《锐角三角函数》ppt精美1

合集下载

浙教版九年级下册 1.1 锐角三角函数 课件(共27张PPT)

浙教版九年级下册 1.1 锐角三角函数 课件(共27张PPT)
AB A. sinA B. sinB C. tanA D. tanB 2.如图,已知在 Rt△ABC 中,∠C=90°,AC=4,tanA=1,则 BC 的长是( )
2 A. 2 B. 8 C. 2 5 D. 4 5
3.在△ABC 中,∠C=90°,AB=2,AC=1,则 sinB 的值是( )
A. 1 2
B. 2 2
C. 3 2
D. 2
4.如图,在△ABC 中,∠C=90°,BC∶AC=1∶2,则 sinA=___.
5.如图,在Rt△ABC中,∠C=90°,b=20,c=20, 则∠B的度数为________.
6.如图,在△ABC 中,∠ABC=90°,BD⊥AC 于点 D,∠CBD=α,AB=3,BC=4, 求 sinα,cosα,tanα的值.
B
B1 (1)直角三角形AB1C1和直角三角形ABC 有什么关系?
(2) BC 和 B1C1 , AC 和 AC1 ,
AB AB1 AB AB1
BC 和 B1C1有什么关系?
AC AC1
(3)如果改变B在AB1上的位置呢?
A
C
想一想
B
B1 (1)直角三角形AB1C1和直角三角形ABC 有什么关系?
1.1 锐角三角函数(1)
复习回顾
勾股定理
?当直角三角形的锐角不是
直 角
特殊角度时,三边之间是否

也有类似的定值数量关系呢?


想一想
B
A
C
B1 (1)直角三角形AB1C1和直角三角形ABC 有什么关系? (2) BC 和 B1C1 , AC 和 AC1 ,
AB AB1 AB AB1
BC 和 B1C1有什么关系?

《锐角三角函数》PPT教学课件(第1课时)

《锐角三角函数》PPT教学课件(第1课时)

BC AC
= 12 =
AC
34,所以AC=9.故填9.
随堂训练
AB 6.如图,在Rt△ABC中,∠C=90°,BC
17 15
,则tan
15 A=_8__.
由正切定义可知tan A=BACC , 因为 AB 17 , 可设BC=15a,AB=17a,从而可
BC 15
用勾股定理表示出第三边AC=8a,再用正切的定义求解得 tan A= BC 15 .
由勾股定理可得 AB= BC2 AC2 122 162 =20.
∴AB的长为20.
课堂小结
1.正切的定义: 如图,在Rt△ABC中,如果锐角A确定,那么∠A的对边与邻
边的比便随之确定,这个比叫做 ∠A的正切,记作tan A, 即tan A= A的对边
A的邻边
2.tanA的值越大,梯子(坡)越陡
图①
图②
新课导入
问题引入
如图所示,轮船在A处时,灯塔B位于它 的北偏东35°的方向上.轮船向东航行5 km 到达C处时,轮船位于灯塔的正南方,此时轮 船距灯塔多少千米?(结果保留两位小数)
该实际问题中的已知和所求为图中的哪些角和线段?
(事实上,求轮船距灯塔的距离,就是在Rt△ABC中,已知 ∠C=90°,∠BAC=55°,AC=5 km,求BC长度的问题)
C,C'.
BC AC
与BACC
具有怎样的关系?
在两个直角三角形中,当一对锐角相等
时,这两个直角三角形相似,从而两条对应直
角边的比相等,即当∠A(小于90°)确定时,以 ∠A为锐角的Rt△ABC的两条直角边的比 BC
AC
是确定的.
知识讲解
1.正切的定义
如图所示,在Rt△ABC中,∠C=90°,我们把∠A的对边与邻边的比叫

1锐角三角函数课件

1锐角三角函数课件
A 1 B2
源于生活的数学
从梯子的倾斜程度谈起
梯子是我们日常生活中常 见的物体 你能比较两个梯子哪个更 陡吗?你有哪些办法?
驶向胜 利的彼

生活问题数学化
驶向胜 利的彼

梯子AB和EF哪个 更陡?你是怎样
判断的?
小明的问题,如图:
A
E
5m
5m
B2.5m C F 2m D
有比较才有鉴别
驶向胜 利的彼
6.如图, ∠C=90°CD⊥AB.
tan
B
( (
))
( (
))((
)).
A
驶向胜 利的彼

C
┌ DB
7.在上图中,若BD=6,CD=12.求tanA的值.
老师提示: 模型“双垂直三角形”的有关性质你可曾记得
八仙过海,尽显才能
驶向胜 利的彼

8.如图,分别根据图 (1)和图(2)求tanA的值.
A
你能根据图中所给数据求出tanC吗?
B
驶向胜 利的彼

1.5

A
D
C
2.如图,某人从山脚下的点A走了200m后到达
山顶的点B.已知山顶B到山脚下的垂直距离是
B
55m,求山坡的坡度(结果精确到0.001m).

A
C
八仙过海,尽显才能
3.鉴宝专家--是真是假:
(1).如图 (1)tan A BC (假)

梯子AB和EF哪 个更陡?你是怎
样判断的?
小颖的问题,如图:
A
E

4m
3.5
m
B 1.5m C F 1.3m D
永恒的真理 变

《锐角三角函数》ppt1

《锐角三角函数》ppt1

B
A
C
《 锐 角 三 角 函数》 ppt1( PPT优秀 课件)
《 锐 角 三 角 函数》 ppt1( PPT优秀 课件)
拓展
如图,在Rt△ABC中,∠C=90°,∠A,∠BB
,∠C的对边分别是a,b,c.
c
求证:sin2A+cos2A=1.
a
证明: s in A = a , c o s A = b ,
tanA= A A的 的对 邻边 边=ab
结论
斜边 c
B ∠A的对边 a
A ∠A的邻边 b C
在Rt△ABC中,∠C=90°, 我们把锐角A的对边与邻边的比叫做锐角∠A的余切, 记作cotA,即
cotA= A A的 的邻 对边 边=ab
《 锐 角 三 角 函数》 ppt1( PPT优秀 课件)
归纳
(第 1 题)
小明在打网球时,击出一个直线球恰好
擦若网小而明过第,二且刚次好击落的在直底线线球上仍,已擦知网网而球过场且 的 ) 球刚3米底 是 飞好线 行1这米落到 的时,在网 距球击底的离球飞距吗线高行离?上度的(,(距OAB击)D离)球是是是高1多22度米米少, ,(米网 你B?1高 能D( 求1 )出AC是
《 锐 角 三 角 函数》 ppt1( PPT优秀 课件)
注意
1.sinA、cosA、tanA 、 cotA是在直角三角形中定义 的,∠A是锐角(注意数形结合,构造直角三角形).
2.sinA、 cosA、tanA 、 cotA是一个比值(数值), 没有单位. 3.sinA、 cosA、 tanA 、 cotA的大小只与
(4)tanB=0.8 (×)
2)如图,sinA= B C ( ×)
AB

《锐角三角函数》课件

《锐角三角函数》课件
锐角三角函数图像与性质
正弦函数图像及性质
周期性
振幅
相位
图像特点
正弦函数具有周期性,周期为2π。
正弦函数的相位表示函数在水平方向上的移动,通过调整相位可以得到不同位置的正弦波。
正弦函数的振幅为1,表示函数在垂直方向上的波动范围。
正弦函数的图像是一条连续的、平滑的曲线,呈现周期性的波动。
余弦函数图像及性质
202X
单击此处添加副标题内容
《锐角三角函数》ppt课件
汇报日期
汇报人姓名
目录
锐角三角函数基本概念
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数图像与性质
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数运算规则
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数在实际问题中应用
乘法运算规则
两个锐角三角函数的除法运算,通常转化为同角三角函数的除法运算,再利用同角三角函数的基本关系式进行化简。
除法运算规则
按照先乘除后加减的运算顺序进行乘除混合运算,注意运算过程中的化简和约分。
乘除混合运算规则
复合运算规则
复合函数的定义域
复合函数的值域
复合函数的单调性
复合函数的周期性
01
02
03
钝角三角函数定义
探讨了钝角三角函数的性质,如取值范围、增减性等,以及与锐角三角函数的异同点。
钝角三角函数的性质
介绍了在直角情况下,一些特殊角的三角函数值,如0°、30°、45°、60°、90°等,以及如何利用这些特殊值进行计算和证明。
直角情况下的特殊值
感谢观看
THANKS
渐近线与间断点
02

1.1锐角的三角函数第1课时正切与坡度课件(共33张PPT)北师大版九年级数学下册

1.1锐角的三角函数第1课时正切与坡度课件(共33张PPT)北师大版九年级数学下册

在图中,梯子的倾斜程度与 tanA 有关系吗?
梯子的倾斜程度与tanA有关系吗?
tanA的值越大, 梯子越陡.
A
B1 B2
C2
C1
归纳总结
在 Rt△ABC 中,如果锐角 A 确定,那么 ∠A
的对边与邻边的比便随之确定,这个比叫做 ∠A
的正切,记作 tanA,即 tanA =
∠A的对边 ∠A的邻边
1.5
D
C
4
2. 如图,某人从山脚下的点A走了200m后到达山顶的点B. 已知点B到山脚的垂直距离为55m,求山坡的坡度. (结果精确到0.001m)
B
A
C
解 tan A BC = 55 ≈0.286. AC 2002 552
1. 在 Rt△ABC中,∠C= 90°,AC=5,AB= 13,求tan A 和tan B.
(2)
B1C1 AC1

B2C2 AC2
有什么关系?B1C1 B2C2
AC1 AC2
B3
B2
B1
(3) 如果改变 B2 在梯子上的位置. A C3 C2 C1
(如 B3C3 )呢?Rt△AB1C1∽Rt△AB2C2∽ Rt△AB3C3
议一议
B1C1 B2C2 B3C3 AC1 AC2 AC3
相似三角形的 对应边成比例
E
A 6m
4m
2m
B
CF 3m D
问题2 :在下图中,梯子 AB 和 EF 哪个更陡? 你是怎样判断的?
当铅直高度与水平宽度的比越大,梯子越陡.
倾斜角越大,梯子越陡.
A
E
总结:铅直高度与水平宽度
的比和倾斜角的大小都可用
4m
3.5 m

锐角三角函数(18张PPT)

锐角三角函数(18张PPT)
13 5
解:如图(2)在Rt△ABC中,
BC 5 sin A , AB 13
C
(2)
A
AC AB2 BC 2 132 52 12
AC 12 因此sin B AB 13
小试牛刀
1.判断对错:
BC √ ) 1) 如图 (1) sinA= ( AB
BC (2)sinB= (×) AB
B 3
解:如图(1)在Rt△ABC中,
C
B 13
5
A
AB AC BC 4 (1)
4
2 2
2
C 3
2
5
B
(2)
A
13
BC 3 AC 4 因此sin A , sin B AB 5 AB 5
5
C
(2)
A
试一试
例1 如图,在Rt△ABC中,∠C=90°,求 B sinA和sinB的值.
B 10m 6m C
(3)sinA=0.6m (×) (4)SinB=0.8 (√ ) BC 2)如图,sinA= (× ) AB
A
sinA是一个比值(注意比的顺序),无单位;
小试牛刀
2倍,sinA的值( C
A.扩大100倍

1 B.缩小 100
B
a
c
C
b
A
独立完成作业的良好习惯,
是成长过程中的良师益友。
结论:在直角三角形中,当锐角A的度数一定时, 不管三角形的大小如何,∠A的对边与斜边的比 也是一个固定值.
直角三角形的一个锐角的对边与斜边 的比值为这个锐角的正弦
如:∠A的正弦 记作:sinA 即 a ∠A的对边 sinA= = 斜边 c

冀教版九年级数学上册26.1《锐角三角函数》(共19张PPT)

冀教版九年级数学上册26.1《锐角三角函数》(共19张PPT)

30°、45°、60°角的正弦值、余弦值和正切值如下表:
锐角a
三角函数 sin a cos a tan a
30°
1 2 3 2
3 3
45°
2 2
2 2
1
60°
3 2
1 2 3
典例精析 例2. 求下列各式的值:
(1) 2sin 30 3 tan 30 tan 45
(2) sin2 45 tan 60 sin 60
第二十六章 解直角三角形
26.1 锐角三角函数
第2课时 正弦与余弦
导入新课
讲授新课
当堂练习
课堂小结
复习巩固
1.正切的定义:
Rt△ABC中,锐角A的对边与邻边的比叫做∠A的正切,记作
tanA,即
tanA=2ຫໍສະໝຸດ 特殊角的正切值:A的对边 A的邻边
B
tan30° tan45° tan60°
31 3
3
斜边 ∠A的对边
AB 10 5
课堂小结
锐角三角函数
在Rt△ABC中
sinA= A的对边 = a
A的斜边
c
cosA= A的邻边 = b
A的斜边
c
tanA= A的对边 = a
A的邻边
b
课堂小测
1. 在Rt△ABC中,∠C=90°,AC=3,BC=4,则 sinA的值为(D )
A.
B.
C.
D.
2. sin2 30 cos2 30 tan 45 0
典例精析1、 例题3.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,
的三角函数A值.
C
5
12
解:由勾股定理
A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《锐角三角函数》ppt精美1(PPT优秀 课件) 《锐角三角函数》ppt精美1(PPT优秀 课件)
《锐角三角函数》ppt精美1(PPT优秀 课件) 《锐角三角函数》ppt精美1(PPT优秀 课件)
Байду номын сангаас
《锐角三角函数》ppt精美1(PPT优秀 课件) 《锐角三角函数》ppt精美1(PPT优秀 课件)
义务教育教科书(人教版)九年级数学下册
《锐角三角函数》ppt精美1(PPT优秀 课件) 《锐角三角函数》ppt精美1(PPT优秀 课件)
《锐角三角函数》ppt精美1(PPT优秀 课件) 《锐角三角函数》ppt精美1(PPT优秀 课件)
《锐角三角函数》ppt精美1(PPT优秀 课件) 《锐角三角函数》ppt精美1(PPT优秀 课件)
《锐角三角函数》ppt精美1(PPT优秀 课件) 《锐角三角函数》ppt精美1(PPT优秀 课件)
《锐角三角函数》ppt精美1(PPT优秀 课件) 《锐角三角函数》ppt精美1(PPT优秀 课件)
《锐角三角函数》ppt精美1(PPT优秀 课件) 《锐角三角函数》ppt精美1(PPT优秀 课件)
《锐角三角函数》ppt精美1(PPT优秀 课件) 《锐角三角函数》ppt精美1(PPT优秀 课件)
《锐角三角函数》ppt精美1(PPT优秀 课件) 《锐角三角函数》ppt精美1(PPT优秀 课件)
《锐角三角函数》ppt精美1(PPT优秀 课件) 《锐角三角函数》ppt精美1(PPT优秀 课件)
《锐角三角函数》ppt精美1(PPT优秀 课件)
只要有斗志,不怕没战场.
《锐角三角函数》ppt精美1(PPT优秀 课件)
相关文档
最新文档