故障,保证电网的安全和正常运行。
1. 快速切除故障点:一旦发生单相接地故障,首先要迅速切除故障点附近的断路器或隔离开关,以防止故障电流积累和扩大,保护其他设备和人员安全。
2. 通知抢修人员:在切除故障点后,应立即通知相应的抢修人员前往现场进行维修和处理。
抢修人员应具备专业知识和技能,能够迅速判断故障原因并采取相应措施。
3. 安全排除故障:抢修人员到达现场后,首先要确保现场的安全,并采取必要的安全措施,如佩戴绝缘手套、使用绝缘工具等。
然后通过对线路进行逐一检查,定位故障点,并根据实际情况进行维修和处理。
4. 恢复电网供电:在完成故障处理后,抢修人员应恢复电网供电。
在进行恢复供电操作时,需要注意逐步恢复,以避免再次引发故障。
5. 故障分析和防范:在处理完故障后,抢修人员应对故障原因进行仔细分析,并制定相应的防范措施,以避免类似故障再次发生。
电网配电线路单相接地故障分析及处理策略
![电网配电线路单相接地故障分析及处理策略](https://img.taocdn.com/s3/m/ac217b8b2b160b4e777fcf40.png)
电网配电线路单相接地故障分析及处理策略摘要:10kV配电线路的单相接地故障是电网运行中最为突出的问题,不但对配电设备运行造成影响,甚至还会给人身安全带来一定的威胁。
因此,必须采取有效的措施处理好单相接地故障,确保供电安全。
关键词:配电线路;单相接地;故障;策略引言由于10KV配电线路出现单相接地故障是由多方面因素引起的,因此,在对故障进行查找时,困难程度比较大,所以对单相接地故障相关问题进行详细分析是非常重要的。
同时,还需要采用当前的先进技术和设备,以此来提高故障查找的工作效率,最大程度上降低因故障发生而造成的影响。
1、单相接地故障分析(1)单相不断线接地故障单相不断线接地故障主要表现为,故障相电压完全接地(即金属性接地)或者是不完全接地,其余两相的电压出现升高,等于线电压,或者是大于相电压。
如果电压表的指针变化幅度较小,即为稳定性接地;如果电压表指针变化频繁,即为间歇性接地。
中性点经过消弧线圈接地系统,可以看见消弧线圈动作,从而产生中性点电流。
如果是出现弧光接地故障,还有可能出现弧光过电压,没有出现故障的相电压升高程度较大,甚至是将电压互感器烧坏。
(2)单相断线电源侧接地故障该故障的主要表现与单相不断线接地故障的表现大致上相同。
其对断线一侧配电变压器之后供电的营销较为严重,断线点之后,配电变压器就很可能转入两相运行,并且会持续较长的时间。
要想减少负序电流,降低电流存在的不对称程度,就必须要求变压器的零序阻抗为最小,零序电流可以在变压器的两侧流通。
三相变压器通常情况下,均会为三铁芯柱式的两相运行,配电变压器其绕组接线是Y/Y0,所以,由于出现零序电流而造成的铁芯磁通不能抵消掉,只能选择经由变压器外壳和空气,形成闭合回路,也就造成了变压器外壳上出现不能承受的过热。
(3)单相断线负荷侧接地故障出现负荷侧接地故障后,在系统变电站的绝缘监视指示其变化就会非常小,绝缘监视出现变化是由于段线后,电容电流发生变化而引起的。
单相接地故障的特征及处理
![单相接地故障的特征及处理](https://img.taocdn.com/s3/m/7684c3fb8ad63186bceb19e8b8f67c1cfad6eed1.png)
单相接地故障的特征及处理单相接地故障是指电力系统中发生了一个或多个相对地的故障。
这种故障会导致电流通过接地导致相对地电势存在差异,从而造成电流不平衡,电压波动,设备损坏甚至火灾等严重后果。
单相接地故障的特征主要体现在以下几个方面:1. 电流不平衡:在单相接地故障发生时,系统中有一相发生接地,另外两相仍然正常工作。
由于相间电流不平衡,三相负荷不平衡,从而影响系统的功率质量,导致电压波动,设备损坏。
2. 电压波动:单相接地故障会导致相对地电压发生变化,从而造成电压波动。
当故障发生时,有一相电压会下降,另外两相电压会略微升高。
这种电压波动会影响系统的稳定性和设备的正常运行。
3. 电流过大:单相接地故障会导致电流通过接地路径,从而使接地电流增大。
这会导致设备过载,进一步损坏设备。
同时,接地电流过大还会造成电线和设备的加热,甚至引发火灾。
处理单相接地故障的方法主要包括以下几个方面:1. 快速切除故障线路:一旦发生单相接地故障,需要及时切除故障线路,以防止故障的继续蔓延。
这可以通过保险丝、断路器等设备实现。
同时,切除故障线路后,还需要进行故障线路的检修和维护,以恢复供电。
2. 接地故障电流限制:在电力系统中,为了限制接地故障电流过大,常使用接地电阻、零序电流互感器等设备。
接地电阻可以有效地限制故障电流大小,避免设备过载。
零序电流互感器可以实时监测接地电流,及时发现并报警。
3. 故障诊断与定位:当发生接地故障时,需要通过故障诊断与定位,找出故障点,进行维修。
一般可以使用故障指示器、故障录波仪等设备来实现故障的诊断和定位。
4. 系统保护调整:在电力系统中,需要设置合适的保护装置,以防止单相接地故障的发生和扩大。
常用的保护装置包括差动保护、过流保护、过电压保护等。
通过设置合适的保护装置,可以及时检测故障,切除故障线路,保证系统的安全运行。
在处理单相接地故障时,需要注意以下几点:1. 遵循安全操作规程:在处理接地故障时,首先要确保自身的安全。
单相接地故障的现象分析及处理办法
![单相接地故障的现象分析及处理办法](https://img.taocdn.com/s3/m/ff804d08941ea76e59fa046c.png)
单相接地故障的现象分析及处理办法在小电流接地的配电网中,一般装设有绝缘监察装置。
当配电网发生单相接地故障时,由于线电压的大小和相位不变(仍对称),况且系统的绝缘水平是按线电压设计的,所以不需要立即切除故障,尚可继续运行不超过2h。
但非故障相对地电压升高1。
732倍,这对系统中的绝缘薄弱点可能造成威胁。
此外,在仍可继续运行时间内,由于接地点接触不良,因而在接地点会产生瞬然熄的间歇性电弧放电,并在一定条件激励下产生谐振过电压,这对系统绝缘造成的危害更大.为此,必须尽快处理排除单相接地故障,确保电网安全可靠运行。
1 单相接地故障的特征单相接地(1)配电系统发生单相接地故障时,变电所绝缘监察装置的警铃响,“××母线接地”光字牌亮。
中性点经消弧线圈接地的,还有“消弧线圈动作”的光字牌。
(图1)(2)当生发接故障时,绝缘监察装置的电压表指示为:故障相相电压降低或接近零,另两相电压高于相电压或接近于线电压。
如是稳定性接地,电压表指示无摆动,若是电压表指针来回摆动,则表明为间歇性接地.(3)当发生弧光接地产生过电压时,非故障相电压很高,电压表指针打到头。
同时还伴有电压互感器一次熔丝熔断,严重时还会烧坏互感器.但在某些情况下,配电系统尚未发生接地故障,系统的绝缘没有损坏,而是由于产生不对称状态等,绝缘监察也会报出接地信号,这往往会引起误判断而停电查找。
2 单相接地信号虚与实的判断(1)电压互感器高压熔断器一相熔断报出接地信号时,如果故障相对地电压降低,而另两相电压升高,线电压不变,此情况则为单相接地故障.(2)变电所母线或架空导线的不对称排列;线路中跌落式熔断器一相熔断;使用RW型跌落式开关控制长线路的倒闸操作不同期等,均会造成三相对地电容不平衡,从而使中性点电压升高而报出接地信号,此情况多发生在操作时,而线路实际上并未发生接地。
(3)在合闸空母线时,由于励磁感抗与对地电抗形成不利组合而产生铁磁谐振过电压,也会报出接地信号。
电力输电线路中单相接地事故的影响和应对措施
![电力输电线路中单相接地事故的影响和应对措施](https://img.taocdn.com/s3/m/3e49d6b0d0f34693daef5ef7ba0d4a7302766c90.png)
电力输电线路中单相接地事故的影响和应对措施摘要:我国经济社会不断发展,各行各业都抓住发展的机遇,奋力直前,我国电力系统的建设也在这个过程中得到了快速的扩展,整个电力系统中出现了越来越多的小电流接地系统。
但,,小电流接地系统又与我国的整体电力系统运作有所差异,它最明显的特征就是电力的压力等级级数较低,因而也更容易出现单相接地故障,故障发生的频率也逐渐在增多。
一旦发生单相接地故障,便很可能对整体系统产生威胁,导致线路短路,最终会诱发大面积范围的停电事故,从而造成严重的经济损失。
关键词:电力输电线路单相接地事故影响应对措施引言电力输电线路中的单相接地事故的发生是不分时间、地点的,线路发生单相接地事故之后并不会导致变电站的开关跳闸,用户可以正常使用电器化设备,这也是小电流接地系统的优势之一。
但是,一旦电力线路中发生单相接地事故,没有及时得到处理,反而长时间的使用电网,会对电网和变电设备的安全产生严重的影响。
近年来,由于单相接地事故的发生概率增长,为保证人的生命财产安全以及电网的安全,相关制度指出发生故障的线路应当立即停止运行,并及时上报,工作人员对发生故障的线路进行检查维修,在最短的时间里找出故障发生的根本原因和性质,对故障线路及时抢修,先隔离后修缮,首先恢复其余正常线路的送电,最大程度上的确保人的生命安全和电力设备的安全。
1.单相接地事故的基本特征输电线路发生单相接地事故通常在潮湿、阴冷、多雨的天气状况下发生。
发生单相接地事故的主要原因通常是受到小动物活动的影响或者单相线路断裂等,当电力输送系统中发生单相接地事故时正常状态的两相的电压会有明显的上升,发生故障的单相接地线路的电压指数将会有所下降,而线电压保持相对平衡的状态,这也是单相接地事故发生之后不会对电力系统的持续性供电产生影响的原因所在,用电居民可以正常使用电网,电力系统在单相接地事故发生之后依旧可以维持一到两个小时的电力运转。
输电线路的单相接地故障也有着它独特的基本特征。
单相接地故障的特征及处理
![单相接地故障的特征及处理](https://img.taocdn.com/s3/m/dfe29f2f0a1c59eef8c75fbfc77da26924c5964d.png)
单相接地故障的特征及处理单相接地故障是电力系统中常见的故障类型之一,它的出现会对电力系统的正常运行造成较大的影响。
因此,对于单相接地故障的特征和处理方法的了解和掌握,对于确保电力系统的可靠运行至关重要。
首先,单相接地故障的特征之一是电流突增。
当系统中出现单相接地故障时,电流会在一瞬间瞬间增高。
这是因为接地故障导致电流通过接地路径回路流动,而接地电阻较低,导致电流迅速升高。
其次,单相接地故障还具有电压下降的特征。
接地故障会导致故障线路上的电压降低,因为电流通过接地路径回路流动,在接地电阻的阻碍下导致电流流出故障线路,从而导致电压下降。
另外,单相接地故障还会产生感应电磁场。
当故障发生时,故障电流会在附近产生强烈的磁场,并且会诱发故障线路周围的感性元件中的感应电动势,造成电压的变化。
此外,单相接地故障还会引发过电流保护的动作。
当单相接地故障发生时,故障电流突然增大,超过了保护设备所设定的故障电流阈值,从而引发保护装置的动作,切断故障线路,保护系统的安全运行。
对于单相接地故障的处理,需要根据故障类型和具体情况来采取相应的措施。
以下是处理单相接地故障的常用方法:第一,及时定位故障点。
通过故障指示器、故障录波器等设备,可以及时确定故障点的位置,从而减少故障检修的时间,保证系统的可靠运行。
第二,切除故障线路。
一旦故障点确定,需要及时采取措施切除故障线路,以防止故障扩大,进一步影响系统的运行。
第三,检修故障设备。
在确定故障点和切除故障线路后,需要对故障设备进行检修和修复,以恢复系统的正常运行。
第四,加强设备的监测和维护。
为了避免单相接地故障的发生,需要加强对设备的监测和维护工作,定期检查设备的接地情况,及时发现和处理潜在的问题。
综上所述,单相接地故障具有电流突增、电压下降、感应电磁场产生和过电流保护动作等特征。
处理单相接地故障需要及时定位故障点、切除故障线路、检修故障设备和加强设备的监测和维护等措施。
通过合理的处理方法,可以有效地解决单相接地故障问题,确保电力系统的可靠运行。
单相接地故障的危害和影响分析
![单相接地故障的危害和影响分析](https://img.taocdn.com/s3/m/f1e4ceebe009581b6bd9eba0.png)
单相接地故障的危害和影响分析3.1 对变电设备的危害10 kV配电线路发生单相接地故障后,变电站10 kV母线上的电压互感器检测到零序电流,在开口三角形上产生零序电压,电压互感器铁芯饱和,励磁电流增加,如果长时间运行,将烧毁电压互感器。
在实际运行中,近几年来,已发生变电站电压互感器烧毁情况,造成设备损坏、大面积停电事故。
单相接地故障发生后,也可能产生谐振过电压。
几倍于正常电压的谐振过电压,危及变电设备的绝缘,严重时使变电设备绝缘击穿,造成更大事故。
3.2 对配电设备的危害单相接地故障发生后,可能发生间歇性弧光接地,造成谐振过电压,产生几倍于正常电压的过电压,将进一步使线路上的绝缘子击穿,造成严重的短路事故,同时可能烧毁部分配电变压器,使线路上的避雷器、熔断器绝缘击穿、烧毁,也可能发生电气火灾事故。
3.3 对区域电网的危害严重的单相接地故障,可能破坏区域电网的稳定,造成更大事故。
3.4 对人畜危害对于导线落地这一类单相接地故障,如果配电线路未停运,对于行人和线路巡视人员(特别是夜间),可能发生跨步电压引起的人身电击事故,也可能发生牲畜电击伤亡事故。
3.5 对供电可靠性的影响发生单相接地故障后,一方面要进行人工选线,对未发生单相接地故障的配电线路要进行停电,中断正常供电,影响供电可靠性;另一方面发生单相接地的配电线路将停运,在查找故障点和消除故障中,不能保障用户正常用电,特别是在庄稼生长期、大风、雨、雪等恶劣气候条件,和在山区、林区等复杂地区,以及夜间、不利于查找和消除故障,将造成长时间、大面积停电,对供电可靠性产生较大影响。
3.6 对供电量的影响发生单相接地故障后,由于要查找和消除故障,必然要停运故障线路,从而将造成长时间、大面积停电,减少供电量。
据不完全统计,每年由于配电线路发生的单相接地故障,将少供电十几万千瓦时,影响供电企业的供电量指标和经济效益。
4 对单相接地故障的预防和处理办法4.1 预防办法对于配电线路单相接地故障,可以采取以下几种方法进行预防,以减少单相接地故障发生。
单相接地故障的特征及处理范文(2篇)
![单相接地故障的特征及处理范文(2篇)](https://img.taocdn.com/s3/m/6c0eb8506d85ec3a87c24028915f804d2b1687cd.png)
单相接地故障的特征及处理范文单相接地故障是电力系统中常见的一种故障形式,其特征是系统中某个相线出现接地故障,导致故障电流通过接地体流入地面,使得系统出现电流不平衡、电压波动等问题。
本文将以单相接地故障的特征及处理为主题,从故障特征、故障原因、故障处理三个方面进行讨论。
以下为平均字数的范文:一、故障特征单相接地故障的主要特征有以下几个方面:1. 电流不平衡由于故障点的相线与地之间产生了短路,电流会通过接地体流入地面。
这样会导致系统中的电流发生不平衡,即三相电流不相等。
其中,故障相的电流值较大,而另外两相的电流值较小。
2. 电压波动在单相接地故障出现的瞬间,故障相的电压会短暂下降,而其他两相的电压会稍微上升。
随后,故障相的电压会迅速恢复到正常水平,而其他两相的电压也会逐渐恢复。
3. 接地电流过大由于故障点与地之间出现了短路,电流会通过接地体流入地面。
因此,故障点附近的接地体上会出现较大的接地电流,从而导致接地电阻过载。
以上是单相接地故障的主要特征,接下来将对故障原因进行分析。
二、故障原因单相接地故障的发生原因有很多,主要包括以下几个方面:1. 绝缘损坏绝缘材料在长期使用过程中,可能会因为老化、磨损或外力作用而出现损坏,导致绝缘性能下降。
当绝缘材料的绝缘性能下降到一定程度时,就很容易发生接地故障。
2. 设备缺陷电力设备在制造、运输、安装等过程中,可能会存在一些缺陷。
例如,设备的绝缘不良、接线松动或设计不合理等问题,都有可能导致故障发生。
3. 外界因素外界因素,如雷击、异物进入导线等,也可能导致单相接地故障的发生。
这些因素可能会对设备或导线产生直接冲击,使其发生短路,导致接地故障。
针对以上故障原因,下面将介绍一些常见的处理方法。
三、故障处理单相接地故障发生后,需要及时采取有效的措施进行处理,以避免故障继续扩大。
下面列举了常用的几种处理方法:1. 快速切除故障电路当发生单相接地故障时,要及时切除故障点与其他部分的电路。
单相接地故障的特征及处理
![单相接地故障的特征及处理](https://img.taocdn.com/s3/m/487c92e3b8f3f90f76c66137ee06eff9aef849e3.png)
单相接地故障的特征及处理单相接地故障是一种常见的故障类型,它通常发生在电网中的分支回路或电缆中。
这种故障会给电力系统带来不良的影响,可能会导致设备损坏、停电等问题。
在本文中,将对单相接地故障的特征及其处理方法进行简要介绍。
一、单相接地故障特征1. 电流突变:单相接地故障时,故障点处的电缆或分支回路与大地之间的电阻急剧降低,电流将从电源到接地电阻之间的路径中流过。
这会导致电流突然增大,可能会超过正常负载电流的两倍以上。
这种电流突变会导致电网中的保护系统响应并采取相应的措施。
2. 电压波动:由于故障电流突然增大,造成电网的电压波动。
这种电压波动可能会导致电力设备的短路或故障,进一步加剧系统的问题。
3. 地电位差:单相接地故障会导致地电位差的产生,这意味着电网中的不同位置之间存在电位差。
这种地电位差可能会对设备和人员造成危害。
4. 潜在放电:单相接地故障还可能导致潜在放电的产生。
这种放电会损害设备,使其加速老化,并逐渐失效。
二、单相接地故障的处理方法1. 立即停电:如发现单相接地故障,电力公司将立即采取措施断开该线路的电源,并停电以避免可能的危险。
停电的时长取决于故障的严重程度,需要在确认问题解决后进行重现电。
2. 排查故障原因:在确保安全之后,电力公司将排查故障的原因。
这可能包括对设备进行测试和检查,以及调查其他可能的负面影响,如电网的损害程度、设备损坏的数量和程度等。
3. 修复损坏的设备:如果发现设备损坏,电力公司将采取措施进行维修或替换。
这将确保设备在未来继续正常运行,并降低再次发生单相接地故障的风险。
4. 提高电网的可靠性:电力公司还可以采取其他措施来提高电网的可靠性。
这可能包括升级设备、提高安全性等,以减少单相接地故障的发生率。
单相接地故障是一种常见的故障类型,可能会给电力系统带来很多困扰。
通过识别单相接地故障的特征,并立即采取相应的措施,可以最大程度地减少设备和人员的损失,并降低电网中发生故障的风险。
输电线路单相接地故障的特征、危害与定位技术分析
![输电线路单相接地故障的特征、危害与定位技术分析](https://img.taocdn.com/s3/m/68f1bf6dcaaedd3383c4d382.png)
输电线路单相接地故障的特征、危害与定位技术分析摘要:文章对输电线路单相接地故障的基本特征进行了分析,同时探讨了输电线路单相接地故障的发生所造成的危害,以及故障处理过程中所需的定位技术。
关键词:输电线路;单相接地故障;特征;危害;定位技术随着我国社会经济的快速发展,我国的电力系统建设规模也实现了快速的扩展,小电流接地系统数量也在逐渐增加。
因为小电流接地系统具有电压等级较低的基本特征,因而其单相接地故障的发生率也普遍偏高,非故障相对地电压升高,若输电线路出现间歇性弧光接地现象,会引发弧光过电压,进而威胁系统的绝缘性能,导致相间短路范围扩大,最终造成大面积的停电事故,以及严重的经济损失。
1 单相接地故障的基本特征多雨、潮湿的气候条件下,输电线路单相接地故障的发生率通常偏高,其主要诱发原因包括:小动物危害、单相断线、单相击穿配电线路上绝缘子以及树障等。
单相接地故障发生后,非故障两相的相电压会明显升高,而故障相对地的电压则会迅速降低,而线电压仍然保持对称状态,所以,不会对电力系统供电的连续性造成不良影响,电力系统能够持续运行1~2 h。
输电线路单相接地故障的基本特征主要表现为:第一,电弧接地。
若A相发生完全接地,则故障相的电压会有所下降,但不会降低到零,非故障相的电压会迅速提高到线电压。
第二,空载母线虚假接地问题。
母线空载运行过程中,潜在三相电压不平衡的发生风险,且会产生接地信号现象。
而这一接地现象会在送上一条线路后逐渐消失。
第三,串联谐振。
因为电力系统中由感性参数和容性的元件,尤其是存在带铁芯的铁磁电感元件,因而一旦参数组合出现匹配不当现象,就会导致继电器动作和铁磁谐振,并出现接地信号。
这一问题可通过网络参数的改变进行解决,主要处理措施包括减少线路、增加临时线路、合上或断开母联断路器等。
第四,高压侧发生熔断件熔断或是一相断线后,故障相电压会迅速下降,但不会降低到零,而非故障相的电压并不会明显升高,其主要原因在于,二次回路中该相电压表会与两相电压表及互感器线圈共同构成串联回路,指示电压数值也较小,而不是其真是的电压,非故障相仍为相压。
配电线路单相接地故障危害及防范措施分析
![配电线路单相接地故障危害及防范措施分析](https://img.taocdn.com/s3/m/423924f3e109581b6bd97f19227916888486b9c9.png)
配电线路单相接地故障危害及防范措施分析摘要:正常稳定的电力供应对社会经济发展有着重要影响,社会经济发展对电能的需求量在持续增加。
因此,必须重视对配电线路单相接地故障进行排查,找准事故发生的原因,真正做到防患于未然,维持配电线路运行的稳定性。
关键词:配电线路;单相接地;查找;安全前言:配电线路应用十分广泛,一旦配网出现故障问题,就会对正常电力供应造成影响。
在具体开展配电线路运行维护工作期间,要求结合常出现的问题,采取相对应的措施加强维护,对10kV配电线路单相接地故障查找、处理方法进行研究,以此可以保质保量的进行配电线路运行维护工作。
1、单相接地故障的主要危害1.1 对配电线路设备的影响。
对配电设备产生危害。
一般来说,在单相接地故障发生后,间歇性弧光接地会产生几倍于正常电压的过电压,使线路上的绝缘子绝缘击穿,造成非常严重的短路事故。
对配电网也会产生一定的危害。
极其严重的单相接地故障,会破坏区域电网系统的稳定,造成非常严重的事故,还有对人身也会产生危害。
当配电线路出现单相接地事故故障后,变电站的电压互感器检测电流为零序电流,并在开口的三角形区域产生了零序电压,致使电压互感器的铁芯饱和、励磁电流递增,此时若长久运行,则会将电压互感器烧毁。
配电线路单相接地事故故障发生时会促使谐振过电压的产生,高于同期电压产生的谐振过电压数倍,对配电线路变电设备的绝缘体危害极大,严重时则会击穿配电线路变电设备的绝缘体,造成更大的配电事故。
1.2对配电线路和设备的影响。
配电线路的单相接地故障可能会引发间歇性的弧光接地,形成高于正常线路数倍的谐振过电压,该过电压可使配电线路上的绝缘体被击穿,造成短路事故的发生,同时可能会引发部分配电变压器的毁坏,造成配电线路上的避雷器、熔断器等绝缘体被击穿、烧毁,也有可能引发火灾。
当发生单相瞬间接地时,电弧不能自行熄灭,容易形成相间短路,使断路器跳闸。
1.3危及人畜生命安全及引发火灾。
单相接地故障多发生在雷雨季节即夏秋季,此段期间多雨、多雷、大风、气候潮湿,如果配电线路未停运,对于行人和线路巡视人员(特别是夜间),可能发生跨步电压引起的人身电击事故,也可能发生牲畜电击伤亡事故。
110kV线路单相接地故障分析
![110kV线路单相接地故障分析](https://img.taocdn.com/s3/m/0cb65001bf1e650e52ea551810a6f524ccbfcba4.png)
110kV线路单相接地故障分析在供电系统中,110kV线路是非常常见的一种输电线路,是完成电力供应非常重要的一部分。
而110kV线路最为常见的故障就是单相接地故障,掌握110kV 线路单相接地故障的相关问题,可以更好地保证电力的供应。
本文通过实际故障案例分析结合理论探究的手段,了解了110kV线路单相接地故障的主要问题,并提出了相应的故障解决方案,为正常安全供电提供了可行性的建议。
关键字:110kV线路单相接地故障分析单相接地故障在110kV输电线路中非常常见,是阻碍供电系统正常工作的罪魁祸首之一。
而要解决单相接地故障,就需要从发生故障的机理开始分析,了解一般会引起故障的原因,并了解故障的危害,从而做出具有针对性的故障解决措施。
比如说在一段110kV线路中,如果发生了单相接地故障,那么将会对电网本身以及用户造成非常大的影响。
一、110kV线路单相接地故障主要危害单相接地故障对于人们的正常用电来说,影响无疑是非常巨大的,会严重阻碍人们的用电。
而故障的主要危害按照对象的不同可分为两个方面,一方面是故障对电网系统所产生的危害,另一方面是故障对用户的自身利益所造成的危害。
并且电网系统受到了影响之后,通常也会对用户的利益造成很大的影响。
(一)单相接地故障对电网系统的危害当线路发生单相接地故障时,首当其冲受到影响的就是电网系统,比如说变电设备、配电设备都会随之发生一系列的动作反应甚至出现设备故障。
当线路的单相接地时,线路中其他相的对地电容与电流都会发生非常大的变化,并且中性点的电压不再为零,直接导致了系统零序电压的升高。
其具体的故障情况如下图所示:从图中可以看出来,如果C相线路发生了单相接地故障,那么中性点的对地电压就会发生变化,从零变为相电压大小,而C相的对地电压则会变为原来的3倍,通过三相电压之间的关系分析可以得出,当任何一个单相接地时,接地电流都会变为原来的3倍,造成了供电系统的紊乱,从而烧毁电网系统中的设备。
单相接地故障的特征及处理范本
![单相接地故障的特征及处理范本](https://img.taocdn.com/s3/m/a6a0786ebdd126fff705cc1755270722192e592a.png)
单相接地故障的特征及处理范本单相接地故障是指电力系统中的一相导线与地之间发生了不正常的电流流动,造成系统发生短路或者导线损坏等故障。
接地故障是电力系统中常见的故障之一,正确处理接地故障对于系统的安全稳定运行具有重要意义。
接下来将介绍单相接地故障的特征及处理范本。
首先,单相接地故障的特征是系统中一相导线与地接触或短路,导致电流通过接地点流向地。
这种故障的特点是电流较大,通常会导致系统电压的剧烈波动,甚至导致电压骤降,造成设备的异常运行或者停运。
此外,接地故障还会引起系统中其他设备的振动、噪声和发热等异常现象。
因此,一旦发生接地故障,必须及时处理,以避免进一步损坏。
针对单相接地故障,一般可以采取以下处理范本。
1.系统保护与自动重合闸:在电力系统中安装保护装置可以实现对接地故障的自动检测和断电保护。
一旦有接地故障发生,保护装置会快速断开故障线路,保护系统和设备不受损害。
同时,在故障线路修复之后,保护装置可以实现自动重合闸,以恢复系统供电。
2.故障定位与绝缘测试:一旦发生接地故障,需要及时查明故障点的位置以便进行修复。
可以使用故障指示器、红外热像仪等设备进行故障定位,找到故障点后,进行相应的绝缘测试,确保系统在修复之后不再受到同样类型的故障。
3.检查设备与线路:发生接地故障后,需要对系统中的设备和线路进行全面检查。
检查设备是否受损,线路是否有其他隐患,以保证修复后的系统能够正常运行。
4.引入综合保护装置:为了提高对接地故障的检测和保护能力,可以引入综合保护装置。
综合保护装置能够通过测量电流、电压和温度等参数,快速准确地判断接地故障,并进行自动断电保护。
5.增加设备的防护措施:针对系统中容易发生接地故障的设备,可以增加相应的防护措施,例如使用绝缘套管、安装过流保护装置等,以提高设备的安全性和抗干扰能力。
总之,对于单相接地故障,及时发现和处理是非常重要的。
在处理过程中,需要根据具体情况采取适当的措施,保证系统的安全稳定运行。
单相接地故障的特征及处理
![单相接地故障的特征及处理](https://img.taocdn.com/s3/m/b56e3df10408763231126edb6f1aff00bfd57049.png)
单相接地故障的特征及处理单相接地故障指的是电力系统中的一种故障形式,即一条电缆或电线的一个相位与地之间出现直流或交流连接的情况,导致电流只经过故障相和地,而不流向另外两个相。
这种故障在电力系统中比较常见,必须得到及时处理,以确保电力系统的正常运行。
本文将详细介绍单相接地故障的特征及处理方法。
特征单相接地故障的特征表现为:1. 零序电流增大单相接地故障时,由于一条电缆或电线的一个相位与地之间出现直流或交流连接,电流只经过故障相和地,而不流向另外两个相。
这会导致系统中的零序电流增加,增大的程度与故障的位置及类型有关。
因此,检测系统中零序电流的变化,可以初步判断是否存在单相接地故障。
2. 周期性容量步跃单相接地故障的另一个特征是,故障相电压会出现周期性容量步跃的现象。
这是由于故障相电压由于电流的存在,而出现周期性的变化。
这种现象可以通过检测系统中的电压变化来判断是否存在单相接地故障。
3. 电压不平衡当电力系统中存在单相接地故障时,系统中的电压将会出现不平衡现象。
这是因为电压在三相中分别存在,而故障相电压与其它两个相的电压不同。
因此,可以通过检测系统中电压的不平衡情况来判断是否存在单相接地故障。
处理当电力系统中检测到单相接地故障时,需要进行及时的处理,以确保系统的正常运行。
具体的处理方法如下:1. 切除故障线路当发现单相接地故障后,首先要对故障线路进行切除。
可以使用熔断器或断路器等设备将故障线路与系统隔离,以避免故障扩大。
2. 联络地当故障线路与系统隔离后,可以将线路联络地,以确保系统中的电势稳定。
联络地可以通过连接接地电阻或接地装置来完成。
3. 排除故障原因排除故障原因是解决单相接地故障的关键步骤。
需要对故障线路进行详细的检查,找出故障原因,并加以排除。
常见的故障原因包括线路短路、绝缘子污染、绝缘层老化等。
4. 恢复供电当排除故障原因后,可以重新恢复供电。
需要对线路进行测试,确保系统运行正常后,再连通系统,恢复正常供电工作。
2024年单相接地故障的特征及处(三篇)
![2024年单相接地故障的特征及处(三篇)](https://img.taocdn.com/s3/m/1083724111a6f524ccbff121dd36a32d7375c793.png)
2024年单相接地故障的特征及处10kV(35kV)小电流接地系统单相接地(以下简称单相接地)是配电系统最常见的故障,多发生在潮湿、多雨天气。
由于树障、配电线路上绝缘子单相击穿、单相断线以及小动物危害等诸多因素引起的。
单相接地不仅影响了用户的正常供电,而且可能产生过电压,烧坏设备,甚至引起相间短路而扩大事故。
因此,熟悉接地故障的处理方法对值班人员来说十分重要。
1几种接地故障的特征(1)当发生一相(如A相)不完全接地时,即通过高电阻或电弧接地,这时故障相的电压降低,非故障相的电压升高,它们大于相电压,但达不到线电压。
电压互感器开口三角处的电压达到整定值,电压继电器动作,发出接地信号。
(2)如果发生A相完全接地,则故障相的电压降到零,非故障相的电压升高到线电压。
此时电压互感器开口三角处出现100V电压,电压继电器动作,发出接地信号。
(3)电压互感器高压侧出现一相(A相)断线或熔断件熔断,此时故障相的指示不为零,这是由于此相电压表在二次回路中经互感器线圈和其他两相电压表形成串联回路,出现比较小的电压指示,但不是该相实际电压,非故障相仍为相电压。
互感器开口三角处会出现35V左右电压值,并启动继电器,发出接地信号。
(4)由于系统中存在容性和感性参数的元件,特别是带有铁芯的铁磁电感元件,在参数组合不匹配时会引起铁磁谐振,并且继电器动作,发出接地信号。
(5)空载母线虚假接地现象。
在母线空载运行时,也可能会出现三相电压不平衡,并且发出接地信号。
但当送上一条线路后接地现象会自行消失。
2单相接地故障的处理(1)处理接地故障的步骤:①发生单相接地故障后,值班人员应马上复归音响,作好记录,迅速报告当值调度和有关负责人员,并按当值调度员的命令寻找接地故障,但具体查找方法由现场值班员自己选择。
②详细检查所内电气设备有无明显的故障迹象,如果不能找出故障点,再进行线路接地的寻找。
③将母线分段运行,并列运行的变压器分列运行,以判定单相接地区域。
输电线路单相接地故障处理
![输电线路单相接地故障处理](https://img.taocdn.com/s3/m/97101e243968011ca3009132.png)
输电线路单相接地故障处理摘要:输电线路发生故障时必须及时处理,否则将严重威胁系统的安全运行。
笔者结合多年工作经验,对较为常见的接地故障--单相接地的判断方法与寻找顺序进行了总结,并提出了可行的处理建议与注意事项,仅供同行业工作人员参考。
关键词:输电线路接地判断处理前言:电力系统按中性点接地方式的不同,分为中性点直接接地系统、中性点不接地系统,中性点经消弧线圈接地系统三种。
中性点直接接地系统称为大接地电流系统,中性点不接地和经消弧线圈接地的系统,称为小接地电流系统。
对小接地电流系统来说,单相接地运行时间不得超过2h,这主要是受电压互感器和消弧线圈带接地允许运行时间的限制。
但毕竟单相接地是电力系统的一种异常状态,而且如果又发生另一相接地,或不同线路不同相接地,则会形成相间接地短路,造成出线断路器或母线断路器跳闸的事故。
因此,发生单相接地后,应加强监视,及时汇报和处理。
1.单相接地故障的危害由于非故障相对地电压升高(全接地时升至线电压值),系统中的绝缘薄弱点可能击穿,造成短路故障。
故障点产生电弧,会烧坏设备并可能发展成相间短路故障;故障点产生间歇性电弧时,在一定条件下,产生串联谐振过电压,其值可达相电压的2.5~3倍,对系统绝缘危害很大。
2.接地故障的判断在发生接地故障时,其可供参考的现象有:①警铃响,“母线接地” 光字牌亮;②接地相电压下降,其它二相电压升高;③如果是金属性接地,则接地相电压为零,其它两相电压升高为3倍相电压(即线电压);④当为稳定性接地时,电压表指示无摆动;⑤若指示不停地摆动,则为间歇性接地;⑤装有消弧线圈的变电所,消弧线圈的电压表(中性点位移电压表)将有指示,且“消弧线圈动作” 光字牌亮。
在某些情况下,系统的绝缘没有损坏,而因其它原因产生某些不对称状态,例如:电压互感器一相高压熔断器熔断,用变压器对空载母线合闸充电等,也可能报出接地信号。
所以应注意区分判断。
2.1 用对比法判断在同一个电气系统中,如几组电压互感器同时出现接地信号,绝缘监视对地电压均发生相同的变化(如一相电压下降或为零,其它两相电压升为线电压),且线电压不变,则应判断为接地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
输电线路单相接地故障的特征、危害与定位技术分析
摘要:文章对输电线路单相接地故障的基本特征进行了分析,同时探讨了输电线路单相接地故障的发生所造成的危害,以及故障处理过程中所需的定位技术。
关键词:输电线路;单相接地故障;特征;危害;定位技术
随着我国社会经济的快速发展,我国的电力系统建设规模也实现了快速的扩展,小电流接地系统数量也在逐渐增加。
因为小电流接地系统具有电压等级较低的基本特征,因而其单相接地故障的发生率也普遍偏高,非故障相对地电压升高,若输电线路出现间歇性弧光接地现象,会引发弧光过电压,进而威胁系统的绝缘性能,导致相间短路范围扩大,最终造成大面积的停电事故,以及严重的经济损失。
1 单相接地故障的基本特征
多雨、潮湿的气候条件下,输电线路单相接地故障的发生率通常偏高,其主要诱发原因包括:小动物危害、单相断线、单相击穿配电线路上绝缘子以及树障等。
单相接地故障发生后,非故障两相的相电压会明显升高,而故障相对地的电压则会迅速降低,而线电压仍然保持对称状态,所以,不会对电力系统供电的连续性造成不良影响,电力系统能够持续运行1~2 h。
输电线路单相接地故障的基本特征主要表现为:第一,电弧接地。
若A相发生完全接地,则故障相的电压会有所下降,但不会降低到零,非故障相的电压会迅速提高到线电压。
第二,空载母线虚假接地问题。
母线空载运行过程中,潜在三相电压不平衡的发生风险,且会产生接地信号现象。
而这一接地现象会在送上一条线路后逐渐消失。
第三,串联谐振。
因为电力系统中由感性参数和容性的元件,尤其是存在带铁芯的铁磁电感元件,因而一旦参数组合出现匹配不当现象,就会导致继电器动作和铁磁谐振,并出现接地信号。
这一问题可通过网络参数的改变进行解决,主要处理措施包括减少线路、增加临时线路、合上或断开母联断路器等。
第四,高压侧发生熔断件熔断或是一相断线后,故障相电压会迅速下降,但不会降低到零,而非故障相的电压并不会明显升高,其主要原因在于,二次回路中该相电压表会与两相电压表及互感器线圈共同构成串联回路,指示电压数值也较小,而不是其真是的电压,非故障相仍为相压。
第五,若出现A相完全接地现象,则故障相的电压会瞬间降低为零,而非故障相的电压会逐渐提高为线电压。
第六,当发生一相(如A相)不完全接地时,也就是电弧接地或是电阻过高时,中性点电位会发生偏移,故障相的电压会迅速较低,但不会降低到零。
非故障相的电压会逐渐提高至相电压以上,而不会达到线电压。
2 单相接地故障的危害
输电线路发生单相接地故障后,若电网仍然坚持运行,则会对整个电力系统产生如下损害:第一,电压互感器铁芯会严重饱和,进而造成电压互感器因负荷
过重而损坏。
第二,在特定条件下,故障点会出现间歇性电弧,进而形成串联谐振过电压,其电压值会提高到相电压的2.5~3倍,进而对电力系统的安全运行产生破坏作用,并诱发相间短路问题。
第三,故障点会出现电弧,进而导致设备烧毁,对电力系统的安全运行产生破坏作用。
第四,因为完全接地时非故障相对地电压会快速提高,并达到线电压水平,可能会击穿电力系统中的绝缘薄弱部位,形成电力系统短路故障,扩大电力系统故障的影响范围,导致系统无法正常供电。
3 输电线路单相接地故障定位技术
3.1 阻抗测距法
阻抗测距法的主要原因在于,通过测量故障线路的电流和电压,对故障点的距离进行计算和分析,双端电源系统中的单端阻抗法测距的主要原理,如图1所示。
双端测距方法与单端测距方法是阻抗测距法最为常见的两种类型。
其中,单端测距方法还能够进一步划分为工频电气量法和时域法两类,时域法的测量基础为点电压电流微分方程的满足,一般情况下需要设定测量点电流与故障点电流故障分量同相位,对测量点与故障点之间的电感进行计算和测量,进而计算出故障的发生距离。
工频电气量法的主要原则在于,对稳态故障网络方程进行计算,进而测得故障的距离。
因为测距方程中共有线路对端电流相量、过渡电阻和故障距离等四个未知量,而按照故障稳态网络,只有两个方程能够完整列出,因而不符合定解的基本要求。
一般的做法为,按照电力系统运行的基本特征,将影响电气量的对端系统参数进行相应的设置,以减少未知数的数量,从而获得故障的发生距离。
时域方法能够最大限度地消除对端系统阻抗所产生的影响,因而测距精度更高,然而,这一测量方法需要计算相应的倒数,所以具有较高的采样速率要求。
双端算法能够在完全避免单端算法原理所存在缺陷的基础上,实现计算精确度的提高。
3.2 行波测距法
按照分类规则的不同,行波测距法通常可以划分为较多的种类,且不同的种类均具有各自的特征,主要包括:
第一,按照侧距方法和行波种类分类。
行波法可以划分为:故障点反射波与测量点获得的故障开断初始行波浪涌之间的时延进行单端输电线路故障距离测试的方法,以及故障点与测量点之间通过重合闸形成的暂态行波的传播时间进行单端输电线路故障距离测试的方法。
第二,按照所使用的电气量划分。
按照所使用电气量的不同,可以将行波法划分为两类:一是通过双端线路的故障信息对故障距离进行测试,也可称为双端测距;二是通过单端线路的电流、电压等故障信息对故障距离进行测试,也可称为单端测距。
第三,按照是否离线进行划分。
通常可将行波法划分为在线测距和离线测距两种方法。
第四,按照行波信号的来源进行划分。
通常可将行波法划分为无源行波测距与有源行波测距两个种类。
其中,无源行波测距指的是对故障点信号进行直接测量,而无需使用高频通道设备,以
及专门设置外加信号源,因而经济性更好,也更加简便。
而有源行波测距则应使用外加信号源,使用专门的脉冲信号发生器发出信号,通过元件的启动以及与其连接的设备在故障发生线路加入信号源。
4 结语
双端测距法、单端测距法、阻抗法和行波法作为常用的输电线路单相接地故障定位技术,均具有各自的优势和不足,在输电线路单相接地故障的具体定位和处理过程中,应选择相应的处理方法,以提高故障处理的准确性和有效率。
参考文献:
[1] 全玉生,杨敏中,王晓蓉,等.高压架空输电线路的故障测距方法[J].电网技术,2000,(4).
[2] 林湘宁,黄小波,翁汉琍,等.基于分布参数模型的比相式单相故障单端测距算法[J].电网技术,2007,(9).
[3] 索南加乐,王树刚,张超,等.利用单端电流的同杆双回线准确故障定位研究[J].中国电机工程学报,2005,(23).
[4] 卢继平,黎颖,李健,等.行波法与阻抗法结合的综合单端故障测距新方法[J].电力系统自动化,2007,(23).
[5] 覃剑,陈祥训,郑键超,等.利用小波变换的双端行波测距新方法[J].中国电机工程学报,2000,(8).
[6] 魏佩瑜,于桂音,张铭新,等.一种新的比相式电抗型距离继电器算法[J].继电器,2006,(8).。