我国太阳能电池的发展历史

合集下载

太阳能电池的发展历史

太阳能电池的发展历史

太阳能电池的发展历史太阳能电池是一种将太阳能转化为电能的设备,它的发展历史可以追溯到19世纪初。

本文将详细介绍太阳能电池的发展历程,包括关键技术突破、应用领域扩展以及未来发展趋势等方面。

1. 太阳能电池的起源太阳能电池最早的雏形可以追溯到1839年,当时法国科学家贝克勒尔发现了光电效应。

贝克勒尔在实验中发现,当光照射到某些材料表面时,会产生电流。

这个发现奠定了太阳能电池的基础。

2. 第一代太阳能电池:硒光电池在19世纪末,美国发明家查尔斯·弗里茨成功创造出第一台可实际应用的太阳能电池,即硒光电池。

硒光电池利用硒的光电效应将太阳能转化为电能,虽然效率较低,但被广泛应用于测量和通信设备。

3. 第二代太阳能电池:硅太阳能电池20世纪50年代,美国贝尔实验室的研究人员发明了硅太阳能电池,开启了太阳能电池的商业化应用时代。

硅太阳能电池利用硅的半导体特性,将太阳能转化为电能。

随着技术的进步,硅太阳能电池的效率不断提高,成本逐渐降低,被广泛应用于航天、军事、通信、家用电力等领域。

4. 第三代太阳能电池:多晶硅太阳能电池和薄膜太阳能电池20世纪70年代,多晶硅太阳能电池和薄膜太阳能电池成为太阳能电池领域的新突破。

多晶硅太阳能电池通过改进硅材料的晶体结构,提高了光电转换效率。

薄膜太阳能电池则采用了更薄的光敏材料,降低了成本和分量,使得太阳能电池应用更加灵便。

5. 第四代太阳能电池:钙钛矿太阳能电池和有机太阳能电池近年来,钙钛矿太阳能电池和有机太阳能电池成为太阳能电池领域的热点研究方向。

钙钛矿太阳能电池利用钙钛矿材料的光电特性,具有高效率、低成本和易制备等优点,被认为是未来太阳能电池的发展方向。

有机太阳能电池则利用有机半导体材料的光电特性,具有柔性、可塑性和低成本等特点,有望应用于可穿戴设备、智能家居等领域。

6. 太阳能电池的应用领域太阳能电池的应用领域日益扩大。

目前,太阳能电池广泛应用于家庭光伏发电系统、太阳能热水器、太阳能灯具、太阳能充电器等领域。

中国太阳能的发展历史

中国太阳能的发展历史

中国的太阳能发展历史可以追溯到1958年,当时中国研制出了首块硅单晶。

1968年,半导体所承担了为“实践1号卫星”研制和生产硅太阳能电池板的任务,研究人员发现P+/N硅单片太阳电池在空间中运行时会遭遇电子辐射,造成电池衰减,使电池无法长时间在空间运行。

1969年,半导体所停止了硅太阳电池研发。

1974年,天津18所为东方红二号、三号、四号系列地球同步轨道卫星研制生产太阳电池阵,1975年宁波、开封先后成立太阳电池厂,电池制造工艺模仿早期生产空间电池的工艺,太阳能电池的应用开始从空间降落到地面。

1998年,中国政府开始关注太阳能发电,拟建第一套3MW多晶硅电池及应用系统示范项目,这个消息让现在的天威英利新能源有限公司的董事长苗连生看到了一线曙光。

可是,当时太阳能产业发展前景尚不明朗,加之受政策因素制约,令不少人对这一新能源项目望而却步。

在合作伙伴退出的情况下,苗连生毅然逆势而上,争取到了这个项目的批复,成为中国太阳能产业第一个“吃螃蟹”的人。

2001年,无锡尚德建立10MWp(兆瓦)太阳电池生产线获得成功,2002年9月,尚德第一条10MW太阳电池生产线正式投产,产能相当于此前四年全国太阳电池产量的总和,一举将我国与国际光伏产业的差距缩短了15年。

2003到2005年,在欧洲特别是德国市场拉动下,尚德和保定英利持续扩产,其他多家企业纷纷建立太阳电池生产线,使我国太阳电池的生产迅速增长。

2004年,洛阳单晶硅厂与中国有色设计总院共同组建的中硅高科自
主研发出了12对棒节能型多晶硅还原炉,以此为基础,2005年,国内第一个300吨多晶硅生产项目建成投产,从而拉开了中国多晶硅大发展的序幕。

中国光伏发展史

中国光伏发展史

中国光伏发展的历史可以追溯到1968年,当时科学家王占国带领他的团队开始研发太阳能电池,以确保“东方红一号”能够稳定而且长期运行在轨道上。

从那时起,中国光伏产业逐渐发展,并经历了几个重要阶段。

在20世纪80年代至2003年,中国光伏产业经历了稳定增长阶段。

1983年,甘肃科学院为距离兰州市40公里左右的村庄建设了10KW民用光伏电站,这是中国最老的光伏电站之一。

这个光伏电站为附近的村庄带去了光明,并且经历了30多年的风雨,现在的功率还有7KW。

从1998年开始,中国政府开始关注太阳能发电,并拟建第一套3MW多晶硅电池及应用系统示范项目,这标志着中国光伏产业化的序幕拉开。

到了2005年,中国已经建成了721座光伏和风光互补电站,光伏用量达到15.5MWp。

从2004年到2008年,中国光伏产业进入了迅速增长阶段。

随着国际市场对光伏产品的需求不断增加,中国光伏企业开始大规模扩张产能,提高技术水平。

2009年至2011年,中国光伏产业经历了快速发展阶段。

政府发布了一系列需求激励政策,进行产业支持,解决光伏产业政策面临的不同问题,致力于调整光伏产业环境。

例如,针对光伏市场产能过程和重复建设等阻碍发展的问题,国家发改委出台了相关政策,提出了要采取措施改善现状,引导新兴产业有序发展的要求。

自2012年至今,中国光伏产业进入了整合结算升级阶段。

在这一阶段,光伏产业面临了国内外市场的双重压力,但中国政府继续支持光伏产业的发展,推动产业转型升级。

同时,随着技术的进步和成本的降低,光伏产业在能源领域的应用越来越广泛,成为推动绿色能源发展的重要力量。

近年来,中国光伏产业在技术创新、产业升级和国际化方面取得了显著进展。

例如,全国最大的海上光伏电站——中核田湾200万千瓦滩涂光伏示范项目在江苏连云港正式开工建设,这是中核集团深入贯彻落实国家生态文明建设和“双碳”战略的重要举措。

该项目将利用核电站温排水区域开展“光伏+核电”多能互补,有效降低对海洋生态系统的影响,为周边城市提供更多清洁能源。

太阳能电池技术的发展及未来趋势

太阳能电池技术的发展及未来趋势

太阳能电池技术的发展及未来趋势随着全球对温室气体和碳排放的关注加剧,太阳能电池技术成为了未来的趋势之一。

太阳能电池的发展已经历经数十年,无论是从材料、效率还是成本方面,都有了显著的进步。

本文将探讨太阳能电池技术的发展历程以及未来趋势。

1. 太阳能电池技术的发展历程太阳能电池是最直接转换太阳光能为电能的一种光伏发电方式。

太阳能电池的发展始于20世纪50年代,当时最先研制出的是硅太阳能电池。

但由于成本高昂,应用场景有限,难以实现商业化应用。

在接下来的几十年间,人们逐渐发现硅太阳能电池的效率提高了很多,从20世纪70年代开始,多晶硅太阳能电池逐渐被广泛应用。

随着二十一世纪的到来,太阳能电池技术的发展进入了快车道。

新型材料的出现和生产规模的扩大改变了太阳能电池的成本结构,加上政府对可再生能源的扶持和鼓励,太阳能电池成为了业内炙手可热的存在。

2. 太阳能电池技术的现状目前太阳能电池的主要材料为硅、铜铟镓硒、钙钛矿等。

其中,硅太阳能电池是应用最广泛的光伏电池。

硅太阳能电池的成本已经大大降低,效率也有了显著提高。

目前,单晶硅太阳能电池的效率最高可以达到22%以上,而多晶硅太阳能电池的效率也超过了20%。

铜铟镓硒太阳能电池是一种薄膜太阳能电池,在效率和成本方面均具有优势。

铜铟镓硒太阳能电池的转换效率通常在15%至20%之间,同时还可以制造成透明的、柔性的太阳能电池。

这种材料的发展前景非常广阔。

钙钛矿太阳能电池近年来迅速发展,效率也实现了大幅提升。

钙钛矿太阳能电池的转换效率目前已经超过了25%,而且还可以制造成透明的、柔性的太阳能电池,未来的发展前景十分看好。

3. 太阳能电池技术的未来趋势太阳能电池技术的未来趋势主要体现在以下几个方面。

首先,技术效率的不断提升将成为太阳能电池的重要发展方向,特别是在光吸收能力方面的提升。

同时,太阳能电池的成本也将不断下降,未来太阳能电池将会越来越便宜。

其次,太阳能电池的制造材料将会越来越多样化,如碳化硅太阳能电池、有机太阳能电池等。

太阳能电池的发展现状

太阳能电池的发展现状

太阳能电池的发展现状近年来,太阳能作为一种可再生能源备受关注。

而太阳能电池作为太阳能的直接转化器,发展也日益迅猛。

本文将从太阳能电池的发展历程、现有技术、未来发展方向等方面对太阳能电池的发展现状进行探讨。

一、太阳能电池的发展历程太阳能电池的发展历程可以追溯至19世纪末期。

当时,人们已经认识到一种名为光电效应的现象。

这一现象指的是电子在光照射下从物质表面被发射出来的现象。

而在20世纪初期,太阳能电池首次面世。

最初的太阳能电池利用的是硒化铜(Cu2Se)和硒化铟(In2Se3)等元素材料。

这些材料在光照射下会释放电子,并产生电流。

随着技术的不断推进,太阳能电池的效率也逐渐提高。

20世纪50年代,美国贝尔实验室发明了硅太阳能电池。

这种太阳能电池可将光能转换为电能。

同时,由于硅是地球上最常见的物质之一,因此也成为了太阳能电池主要的材料。

二、现有技术目前,太阳能电池主要采用的是硅材料和非晶硅材料两种技术。

硅太阳能电池是目前世界上应用最广泛的太阳能电池之一。

而非晶硅太阳能电池虽然效率不如晶体硅太阳能电池,但其成本较低,可以通过大面积卷材制作,更适合大规模应用。

此外,还有一些新型太阳能电池技术也在快速发展中。

例如有机太阳能电池,其通过有机半导体材料将光能转化为电能。

有机太阳能电池具有重量轻、生产成本低、可弯曲等特点,因此被视为未来太阳能电池的发展方向之一。

此外,还有钙钛矿太阳能电池、染料敏化太阳能电池等新型太阳能电池技术都在不断研究中。

三、未来发展方向太阳能电池正迎来一个新的发展阶段。

在人们的共同努力下,太阳能电池效率不断提高,成本不断下降。

太阳能电池已经成为可再生能源的代表,未来发展前景广阔。

未来的太阳能电池将继续追求高效率、低成本、环保等特点。

有机太阳能电池、染料敏化太阳能电池等新型太阳能电池技术将会得到更广泛的应用。

太阳能电池的产业链也将逐渐完善,从太阳能电池的生产、安装、维护等方面进行全面升级。

总的来说,太阳能电池正进入一个新的快速发展阶段。

太阳能电池技术的发展历程与前景展望

太阳能电池技术的发展历程与前景展望

太阳能电池技术的发展历程与前景展望太阳能电池是一种利用光合作用产生电能的设备,随着人们对清洁能源的需求日益增加,太阳能电池的技术得到了不断地革新和完善。

在这篇文章中,我将从太阳能电池的产生历程入手,探究太阳能电池技术的发展历程,并展望其未来的发展前景。

一、太阳能电池的产生历程太阳能电池的产生可以追溯到1839年,当时法国科学家贝克勒尔发现光照射到银化铜板上时,会在铜板中产生带电荷的化合物。

这是太阳能电池的基础形态,也是人们认识太阳能电池的起点。

随着科技的不断进步,人们逐渐意识到太阳能电池的应用前景,开始进行深入探究。

20世纪50年代,太阳能电池材料的研究取得了突破,首次实现了在室外环境中长期正常工作的太阳能电池。

70年代初,太阳能电池开始被大规模应用于宇航领域,如美国登月计划和后来的国际空间站项目中。

同时,也开始应用于农业、乡村电器等领域。

在2000年以后,人们开始将太阳能电池应用于民用领域,如家庭供电、车载装置以及建筑物的光伏发电系统等方面,成为一种重要的清洁能源形式。

二、太阳能电池技术的发展历程太阳能电池技术的发展历程经历了长期的实践和实验,每一次技术的革新和突破,都为太阳能电池的应用提供了更加可靠和高效的技术支持。

1.硅太阳能电池的研究和发展硅太阳能电池是目前最成熟的太阳能电池,其研究和发展可以追溯到20世纪50年代。

当时,贝尔实验室的研究人员首次制造出了硅太阳能电池。

70年代,硅太阳能电池达到了高效率,并被广泛应用。

90年代以后,随着技术的进步,硅太阳能电池的效率不断提高,目前最高可以达到25%以上。

2.非晶硅太阳能电池的研究和发展非晶硅太阳能电池是硅太阳能电池的一种变种,其制造过程更加环保,但效率相对较低。

由于其制造成本较低,因此非晶硅太阳能电池在大规模应用、公共设施领域等方面具有一定优势。

3.有机太阳能电池的研究和发展有机太阳能电池是指利用有机材料构成的太阳能电池,其制造过程简单,成本相对较低,可以制造出柔性、可弯曲的太阳能电池,更适合在个人电子设备等领域应用。

太阳能电池技术的发展历程与趋势

太阳能电池技术的发展历程与趋势

太阳能电池技术的发展历程与趋势太阳能电池是一种将太阳能转化为电能的器件,它可以直接利用阳光的辐射能来产生电能,是可再生能源的一种重要来源。

太阳能电池技术的发展历程可以追溯到19世纪初,经过几十年的研究和发展,太阳能电池已经成为一种成熟的技术,并逐渐在工业和生活中得到广泛应用。

太阳能电池的发展可以分为以下几个阶段:1. 单晶硅太阳能电池(1950s-1960s):最早的太阳能电池是由单晶硅制成的。

这种太阳能电池的制作过程较为复杂,成本较高,效率也不高。

2. 多晶硅太阳能电池(1970s-1980s):为了降低太阳能电池的成本,研究人员开始探索使用多晶硅制作太阳能电池。

多晶硅太阳能电池的制作工艺相对简单,成本较低,效率也有所提高。

3. 薄膜太阳能电池(1990s-2000s):薄膜太阳能电池采用了新的制作材料,如非晶硅、柔性聚合物等。

这种太阳能电池能够灵活应用于各种场景,并且制作成本相对较低,但效率相对较低。

4. 第三代太阳能电池(2000s至今):随着科技的发展,研究人员开始探索新的太阳能电池技术,包括有机太阳能电池、钙钛矿太阳能电池、量子点太阳能电池等。

这些新型太阳能电池具有制作工艺简单、成本低、效率高等特点,被认为是太阳能电池技术的未来发展方向。

当前,太阳能电池技术正朝着以下几个趋势发展:1. 提高效率:太阳能电池的效率是指太阳能转化为电能的比例,当前主流的太阳能电池的效率约为20%左右。

研究人员正在不断寻求提高太阳能电池的效率,通过改良材料、结构和工艺等方面来实现。

2. 降低成本:目前,太阳能电池的制作成本较高,主要是由于材料成本和制造工艺的复杂性所导致的。

研究人员正在努力降低太阳能电池的制作成本,以提升其在市场中的竞争力。

3. 增强稳定性和可靠性:太阳能电池需要长时间稳定运行才能实现经济效益。

因此,研究人员正在致力于提高太阳能电池的稳定性和可靠性,以减少运行中出现的故障和损坏。

4. 发展新型材料和新工艺:为了进一步提高太阳能电池的效率和降低成本,研究人员正在开发新型材料和新工艺。

太阳能电池的发展历史

太阳能电池的发展历史

太阳能电池的发展历史太阳能电池是一种将太阳能转化为电能的装置,它的发展历史可以追溯到19世纪初。

本文将详细介绍太阳能电池的发展历程,包括关键技术突破、应用领域扩展以及未来发展趋势。

1. 太阳能电池的起源太阳能电池最早由法国物理学家爱德蒙·贝克勒尔于1839年发现。

他发现某些物质在受到光照时会产生电流,这被称为光电效应。

然而,贝克勒尔的发现并没有引起太多关注,太阳能电池的实际应用还需要等待几十年。

2. 第一代太阳能电池的发展第一代太阳能电池采用的是单晶硅或者多晶硅材料,于1954年由贝尔实验室的研究人员发明。

这种太阳能电池的效率相对较低,仅为6%,并且成本较高,限制了其商业化应用。

然而,这一突破为后续的研究提供了基础。

3. 第二代太阳能电池的突破第二代太阳能电池的突破发生在20世纪70年代末和80年代初。

研究人员开始使用非晶硅材料来创造太阳能电池,这种材料的成本更低,创造过程也更简单。

与第一代太阳能电池相比,第二代太阳能电池的效率有所提高,达到了10%摆布。

4. 第三代太阳能电池的发展第三代太阳能电池的研究主要集中在21世纪初。

这些太阳能电池采用了新型材料和结构,旨在提高效率并降低成本。

其中最有潜力的技术包括多结太阳能电池、有机太阳能电池和染料敏化太阳能电池。

这些新技术的研究仍在进行中,但已经取得了一些突破。

5. 太阳能电池的应用领域扩展随着太阳能电池技术的不断发展,其应用领域也在不断扩大。

最早的应用是在太空探索中,太阳能电池被用于为宇航员提供电力。

随后,太阳能电池开始在地面上的一些特定应用中使用,例如远程地区的电力供应和农村地区的电力照明。

现在,太阳能电池已经广泛应用于家庭光伏发电系统、商业光伏电站和城市建造的太阳能光伏系统。

6. 太阳能电池的未来发展趋势太阳能电池的未来发展趋势主要集中在提高效率、降低成本和改善可持续性。

研究人员正在探索新的材料和结构,以提高太阳能电池的效率。

同时,随着创造工艺的改进和规模效应的实现,太阳能电池的成本也将进一步降低。

我国光伏产业发展历史

我国光伏产业发展历史

我国光伏产业发展历史一、起步阶段我国光伏产业的发展始于20世纪70年代,当时主要是为了满足国内对太阳能电池及组件的需求而开始进行研究和生产。

在这个阶段,光伏产业的技术水平相对较低,产品主要用于卫星、气象、灯具等领域的配套。

二、试点阶段进入20世纪90年代,随着全球环保意识的提高和新能源市场的兴起,我国光伏产业进入了试点阶段。

在这个阶段,政府开始加大对光伏产业的支持力度,鼓励企业进行技术研发和产品推广,并在一些地区开展光伏发电试点项目。

在这个阶段,我国光伏产业的技术水平得到了显著提升,产品开始进入国际市场。

三、推广阶段进入21世纪后,我国光伏产业进入了推广阶段。

政府出台了一系列政策措施,鼓励光伏发电的应用和推广,例如给予补贴、税收优惠等。

在这个阶段,我国光伏产业的市场规模不断扩大,企业数量和产能迅速增长,成为全球最大的光伏制造国之一。

四、加速阶段随着技术的不断进步和市场的不断扩大,我国光伏产业进入了加速发展阶段。

在这个阶段,企业不断加大技术研发投入,推出更高效率、更低成本的光伏产品。

同时,政府也加大了对光伏产业的支持力度,推动光伏发电的普及和应用。

在这个阶段,我国光伏产业实现了从制造大国向技术强国的转变。

五、成熟阶段近年来,我国光伏产业已经进入了成熟阶段。

在这个阶段,光伏产业已经形成了完整的产业链和产业集群,技术水平和市场规模都达到了国际领先水平。

同时,政府对光伏产业的支持力度也逐渐减弱,市场成为推动光伏产业发展的主要力量。

在这个阶段,我国光伏产业需要进一步加强技术创新和商业模式创新,以适应市场的变化和需求。

综上所述,我国光伏产业发展历史经历了起步、试点、推广、加速和成熟等阶段。

随着技术的不断进步和市场的不断扩大,我国光伏产业将继续发挥自身优势和特点,为全球可再生能源发展和应对气候变化做出更大的贡献。

太阳能电池的发展历史

太阳能电池的发展历史

太阳能电池的发展历史引言概述:太阳能电池是一种将太阳能转化为电能的装置,其发展历史可以追溯到19世纪末。

随着科技的进步和环境意识的增强,太阳能电池的研究和应用逐渐成为全球关注的焦点。

本文将从太阳能电池的起源开始,分别介绍其发展历程、技术突破、应用领域以及未来发展趋势。

一、太阳能电池的起源1.1 伏打效应的发现伏打效应是太阳能电池的基础,它于1839年被法国物理学家贝克勒尔首次观察到。

贝克勒尔发现,当将两个金属板放在电解质中,同时照射阳光时,会产生电流。

这一发现为太阳能电池的研究奠定了基础。

1.2 第一代太阳能电池的诞生在20世纪初,美国科学家查尔斯·菲茨杰拉德和沃尔顿·斯莫兰共同发明了第一代太阳能电池。

他们使用硒作为半导体材料,将其暴露在阳光下,通过伏打效应将光能转化为电能。

尽管效率较低,但这标志着太阳能电池的诞生。

1.3 太阳能电池的商业化应用随着科技的进步,太阳能电池的效率逐渐提高,并开始在实际应用中发挥作用。

20世纪50年代,太阳能电池开始用于人造卫星的电力供应,如美国先进通信卫星计划中使用的太阳能电池板。

这标志着太阳能电池的商业化应用进入了实质阶段。

二、太阳能电池的技术突破2.1 多晶硅太阳能电池的问世20世纪70年代,多晶硅太阳能电池的研发成功,大大提高了太阳能电池的效率。

多晶硅太阳能电池采用多晶硅片作为半导体材料,具有较高的光电转换效率和较低的制造成本,成为当时主流的太阳能电池技术。

2.2 薄膜太阳能电池的出现薄膜太阳能电池是指将薄膜材料作为光电转换层的太阳能电池。

20世纪80年代,美国科学家发明了第一种薄膜太阳能电池,采用了铜铟硒化物材料。

薄膜太阳能电池具有灵活性、轻薄便携等特点,为太阳能电池的应用提供了更多可能性。

2.3 高效率太阳能电池的研究近年来,科学家们致力于提高太阳能电池的转换效率。

研究人员通过改进材料结构、引入新的材料以及优化工艺等手段,不断提高太阳能电池的效率。

太阳能电池的发展历史

太阳能电池的发展历史

太阳能电池的发展历史太阳能电池作为一种能够将太阳光直接转化为电能的装置,具有清洁、可再生、无噪音等优点,被广泛应用于各个领域。

本文将从太阳能电池的起源、发展历程、技术进步以及未来发展方向等方面进行详细介绍。

一、起源太阳能电池的起源可以追溯到19世纪初。

1839年,法国物理学家贝克勒尔发现了光电效应,即当光照射到某些物质上时,会产生电流。

这一发现为太阳能电池的发展奠定了基础。

二、发展历程1. 第一代太阳能电池20世纪50年代,美国贝尔实验室的科学家们创造出了第一代太阳能电池,采用的是硅材料。

这种太阳能电池效率较低,成本较高,应用范围有限。

2. 第二代太阳能电池20世纪70年代,随着半导体技术的发展,太阳能电池进入了第二代。

新材料的应用使得太阳能电池的效率得到了提高,同时成本也有所降低。

此时,太阳能电池开始应用于航天、通信等领域。

3. 第三代太阳能电池21世纪初,太阳能电池进入了第三代。

第三代太阳能电池采用了新的材料和结构设计,如染料敏化太阳能电池、有机太阳能电池、钙钛矿太阳能电池等。

这些新型太阳能电池在效率、稳定性、成本等方面都有了显著的提升。

三、技术进步1. 提高效率太阳能电池的效率是衡量其性能的重要指标。

随着技术的进步,太阳能电池的效率不断提高。

目前,高效率的太阳能电池已经达到了20%以上。

2. 降低成本太阳能电池的成本向来是制约其大规模应用的关键因素。

随着技术的进步和产业链的完善,太阳能电池的成本逐渐下降。

估计未来几年内,太阳能电池的成本将进一步降低。

3. 提高稳定性太阳能电池在使用过程中需要面对各种环境温和候条件,稳定性是其必须具备的特性。

近年来,科研人员通过改进材料和工艺,提高了太阳能电池的稳定性,使其能够在各种极端环境下正常工作。

四、未来发展方向1. 提高效率和稳定性未来的太阳能电池将继续提高效率和稳定性,以满足不同领域的需求。

新材料的研究和工艺的改进将为太阳能电池的性能提升提供更多可能。

太阳能电池的发展历史

太阳能电池的发展历史

太阳能电池的发展历史太阳能电池是一种将太阳能转化为电能的装置,它已经成为可再生能源领域的重要组成部份。

本文将详细介绍太阳能电池的发展历史,从最早的发现到现代技术的发展。

1. 太阳能电池的发现(早期)太阳能电池的发展始于19世纪,最早的发现可以追溯到1839年。

法国物理学家贝克勒尔发现了光电效应,他发现当光线照射在某些金属上时,会产生电流。

这一发现奠定了太阳能电池的基础。

2. 半导体材料的应用(20世纪初)20世纪初,半导体材料的应用推动了太阳能电池的发展。

1904年,德国科学家霍尔斯特发现了硒的光电效应,进一步验证了贝克勒尔的研究。

随后,人们开始研究使用半导体材料创造太阳能电池。

3. 第一代太阳能电池(20世纪中叶)20世纪中叶,第一代太阳能电池问世。

1954年,美国贝尔实验室的科学家发明了第一块硅基太阳能电池。

这种电池利用硅材料的光电效应将太阳能转化为电能。

虽然效率较低,但标志着太阳能电池的商业化开始。

4. 太阳能电池的商业化应用(20世纪后期)20世纪后期,太阳能电池逐渐应用于实际生活和工业领域。

1970年代,随着对能源危机的关注,太阳能电池得到了更多的研究和发展。

在这个时期,太阳能电池的效率得到了提高,成本也逐渐降低,使得太阳能电池的商业化应用成为可能。

5. 太阳能电池的技术进步(21世纪)进入21世纪,太阳能电池的技术不断进步。

研究人员不断改进太阳能电池的材料和结构,以提高效率和稳定性。

新型材料如多晶硅、非晶硅、钙钛矿等被应用于太阳能电池的创造,大大提高了效率。

同时,太阳能电池的成本也在不断降低,使得太阳能电池系统更加可行和经济。

6. 太阳能电池的应用领域(现代)现代太阳能电池已经广泛应用于各个领域。

在家庭和商业领域,太阳能电池系统可以用于发电,为建造物提供电力。

在交通运输领域,太阳能电池被用于创造太阳能汽车和太阳能飞机等新能源交通工具。

此外,太阳能电池还被应用于航天、农业、军事等领域。

太阳能电池的发展历史

太阳能电池的发展历史

太阳能电池的发展历史太阳能电池是一种将太阳能转化为电能的装置,它已经成为可再生能源领域的重要组成部分。

本文将详细介绍太阳能电池的发展历史,从早期的研究开始,到现代太阳能电池的应用和未来发展趋势。

1. 早期的太阳能电池研究太阳能电池的研究始于19世纪,当时科学家们开始探索太阳能转化为电能的方法。

1839年,法国科学家贝克勒尔发现了光电效应,这为太阳能电池的发展奠定了基础。

随后,科学家们陆续提出了不同的太阳能电池原理,如光电池、热电池和化学电池等。

2. 第一代太阳能电池的发展20世纪50年代至60年代,第一代太阳能电池开始得到商业化应用。

在这一时期,硅基太阳能电池成为主流技术。

1954年,贝尔实验室的科学家们发明了第一块高效率的硅太阳能电池,转换效率达到6%。

随后,硅太阳能电池的生产成本逐渐降低,应用范围扩大到航天、电信和农业等领域。

3. 第二代太阳能电池的突破20世纪70年代至80年代,第二代太阳能电池的研究取得了重大突破。

这一时期,科学家们开始探索新的材料和结构,以提高太阳能电池的效率和稳定性。

1974年,发明家查尔斯·奥斯特林发表了关于彩色太阳能电池的论文,这标志着太阳能电池的多晶硅时代的开始。

1980年代,科学家们还发现了新的光伏材料,如镓砷化物、铜铟硒等,这些材料具有更高的光电转换效率。

4. 第三代太阳能电池的创新21世纪以来,第三代太阳能电池的研究成果不断涌现。

科学家们致力于开发新的材料和技术,以进一步提高太阳能电池的效率和可靠性。

其中,有机太阳能电池、染料敏化太阳能电池和钙钛矿太阳能电池等新型太阳能电池得到了广泛关注。

这些新技术在光电转换效率、生产成本和可制备性方面都具有优势,有望成为未来太阳能电池的主流技术。

5. 太阳能电池的应用和市场前景太阳能电池的应用范围越来越广泛,从家庭光伏发电系统到大型太阳能电站,都在利用太阳能电池转化太阳能为电能。

此外,太阳能电池还被应用于航天、交通、通信和农业等领域,为可持续发展做出了重要贡献。

太阳能电池技术的发展与未来展望

太阳能电池技术的发展与未来展望

太阳能电池技术的发展与未来展望随着人们对环保意识的逐渐增强和对化石能源的不断挥霍,太阳能电池技术作为一种新型的清洁、可再生能源逐渐受到人们的关注。

那么,太阳能电池技术是如何发展的,在未来又有着怎样的展望呢?一、太阳能电池技术的发展历程太阳能电池技术是一种将太阳能转化成电能的技术,其起源可以追溯到19世纪初的费萨提研究。

但直到上世纪60年代,随着半导体材料的发展,太阳能电池技术才开始进入实用化阶段。

随后几十年中,太阳能电池技术经历了从单晶硅、多晶硅到非晶硅和染料敏化太阳能电池的技术升级,技术水平得到了显著提高。

近年来,以有机高分子为主要材料的柔性太阳能电池逐渐成为研究热点。

这种太阳能电池不仅可以绕弯、折叠,更可以利用任何有光感的表面进行充电,具有很强的应用前景。

二、太阳能电池技术的现状不可否认的是,现阶段太阳能电池的转化效率还不高,而且成本较高,因此在商业应用上的普及程度远远不及化石能源。

但随着科技的不断进步和研究的深入,许多太阳能电池的问题正在逐渐得到解决,如新型太阳能电池的制造成本不断下降,效率不断提高,使用寿命也在不断延长。

据国际能源机构公布的数据,2019年中国太阳能电池组件制造量已占全球总量的70%以上,成为全球最大的太阳能电池制造国。

因此,太阳能电池技术的持续发展也非常值得期待。

三、未来太阳能电池技术的展望既然太阳能电池技术的使用效果较低,成本相对高昂,那么太阳能电池技术的未来发展方向又在哪里呢?1.性价比提升随着太阳能电池组件制造成本的逐渐下降、使用寿命的不断延长和转换效率的逐步提升,太阳能电池技术的竞争力将逐渐增强,可能被广泛应用于家庭和商业领域。

相信在未来,太阳能电池的性价比将会在逐步提升。

2.金属锂电池替代电池相信大家都知道,锂电池是目前最为普及的可重复充电的电池之一。

但太阳能电池技术对高温、高湿等恶劣环境往往不太适用,而采用金属锂电池的太阳能电池反而可以更好地适应这些环境,未来可能有替代之势。

太阳能电池种类、发展历史及发展现状

太阳能电池种类、发展历史及发展现状

太阳能电池种类、发展历史及发展现状引言概述:太阳能电池是一种将太阳光转化为电能的装置,具有环保、可再生、长寿命等优点,因此在能源领域备受关注。

本文将介绍太阳能电池的种类、发展历史以及当前的发展现状。

一、太阳能电池种类1.1 结晶硅太阳能电池结晶硅太阳能电池是目前应用最广泛的太阳能电池种类之一。

它由高纯度的硅材料制成,具有较高的转换效率和稳定性。

结晶硅太阳能电池又可分为单晶硅和多晶硅两种。

单晶硅太阳能电池的晶粒结构密切有序,转换效率较高;而多晶硅太阳能电池的晶粒结构较为松散,转换效率相对较低。

1.2 薄膜太阳能电池薄膜太阳能电池利用非晶态硅、铜铟镓硒等材料制成薄膜层,相较于结晶硅太阳能电池,它具有更低的创造成本和更高的灵便性。

薄膜太阳能电池可分为非晶硅太阳能电池、铜铟镓硒太阳能电池等。

非晶硅太阳能电池具有较高的光吸收能力,适合于室内光源或者弱光条件下的发电;而铜铟镓硒太阳能电池具有较高的光电转换效率,适合于大规模光伏发电场景。

1.3 有机太阳能电池有机太阳能电池采用有机份子材料制成,具有较低的创造成本和较高的柔性。

然而,由于有机材料的稳定性较差,导致有机太阳能电池的转换效率相对较低,目前仍处于研究和开辟阶段。

有机太阳能电池的发展前景仍有待进一步探索。

二、太阳能电池发展历史2.1 19世纪初太阳能电池的发展可以追溯到19世纪初。

1839年,法国物理学家贝克勒尔发现了光电效应,为后来太阳能电池的研究奠定了基础。

2.2 20世纪中叶20世纪中叶,随着对能源危机的关注和环境保护意识的提高,太阳能电池的研究进入了实用化阶段。

1954年,贝尔实验室的科学家发明了第一块效率达到6%的硅太阳能电池。

2.3 近几十年近几十年来,太阳能电池的研究和应用取得了巨大的发展。

太阳能电池的转换效率不断提高,创造成本逐渐降低,同时在建造、交通、农业等领域的应用也得到了推广。

太阳能电池已经成为可再生能源领域的重要组成部份。

三、太阳能电池的发展现状3.1 提高转换效率目前,提高太阳能电池的转换效率是研究的重点之一。

太阳能电池的发展

太阳能电池的发展

太阳能电池的发展太阳能电池是一种太阳光能转换成电能的装置。

在当今社会,因为环保的重要性,太阳能电池越来越受到关注和青睐。

而太阳能电池的发展也一直在不断提高。

在这篇文章中,我们将探究太阳能电池的发展历程和未来趋势。

一、太阳能电池的历史和现状太阳能电池的历史可以追溯到19世纪初期,但是真正的商业应用还是在20世纪。

最初的太阳能电池使用的是硒制作的,后来发现用硅制作的太阳能电池效率更高,产生的电力更稳定,所以硅太阳能电池逐渐被广泛采用。

到了21世纪,太阳能电池的技术迅速发展。

第一代太阳能电池是单晶硅太阳能电池,效率达到了17%左右;第二代太阳能电池是多晶硅太阳能电池,比第一代要便宜一些,但是效率也稍微低了一点;第三代太阳能电池是染料敏化太阳能电池,它是一种新型的光伏器件,可以将太阳光直接转换成电能,效率达到了10%左右;第四代太阳能电池是有机太阳能电池,它被称为“薄膜太阳能电池”,可以制成薄如纸片的太阳能电池,但是效率还很低,只有1%左右。

在现今的太阳能产业中,依然以硅太阳能电池为主要产品,其价格与效率都在不断地提高,平均效率已经达到了22%左右。

同时,染料敏化太阳能电池和有机太阳能电池也得到了一定的发展和应用。

二、太阳能电池的未来发展趋势太阳能电池的未来发展趋势有以下几个方面:1、提高太阳能电池的功率密度提高太阳能电池的功率密度是太阳能电池未来发展的一个重要趋势。

理论上,太阳能电池的峰值效率可以达到29%~33%之间,而现行的硅太阳能电池效率最好的也不过22%左右。

因此,未来的太阳能电池必须提高其功率密度,才能更好地满足人们的需求。

2、降低太阳能电池的制造成本降低太阳能电池的制造成本是太阳能电池未来发展的另一个趋势。

目前,太阳能电池的制造成本仍然较高,一个重要原因就是硅太阳能电池的生产过程需要大量的能源和人力,而且制造过程复杂。

因此,要想实现太阳能电池的普及,必须降低制造成本。

3、发展新型太阳能电池技术发展新型太阳能电池技术也是未来太阳能电池发展的一个趋势。

中国光伏发展历程简述

中国光伏发展历程简述

中国光伏发展历程简述答:一、光伏发电定义与原理光伏发电是一种利用太阳能辐射能量直接转化为电能的新型发电方式。

它基于光伏效应原理,即当太阳光照射到半导体材料上时,半导体内会产生电流。

这种发电方式具有无噪音、无污染、可再生等优点,因此备受关注。

二、世界光伏技术发展世界光伏技术的发展可以追溯到1839年法国科学家E.Becquerel发现液体的光生伏特效应(简称光伏现象)。

自此以后,太阳能的发展有了160多年的漫长历史。

在早期,光伏发电主要用于科学研究和军事领域。

随着技术的进步和环保意识的提高,光伏发电逐渐进入民用领域,并成为一种重要的可再生能源。

三、中国光伏发电的初始阶段中国在光伏发电领域的发展起步较晚。

1958年,中国研制出了首块硅单晶,标志着中国开始涉足太阳能发电领域。

1968年至1969年底,半导体所承担了为“实践1号卫星”研制和生产硅太阳能电池板的任务,这可以说是中国太阳能发电的雏形。

四、中国光伏发电的起步阶段进入20世纪90年代,中国政府开始关注太阳能发电,拟建第一套3MW多晶硅电池及应用系统示范项目,拉开了我国光伏产业化的序幕。

这一阶段,中国的光伏发电主要依赖于进口产品和技术,发展较为缓慢。

五、中国光伏发电的快速发展阶段自2009年以来,中国光伏发电进入了快速发展的阶段。

国家能源局和住建部分别开展“金太阳工程”和“光伏建筑应用示范”项目,大力推动光伏产业的发展。

“金太阳工程项目”实施50%的初始投资补贴,高初装补贴在带动大型光伏电站的同时也带动分布式光伏增长。

同时,中国政府还出台了一系列政策和措施,鼓励和支持光伏产业的发展和应用,使得中国的光伏产业迅速崛起,成为全球最大的光伏市场之一。

六、中国光伏发电的现状和未来趋势目前,中国光伏产业已经形成了完整的产业链和全球最大的光伏发电市场。

在政策扶持和市场需求的推动下,中国光伏产业将继续保持快速发展态势。

未来,随着技术的不断进步和成本的持续降低,光伏发电将在能源结构中占据更加重要的地位,成为中国乃至全球实现可持续发展目标的重要支撑。

太阳能电池的发展历史

太阳能电池的发展历史

太阳能电池的发展历史太阳能电池是一种将太阳能转化为电能的装置,它在过去几十年中经历了显著的发展和进步。

本文将详细介绍太阳能电池的发展历史,包括关键的里程碑、技术进步和市场应用。

1. 太阳能电池的起源太阳能电池的概念最早可以追溯到19世纪中叶。

1839年,法国物理学家贝克勒尔发现了光电效应,这是太阳能电池技术的基础。

然而,在当时,太阳能电池的效率非常低,无法实际应用。

2. 第一代太阳能电池:硅基太阳能电池20世纪50年代,贝尔实验室的研究人员发明了第一代太阳能电池,采用硅材料创造。

这种硅基太阳能电池具有较高的效率和稳定性,成为当时太阳能电池的主流技术。

然而,创造成本高昂,限制了其广泛应用。

3. 第二代太阳能电池:薄膜太阳能电池20世纪70年代,薄膜太阳能电池开始浮现。

与硅基太阳能电池相比,薄膜太阳能电池采用更薄的材料创造,成本更低。

这种技术的发展使得太阳能电池在一些特定应用领域得到了推广,如计算器、手表等小型电子设备。

4. 第三代太阳能电池:多晶太阳能电池和非晶太阳能电池20世纪80年代,多晶太阳能电池和非晶太阳能电池成为主流技术。

多晶太阳能电池通过改善硅材料制备工艺,提高了效率和降低了成本。

非晶太阳能电池则采用非晶硅材料,具有更高的效率和更好的适应性。

5. 第四代太阳能电池:染料敏化太阳能电池和钙钛矿太阳能电池21世纪初,染料敏化太阳能电池和钙钛矿太阳能电池成为研究热点。

染料敏化太阳能电池利用染料份子吸收光能,并将其转化为电能。

钙钛矿太阳能电池则利用钙钛矿材料具有优异的光电转换性能。

这两种技术在效率和成本方面都有显著的突破,被认为是太阳能电池的未来发展方向。

6. 太阳能电池的应用和市场前景随着技术的进步和成本的降低,太阳能电池在各个领域得到了广泛应用。

目前,太阳能电池主要用于屋顶光伏发电、太阳能电池板、太阳能电池路灯等领域。

随着对可再生能源需求的增加和环境意识的提高,太阳能电池市场有望继续扩大。

太阳能电池的发展历史

太阳能电池的发展历史

太阳能电池的发展历史引言概述:太阳能电池是一种将太阳能转化为电能的装置,是清洁能源的重要组成部分。

随着科技的不断进步,太阳能电池的发展历史也日益丰富。

本文将从太阳能电池的发展历史出发,探讨太阳能电池在不同阶段的重要进展和技术突破。

一、第一代太阳能电池1.1 第一代太阳能电池的材料第一代太阳能电池采用的是单晶硅材料,具有较高的转换效率。

1.2 第一代太阳能电池的结构第一代太阳能电池采用PN结构,通过光生电子和空穴的扩散来产生电流。

1.3 第一代太阳能电池的应用第一代太阳能电池主要用于太阳能发电系统和航天领域。

二、第二代太阳能电池2.1 第二代太阳能电池的材料第二代太阳能电池采用的是多晶硅、非晶硅、半导体复合材料等,具有更广泛的应用范围。

2.2 第二代太阳能电池的结构第二代太阳能电池采用薄膜太阳能电池、有机太阳能电池等新型结构,具有更高的柔韧性和透明度。

2.3 第二代太阳能电池的应用第二代太阳能电池广泛应用于建筑一体化、户外充电设备等领域。

三、第三代太阳能电池3.1 第三代太阳能电池的材料第三代太阳能电池采用的是钙钛矿、有机无机杂化材料等新型材料,具有更高的光电转换效率。

3.2 第三代太阳能电池的结构第三代太阳能电池采用钙钛矿太阳能电池、染料敏化太阳能电池等新型结构,具有更高的光吸收性能。

3.3 第三代太阳能电池的应用第三代太阳能电池在光伏发电、光催化等领域具有广阔的应用前景。

四、第四代太阳能电池4.1 第四代太阳能电池的材料第四代太阳能电池采用的是纳米材料、量子点材料等新型材料,具有更高的光电转换效率和稳定性。

4.2 第四代太阳能电池的结构第四代太阳能电池采用多结构堆叠、光子晶体等新型结构,具有更高的光电转换效率和光电子传输性能。

4.3 第四代太阳能电池的应用第四代太阳能电池在光伏发电、光催化、光电子器件等领域具有更广泛的应用前景。

五、未来太阳能电池的发展趋势5.1 提高光电转换效率未来太阳能电池将不断提高光电转换效率,实现更高效的能源利用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从1958年中国开始研制第一片晶体硅光伏电池以来,到现在已走过半个多世纪。

光伏专家、上海交通大学太阳能研究所所长崔容强告诉编辑:“中国的太阳能电池也经历了从无到有、从空间到地面、由军到民、由小到大、由单品种到多品种以及光电转换效率由低到高的艰难而辉煌的历程。

”据统计,从2002年至今,中国太阳能电池产量猛增了77倍。

2008年,我国太阳能电池产量约占世界总产量的三分之一,连续两年成为世界第一大太阳能电池生产国。

1839年法国物理学家贝克勒尔首次发现光伏效应;1954年美国贝尔实验室制成第一个单晶硅太阳能电池;1983年美国在加州建立了当时世界上最大的太阳能电厂……人类从来未曾停止过追逐太阳的步伐。

1969年研制完成硅太阳能电池组1958,我国研制出了首块硅单晶中科院院士、中科院半导体研究所研究员王占国对编辑说:“美国1957年左右拉出了首块硅单晶,我国1958年也研制出了首块硅单晶,随后,中科院物理新成立的半导体研究室正式开始研发太阳能电池。

”最初,研发出的电池主要用于空间领域。

从1958年到1965年间,半导体所研制出的PN结电池效率突飞猛进,10×20mm电池效率稳定在15%,同国际水平相差不大。

1968年至1969年底,半导体所承担了为“实践1号卫星”研制和生产硅太阳能电池板的任务。

在研究中,研究人员发现,P+/N硅单片太阳电池在空间中运行时会遭遇电子辐射,造成电池衰减,使电池无法长时间在空间运行。

于是,包括王占国在内的6人小组开始进行人造卫星用硅太阳电池辐照效应研究,实验过程中,由于技术不成熟、设备落后,致使王占国的右手严重电子灼伤,从此他一直饱受痛苦,直到1978年夏天进行植皮手术才有所缓解。

编辑注意到,王占国院士右手手背上有一些黑色的褶皱,这正是老一辈科学家殚精竭虑献身科学的印记。

经过刻苦攻关,实验结果给研究人员带来巨大惊喜。

王占国院士介绍,NP 结硅太阳电池抗电子辐照的能力比PN结硅电池大几十倍!随后,半导体所做出了将硅PN电池改为NP定型投产的决定,生产出了5690片NP结硅太阳电池,其中达到空间应用要求的成品3350片,圆满完成了“实践1号”卫星用太阳能电池板的研制、生产任务。

1971年实践1号发射升空,在8年的寿命期内,太阳电池功率衰降不到15%,该项目在1978年全国科学大会上获重大成果奖。

1969年,半导体所停止了硅太阳电池研发,随后,天津18所为东方红二号、三号、四号系列地球同步轨道卫星研制生产太阳电池阵。

王占国院士说:“70年代末,我国与国际同期开展了砷化镓太阳能电池研究,该电池具有很高的光发射和光吸收系数,1999年,2×2cm2电池的转换效率达22%。

”1975年宁波、开封先后成立太阳电池厂,电池制造工艺模仿早期生产空间电池的工艺,太阳能电池的应用开始从空间降落到地面。

1998,我国太阳能产业有了第一个“吃螃蟹”的人上世纪80年代开始,我国太阳能电池开始进入萌芽期,研发工作在各地次第展开,但进展缓慢。

崔容强介绍说,1986年国家计委在农村能源“1986—1990年第七个五年计划”中列出了《太阳电池》专题,全国有6所大学和6个研究所开始进行晶体硅电池等的研究。

20世纪80年代末期,国内先后引进了多条太阳能电池生产线,包括云南半导体厂从加拿大引进的1MW(兆瓦)生产线等,使中国太阳能电池的生产能力由原来的几百KW(千瓦)一下子提升到4.5MW,这种产能一直持续到2002年,产量则只有2MW左右。

“90年代中末期为我国太阳电池稳步发展期,经过引进、消化、吸收和再创新,太阳电池生产技术和工艺得到稳定发展和提高,生产量稳步增长,基本满足了国内市场的需要并有极少量的出口。

”崔容强说。

1998年,我国政府开始关注太阳能发电,拟建第一套3MW多晶硅电池及应用系统示范项目,这个消息让现在的天威英利新能源有限公司的董事长苗连生看到了一线曙光。

可是,当时太阳能产业发展前景尚不明朗,加之受政策因素制约,令不少人对这一新能源项目望而却步。

在合作伙伴退出的情况下,苗连生毅然逆势而上,争取到了这个项目的批复,成为中国太阳能产业第一个“吃螃蟹”的人。

2001年,无锡尚德建立10MWp(兆瓦)太阳电池生产线获得成功,2002年9月,尚德第一条10MW太阳电池生产线正式投产,产能相当于此前四年全国太阳电池产量的总和,一举将我国与国际光伏产业的差距缩短了15年。

2005年12月14日,无锡尚德太阳能电力公司在纽约证券交易所上市,尚德的横空出世及超常规发展带来的“首富效应”启动了中国太阳能产业的加速器,国内太阳能电池的生产和研发也驶入了快车道。

天威英利公司相关负责人介绍,2003年12月19日,该公司的项目正式通过国家验收,全线投产,填补了我国不能商业化生产多晶硅太阳能电池的空白。

2003到2005年,在欧洲特别是德国市场拉动下,尚德和保定英利持续扩产,其他多家企业纷纷建立太阳电池生产线,使我国太阳电池的生产迅速增长,目前,我国太阳能电池产量占到世界总产量的30%。

王占国院士指出:“近年来我国太阳能电池相关的技术研发取得了一些突破,但是,与国外相比可能还存在一些差距,主要表现在技术水平、产业和市场发展等方面。

比如,几种典型太阳电池的实验室最好效率都比国外要低,我国单晶硅、多晶硅的实验室效率分别为19.8%、16.5%,而国外的分别为24.8%和19.8%。

”而且,王占国院士表示,我国太阳能电池制造中,很多设备都是从国外进口,耗费了企业大笔资金,所以,我们应该加大设备的研发和制造,以降低成本。

北京地铁站旁安装的太阳能路灯2005,我国拉开多晶硅大发展的序幕多晶硅是整个太阳能电池产业的“命脉”,多晶硅原材料的短缺使太阳电池的成本居高不下,严重制约了太阳能电池产业和市场的发展。

另外,多晶硅原材料的先进生产技术一直基本上掌握在美国、日本、德国等几家主要生产商手中。

由于种种原因(生产商对光伏产业能否保持稳定需求的疑虑、技术和市场垄断的需要、扩产的滞后性),这些企业没有一家宣布在中国建厂,更遑论技术转让。

洛阳中硅高科技有限公司副总工程师严大洲表示:“国内光伏企业要摆脱受制于人的局面,必须‘苦练内功’,走自主研发的道路,加大技术创新力度。

”严大洲介绍说,我国多晶硅始于1964年,但是技术水平低、规模小、产品单耗高、生产成本高。

2005年之前,我国年产多晶硅还不到世界年总产量的0.5%。

因此,2005年,业内著名专家梁骏吾、周廉、阙端麟三位两院院士联名报送中共中央、国务院等一份建议书,呼吁:“打破垄断、政府主导、多方融资迅速建立年产上千吨级的多晶硅生产厂。

”严大洲说:“院士的上书在业界引发了强烈反响,也坚定了我们走自主研发道路的决心。

”在此背景下,科技部组织实施了863攻关计划、“十一五”支撑计划等,同时,国家发改委组织实施了《高纯硅材料高技术产业化重大专项》,围绕多晶硅生产各环节的重大技术难题,实施重点攻关,取得了一系列攻关和产业化成果,拥有了自主知识产权技术体系,为多晶硅的产业化发展赢得了主动权。

2004年,洛阳单晶硅厂与中国有色设计总院共同组建的中硅高科自主研发出了12对棒节能型多晶硅还原炉,以此为基础,2005年,国内第一个300吨多晶硅生产项目建成投产,从而拉开了中国多晶硅大发展的序幕。

严大洲说:“我国首条产业化示范线建成,一方面给了业内人士信心,另一方面,也标志着多晶硅规模化生产技术体系形成,打破了国外多年的技术封锁和市场垄断。

”另外,在多晶硅的提纯技术上,我国也不断取得突破。

目前,世界上普遍采用“改良西门子工艺”提纯,纯度虽高,但能耗大、不环保。

中科院上海技术物理所高文秀团队另辟蹊径,发明了“物理法”进行提纯,2007年7月16日,部分样品经日本方面测定,纯度高达5N至6N(用于太阳能电池的多晶硅纯度,要求远远高于99.9%:以“N”代表小数点后“9”的数量,须在4N以上),电耗和水耗分别只有“改良西门子工艺”的1/3和1/10。

目前,国内绝大部分多晶硅生产都采用三氯氢硅工艺,这种高耗能工艺因四氯化硅等无法全部回收难以处理,环境污染严重。

2008年,中硅高科承担了国家“863”重点科技攻关项目—多晶硅副产物利用关键技术研究,该公司通过自主研发,成功完成了低温加压氢化技术的研究。

严大洲介绍说:“目前,该项目已经在1000t/a和2000t/a多晶硅等项目上运行,四氯化硅经过几次循环后,几乎可实现全部回收利用。

”而天威英利六九硅业现在采用的新硅烷生产多晶硅工艺耗电少,生产成本比同行业低24%,产量同比提高30%,副产品无污染并且可全部出售再利用。

王占国院士称,对目前占据光伏市场90%的晶体硅太阳电池来讲,转换效率的提高和硅片的薄型化是降低成本的主要途径。

据江西赛维公关部总监姚伟介绍,该公司最薄的硅片为160m左右,达到了世界领先的产业化水平。

2007,我国成为生产太阳电池最多的国家严峻的晶硅短缺使很多太阳能电池生产设备处于停产状态;不断上涨的晶硅价格一步步蚕食着太阳能电池生产商的利润。

因此,寻找晶硅或减少对晶硅的依赖成为太阳能电池企业不得不面临的选择。

非晶硅薄膜太阳能电池跃入了人们的眼球,获得了难得的发展机遇。

王占国告诉编辑,薄膜电池不用硅片,而是在玻璃等廉价衬底上沉积薄膜半导体有源层,可望大幅度降低材料消耗和成本。

他呼吁,国家应该多多重视薄膜太阳能电池的研究。

薄膜电池中最常见的是非晶硅太阳能电池。

与普通太阳能电池相比,非晶硅太阳能电池成本低、能耗低、无污染、弱光好,厚度仅为前者的二百分之一,更适合与建筑外墙结合构成墙体型太阳能发电系统,还可以应用在便携式电子设备上。

我国的非多晶硅太阳能电池研究也走了一条曲折的道路。

早在1975年南开大学就开始进行非晶硅薄膜太阳电池的研究。

上世纪80年代,我国从美国克罗拉公司引进一条1兆瓦非晶硅太阳能电池生产线,工业化较为成功。

但截至2003年底,我国非晶硅太阳能电池还只有这一条生产线。

然而,还是不断有厂家朝非晶硅太阳能电池领域进发,并取得一定的成果。

2008年北京奥运会期间,奥运村的太阳能热水器系统采用的是由北京行者集团研发的非晶硅太阳能电池技术。

这种太阳能热水器可以为16800余名运动员提供洗浴热水;奥运会后,它可以满足约1868户居民的生活热水需求,每年可节电1000万千瓦时。

行者集团总裁马昕表示:“行者具有完全自主知识产权的非晶硅太阳能薄膜电池主要以钢化玻璃作为制作原料,灵敏度高,而且能够实现全光谱吸收,即便利用微弱的月光也可以照常发电。

”近年来,非晶硅太阳能电池获得了较大的发展。

数据显示,2007年全球薄膜太阳能电池产量由2006年的181MW提升到了2007年的400MW。

在我国,2007年行业增速约120%,预计未来3年内年均增速高达100%。

相关文档
最新文档