数学建模案例分析--灰色系统方法建模2灰色预测模型GM(1-1)及其应用

合集下载

灰色预测GM(1, 1)模型实现过程

灰色预测GM(1, 1)模型实现过程

灰色系统预测模型GM(1,1)实现过程灰色系统预测模型GM(1,1) 1. GM(1,1)的一般形式设有变量X (0)={X (0)(i),i=1,2,...,n}为某一预测对象的非负单调原始数据列,为建立灰色预测模型:首先对X (0)进行一次累加(1—AGO, Acumulated Generating Operator)生成一次累加序列:X (1)={X (1)(k ),k =1,2,…,n}其中X (1)(k )=∑=ki 1X (0)(i)=X (1)(k -1)+ X (0)(k ) (1) 对X (1)可建立下述白化形式的微分方程:dtdX )1(十)1(aX =u (2)即GM(1,1)模型。

上述白化微分方程的解为(离散响应): ∧X (1)(k +1)=(X (0)(1)-a u )ak e -+au(3)或∧X (1)(k )=(X (0)(1)-a u ))1(--k a e +au (4) 式中:k 为时间序列,可取年、季或月。

2. 辩识算法记参数序列为∧a , ∧a=[a,u]T ,∧a 可用下式求解:∧a =(B T B)-1B T Y n (5)式中:B —数据阵;Y n —数据列B =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+++- 1 (n))X 1)-(n (X 21 ... 1 (3))X (2)X (211 (2))X (1)X (21(1)1(1)(1)(1)(1))(-- (6) Y n =(X (0)(2), X (0)(3),…, X (0)(n))T (7)3. 预测值的还原由于GM 模型得到的是一次累加量,k ∈{n+1,n+2,…}时刻的预测值,必须将GM 模型所得数据∧X(1)(k +1)(或∧X(1)(k ))经过逆生成即累减生成(I —AGO)还原为∧X (0)(k +1)(或∧X (0)(k )),即:∧X (1)(k )=∑=ki 1∧X (0)(i)=∑-=11k i ∧X(0)(i)+∧X (0)(k )∧X(0)(k )=∧X(1)(k )-∑-=11k i ∧X (0)(i)因为∧X(1)(k -1)=∑-=11k i ∧X(0)(i),所以∧X (0)(k )=∧X (1)(k )-∧X (1)(k -1)。

灰色预测模型

灰色预测模型

灰色系统模型(Grey Model,GM)一:解决的关键问题 (所谓灰色系统是指部分信息已知而部分信息未知的系统,灰色系统所要考察和研究的是对信息不完备的系统,通过已知信息来研究和预测未知领域从而达到了解整个系统的目的)灰色系统模型作为一种预测方法广泛应用于工程控制,经济管理,社会系统等众多领域。

二:GM(1,1)模型(一):对原始序列累加处理一次累加生产序列②(即1-AGO序列),表示为其中,一次累加序列(1)X 的第k 项由原序列的前k 项和产生,即: 由(1)X 的相邻项平均得到(1)X 的紧邻均值生成序列(1)z ,表示为:根据上述序列,有灰色系统模型GM(1,1)的基本形式:(二)构造GM(1,1)模型方程组的矩阵形式,并求解参数 GM(1,1)模型的微分方程基本形式:(三)求的时间响应序列,累减得到原序列的预测值(四)模型检验残差的均值、方差分别为:21S C S 称为均方差比值,对于给定的00C ,当0C C 时,称模型为均方差比合格模型;1(()0.6745)p p k S 称为小误差概率,对于给定的00P ,当0P P 时,称模型为小误差概率合格模型。

一般均方差比值C 越小越好(因为C 小说明S 小,1S 大,即残差方差小,原始数据方差大,说明残差比较集中,摆动幅度小,原始数据比较分散,摆动幅度大,所以模拟效果好,要求2S 与1S 相比尽可能小),以及小误差概率p 越大越好,给定000,,,C p 的一组取值,就确定了检验模型模拟精度的一个等级,常用的精度等级见表1。

软件DPS 的分析结果也提供了C 、p 的检验结果。

(五)残差修正模型(六)建立新陈代谢GM(1,1)进行动态预测在实际建模过程中,原始数据序列的数据不一定全部用来建模。

我们在原始数据序列中取出一部分数据,就可以建立一个模型。

一般说来,取不同的数据,建立的模型也不一样,即使都建立同类的GM(1,1)模型,选择不同的数据,参数a,b的值也不一样。

灰色预测模型GM(1_1)及其应用

灰色预测模型GM(1_1)及其应用

灰色预测模型GM(1,1)的应用一、问题背景:蠕变是材料在高温下的一个重要性能。

处于高温状态下的材料长期受到载荷作用时,即使其载荷较低,并且在短时间的高温拉伸试验中材料不发生变形,但在此情况下仍会有微小的蠕变,极端的情况下,甚至会使材料发生破坏。

高温材料多应用于各种车辆的发动机及冶金厂中各种设备上,如果因蠕变引起破坏,可能造成很大的事故。

为了保证设备的安全可靠,在某一使用温度下,预先知道该材料对不同载荷应力下断裂的时间是很重要的。

过去,人们都是通过蠕变试验测量断裂时间。

而做蠕变试验时,需要很长时间才能得到结果,即使通过试验得出的数据,也只是对某几个具体试样而言,存在很大的偶然性,不能代表普遍的规律。

如果将实测的数据用灰色系统理论来处理,可以预测在某一温度下的任何载荷应力的断裂时间。

二、低合金钢铸件蠕变性能的灰色预测下面是对Cr-mo-0.25V 低合金钢铸件高温蠕变情况利用灰色系统理论进行研究。

在500℃的高温下,已测得此铸件在载荷分别为37,36,35,34,33(kg/mm 2)情况下的蠕变断裂时间见下表。

数 列 序 数 K1 2 3 4 5载荷应力(kg/mm 2) 37 36 35 34 33 断裂时间()(100)0(K X ⨯小时)2.38 2.80 4.25 6.85 11.30 一次累加数列)()1(K X 2.38 5.18 9.43 16.28 27.581、建立GM (1,1)模型(1)数据处理:将同一数据列的前k 项元素累加后生成新数据列的第k 项元素。

即根据断裂时间数列)()0(k X 由∑==kn n X k X 1)0()1()()(得到 )()1(k X 。

(2)建立矩阵B,y:根据⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+--+-+-=1)]()1([5.01)]3()2([5.01)]2()1([5.0)1()1()1()1()1()1(N X N X X X X X B 得到 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=19.2118.12130.7178.3B根据 T N N X X X Y )](,),3(),2([)0()0()0( =,得到 T N Y ]3.11,85.6,25.4,80.2[=(3)求出逆矩阵1()T BB - (4)作最小二乘估计,求参数u a ,N T T Y B B B u a 1)(ˆ-=⎪⎪⎭⎫⎝⎛=α 可得,⎪⎪⎭⎫ ⎝⎛-=97.05.0ˆα a = -0.5, u=0.97(5)建立时间响应函数,计算拟合值把a 和u 分别代入au e a u X t X at +-=+-))1(()1(ˆ)0()1(可得到解为2.24.4)1(ˆ5.0)1(-=+t e t X, 取t 为应力序数k 时,即得到时间响应方程为:2.24.4)1(ˆ5.0)1(-=+k e k X即可得到生成累加数列),2,1()1(ˆ)1( =+k k X 。

灰色模型GM(1,1)在渔货卸港量预测中的应用

灰色模型GM(1,1)在渔货卸港量预测中的应用

灰色模型GM(1,1)在渔货卸港量预测中的应用采用灰色模型GM(1,1),依据五个渔港实际渔货卸港量资料,对渔港渔货卸港量进行预测,并与时间序列法的预测结果对比,结果表明该模型预测精度要优于时间序列法,可以在渔货卸港量预测中加以应用。

标签:渔货卸港量;灰色模型GM(1,1);预测方法简介渔港是渔业生产的重要依托,是渔区经济社会发展的重要基础设施,如何选取优势渔港进行合理资金投入是我国渔港建设中面临的一个重要问题,渔货卸港量是衡量渔港规模大小以及发展能力的一项重要决策指标,科学准确地对渔货卸港量水平进行预测,对于合理进行渔港规划布局建设以及发掘优势渔港满足当地渔业需求具有更贴合实际的意义[1]。

目前在各地渔港的工程可行性研究报告中普遍采用时间序列法对渔货卸港量进行预测,将年份或者序号与卸港量分别作为回归方程的自变量和因变量,建立一元线性回归方程[2],该方法需要较多年份资料令计算结果容易出现偏差。

灰色系统理论主要研究小样本不确定问题[3],预测样本不需要有规律性分布,灰色模型GM(1,1)是灰色预测模型中得到最普遍应用的核心模型[4],通过灰色生成或序列算子的作用弱化随机性,挖掘潜在的规律,该模型在建模时不需要大量的数据就能取得较好的预测效果,已被广泛应用于经济管理、自然科学、农业科学、工程技术等各个领域[5]。

1 基本思路本文采用灰色系统理论中的GM(1.1)预测模型对渔港渔货卸港量进行预测,并与时间序列法的预测结果进行比较,结果表明采用灰色模型GM(1.1)的预测精度更高,预测结果更加接近实际值。

2 算例2.1 灰色模型GM(1,1)利用灰色模型GM(1,1),使用前阳一级渔港1996-2005年的渔货卸港量资料对2006年的渔货卸港量进行预测。

(见表1)2.1.1 卸港量累加序列的计算结果如下。

(见表2)2.1.2 分别建立矩阵B,y2.1.3 求逆矩阵2.1.4 根据计算估计值■和■:将■和■的值带入时间响应方程,得时间响应方程为:2.1.5 求出拟合值■(1)(i),根据■(1)(1)=■(0)(1),■(1)(2)=■(0)(2)+■(0)(1)…,进行后减运算还原,可依次得到■(0)(i)值,相关计算结果如表3所示。

灰色系统预测GM1,1模型及其Matlab实现

灰色系统预测GM1,1模型及其Matlab实现

灰色系统预测GM(1,1)模型及其Matlab实现三天三夜72小时:读懂题目-》查找文献资料-》选择题目-》重查找文献资料-》精读其中几篇-》查找资料的资料。

在数学建模中常常会遇到数据的预测问题,有些赛题中,预测占主导地位,例如:2003年A题 SARS的传播问题;2005年A题长江水质的评价和预测问题;2006年B题艾滋病疗法的评价及疗效的预测问题;2007年A题中国人口增长预测问题。

有些问题则是需要在求解的过程中进行预测,如2009年D题“会议筹备”对与会人数的确定等。

参考资料:《灰色系统理论及其应用第五版》作者:刘思峰,党耀国等著出版时间:2010.05 校超星数字图书馆可阅读。

灰色模型(Gray Model)有严格的理论基础,最大优点是实用。

用灰色模型预测的结果比较稳定,不仅适用于大数据量的预测,在数据量较少时(>3)预测结果依然较准确。

预备知识(1)灰色系统白色系统是指系统内部特征是完全已知的,即人们不仅知道该系统的输入——输出关系,而且知道实现输入——输出关系的结构与过程;黑色系统是指系统内部信息完全未知的,即人们只知道该系统输入——输出关系,但不知道实现输入——输出关系的结构与过程;而灰色系统是介于白色系统和黑色系统之间的一种系统,灰色系统其内部一部分信息已知,另一部分信息未知或不确定。

例如,一个加有电压的电阻,也是一个系统,根据欧姆定律,I=U/R,当电阻的大小知道后,便可由多大电压算出能得到多大电流。

电压与电流之间有明确的关系或函数,这便是白色系统。

因此,这样的系统要求有明确的作用原理,一个有明确作用原理的系统必定是具有确定结构的,必定是有物理原型的。

然而许多社会经济系统都没有物理原型,虽然知道影响系统的某些因素,但很难明确全部因素,更不可能确定因素之间的映射关系。

这种没有确定的映射关系(函数关系)的系统是灰色系统。

(2)灰色预测灰色预测,是指对系统行为特征值的发展变化进行的预测,对既含有已知信息又含有不确定信息的系统进行的预测,也就是对在一定范围内变化的、与时间序列有关的灰过程进行预测。

数学建模-灰色预测模型GM(1,1)_MATLAB

数学建模-灰色预测模型GM(1,1)_MATLAB

数学建模-灰⾊预测模型GM(1,1)_MATLAB %GM(1,1).m%建⽴符号变量a(发展系数)和b(灰作⽤量)syms a b;c = [a b]';%原始数列 AA = [174, 179, 183, 189, 207, 234, 220.5, 256, 270, 285];%填⼊已有的数据列!n = length(A);%对原始数列 A 做累加得到数列 BB = cumsum(A);%对数列 B 做紧邻均值⽣成for i = 2:nC(i) = (B(i) + B(i - 1))/2;endC(1) = [];%构造数据矩阵B = [-C;ones(1,n-1)];Y = A; Y(1) = []; Y = Y';%使⽤最⼩⼆乘法计算参数 a(发展系数)和b(灰作⽤量)c = inv(B*B')*B*Y;c = c';a = c(1);b = c(2);%预测后续数据F = []; F(1) = A(1);for i = 2:(n+10) %这⾥10代表向后预测的数⽬,如果只预测⼀个的话为1F(i) = (A(1)-b/a)/exp(a*(i-1))+ b/a;end%对数列 F 累减还原,得到预测出的数据G = []; G(1) = A(1);for i = 2:(n+10) %10同上G(i) = F(i) - F(i-1); %得到预测出来的数据enddisp('预测数据为:');G%模型检验H = G(1:10); %这⾥的10是已有数据的个数%计算残差序列epsilon = A - H;%法⼀:相对残差Q检验%计算相对误差序列delta = abs(epsilon./A);%计算相对误差Qdisp('相对残差Q检验:')Q = mean(delta)%法⼆:⽅差⽐C检验disp('⽅差⽐C检验:')C = std(epsilon, 1)/std(A, 1)%法三:⼩误差概率P检验S1 = std(A, 1);tmp = find(abs(epsilon - mean(epsilon))< 0.6745 * S1);disp('⼩误差概率P检验:')P = length(tmp)/n%绘制曲线图t1 = 1995:2004;%⽤⾃⼰的,如1 2 3 4 5...t2 = 1995:2014;%⽤⾃⼰的,如1 2 3 4 5... plot(t1, A,'ro'); hold on;plot(t2, G, 'g-');xlabel('年份'); ylabel('污⽔量/亿吨');legend('实际污⽔排放量','预测污⽔排放量'); title('长江污⽔排放量增长曲线'); %都⽤⾃⼰的grid on;。

【数学建模】day14-建立GM(1,1)预测评估模型应用

【数学建模】day14-建立GM(1,1)预测评估模型应用

【数学建模】day14-建⽴GM(1,1)预测评估模型应⽤学习建⽴GM(1,1)灰⾊预测评估模型,解决实际问题:SARS疫情对某些经济指标的影响问题⼀、问题的提出 2003 年的 SARS 疫情对中国部分⾏业的经济发展产⽣了⼀定影响,特别是对部分疫情较严重的省市的相关⾏业所造成的影响是显著的,经济影响主要分为直接经济影响和间接影响。

直接经济影响涉及商品零售业、旅游业、综合服务等⾏业。

很多⽅⾯难以进⾏定量的评估,现仅就 SARS 疫情较重的某市商品零售业、旅游业和综合服务业的影响进⾏定量的评估分析。

究竟 SARS 疫情对商品零售业、旅游业和综合服务业的影响有多⼤,已知某市从 1997 年 1 ⽉到 2003 年 12 ⽉的商品零售额、接待旅游⼈数和综合服务收⼊的统计数据如下⾯三表所⽰。

试根据这些历史数据建⽴预测评估模型,评估 2003 年 SARS 疫情给该市的商品零售业、旅游业和综合服务业所造成的影响。

⼆、模型的分析与假设模型分析: 根据所掌握的历史统计数据可以看出,在正常情况下,全年的平均值较好地反映了相关指标的变化规律。

这样,对于每⼀个经济指标,考虑从两部分着⼿建⽴预测评估模型:1. 利⽤灰⾊理论建⽴GM(1,1)模型,根据1997-2002年的平均值序列,预测2003年的平均值。

2. 通过历史数据计算每⼀个⽉的指标值与全年总值之间的关系,并将此关系拓展到2003年,进⽽预测出2003年每⼀个⽉的指标值。

进⽽与真实数据值作⽐较,从⽽得出结论。

模型假设:1. 假设所有的统计数据真实可靠。

2. 假设该市SARS疫情流⾏期间和结束之后,数据的变化只与SARS疫情的影响有关,不考虑其他随机因素的影响。

三、建⽴灰⾊预测模型GM(1,1) 由已知数据,对于1997-2002年的某项指标记为A= (a ij)6*12,计算每年的平均值作为初始数列。

记为: 并要求级⽐。

对x(0)做⼀次累加得1-AGO序列: 式中: 取x(1)的加权均值序列: 式中,α是确定参数。

《灰色GM(1,1)模型的优化及其应用》范文

《灰色GM(1,1)模型的优化及其应用》范文

《灰色GM(1,1)模型的优化及其应用》篇一一、引言随着科技的飞速发展,大数据的崛起,预测与决策分析变得尤为重要。

灰色预测模型,特别是灰色GM(1,1)模型,以其对数据要求低、操作简单、效果良好的特点,被广泛应用于社会经济各个领域。

然而,传统灰色GM(1,1)模型在某些复杂、高精度的应用场景中存在一定局限性。

本文旨在探讨灰色GM(1,1)模型的优化方法及其在各领域的应用。

二、灰色GM(1,1)模型概述灰色GM(1,1)模型是一种以微分方程为基础的灰色预测模型,通过对原始数据进行累加生成(AGO)和累减生成(IAGO),构造出微分方程的系数,从而进行预测。

该模型在处理小样本、不完全信息的数据时具有较好的预测效果。

三、灰色GM(1,1)模型的优化针对传统灰色GM(1,1)模型在处理复杂、高精度数据时可能出现的局限性,本文提出以下几种优化方法:(一)改进数据处理方式对原始数据进行更为细致的预处理和后处理,包括但不限于利用更加先进的数据分析工具进行数据的筛选和净化,以及对AGO和IAGO的处理方法进行改进。

(二)引入其他变量和参数通过引入其他相关变量和参数,丰富模型的输入信息,提高模型的预测精度。

例如,可以通过引入时间变量、季节因素等,对模型进行时间和季节性优化。

(三)结合其他预测模型将灰色GM(1,1)模型与其他预测模型进行结合,如与神经网络、支持向量机等相结合,形成混合预测模型,以提高模型的预测精度和稳定性。

四、灰色GM(1,1)模型的应用(一)经济领域应用灰色GM(1,1)模型在经济领域的应用广泛,如对股票价格、房地产价格、经济周期等进行预测。

通过优化后的灰色GM(1,1)模型,可以更准确地预测经济走势,为政策制定提供科学依据。

(二)农业领域应用在农业领域,灰色GM(1,1)模型可以用于预测农作物产量、病虫害发生情况等。

通过优化后的模型,可以更准确地预测农业生产情况,为农业生产提供科学指导。

(三)其他领域应用除了经济和农业领域,灰色GM(1,1)模型还可以应用于其他领域,如医疗、能源、交通等。

灰色系统GM(1,1)模型解读

灰色系统GM(1,1)模型解读

以及
X 0 D2 ( x0 (1)d 2 , x0 (2)d 2 , x0 (3)d 2 , x0 (4)d 2 )

其中 于是
1 x0 (k )d ( x0 (k )d x0 (k 1)d 4 k 1
2
x0 (4)d );

X 0 D2 (27260,29547,32411,35388) X x 1 , x 2 , x 3 , x 4
平均相对误差
1 4 k 0.00067 0.067% 0.01 4 k 1

模拟误差4 0.0002 0.01 ,精度为一级。

计算 X 与x 的灰色绝对关联度 :
1 s x 4 x 1 11502 x k x 1 2 k 2
0 1 1



b ak 1 e x0 1 e ; a
a
k 1, 2,
,n
2.灰色系统预测模型的精度检验

预测就是借助于过去的探讨去推测、了解未 来。灰色预测就是通过原始数据的处理和灰 色模型的建立,发现、掌握系统发展规律, 对系统未来状态做出科学定量预测。
灰色系统模型


研究一个系统,一般应首先建立系统的数学模型, 进而对系统的整体功能,协调功能以及系统各因素 之间的关联关系,因果关系进行具体的量化研究。 这种研究必须以定性分析为先导,定量与定性紧密 结合。系统模型的建立,一般要经过思想开发,因 素分析,量化,动态化,优化五个步骤。即语言模 型,网络模型,量化模型,动态模型,优化模型。 在建模过程中,要不断的将下一阶段中所得的结果 回馈,经过多次循环往返,使整个模型逐步趋于完 善。

数学建模算法:灰色预测模型GM(1,1)及Python代码

数学建模算法:灰色预测模型GM(1,1)及Python代码

数学建模算法:灰⾊预测模型GM(1,1)及Python代码灰⾊预测模型GM(1,1)灰⾊预测模型\(GM(1,1)\)是在数学建模⽐赛中常⽤的预测值⽅法,常⽤于中短期符合指数规律的预测。

其数学表达与原理分析参考⽂章尾部⽹页与⽂献资料。

经过整理,以下附上Python代码:灰⾊模型要求数据前后级⽐落⼊范围 \(\displaystyle \Theta\left(e^{-\frac{2}{n+1}},e^{\frac{2}{n+2}}\right)\) ,因此做线性平移预处理使得元数据满⾜要求。

线性平移:将数据平移⾄不⼩于1,检查级⽐,若不满⾜要求则将数据向上平移⼀个最⼩值直到满⾜要求。

可以推断出,级⽐的上下界在给定数据点数越多的情况下,越趋于1。

import numpy as npimport matplotlib.pyplot as plt# 线性平移预处理,确保数据级⽐在可容覆盖范围def greyModelPreprocess(dataVec):"Set linear-bias c for dataVec"import numpy as npfrom scipy import io, integrate, linalg, signalfrom scipy.sparse.linalg import eigsfrom scipy.integrate import odeintc = 0x0 = np.array(dataVec, float)n = x0.shape[0]L = np.exp(-2/(n+1))R = np.exp(2/(n+2))xmax = x0.max()xmin = x0.min()if (xmin < 1):x0 += (1-xmin)c += (1-xmin)xmax = x0.max()xmin = x0.min()lambda_ = x0[0:-1] / x0[1:] # 计算级⽐lambda_max = lambda_.max()lambda_min = lambda_.min()while (lambda_max > R or lambda_min < L):x0 += xminc += xminxmax = x0.max()xmin = x0.min()lambda_ = x0[0:-1] / x0[1:]lambda_max = lambda_.max()lambda_min = lambda_.min()return c# 灰⾊预测模型def greyModel(dataVec, predictLen):"Grey Model for exponential prediction"# dataVec = [1, 2, 3, 4, 5, 6]# predictLen = 5import numpy as npfrom scipy import io, integrate, linalg, signalfrom scipy.sparse.linalg import eigsfrom scipy.integrate import odeintx0 = np.array(dataVec, float)n = x0.shape[0]x1 = np.cumsum(x0)B = np.array([-0.5 * (x1[0:-1] + x1[1:]), np.ones(n-1)]).TY = x0[1:]u = linalg.lstsq(B, Y)[0]def diffEqu(y, t, a, b):return np.array(-a * y + b)t = np.arange(n + predictLen)sol = odeint(diffEqu, x0[0], t, args=(u[0], u[1]))sol = sol.squeeze()res = np.hstack((x0[0], np.diff(sol)))return res# 输⼊数据x = np.array([-18, 0.34, 4.68, 8.49, 29.84, 50.21, 77.65, 109.36])c = greyModelPreprocess(x)x_hat = greyModel(x+c, 5)-c# 画图t1 = range(x.size)t2 = range(x_hat.size)plt.plot(t1, x, color='r', linestyle="-", marker='*', label='True')plt.plot(t2, x_hat, color='b', linestyle="--", marker='.', label="Predict")plt.legend(loc='upper right')plt.xlabel('xlabel')plt.ylabel('ylabel')plt.title('Prediction by Grey Model (GM(1,1))')plt.show()误差分析部分:可就绝对误差、相对误差、级⽐、残差做数据分析,以下⽰例为最⼩⼆乘法线性回归分析。

《灰色GM(1,1)模型的优化及其应用》范文

《灰色GM(1,1)模型的优化及其应用》范文

《灰色GM(1,1)模型的优化及其应用》篇一一、引言灰色系统理论是一种研究信息不完全、数据不精确的系统的理论。

其中,灰色GM(1,1)模型是灰色系统理论中最为重要和常用的预测模型之一。

该模型通过累加生成序列和一次微分方程进行建模,具有较高的预测精度和实用性。

然而,传统的灰色GM(1,1)模型在某些情况下仍存在模型参数不够准确、预测精度不高等问题。

因此,对灰色GM(1,1)模型进行优化及其应用的研究具有重要意义。

本文将首先介绍灰色GM(1,1)模型的基本原理,然后探讨其优化方法,并最后分析其在不同领域的应用。

二、灰色GM(1,1)模型的基本原理灰色GM(1,1)模型是一种基于微分方程的预测模型,主要用于处理小样本、不完全信息的数据。

该模型通过累加生成序列和一次微分方程进行建模,将原始数据序列转化为微分方程的形式,从而进行预测。

其基本步骤包括:数据累加、建立微分方程、求解微分方程、模型检验等。

三、灰色GM(1,1)模型的优化针对传统灰色GM(1,1)模型的不足,学者们提出了多种优化方法。

其中,基于数据预处理、模型参数优化和预测结果修正的优化方法较为常见。

1. 数据预处理:通过对原始数据进行处理,如去趋势、归一化等,以提高模型的适应性和预测精度。

2. 模型参数优化:通过引入其他因素或变量,如时间序列的波动性、随机性等,对模型参数进行优化,提高模型的预测精度。

3. 预测结果修正:通过对预测结果进行修正,如引入专家知识、其他预测方法的结果等,进一步提高预测精度。

四、灰色GM(1,1)模型的应用灰色GM(1,1)模型在各个领域都有广泛的应用。

下面以几个典型领域为例,介绍其应用。

1. 经济学领域:灰色GM(1,1)模型可以用于预测经济增长、股市走势等经济指标,为经济决策提供参考。

2. 农业领域:灰色GM(1,1)模型可以用于预测农作物产量、农业气候等指标,为农业生产提供指导。

3. 医学领域:灰色GM(1,1)模型可以用于预测疾病发病率、死亡率等指标,为医学研究和卫生政策制定提供参考。

灰色预测法GM(1,1)总结

灰色预测法GM(1,1)总结

灰色预测模型一、灰色预测的概念1. 灰色预测法是一种对含有不确定因素的系统进行预测的方法。

灰色系统是介于白色系统和黑色系统之间的一种系统。

灰色系统内的一部分信息是已知的,另一部分信息时未知的,系统内各因素间具有不确定的关系。

2. 灰色预测,是指对系统行为特征值的发展变化进行的预测,对既含有已知信息又含有不确定信息的系统进行的预测,也就是对在一定范围内变化的、与时间序列有关的灰过程进行预测。

尽管灰过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此可以通过对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。

灰色预测是利用这种规律建立灰色模型对灰色系统进行预测。

二、灰色预测的类型1. 灰色时间序列预测;即用观察到的反映预测对象特征的时间序列来构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

2. 畸变预测;即通过灰色模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。

3. 系统预测;通过对系统行为特征指标建立一组相互关联的灰色预测模型,预测系统中众多变量间的相互协调关系的变化。

4. 拓扑预测;将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测该定值所发生的时点 三、GM (1,1)模型的建立 1. 数据处理为了弱化原始时间序列的随机性,在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据处理后的时间序列即称为生成列。

i. 设()()()()()()()()(){},,, (00000)123X X X X X n = 是所要预测的某项指标的原始数据,计算数列的级比()()()(),,,,()00123X t t t n X t λ-==。

如果绝大部分的级比都落在可容覆盖区间(,)2211n n ee-++内,则可以建立GM(1,1)模型且可以进行灰色预测。

数学建模讲义之灰色模型GM(1,1)

数学建模讲义之灰色模型GM(1,1)

13
(5)系数b的置信区间 当回归效果显著时, b的置信度 为1-α的置信区间是
bˆ t 2 (n 2)ˆ / Sxx
(7)
(6)预测 设y0是在 x=x0处对随机变量y的观测结果,我们可以取x0
处的回归值:
yˆ0 aˆ bˆx0
(8)
作为y0的预测值,且y0的置信度为1-α的预测区间为:
A~ (a1, a2 ,, an ) U
是实际问题中各因素的权数分配(归一化), 则
A~ R~ B~ (b1,b2 ,,bm )
称为各因素的模糊综合决策,并且
7
max{ b1, b2 ,, bm} bk
表示综合决策的最大可能是 bk 例 脑出血与蛛网下腔出血的鉴别,设要求鉴别的疾病
集(论域)U={u1, u2}={脑出血, 蛛网下腔出血}。症状集为 V={v1, v2,v3, v4, v5}={头痛, 呕吐,偏瘫, 脑膜刺激症, 瞳孔不 等大} 。根据医学知识得出V→U的模糊矩阵
29
对埃尔切事件的思考
30
则认为回归效果是显著的。
例 某种产品每件单价y(元)与批量x(件)之间的关系的一 组数据如下表
x 20 25 30 35 40 50 60 65 70 75 80 90 y 1.81 1.70 1.65 1.55 1.48 1.40 1.30 1.26 1.24 1.21 1.20 1.18
19
求y对x 的回归方程。
称为残差平方和。由(3)、(4)得 Qe S yy bˆSxy
于是得到 2 的估计(残差分析)为
ˆ 2 Qe
(5)
n2
(4)回归效果显著性检验 检验假设H0:b=0。若
| t | | bˆ |

数学建模案例分析--灰色系统方法建模3灰色模型GM(1,N)及其应用

数学建模案例分析--灰色系统方法建模3灰色模型GM(1,N)及其应用

§3 灰色模型GM(1,N)及其应用客观系统无论本征非灰,还是本征灰,一般都存在能量吸收、储存、释放等过程,加之生成数列一般都有较强的指数变化趋势,所以灰色系统理论指出用离散的随机数,经过生成变为随机性被显著削减的较有规律的生成数,这样便可以对变化过程做较长时间的描述,进而建立微分方程形式的模型。

建模的实质是建立微分方程的系数。

设有N 个数列N i n X X X X i i i i ,,2,1))(,),2(),1(()0()0()0()0( == 对)0(i X 做累加生成,得到生成数列Ni n X n X X X X m X m XXXi i i i i nm i m iii,,2,1))()1(,),2()1(),1(())(,,)(),1(()0()1()0()1()1(1)0(21)0()0()1( =+-+==∑∑==我们将数列)1(i X 的时刻n k ,,2,1 =看作连续的变量t ,而将数列)1(i X 转而看成时间t 的函数)()1()1(t X X i i =。

如果数列)1()1(3)1(2,,,NX X X 对)1(1X 的变化率产生影响,则可建立白化式微分方程)1(1)1(32)1(21)1(1)1(1N N X b X b X b aX dtdX -+++=+ (1) 这个微分方程模型记为GM (1,N )。

方程(1)的参数列记为T N b b b a ),,,(121-= α,再设T N n X X X Y ))(,),3(),2(()0(1)0(1)0(1 =,将方程(1)按差分法离散,可得到线性方程组,形如αˆB Y N = (2)按照最小二乘法,有N T T Y B B B 1)(ˆ-=α (3)其中,利用两点滑动平均的思想,最终可得矩阵⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛+--+-+-=)()())()1((21)3()3())3()2((21)2()2())2()1((21)1()1(2)1(1)1(1)1()1(2)1(1)1(1)1()1(2)1(1)1(1n X n X n X n X X X X X X X X X B N N N 求出αˆ后,微分方程(1)便确定了。

数学建模灰色预测GM(1,1)

数学建模灰色预测GM(1,1)

灰色预测GM (1,1)算法原理:灰色模型建立的步骤Step1:对)0(X 作1-AGO ,得序列(1)(1)(1)(1)((1),(2),,())X x x x n =Step2:对)0(X 作准光滑性检验。

由)1()()()1()0(-=k k k x xρ 当()0.5k ρ<时准光滑条件满足。

Step3:检验)1(X 是否具有准指数规律。

由)1()()()1()1()1(-=k k k x x σ 得29.1)5(,36.1)4(,54.1)3()1()1(≈≈≈σσ当k>3时,]5.1,1[)()1(∈k σ,5.0=δ,准指数规律满足,故可对)1(X 建立GM(1,1)模型。

Step4:对)1(X 作紧邻均值生成。

令)1(5.0)(5.0)()1()1()1(-+=k k k x x z得 (1)(1)(1)(1((2),(3),,())Z z z z n = 于是 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---=1)(1)3(1)2()1()1()1(n B z z z ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=)()3()2()0()0()0(n Y x x x Step5:对参数列T b a a],[ˆ=进行最小二乘估计。

得 =aˆ1)(-B B T T B Y Step6:确定模型(1)(1)d a b dt x x +=及时间响应式ab a b k e x x k a +-=--)1()0()1())1(()(ˆ Step7:求)1(X 的模拟值))5(ˆ),4(ˆ),3(ˆ),2(ˆ),1(ˆ(ˆ)1()1()1()1()1()1(x x x x x X= Step8:还原求出)0(X 的模拟值。

由(0)(1)(1)(1)(1)()()()(1)ˆˆˆˆk k k k x x x x α==--得(0)(0)(0)(0)(0)(0)ˆˆˆˆˆˆ((1),(2),(3),(4),(5))Xx x x x x = Step9:检验误差。

灰色预测GM模型的改进及应用

灰色预测GM模型的改进及应用

灰色预测GM模型的改进及应用一、本文概述灰色预测GM模型是一种基于灰色系统理论的预测方法,具有对样本数据量少、信息不完全的复杂系统进行有效预测的优势。

然而,传统的GM模型在处理某些实际问题时,可能会遇到预测精度不高、模型适应性不强等问题。

因此,本文旨在深入研究灰色预测GM模型的改进方法,以提高其预测精度和适应性,并探讨改进后的模型在各个领域的应用价值。

具体而言,本文首先将对灰色预测GM模型的基本原理和算法进行详细阐述,为后续研究提供理论基础。

然后,针对传统GM模型存在的问题,本文将从模型参数优化、数据预处理、模型结构改进等方面提出一系列改进措施,并通过实验验证其有效性。

在此基础上,本文将进一步探讨改进后的GM模型在经济管理、生态环境、社会发展等领域的实际应用,以展示其广泛的应用前景和实用价值。

本文旨在通过深入研究灰色预测GM模型的改进方法,提高其预测精度和适应性,推动灰色系统理论在实际问题中的应用,为相关领域的研究和实践提供有益参考。

二、灰色预测GM模型的基本理论灰色预测GM模型,简称GM模型,是灰色系统理论的重要组成部分。

灰色系统理论是由我国著名学者邓聚龙教授于1982年提出的,它主要用于解决信息不完全、数据不充分的“小样本”和“贫信息”问题。

GM模型以其独特的优势,在众多领域如经济预测、环境科学、工程技术等得到了广泛应用。

GM模型的基本思想是通过生成变换,将原始数据转化为规律性较强的生成数据,然后建立微分方程模型进行预测。

其核心步骤包括:数据累加生成:原始数据序列经过一次或多次累加生成,使原本杂乱无章的数据呈现出明显的规律性,这是灰色预测的关键步骤。

建立微分方程:基于累加生成的数据序列,建立一阶线性微分方程,该方程能够较好地描述数据序列的变化趋势。

还原预测值:通过还原操作,将微分方程求解得到的预测值还原为原始数据序列的预测值。

模型检验:对预测结果进行后验差检验或残差检验,以评估模型的预测精度和可靠性。

《灰色GM(1,1)模型的优化及其应用》范文

《灰色GM(1,1)模型的优化及其应用》范文

《灰色GM(1,1)模型的优化及其应用》篇一一、引言灰色系统理论是一种研究信息不完全、数据不精确的系统的理论。

其中,灰色GM(1,1)模型是灰色系统理论中最为常用的一种预测模型。

该模型通过对原始数据进行累加生成,建立微分方程模型,从而对未来趋势进行预测。

然而,灰色GM(1,1)模型在应用过程中存在一些缺陷,如模型精度不高、对异常值敏感等。

因此,本文旨在探讨灰色GM(1,1)模型的优化方法及其应用,以提高模型的预测精度和稳定性。

二、灰色GM(1,1)模型概述灰色GM(1,1)模型是一种基于一阶微分方程的预测模型,适用于小样本、信息不完全的数据序列。

该模型通过累加生成原始数据序列,建立微分方程,从而对未来趋势进行预测。

然而,由于数据的不确定性和噪声干扰,灰色GM(1,1)模型的预测精度往往受到一定影响。

三、灰色GM(1,1)模型的优化方法为了解决灰色GM(1,1)模型存在的问题,本文提出以下优化方法:1. 数据预处理:在建立模型前,对原始数据进行预处理,如去噪、平滑等操作,以提高数据的质量。

2. 模型参数优化:通过优化模型参数,如背景值系数和系数矩阵等,提高模型的拟合精度和预测能力。

3. 引入其他变量:将其他相关变量引入模型中,以增加模型的解释力和预测精度。

4. 模型组合:将多种预测方法进行组合,形成组合预测模型,以提高预测精度和稳定性。

四、优化后的灰色GM(1,1)模型的应用经过优化后的灰色GM(1,1)模型可以广泛应用于各个领域。

本文以某城市空气质量预测为例,介绍优化后的灰色GM(1,1)模型的应用。

首先,对某城市的空气质量数据进行预处理,包括去除异常值、平滑处理等操作。

然后,建立优化后的灰色GM(1,1)模型,将空气质量指标(如PM2.5、CO等)作为变量输入模型中。

通过优化模型参数和引入其他相关变量,提高模型的拟合精度和预测能力。

最后,利用优化后的模型对未来一段时间内的空气质量进行预测,为城市环境管理和空气质量改善提供参考依据。

GM(1,1)模型应用及残差修正

GM(1,1)模型应用及残差修正

一.GM(1,1)预测模型应用举例灰色预测是基于GM(1,1)预测模型的预测,按其应用的对象可有四种类型: (1) 数列预测。

这类预测是针对系统行为特征值的发展变化所进行的预测。

(2) 灾变预测。

这类预测是针对系统行为的特征值超过某个阙值的异常值将在何时出现的预测。

(3) 季节灾变预测。

若系统行为的特征有异常值出现或某种事件的发生是在一年中的某个特定的时区,则该预测为季节性灾变预测。

(4) 拓扑预测。

这类预测是对一段时间内系统行为特征数据波形的预测。

例1(数列预测):设原始序列)679.3,390.3,337.3,278.3,874.2())5(),4(),3(),2(),1(()0()0()0()0()0()0(==x x x x x X试用GM(1,1)模型对)0(X 进行模拟和预测,并计算模拟精度。

解:第一步:对)0(X 进行一次累加,得)558.16,897.12,489.9,152.6,874.2()1(=X 第二步:对)0(X 作准光滑性检验。

由)1()()()1()0(-=k x k x k ρ得5.029.0)5(,5.036.0)4(,54.0)3(<≈<≈≈ρρρ。

当k>3时准光滑条件满足。

第三步:检验)1(X 是否具有准指数规律。

由)(1)1()()()1()1()1(k k x k x k ρσ+=-=得29.1)5(,36.1)4(,54.1)3()1()1()1(≈≈≈σσσ当k>3时,5.0],5.1,1[)()1(<=∈δσk ,准指数规律满足,故可对)1(X 建立GM(1,1)模型。

第四步:对)1(X 作紧邻均值生成,得)718.14,184.11,820.7,513.4()1(=Z于是⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡----=679.3390.3337.3278.3)5()4()3()2(,1718.141184.111820.71513.41)5(1)4(1)3(1)2()0()0()0()0()1()1()1()1(x x x x Y z z z z B 第五步:对参数列T b a ],[ˆ=α进行最小二乘估计。

灰色预测GM(1,1)方法

灰色预测GM(1,1)方法

灰色预测法一、相关知识1、灰色预测通过原始数据的处理和灰色模型的建立,发现、掌握系统发展规律,对系统的未来状态做出科学的定量预测。

2、灰数简介: (1)灰数的定义:是指未明确指定的数,即处在某一范围内的数,灰数是区间数的一种推广。

灰数实际上指在某一个区间或某个一般的数集内取值的不确定数,通常用记号“⊗”表示灰数。

(2)灰数的分类:(Ⅰ)有下界而无上界的灰数[)∞∈⊗,a 或()a ⊗,如大树的重量必大于零,但不可能用一般手段知道其准确的重量,所以其重量为灰数[)∞∈⊗,0。

(Ⅱ)有上界而无下界的灰数(,]a ⊗∈-∞或()a ⊗,如一项投资工程,要有个最高投资限额,一件电器设备要有个承受电压或通过电流的最高临界值。

(Ⅲ)既有下界a 又有上界a 的灰数称为区间灰数,记为[]a a ,∈⊗。

如海豹的重量在20--25公斤之间,某人的身高在1.8-1.9米之间,可分别记为[]25,201∈⊗,[]9.1,8.12∈⊗(Ⅳ)黑数:当()∞∞-∈⊗,或()21,⊗⊗∈⊗,即当⊗的上、下界皆为无穷或上、下界都是灰数时,称⊗为黑数。

(Ⅴ)白数:当[,]a a ⊗∈且a a =时,称⊗为白数。

(3)本征灰数是指不能或暂时还不能找到一个白数作为其“代表”的灰数,比如一般的事前预测值、宇宙的总能量、准确到秒或微妙的“年龄”等都是本征灰数。

非本征灰数是指凭先验信息或某种手段,可以找到一个白数作为其“代表”的灰数。

我们称此白数为相应灰数的白化值,记为⊗~,并用()a ⊗表示以a 为白化值的灰数。

如托人代买一件价格100元左右的衣服,可将100作为预购衣服价格()100⊗的白化数,记为()100100~=⊗。

例:(1)气温不超过36℃,[]36,0∈⊗。

(2)预计某地区今年夏粮产量在100万吨以上,[)∞∈⊗,100;(3)估计某储蓄所年底居民存款总额将达7000万到9000万,[]9000,7000∈⊗; (4)如某人希望至少获得1万元科研经费,并且越多越好,[)∞∈⊗,10000;(5)有的数,从系统的高层次,即宏观层次、整体层次或认识的概括层次上看是白的,可到低层次上,即到系统的微观层次、分部层次或认识的深化层次则可能是灰的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2 灰色预测模型GM(1,1)及其应用
蠕变是材料在高温下的一个重要性能。

处于高温状态下的材料长期受到载荷作用时,即使其载荷较低,并且在短时间的高温拉伸试验中材料不发生变形,但在此情况下仍会有微小的蠕变,极端的情况下,甚至会使材料发生破坏。

高温材料多应用于各种车辆的发动机及冶金厂中各种设备上,如果因蠕变引起破坏,可能造成很大的事故。

为了保证设备的安全可靠,在某一使用温度下,预先知道该材料对不同载荷应力下断裂的时间是很重要的。

过去,人们都是通过蠕变试验测量断裂时间。

而做蠕变试验时,需要很长时间才能得到结果,即使通过试验得出的数据,也只是对某几个具体试样而言,存在很大的偶然性,不能代表普遍的规律。

如果将实测的数据用灰色系统理论来处理,可以预测在某一温度下的任何载荷应力的断裂时间。

一、灰色预测模型GM (1,1) 建模步骤如下:
(1)GM (1,1)代表一个白化形式的微分方程:
u aX dt
dX =+)1()
1( (1) 式中,u a ,是需要通过建模来求得的参数;)
1(X
是原始数据)
0(X
的累加生成(AGO )值。

(2)将同一数据列的前k 项元素累加后生成新数据列的第k 项元素,这就是数据处理。

表示为:
∑==k
n n X k X
1
)0()
1()()( (2)
不直接采用原始数据)
0(X
建模,而是将原始的、无规律的数据进行加工处理,使之变得较有规律,
然后利用生成后的数据列来分析建模,这正是灰色系统理论的特点之一。

(3)对GM (1,1),其数据矩阵为
⎪⎪⎪⎪⎪⎭


⎛+--+-+-=1)]()1([5.01)]3()2([5.01)]2()1([5.0)1()1()1()1()1()1(N X N X X X X X B M M
(3)
向量T
N N X X X Y )](,),3(),2([)0()0()0(Λ=
(4)作最小二乘估计,求参数u a ,
N T
T Y B B B u a 1)(ˆ-=⎪⎪⎭

⎝⎛=α (4)
(5)建立时间响应函数,求微分方程(1)的解为
a
u e a u X t X
at +-=+-))1(()1(ˆ)0()1( (5) 这就是要建立的灰色预测模型。

二、低合金钢铸件蠕变性能的灰色预测
下面是对Cr-mo-0.25V 低合金钢铸件高温蠕变情况利用灰色系统理论进行研究。

在500℃的高温下,已测得此铸件在载荷分别为37,36,35,34,33(kg/mm 2)情况下的蠕变断裂时间见下表。

1、建立GM (1,1)模型 表中一次累加数列)()
1(k X
是根据断裂时间数列)()0(k X ,由公式(2)得到的。

例如,
∑==++==3
1
)0()
1(43.925.480.238.2)()3(n n X X。

按(3)构造矩阵⎪⎪
⎪⎪⎪⎭

⎝⎛----=19.2118.12130
.7178.3B ,T
N Y ]3.11,85.6,25.4,80.2[=,代入(4),可得⎪⎪⎭⎫ ⎝⎛-=97.05.0ˆα, 按(5)可得到模型(1)的解为2.24.4)1(ˆ5.0)
1(-=+t e t X
,取t 为应力序数k 时,由
2.24.4)1(ˆ5.0)1(-=+k e k X
(6) 即可得到生成累加数列),2,1()1(ˆ)
1(Λ=+k k X。

2、检验
当4,3,2,1=k 时,由(6)式得出]3.30,52.17,76.9,05.5[)1(ˆ)
1(=+k X
,而由表中得出
]58.27,28.16,43.9,18.5[)1()1(=+k X ,计算出平均相对误差为0.04,这一精度是相当理想的。

3、预测
由上面得到的一次累加生成数列与实际一次累加生成数列很接近,因而可以用来估计原始一次累加生成数列中的各个数据。

特别是估计序数5以后的数据,就更有实际意义了。

轻载荷的蠕变实验所需要的时间是相当长的,少则几天,多则几年。

在重载荷的基础上减轻1公斤,试验时间将相应增加几百甚至几千小时。

根据已有重载荷试验数据,预报减轻重载后的断裂时间就显得重要了。

下面,我们根据(6)式来预测载荷32 kg/mm 2的断裂时间。

它对应的序数为6,也就是要求出)6()
1(X
和)6()0(X 。

由(6)式得4.51)6()1(=X ,从表中查得
=)5()1(X 27.58再由)6()0(X =)6()1(X =-)5()1(X 23.82,这说明,在载荷32 kg/mm 2下,此
种材料大约经过2382小时断裂。

相关文档
最新文档