概率论与数理统计 第七章 参数估计ppt课件
合集下载
概率论与数理统计 第7章.ppt
即 S 2是 2 的无偏估计,故通常取S 2作 2的估计量.
例3 设总体 X 服从参数为 的指数分布, 概率密度
x 1 e , f ( x; ) 0,
x 0, 其他.
其中参数 0, 又设 X 1 , X 2 ,, X n 是来自总体 X 的 样本, 试证 X 和 nZ n[min( X 1 , X 2 ,, X n )] 都是 的无偏估计.
行到其中有15只失效时结束试验, 测得失效时 间(小时)为115, 119, 131, 138, 142, 147, 148, 155,
158, 159, 163, 166, 167, 170, 172.
试求电池的平均寿命 的最大似然估计值 .
解
n 50, m 15,
s( t15 ) 115 119 170 172 (50 15) 172
总体 X 的 k 阶矩 k E ( X k )的相合估计量, 进而若待估参数 g( 1 , 2 ,, n ), 其中g 为连续 ˆ g( 函数, 则 的矩估计量 ˆ1 , ˆ 2 , , ˆ n ) g( A1 , A2 ,
, An ) 是 的相合估计量.
第三节
估计量的评选标准
一、问题的提出
二、无偏性 三、有效性 四、相合性 五、小结
一、问题的提出
从前一节可以看到, 对于同一个参数, 用不 同的估计方法求出的估计量可能不相同. 而且, 很明显, 原则上任何统计量都可以作为未知参数 的估计量. 问题 (1)对于同一个参数究竟采用哪一个估计量好? (2)评价估计量的标准是什么? 下面介绍几个常用标准.
如果不能得到完全样本, 就考虑截尾寿命试验.
3. 两种常见的截尾寿命试验
概率论与数理统计-参数估计_图文
或
于是得到
的置信水平为 的置信区间为
为已知
其中
于是得到
的置信水平为 的置信区间为
其中
例3 为比较 I ,ቤተ መጻሕፍቲ ባይዱⅡ 两种型号步枪子弹的枪口
速度 ,随机地取 I 型子弹 10 发 ,得到枪口速度的平
均值 为
标准差
随
机地取 Ⅱ 型子弹 20 发 ,得到枪口速度的平均值为
标准差
假设两总
体都可认为近似地服从正态分布.且生产过程可认
2. 估计的精度要尽可能的高. 如要求区间长度
尽可能短,或能体现该要求的其它准则.
可靠度与精度是一对矛盾,一般是在保证 可靠度的条件下尽可能提高精度.
二、置信区间的求法
在求置信区间时,要查表求分位点.
定义 设
, 对随机变量X,称满足
的点 为X的概率分布的上 分位点.
若 X 为连续型随机变量 , 则有 所求置信区间为
X~N( )
样本均值是否是 的一个好的估计量?
样本方差是否是 的一个好的估计量?
这就需要讨论以下几个问题: (1) 我们希望一个“好的”估计量具有什么特性? (2) 怎样决定一个估计量是否比另一个估计量“好”?
(3) 如何求得合理的估计量?
常用的几条标准是:
1.无偏性 2.有效性 3.相合性
这里我们重点介绍前面两个标准 .
概率论与数理统计-参数估计_图文.ppt
参数估计
现在我们来介绍一类重要的统计推断问题 参数估计问题是利用从总体抽样得到的信息来估 计总体的某些参数或者参数的某些函数.
估计新生儿的体重
估计废品率
在参数估计问题
估计降雨量 中,假定总体分 布形式已知,未
… 知的仅仅是一个 … 或几个参数.
概率论与数理统计第7章参数估计PPT课件
5
a1(1, ,k )=v1
1 f1(v1, ,vk )
假定方程组a2(1, ,k ) v2 ,则可求出2 f2(v1, ,vk )
ak (1, ,k ) vk
k fk (v1, ,vk )
则x1 xn为X的样本值时,可用样本值的j阶原点矩Aj估计vj,其中
Aj
1 n
n i1
xij ( j
L(x1, ,xn;ˆ)maxL(x1, ,xn;),则称ˆ(x1, ,xn)为
的一种参数估计方法 .
它首先是由德国数学家
高斯在1821年提出的 ,然而, 这个方法常归功于英国统
Gauss
计学家费歇(Fisher) . 费歇在1922年重新发现了
这一方法,并首先研究了这
种方法的一些性质 .
Fisher
10
极大似然估计是在已知总体分布形式的情形下的 点估计。
极大似然估计的基本思路:根据样本的具体情况
注:估计量为样本的函数,样本不同,估计量不 同。
常用估计量构造法:矩估计法、极大似然估计法。
4
7.1.1 矩估计法
矩估计法是通过参数与总体矩的关系,解出参数, 并用样本矩替代总体矩而得到的参数估计方法。 (由大数定理可知样本矩依概率收敛于总体矩, 且许多分布所含参数都是矩的函数)
下面我们考虑总体为连续型随机变量的情况:
n
它是的函数,记为L(x1, , xn; ) f (xi , ), i 1
并称其为似然函数,记为L( )。
注:似然函数的概念并不仅限于连续随机变量 ,
对于离散型随机变量,用 P {Xx}p(x,)
替代f ( x, )
即可。
14
设总体X的分布形式已知,且只含一个未知参数,
a1(1, ,k )=v1
1 f1(v1, ,vk )
假定方程组a2(1, ,k ) v2 ,则可求出2 f2(v1, ,vk )
ak (1, ,k ) vk
k fk (v1, ,vk )
则x1 xn为X的样本值时,可用样本值的j阶原点矩Aj估计vj,其中
Aj
1 n
n i1
xij ( j
L(x1, ,xn;ˆ)maxL(x1, ,xn;),则称ˆ(x1, ,xn)为
的一种参数估计方法 .
它首先是由德国数学家
高斯在1821年提出的 ,然而, 这个方法常归功于英国统
Gauss
计学家费歇(Fisher) . 费歇在1922年重新发现了
这一方法,并首先研究了这
种方法的一些性质 .
Fisher
10
极大似然估计是在已知总体分布形式的情形下的 点估计。
极大似然估计的基本思路:根据样本的具体情况
注:估计量为样本的函数,样本不同,估计量不 同。
常用估计量构造法:矩估计法、极大似然估计法。
4
7.1.1 矩估计法
矩估计法是通过参数与总体矩的关系,解出参数, 并用样本矩替代总体矩而得到的参数估计方法。 (由大数定理可知样本矩依概率收敛于总体矩, 且许多分布所含参数都是矩的函数)
下面我们考虑总体为连续型随机变量的情况:
n
它是的函数,记为L(x1, , xn; ) f (xi , ), i 1
并称其为似然函数,记为L( )。
注:似然函数的概念并不仅限于连续随机变量 ,
对于离散型随机变量,用 P {Xx}p(x,)
替代f ( x, )
即可。
14
设总体X的分布形式已知,且只含一个未知参数,
概率论与数理统计完整课件第七章参数估计PPT课件
n
L(1,2,,k ) L(x1, x2,, xk ;1,2,,k ) f (xi ;1,2,,k ) i 1
将其取对数,然后对1,2 ,,k 求偏导数,得
ln L(1, 2 ,, k ) 0 1
ln L(1, 2 ,, k ) 0 k
该 方 程 组 的 解 ˆi ˆi (x1, x2,, xn),i 1,2,,k ,即 为 i 的 极
§1 参数的点估计
设总体 X 的分布函数 F(x;) 形式已知,其中θ 是待估计的参数,点估计问题就是利用样本 (X1, X 2,, X n ) ,构造一个统计量ˆ ˆ(X1, X2,, Xn) 来估 计θ,我们称ˆ(X1, X2,, Xn )为θ的点估计量,它是 一个随机变量。将样本观测值 (x1, x2 ,, xn ) 代入估计 量 ˆ(X1, X2,, Xn ) , 就 得 到 它 的 一 个 具 体 数 值 ˆ(x1, x2,, xn ) ,这个数值称为θ的点估计值.
如果样本中白球数为0,则应估计p=1/4,而不估计 p=3/4.因为具有X=0的样本来自p=1/4的总体的 可能性比来自p=3/4的总体的可能性要大.一般当 X=0,1时,应估计p=1/4;而当X=2,3时,应估计 p=3/4.
第10页/共71页
定义:设总体 X 的分布类型已知,但含有未知参数θ. (1)设离散型总体 X 的概率分布律为 p(x; ) ,则样本 (X1, X2,, Xn ) 的联合分布律
~~ 2n1nLeabharlann ini1n1x(i xix
x
)
2
由微积分知识易验证以上所求为μ与σ2的极大似然 估计.
第21页/共71页
• 例:设总体X具有均匀分布,其概率密度函数为
p(x;)
概率论与数理统计课件最新版-第7章-参数估计
(1 n
n i 1
Xi )2
1 n
n i 1
(Xi
X )2
结论: 不论总体服从什么分布,总体均值 与方差的矩估计量的表达式是相同的
概率统计
(2). Q X ~ N ( , 2 )
X 1 (1502 1453 1367 1650) 1493
4
1
n
n i 1
(Xi
X )2
1 [(1502 1493)2 4
定义直接寻求能使 L( ) 达到最大值的解作为
极大似然估计量。 ▲ 极大似然估计法适用于多个未知参数的情形。
概率统计
例3. 设 X ~ N (, 2 ), , 2 为未知参数,
x1 , x2 L xn 是 X 的一个样本值.
求: , 2 的极大似然估计量.
解: Q X 的密度函数为:f ( x ; , 2 )
是相应于样本 X1, X 2 , X n 的一组样本值。
n
作似然函数:L f ( x k ,1,2 ,L l ) 或 k 1
概率统计
n
或 L P( x k ,1,2 ,L l ) k 1
使得似然函数 L 达到极大值的 ˆ1,ˆ2,L ˆl
称为参数 1,2 ,L l 的极大似然估计值,记为: ˆi ( x1, x2 ,L xn ) (它与样本值有关),记统计量:
(1453 1493)2
(1367 1493)2 (1650 1493)2 ]
10551
某种灯泡寿命的均值与方差的 矩估计值分布为:
ˆ 1493, ˆ 2 10551
概率统计
例 2. 设 X1, X2, … Xn 是取自总体 X 的一个样本,
其概率密度为:
概率论与数理统计-第七章--参数估计.ppt
例1. 设总体X的数学期望和方差分别是μ, σ2 ,求μ , σ2的矩估计量。
总体期望、方差的矩估计量分别是样本均值和 样本二阶中心矩。
例2: 已知某产品的不合格率为p, 有简单随 机样本X1 ,X2 ,…, Xn 求p的矩估计量。
解:E(X)=p.
pˆ
1 n
n i 1
Xi
X
例3:设电话总机在某段时间内接到呼唤的次数
n
L(x1, x2,..., xn; ) f (xi; ) i 1
为样本的似然函数,简记为L(θ)。
对于固定的样本观测值x1,x2,…,xn。如果有
例1. 设总体X~N(μ,σ2),其中μ,σ2是 未知参数。求μ,σ2的极大似然估计。
f (x; , 2 )
1
2
exp[
极大似然估计
矩估计
总体k阶原点矩
k EX k
样本k阶原点矩
Ak
1 n
n i 1
X
k i
K.皮尔逊
n
X
k i
大数定律: lim P(| i1 E( X k ) | ) 1
n
n
矩估计基本思想: 用样本矩估计总体矩 .
设总体的分布函数中含有k个未知参数 1,,k
缺点是,当总体类型已知时,没有 充分利用分布提供的信息 .
极大似然估计
例: 设一箱中装有若干个白色和黑色的球, 已知两种球的数目之比为3:1或1:3,现有放回 地任取3个球,有两个白球,问:白球所占的 比例p是多少?
如果只知道0<p<1,并且实 测记录是X=k (0 ≤ k≤ n),又 应如何估计p呢?
X
~
概率论与数理统计PPT课件第七章最大似然估计
最大似然估计
• 最大似然估计的概述 • 最大似然估计的数学基础 • 最大似然估计的实现 • 最大似然估计的应用 • 最大似然估计的扩展
01
最大似然估计的概述
定义与性质
定义
最大似然估计是一种参数估计方法, 通过最大化样本数据的似然函数来估 计参数。
性质
最大似然估计是一种非线性、非参数 的统计方法,具有一致性、无偏性和 有效性等优良性质。
无偏性
在某些条件下,最大似然估计的参数估计值是无偏的,即其期望值等于真实值。
最大似然估计的优缺点
• 有效性:在某些条件下,最大似然估计具有最小方差性质, 即其方差达到最小。
最大似然估计的优缺点
非线性
01
最大似然估计是非线性估计方法,对参数的估计可能存在局部
最优解而非全局最优解。
对初值敏感
02
最大似然估计对初值的选择敏感,不同的初值可能导致不同的
04
最大似然估计的应用
在回归分析中的应用
线性回归
最大似然估计常用于线性回归模型的参数估计,通过最大化似然函 数来估计回归系数。
非线性回归
对于非线性回归模型,最大似然估计同样适用,通过将非线性模型 转换为似然函数的形式进行参数估计。
多元回归
在多元回归分析中,最大似然估计能够处理多个自变量对因变量的影 响,并给出最佳参数估计。
最大熵原理与最大似然估计在某些方面具有相似性,例如都追求最大化某种度量, 但在应用场景和约束条件上有所不同。
THANKS
感谢观看
连续型随机变量的概率密度函数
然函数
基于样本数据和假设的概率模型, 计算样本数据在该模型下的可能 性。
似然函数的性质
非负性、归一化、随着样本数据的 增加而增加。
• 最大似然估计的概述 • 最大似然估计的数学基础 • 最大似然估计的实现 • 最大似然估计的应用 • 最大似然估计的扩展
01
最大似然估计的概述
定义与性质
定义
最大似然估计是一种参数估计方法, 通过最大化样本数据的似然函数来估 计参数。
性质
最大似然估计是一种非线性、非参数 的统计方法,具有一致性、无偏性和 有效性等优良性质。
无偏性
在某些条件下,最大似然估计的参数估计值是无偏的,即其期望值等于真实值。
最大似然估计的优缺点
• 有效性:在某些条件下,最大似然估计具有最小方差性质, 即其方差达到最小。
最大似然估计的优缺点
非线性
01
最大似然估计是非线性估计方法,对参数的估计可能存在局部
最优解而非全局最优解。
对初值敏感
02
最大似然估计对初值的选择敏感,不同的初值可能导致不同的
04
最大似然估计的应用
在回归分析中的应用
线性回归
最大似然估计常用于线性回归模型的参数估计,通过最大化似然函 数来估计回归系数。
非线性回归
对于非线性回归模型,最大似然估计同样适用,通过将非线性模型 转换为似然函数的形式进行参数估计。
多元回归
在多元回归分析中,最大似然估计能够处理多个自变量对因变量的影 响,并给出最佳参数估计。
最大熵原理与最大似然估计在某些方面具有相似性,例如都追求最大化某种度量, 但在应用场景和约束条件上有所不同。
THANKS
感谢观看
连续型随机变量的概率密度函数
然函数
基于样本数据和假设的概率模型, 计算样本数据在该模型下的可能 性。
似然函数的性质
非负性、归一化、随着样本数据的 增加而增加。
概率论与数理统计(浙大版)第七章第八章精ppt课件
i1
是参数 的函数,称为似然函数,记做 L( ).
n
即 L()p(xi;) i1
结构:n 项连乘,总体分布 p(x,) 改 p(xi,)
i1,2, ,n
P(A)L(),随 变而 , A变 已经发生,由极大
似然原理, L()达到最大,所以 的最合理 估计值ˆ 应满足:L(ˆ)为最大值
定义 对给定的样本值 x1,x2,,xn,若
解得p的极大似然估计量为:
pˆ
1 n
n i 1
Xi
说明:p的极大似然估计值为:
pˆ 1 n n i1
xi
例2: 设(X1,X2,…Xn )是来自总体X的一个样本,
X ~f(x;) x 0 , 1,0其 x1 ,它 其 中 0 未, 知
求θ的极大似然估计量.
解: θ的似然函数为:
n
L()
第七章 参数估计
关键词:
﹜点估计 矩估计法
极大似然估计法
﹜区间估计 置信区间
置信度
问题的提出:
参数估计是统计推断的基本问题之一,实际工作中碰到的总体X , 它的分布类型往往是知道的,只是不知道其中的某些参数, 例如:产品的质量指标X服从正态分布,其概率密度为:
x 2
f x; , 2 1 e 2 2 x 2 但 参 数 , 2的 值 未 知 , 要 求 估 计 , 2, 有 时 还 希 望 以 一 定 的 可 靠 性 来 估计值是在某个范围内或者不低于某个数。
n
似然函数 L()f(xi,) 达到最大 i1
求ˆ 的步骤:
(1) 写 出L() (2) 取 对 数 lnL() (3) 解 方 程 dlnL[()]0, 得 到 ˆ
d
例1 : 设总体X的分布律为:
概率论与数理统计课件第7章参数估计
一、矩估计
4
A B
一、矩估计 例1
5
01
OPTION
02
OPTION
一、矩估计 解
6
一、矩估计
7
一、矩估计
8
解(1)
一、矩估计
9
解(2)
一、矩估计 例3
10
一、矩估计 解
11
一、矩估计
12
关于矩估计量有下列结论:
一、矩估计
13
例4
解
一、矩估计
14
01
OPTION
02
OPTION
一、无偏性 定义1
51
ˆ lim E θ 如果 n+ X1 ,
, X n θ
一、无偏性
52
例1
试求 1 3 2
解
(1)由矩估计定义可知
一、无偏性
53
故
一、无偏性
54
一、无偏性 例2
55
一、无偏性
56
解
一、无偏性 定理 1
57
则有
因此, 样本均值是总体均值的无偏估计, 样本
二、极大似然估计
48
极大似然估计求解
似然函数 对数似然求导法
直接法
49
目录/Contents
7.1 7.2
点估计 点估计的优良性评判标 准 置信区间 单正态总体下未知参数的置信区间 两个正态总体下未知参数的置信区间
7.3
7.4 7.5
50
目录/Contents
7.2
点估计的优良性评判标准 一、无偏性 二、有效性 三、相合性
置信区间
69
置信区间
70
置信区间
第7章 参数估计概率论课件
ˆ ˆ ˆ (3) 解出其中1,2 ,,k , 用1,2 ,,k 表示.
ˆ ˆ ˆ (4) 用方程组的解 1,2 ,,k 分别作为 1 ,2 ,,k
的估计量,这种估计量称为矩估计量. 矩估计量
的观察值称为矩估计值.
设 总 体X 在 [a , b] 上 服 从 均 匀 分 布 中a , ,其 例2 b 未 知, ( X 1 , X 2 ,, X n ) 是 来 自 总 体 的 样 本 求a , X , b 的矩估计量 .
解
a b 2 E ( X ) D( X ) [ E ( X )]
2
2
ab , 1 E(X ) 2
n
2
ab 1 令 A1 X i , 2 n i 1
12
a b
4
2
,
1 n (a b)2 (a b)2 2 A2 X i , n i 1 12 4
形式已知,θ为待估参数,
n
( X1 , X 2 ,, X n )
是总体X的一个样本,则样本 X1 , X 2 ,, X n 的 分布律为 p( xi ; ) , 当给定样本值 ( x1, x2 ,, xn )
i 1
后, 则样本 X1 , X 2 ,, X n 取到观察值 x1 , x2 ,, xn 的概率为 L( ) p( xi ; ) ,
2 i 1
n
1 e 2π
( xi )2 2 2
,
n n 1 n 2 2 2 ln L( , ) ln( 2 π) ln ( xi ) , 2 2 2 2 i 1
ln L( , 2 ) 0 令 ln L( , 2 ) 0 2
ˆ ˆ ˆ (4) 用方程组的解 1,2 ,,k 分别作为 1 ,2 ,,k
的估计量,这种估计量称为矩估计量. 矩估计量
的观察值称为矩估计值.
设 总 体X 在 [a , b] 上 服 从 均 匀 分 布 中a , ,其 例2 b 未 知, ( X 1 , X 2 ,, X n ) 是 来 自 总 体 的 样 本 求a , X , b 的矩估计量 .
解
a b 2 E ( X ) D( X ) [ E ( X )]
2
2
ab , 1 E(X ) 2
n
2
ab 1 令 A1 X i , 2 n i 1
12
a b
4
2
,
1 n (a b)2 (a b)2 2 A2 X i , n i 1 12 4
形式已知,θ为待估参数,
n
( X1 , X 2 ,, X n )
是总体X的一个样本,则样本 X1 , X 2 ,, X n 的 分布律为 p( xi ; ) , 当给定样本值 ( x1, x2 ,, xn )
i 1
后, 则样本 X1 , X 2 ,, X n 取到观察值 x1 , x2 ,, xn 的概率为 L( ) p( xi ; ) ,
2 i 1
n
1 e 2π
( xi )2 2 2
,
n n 1 n 2 2 2 ln L( , ) ln( 2 π) ln ( xi ) , 2 2 2 2 i 1
ln L( , 2 ) 0 令 ln L( , 2 ) 0 2
《概率论与数理统计》课件第七章 参数估计
添加标题
03
若存在, 是否惟一?
添加标题
1
2
3
4
5
6
对于同一个未知参数,不同的方法得到的估计量可能不同,于是提出问题
应该选用哪一种估计量? 用何标准来评价一个估计量的好坏?
常用标准
(1)无偏性
(3)一致性
(2)有效性
7.2 估计量的评选标准
无偏性
一致性
有效性
一 、无偏性
定义1 设 是未知参数θ的估计量
09
则称 有效.
10
比
11
例4 设 X1, X2, …, Xn 是X 的一个样本,
添加标题
问那个估计量最有效?
添加标题
解 ⑴
添加标题
由于
添加标题
验证
添加标题
都是
添加标题
的无偏估计.
都是总体均值
的无偏估计量.
故
D
C
A
B
因为
所以
更有效.
例5 设总体 X 的概率密度为
关于一致性的两个常用结论
1. 样本 k 阶矩是总体 k 阶矩的一致性估计量.
是 的一致估计量.
由大数定律证明
用切比雪夫不 等式证明
似然函数为
其中
解得参数θ和μ的矩估计量为
2
时
3
令
1
当
6
,故
5
,表明L是μ的严格递增函数,又
4
第二个似然方程求不出θ的估计值,观察
添加标题
所以当
01
添加标题
从而参数θ和μ的最大似然估计值分别为
03
添加标题
时L 取到最大值
02
添加标题
03
若存在, 是否惟一?
添加标题
1
2
3
4
5
6
对于同一个未知参数,不同的方法得到的估计量可能不同,于是提出问题
应该选用哪一种估计量? 用何标准来评价一个估计量的好坏?
常用标准
(1)无偏性
(3)一致性
(2)有效性
7.2 估计量的评选标准
无偏性
一致性
有效性
一 、无偏性
定义1 设 是未知参数θ的估计量
09
则称 有效.
10
比
11
例4 设 X1, X2, …, Xn 是X 的一个样本,
添加标题
问那个估计量最有效?
添加标题
解 ⑴
添加标题
由于
添加标题
验证
添加标题
都是
添加标题
的无偏估计.
都是总体均值
的无偏估计量.
故
D
C
A
B
因为
所以
更有效.
例5 设总体 X 的概率密度为
关于一致性的两个常用结论
1. 样本 k 阶矩是总体 k 阶矩的一致性估计量.
是 的一致估计量.
由大数定律证明
用切比雪夫不 等式证明
似然函数为
其中
解得参数θ和μ的矩估计量为
2
时
3
令
1
当
6
,故
5
,表明L是μ的严格递增函数,又
4
第二个似然方程求不出θ的估计值,观察
添加标题
所以当
01
添加标题
从而参数θ和μ的最大似然估计值分别为
03
添加标题
时L 取到最大值
02
添加标题
概率与统计第7章——概率论课件PPT
ˆ 是θ的无偏估计,并不保证在任何情况下 (即对于任何一次样本观测值),估计值 ˆ (x1,x2,…,xn)必等于θ 。
无偏性只保证没有系统偏差,即用 ˆ估计θ时, 偏差 ˆ 是随机的,有时大于零,有时小于 零,而平均为零。显然,平均为零这一点只有 在大量重复使用时才能体现出来。 但是选取的样本容量是有限的
在统计分析中,经常需要根据样本数据推断
总体的情况,这一过程被称为统计推断 .
统计推断
估计
参数估计区点间估估计计
非参数估计
检验
……(第八章)
参数估计是统计推断的主要方法,也是数理统计
的基本内容.
2
在参数估计问题中,假定
形式已
知,未知的仅仅是一个或几个参数.
参数估计问题的一般提法
已知统计总体的分布函数为 F(x, ),
6
7.1 点估计及其优良性
7.1.1 点估计的概念
例7.1 已知某连续生产线上生产的灯泡的使用寿
命X ~N(, 2),其中, 2是未知参数,从中随机
抽出5只灯泡,测得使用寿命(单位:h)为: 1529 1513 1600 1527 1411试估 Nhomakorabea, 2的值.
7
由于参数 和2 分别是总体X的均值和方差,即
S 2
1 n1
n
(Xi
i 1
X )2
14
那么要问:
样本均值是否是 的一个好的估计量? 样本方差是否是 2的一个好的估计量?
这就需要讨论以下几个问题:
(1) 我们希望一个“好的”估计量具有什么 特性?
(2) 怎样决定一个估计量是否比另一个估计 量“好”?
(3) 如何求得合理的估计量?
15
7.1.2 估计量的优良性 我们知道,对同一未知参数可以构造出许多的 估计量。 评价这些估计量的好坏, 有以下几个标准:
无偏性只保证没有系统偏差,即用 ˆ估计θ时, 偏差 ˆ 是随机的,有时大于零,有时小于 零,而平均为零。显然,平均为零这一点只有 在大量重复使用时才能体现出来。 但是选取的样本容量是有限的
在统计分析中,经常需要根据样本数据推断
总体的情况,这一过程被称为统计推断 .
统计推断
估计
参数估计区点间估估计计
非参数估计
检验
……(第八章)
参数估计是统计推断的主要方法,也是数理统计
的基本内容.
2
在参数估计问题中,假定
形式已
知,未知的仅仅是一个或几个参数.
参数估计问题的一般提法
已知统计总体的分布函数为 F(x, ),
6
7.1 点估计及其优良性
7.1.1 点估计的概念
例7.1 已知某连续生产线上生产的灯泡的使用寿
命X ~N(, 2),其中, 2是未知参数,从中随机
抽出5只灯泡,测得使用寿命(单位:h)为: 1529 1513 1600 1527 1411试估 Nhomakorabea, 2的值.
7
由于参数 和2 分别是总体X的均值和方差,即
S 2
1 n1
n
(Xi
i 1
X )2
14
那么要问:
样本均值是否是 的一个好的估计量? 样本方差是否是 2的一个好的估计量?
这就需要讨论以下几个问题:
(1) 我们希望一个“好的”估计量具有什么 特性?
(2) 怎样决定一个估计量是否比另一个估计 量“好”?
(3) 如何求得合理的估计量?
15
7.1.2 估计量的优良性 我们知道,对同一未知参数可以构造出许多的 估计量。 评价这些估计量的好坏, 有以下几个标准:
第七章 参数估计ppt课件
ˆ lim P ( ) 1
n
0 ,则称 ˆ 为θ的一致估计量
31
随着样本容量增大,估计量会越来越接近 被估计的参数。即对任意的>0,有
n
ˆ l i m{ P | | } 1
则称 ˆ 是参数θ的一致估计量。 一致估计量是大样本所呈现的性质。若某
是总体X 的一个容量
1 ˆ X X X ) 1 ( 1 2 3 3
1 ˆ 2 X 3 X X ) 2 ( 1 2 3 6
是总体均值 的估计量,它们是无偏估计 量吗?若是,哪一个更有效。
30
三、一致性
设 ˆ 为未知参数θ的估计量,当 n 时, ˆ按 概率收敛于θ。即
n
2 ( x ) i 2 2
1n X X , ˆ 解方程组,得 i i 1 n
1n 2 2 X X ˆ i i 1 n 20
2
21
7.1.4 评价估计优良的准则
无偏性 有效性 一致性
22
一、无偏性
设 ˆ 为未知参数θ的估计量,若
离 散 型 (, ) x ( X x ) j 1 , k i p i
j i 1
j
n
8
例如0-1分布的数学期望(一阶原点矩)为p, x , x , , x ) 在总体中抽出随机样本 ( , 则样本平均数 1 2 n (样本的一阶原 点矩)
为
1n p xi n i1
26
, 2 , ,X 设 XX 1 n 是总体X的样本
ˆ X 1 1
1 ˆ 2 xi n
ห้องสมุดไป่ตู้ ,ˆ
概率论与数理统计课件:参数估计
n
n
p( X xi; ) p(xi; ).
i 1
i 1
事实上,它们仅是参数 的函数,称为似然函数,记
为L( ) ,即 L( ) L(x1, x2,
或
n
, xn; ) f (xi; ), i 1
n
L( ) L( X x1, X x2, , X xn; ) p(xi; ). i 1
一个随机变量,其服从 0的泊松分布,即X ~ P(),
其中, 为未知参数. 已知在某小时进入该商场的人数的
样本值见表7.1,试求参数 的点估计值.
表7.1 在某小时进入某商场人数的统计情况
每分钟平均一秒钟进 入该商场的人数 0
1
2
3
4
5
6
7 8
分钟数
6 18 17 9 5 2 2 1 0
参数估计
解:因为X E( 1) ,所以 E( X ) .
由于仅有一个未知参数 ,故仅列一个方程
即可.
1( ) A1
因为1( ) E(X ) 和 A1 X ,所以ˆ X .
参数估计
首页 返回 退出
例7.1.3 设随机变量X在区间[a, b]中均匀取值,即 X U (a,b) ,其中,a 与 b均为未知参数,试求 a与 b的
i 1
i 1
参数估计
首页 返回 退出
(3) 似然函数 L( ) 与经自然对数变换后的函数 ln L( ) 等价,即求L( )的最大值点等价于求 ln L( )的最大值 点. 函数ln L( ) 对未知参数 求导数,并令其为0,即
d ln L( ) 0.
d
(4) 求解上述方程,得到参数 的最大似然估计值 ˆ(x1, x2 , , xn ),
第七章参数估计概率与统计 PPT资料共71页
P( X1 x1, X 2 x2, , X n xn ,1,2, ,k ) p(xi ,1,2, k ) i1
进行一次具体的抽样之后, (X1, X2, …, Xn ) 得到一组观察值 (x1, x2, …, xn )。是一组确定的数,把它们代入上式,则
n
p(xi ,1,2, k )
)
L(1,2
,
k )
则称 ˆi ˆi (x1, , xn )(i 1, 2, , k) 为参数i的极大似然估计值;
称相应的统计量 ˆi ˆi (X1, , Xn)(i 1, 2, , k)为i的极大似然估计量;
(2) 假定某城市在单位时间(譬如一个月)内交通事故发生 次数 X ∼ P(). 参数未知,需要从样本来估计.
通过样本来估计总体的参数,称为参数估计,它是统计推断 的一种重要形式.
参数估计
点估计 区间估计
例如我们要估计某队男生的平均身高.
(假定身高服从正态分布N(Nμ,(0,.102.)12))
样本(X1, X2, …, Xn )来自总体 X。假定总体X的m阶原点矩EXm存在,
一般地, EX , EX 2 , , EX m (m 1,2, , k)
都是这 k 个参数的函数,记为:
EX m gm (θ1,θ2, ,θk ) m=1,2, … ,k
取样本的m阶原点矩
Am
1 n
n i 1
ˆ X ˆ 2 ˆ 2 A2
ˆ
1 n
n i1
Xi
X
ˆ
2
A2
X
2
1 n
n i1
Xi2
ห้องสมุดไป่ตู้
进行一次具体的抽样之后, (X1, X2, …, Xn ) 得到一组观察值 (x1, x2, …, xn )。是一组确定的数,把它们代入上式,则
n
p(xi ,1,2, k )
)
L(1,2
,
k )
则称 ˆi ˆi (x1, , xn )(i 1, 2, , k) 为参数i的极大似然估计值;
称相应的统计量 ˆi ˆi (X1, , Xn)(i 1, 2, , k)为i的极大似然估计量;
(2) 假定某城市在单位时间(譬如一个月)内交通事故发生 次数 X ∼ P(). 参数未知,需要从样本来估计.
通过样本来估计总体的参数,称为参数估计,它是统计推断 的一种重要形式.
参数估计
点估计 区间估计
例如我们要估计某队男生的平均身高.
(假定身高服从正态分布N(Nμ,(0,.102.)12))
样本(X1, X2, …, Xn )来自总体 X。假定总体X的m阶原点矩EXm存在,
一般地, EX , EX 2 , , EX m (m 1,2, , k)
都是这 k 个参数的函数,记为:
EX m gm (θ1,θ2, ,θk ) m=1,2, … ,k
取样本的m阶原点矩
Am
1 n
n i 1
ˆ X ˆ 2 ˆ 2 A2
ˆ
1 n
n i1
Xi
X
ˆ
2
A2
X
2
1 n
n i1
Xi2
ห้องสมุดไป่ตู้
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
(xi
i1
)2]
lL n (, 2 ) n 2 ln 2) (n 2 ln 2 2 1 2i n 1(x i)2
lnL12
n
[
i1
xi
n]0
ln2L2n2
2(12)2
n
(xi
i1
n)2
0
ˆ
ˆ
1
1 n
n i 1
( xi
x
x )2
ˆ X
ˆ
2
n 1S2 n
从样本出发构造适当的统计量
ˆˆ(X1,L,Xn)
作为参数 的估计量,即点估计。 将 x1, ,xn代入估计量,得到的估计值
ˆˆ(x1,L,xn)
关键问题:如何构造统计量?
ˆˆ(X1,L,Xn)
矩估计
点估计
极大似然估计
矩估计
总体k阶原点矩
k EX k
样本k阶原点矩
Ak
1 n
n i 1
X
k i
解:E(X)=p.
pˆ
1 n
n i1
Xi
X
例3:设电话总机在某段时间内接到呼唤的次数 服从参数λ未知的泊松分布,现在收集了如下42 个数据:
接到呼唤次数 0 1 2 3 出现的频数 7 10 12 8
45 32
求未知参数λ 的矩估计。
ˆ x 80 40
42 21
例4. X~U(a,b),由简单随机样本X1 ,X2 ,…, Xn求 a,b的矩估计量。
n
L(x1,x2,...,xn;) f(xi;) i1
为样本的似然函数,简记为L(θ)。
对于固定的样本观测值x1,x2,…,xn。如果有
ˆ(x1,x2,..x.n,),使得
L (ˆ) m a x L (), (或 L (ˆ) s u p L ())
则 称 ˆ ( x 1 ,x 2 , . . . ,x n ) 为 的 极 大 似 然 估 计 值
缺点是,当总体类型已知时,没有 充分利用分布提供的信息 .
极大似然估计
例: 设一箱中装有若干个白色和黑色的球, 已知两种球的数目之比为3:1或1:3,现有放回 地任取3个球,有两个白球,问:白球所占的 比例p是多少?
如果只知道0<p<1,并且实测 记录是X=k (0 ≤ k≤ n),又应 如何估计p呢?
解:E(X)=(a+b)/2, D(X)=(b-a)2/12.
E(X)1(ab)1(aˆbˆ)1 n
2
2
ni1
Xi X
D(X)1(ba)2 12
1(bˆaˆ)2 12
M2nn1S2
a ˆX3 (n 1 )S2, b ˆX3 (n 1 )S2
n
n
矩法特点分析:
矩法的优点是简单易行,并不需要 事先知道总体是什么分布 .
2 E( X 2 ) u2
ˆ X X1 L X n
n
ˆ 2
1 n
n i 1
X
2 i
X2
1 n
n i 1
(Xi
X )2
n 1S2 n
总体期望、方差的矩估计量分别是样本均值和 样本二阶中心矩。
例2: 已知某产品的不合格率为p, 有简单随 机样本X1 ,X2 ,…, Xn 求p的矩估计量。
若总体分布已知,对于样本值,选取适当 的参数,使样本值出现的概率最大,这种 估计方法就是极大似然估计法。
➢极大似然估计法
设总体X的分布律或概率密度为f(x; Ө), θ=(θ1, θ2,…, θk)是未知参数, X1,X2, …,Xn是 总体X的样本,则称X1,X2, …,Xn的联合分布 律或概率密度函数
K.皮尔逊
n
Xik
大数定律: limP(| i1 E(Xk)|)1
n
n
矩估计基本思想: 用样本矩估计总体矩 .
设总体的分布函数中含有k个未知参数 1, ,k
(1)它的前k阶原点矩都是这k个参数的函数,记为:
E (X i) g i(1 ,L ,k),i 1 ,L ,k
(2)用样本i阶原点矩替换总体i阶原点矩
称 ˆ ( X 1 ,X 2 ,...,X n ) 为 极 大 似 然 估 计 量
例1. 设总体X~N(μ,σ2),其中μ,σ2是 未知参数。求μ,σ2的极大似然估计。
f(x;,2)2 1 ex 2 p 12[(x)2]
n
L(,2)
i1
1
2
exp[ 1
22
(xi
)2]
(2)n2(2)n2 exp[212
g
1
(
1
,
2
,
.
.
.
,
k
)
E(X
)
@1 n
n i1
X i,
g
2
(
1
,
2
,
.
.
.
,
k
)
E(X
2)
@1 n
n i1
X 2, i
............
g
k
(
1
,
2
,
.
.
.
,
k
)
E(X
k)
@1 n
n i1
X
k,
i
(3) 解方程组,得 θi=hi (X1, X2,…, Xn) (i=1,2,…,k);
例2. 设总体X服从参数λ>0的泊松分布,求 参数λ的极大似然估计量。
例3. 已知某产品的不合格率为p,有简单随机样本 X1 ,X2 ,…, Xn,求p的极大似然估计量。 若抽取100件产品,发现10件次品,试估计p.
例4. 设X1,X2,…,Xn为取自总体X~U(a, b)的样 本, 求a, b的极大似然估计量.
回顾: 设X1,X2,…Xn是取自总体X的一个样本
X~f(x) (1)x,
0,
0x1 其它
其中>0,
求 的矩估计量和极大似然估计量.
求极大似然估计量的步骤:
n
(1) 根据f(x; θ),写出似然函数 L()f (xi;)
i1
n
(2) 对似然函数取对数 lnL()lnf(xi;)
(3) 写出方程 ln L 0
i1
若方程有解,
求出L(θ)的最大值点 ˆ(x1,x2,..x.n,)
于 是 ˆ ˆ ( X 1 , X 2 , . . . , X n ) 即 为 的 极 大 似 然 估 计 量
第7章 参数估计
总体所服从的分布类型已知/未知
抽样
参数 估计
估计总体中未知的参数
参数估计 参数估计问题是利用从总体抽样得到的信息
来估计总体的某些参数. 估计新生儿的体重
估计废品率
估计湖中鱼数
§7.1
点估计
设有一个统计总体,总体的分布函数
为 F(x, ),其中为未知参数 (可以是向量) .
现从该总体抽样,得到样本 X1,X2,…,Xn
则以hi (X1, X2,…, Xn)作为θi 的估计量 ,并 称hi(X1, X2,…, Xn)为θi 的矩法估计量,而 称hi(x1, x2,…, xn) 为θi 的矩法估计值。
例1. 设总体X的数学期望和方差分别是μ, σ2 ,
求μ , σ2的矩估计量。
E(X )
E( X 2 ) D( X ) [EX ]2 2 2